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Système de type polymorphe

pour le Calcul Bleu

Résumé : Le Calcul Bleu est une extension directe à la fois du pi-calcul et du lambda-
calcul. Dans un travail précédent, Gérard Boudol à donné un système de type simple pour
ce calcul qui comprend le système de type simple de Curry pour le lambda-calcul. Dans ce
rapport, nous étudions un système de type implicite et polymorphe qui s'inspire du typage
du langage ML. Nous montrons que ce système de type possède les propriétés de �subject
reduction� et de type principal, ce qui conforte notre opinion que le calcul bleu est un modèle
bien adapté à la dé�nition d'un langage de programmation concurrent d'ordre supérieur.

Mots-clé : pi-calcul, calcul bleu, type, polymorphisme
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1 Introduction

The purpose of this paper is to de�ne a polymorphic type discipline for the blue calculus
(�?), a direct extension of both the �-calculus and the �-calculus. As in Curry's work, we
start from an untyped calculus, i.e., without type annotations, and we de�ne a type system
on top of it. Types are used as a means of identifying a class of terms whose evaluation
is guaranteed to be safe, but Curry's type system is limited in the sense that some �reaso-
nable� terms are ill-typed. The Hindley-Milner type system, used in the de�nition of many
higher-order functional languages like Haskell or ML, partially overcomes this limitation
by introducing parameterization on types. In [8], a simple type system was given that in-
corporates Curry's type inference for the �-calculus (see table 1 on page 9). Therefore, it is
natural to encounter the same limitation. Our goal is to apply to the blue calculus the same
program that bene�ted ML. In this paper we present a type system that combines both
safety: strong and static type checking, and �exibility: parametric polymorphism, implicit
type assignment and decidable type inference.

To get an idea of the blue calculus, let us see how the weak call-by-name �-calculus can
be encoded in the asynchronous �-calculus [4, 7]. We suppose the set of �-calculus variables
is a subset of the �-calculus set of channel names. Lambda terms are given by the usual
grammar

M ::= x
�� �x :M �� (M M)

and the lazy reduction relation M ! l M
0 is given by the two rules

(�x :M) N ! l M [N=x]
M ! l M

0 ) (M N) ! l (M
0 N)

The translation, JMKu, from � to �, takes as extra argument a channel name, u, representing
the �location� at which the �-term will have access to its next argument8>>>>>><

>>>>>>:

JxKu =def �xu
J�x :MKu =def u(x; v):JMKvJ(M N)Ku =def (�v)(JMKv j (�x )(�vxu j !x(w0):JNKw0 ))

J(�x :M) NKu = (�v)(v(x;w):JMKw j (�x )(�vxu j !x(w0):JNKw0))
! (�vx )(JMKu j !x(w0):JNKw0 )

The process D =def x(w
0):JNKw0 can be interpreted as an agent, located at x, waiting for a

location u to trigger the process JNKu. For example, in the reduction

JxKu j x(w0):JNKw0 ! � JNKu
the output �xu triggers a process �equivalent� to N waiting for its next argument in u. We
choose to denote this special agent

D =def (x( (w0)JNKw0)

RR n�3244



4 Silvano Dal-Zilio

and we call it a declaration in the following. We also consider the associated reduction rule

�xu j (x( (y)P ) ! P [u=y]

which can be further decomposed in the more elementary reduction steps fetching and �small�
�-reduction1

�xu j (x( (y)P ) ! � ((y)P u) and ((y)P u) ! � P [u=y]

Therefore, the translation of redex ((�x :M) N) reduces to a process equivalent to JMKu in
parallel with an agent perpetually o�ering N at x. This situation is comparable to the call-
by-need calculus of Ariola et al [1], a �-calculus extended with the �let� operator together
with the reduction rule

(�x :M) N ! letx = N inM (1)

A comparison with �-reduction (�x :M) N ! M [N=x] would have been less satisfactory
since, in our translation, only an �access� to N is transmitted and not the term itself.

The next step is to identify �xu with application and (x)N with small �-abstraction
(a comparison already done by Milner in [28]). We have by de�nition that JxKu =def

�xu. Abstracting the extra argument u, it follows that (u)(JxKu) = (u)(�xu), which is �-
equivalent to �x. Likewise, if we denote f[M ]g =def (u)(JMKu), we have that (w0)(JNKw0) =def

(w0)(f[N ]g w0) �� f[N ]g. Introducing a new notation for the in�nitely available resource N
at x, namely (x = N) =def !(x ( N), it follows that the translation of redex (�x :M) N
becomes

J(�x :M) NKu =def (�v)((v ( (�x )f[M ]g) j (�x )(�vx j (x = f[N ]g)))

Reduction is again the combination of the two previous basic reduction steps, communication
(fetching) and small �-reduction

J(�x :M) NKu =def (�v)((v ( (�x )f[M ]g)
j (�x )(�vx j (x = f[N ]g)))

! � (�vx )(((�x )f[M ]g x) j (x = f[N ]g))
! � (�vx )(f[M ]g j (x = f[N ]g))

Together with Equation (1), this gives a de�nition of the let-construct in the blue calculus

letx = N inM =def (�x )(M j (x = N)) (2)

The blue calculus syntax and operational semantic is very close to what has been in-
troduced in this translation from weak call-by-name �-calculus to �. We �nd both � and

1small is used to distinguish Church's � rule, such that a term replace a variable, from the weaker relation
! �, such that variable are only instantiated with another variable.

INRIA



Implicit Polymorphic Type System for the Blue Calculus 5

� operators: application and abstraction in the applicative part and parallel ( j ) and new
names declaration (�) in the concurrent one. We also �nd new constructors for resources
declaration: hu ( P i and hu = P i, together with the reduction rule

u z1 : : : zn j hu ( P i ! � P z1 : : : zn

Equation (2) is another contribution of this translation. It links declarations and let bin-
dings, the construct at the heart of polymorphism in the Hindley-Milner type system. This
relation is extended to types in Section 3.1 and is the main theme that permits us to un-
derstand the di�erent type system proposed in this paper.

The let-construct is de�nable in our calculus, we do not have to consider a new operator.
There is a sensible di�erences with the �-calculus though. One should remark that the
let operator is usually associated with a call-by-value evaluation mechanism whereas �?

is associated with call-by-name2. Therefore, we have to di�erentiate the two mechanisms
bounded in the ML let-construct

Value sharing letx = N inM ! M [N=x] i� N is a value whereas, in �?, computation of
N is duplicated in (�x )(M j (x = N)) if x appears more than once in M .

Polymorphism Type generalization is restricted to variable bounded in a let-construct.

It is interesting to compare this remark with the distinction made by Leroy in [24, 25]
between a construct, �let val�, for value sharing and a construct, �let name�, for type gene-
ralization. The same distinction is also introduced in [17], where it is stated that, in this
variant of ML, it becomes possible to de�ne a correct �variant call-by-value CPS transform�
for a polymorphic type assignment system.

In Section 2 we brie�y present �? and its operational semantics. And in Section 3
we present the polymorphic type system and the problem of polymorphic recursion. We
de�ne two type systems adapted from type discipline for ML: one (`D) inspired by the
Damas-Milner type system and the other (denoted `M) inspired by Milner-Mycroft's one. In
Section 4 and 5 we prove subject reduction and principal type property for `M, the most
expressive of these systems. In Section 6, we de�ne a new constructor that binds the scope
of declarations and give a new type system, `8B, for the extended calculus. In Section 7 we
prove that `D and `M both give an undecidable type assignment problem whereas typability
in `8B is decidable.

2 The semantics of the blue calculus

We assume two denumerable sets of names, V for variables, ranged over by x; y; : : : and
R for references, ranged over by u; v; : : : . We distinguish four syntactic categories in the
grammar of our calculus as

2there is no rule that allow reduction under a declaration

RR n�3244



6 Silvano Dal-Zilio

a ::= constants
�� x �� u values

D ::= hu ( P i
�� hu = P i declarations

A ::= a
�� (�x )P �� (P a) agents

P ::= A
�� D �� (P j P )

�� (�u)P processes

We denote fn(P ) to be the free names of P . A bound name is either a (�) abstracted
variable or a restricted reference. Reference u is restricted in (�u)P but free in declarations
hu ( P i or hu = P i, decl(P ) denotes the free references in the subject of a declaration. In
particular decl(hu ( Ri) = fug [ decl(R).

The operational semantics is presented using the chemical metaphor [2]. In particular,
structural equivalence over processes, denoted 
 , is de�ned as the combination of two re-
lations, cooling + and heating * (see Table 1). Axioms for the heating relations can
be deduced from those of 
 reading the rules from left to right (respectively right to left
for cooling). The rules (folding) and (replication) can conveniently be added, but are not
necessary.

Apart from for declarations, the constructors operational behaviour (given Table 1)
should be clear. hu ( P i can be thought as a resource accessible through a call to reference
u. Rule (�), in the operational semantic, implements the �resource fetching� mechanism

(u z1 : : : zn j hu ( P i) ! P z1 : : : zn

Likewise, hu = P i may be interpreted as an �inexhaustible resource�, related to hu ( P i in
the same way that !u(x):P , the �-calculus replicated input, is related to u(x):P . To unders-
tand the connections between resources, the � and the �-calculus it is interesting to study
how declarations are reminiscent of the �-calculus with resources and its deterministic ver-
sion, the �-calculus with multiplicities [5, 6, 7, 23], de�ned by Gérard Boudol in connection
with the encoding of the �-calculus in �.

It should be noted that, contrary to the original presentation made in [8], references are
not �rst class in our calculus3. Although they can appear under a �-abstraction, they can't
be abstracted. For example, (�u)hu ( P i is not a valid process. This restriction implies
that no new declarations on a given reference can be dynamically created. We does not lose
expressive power though. Indeed, from a �-calculus viewpoint, this restriction is equivalent
to the limitation that a name received during an input cannot be used as an input channel.
This restriction is present in Michele Boreale's �ia-calculus [3], and it has been shown that
the asynchronous �-calculus of Boudol [4, 19] can be faithfully encoded in its fragment �ia.

To conclude, let us see, in some examples, how the blue calculus takes the best from
both the functional and the process calculi world. It is possible to give example familiar

3in fact, the same discussion appears in conclusion of this paper

INRIA



Implicit Polymorphic Type System for the Blue Calculus 7

Table 1 structural equivalence and reduction

structural equivalence:
P 
 Q (P �� Q)
P j Q 
 Q j P
(P j Q) j R 
 P j (Q j R)
(P j Q) v 
 (P v) j (Q v)
(�v)P j Q 
 (�v)(P j Q) (v 62 fn(Q))
(�u)P v 
 (�u)(P v) (u 6= v)
hu = P i a 
 hu = P i
hu ( P i a 
 hu ( P i

hu = P i 
 hu ( (P j hu = P i)i folding/unfolding
hu = P i 
 hu ( P i j hu = P i replication

reduction:
(�x )P v ! P [v=x] (�)
(u j hu ( P i) ! P (�)
(u j hu = P i) ! P j hu = P i (!�)
P ! P 0 ) (P u) ! (P 0 u) context rules
P ! P 0 ) (P j Q) ! (P 0 j Q)
P ! P 0 ) (�u)P ! (�u)P 0

P ! P 0 and P 
 Q ) Q ! P 0

RR n�3244



8 Silvano Dal-Zilio

to people from the �-calculus world. Booleans encodings for example: T =def (�xy)x and
K =def (�xy)y, or pairs, [P;Q], such that

[P;Q] =def (�pq)((�b)(b p q) j hp ( P i j hq ( Qi)

[P;Q] T ! P and [P;Q] K ! Q

We can also de�ne classical concurrent processes, like process-based lists, non-deterministic
choice (�) or single state bu�er (bu� )

� =def (�xy)((�u)(u j hu ( xi j hu ( yi))

bu� =def (�b)(b j hb = hput ( (�x )hget ( (x j b)iii)

Finally, some �? speci�c operators are also de�nable. Like �higher-order� application or
recursion

(P Q) =def (�u)(P u j hu = Qi) (u fresh)

rec x :P =def (�x )(hx = P i j x)

3 The type system

In the polyadic �-calculus [28], contrary to the monadic case where simple channel names
are exchanged during communication, channels carry tuples. This led to a new behaviour:
tuples sent along a channel may not have the same length as the tuple expected by the
receiver. A situation comparable to runtime failure. To prevent this situation, Milner
de�ned a channel-use discipline, called sorts, which is the foundation of many type systems
for the �-calculus [32, 37] and for programming languages developed on its model (Pict [35],
the join-calculus [16], etc).

Since communication in �? is a combination of resource fetching and �-reduction steps
there is no notion of a polyadic calculus. There is also no corresponding operational notion
of runtime failure. But the notion of types for our calculus arises naturally from the �-
calculus, especially if one wants to introduce concrete values. Moreover, Boudol proved that
his Curry-Hindley style type system for �? (Table 1) reconciles both the �-types and the
�-sorts paradigms.

We assume the reader is familiar with notations for the polymorphic type discipline of
ML. We use � to denote type variables (also called non-generic or applicative variables)
and � to denote generic type variables. By convention we use � and ! to range over simple
(monomorphic) types and �, � over type schemes (polymorphic types). fn(�) is the set of
free types variables and �jx denotes a type environment equal to � everywhere save for x,
where it is unde�ned.

INRIA
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Type System 1 Curry-style type system for �? (`B)

�(u) = �

� `B u : �
(taut)

� `B P : � �(x) = � 0

�jx `B (�x )P : � 0 ! �
(abs)

� `B P : � 0 ! � �(u) = � 0

� `B (P u) : �
(app)

� `B P : � � `B Q : �

� `B P j Q : �
(par)

� `B P : �

�jx `B (�x )P : �
(new)

� `B P : � �(u) = �

� `B hu ( P i : !
(decl)

� `B P : � �(u) = �

� `B hu = P i : !
(!decl)

v ::= basetypes
�� � �� �

� ::= v
�� (� ! �) simple types

� ::= �
�� 8�:� type schemes

De�nition 3.1 (Generalization of a type and subsumption)
Given a set V of type variables, generalization of a simple type � is the type scheme
GenV (�) =def 8~�:� , where ~� are the free generic type variables in � not belonging to V . We
use Gen�(:) as a shorthand for Genfn(�)(:). The subsumption relation between type schemes
and types, �, is such that � � � i� there exist some simple types � 0 and ~!, and variables ~�
such that � = 8~�:� 0 and � = � 0[~!=~�].

We present a syntax-directed type inference system (see table 2 on the next page) in the
same vein as [12]. Note that, contrary to [14], we give simple types to processes and not
type schemes. An enjoyable propriety of such system is that the structure of a valid typing
sequent � ` P : � is P .

For convenience, we neglect to give a typing rule for multiple/replicated declarations
(hu = P i) since, like in `B, it is essentially the same as for simple/linear declarations
(hu ( P i). Moreover, in a calculus with structural laws (replication) and (folding) (table 7),
one can derive the former rule from the latter. The rules for declarations deserve further
comment. A sequent �; u : � ` P : � means that every occurrence of u in P has (possibly
di�erent) type ! such that � � !. Suppose that the process Q is a resource accessible from
u in P , e.g., P = C[u] j hu ( Qi. Therefore hu ( Qi should have type � and Q should have
type �q such that � � �q . Therefore, we must be able to assigned any type to a declaration.
This is the meaning of type ! in rule (decl+).

RR n�3244



10 Silvano Dal-Zilio

Type System 2 Polymorphic type system for �? (`)

�(x)� �

� ` x : �
(taut)

� ` P : � �(x) = � 0

�jx ` (�x )P : � 0 ! �
(abs)

� ` P : � 0 ! � �(u)� � 0

� ` (P u) : �
(app)

� ` P : � � ` Q : �

� ` P j Q : �
(par)

� ` P : �

�jx ` (�x )P : �
(new)

� ` P : � �(u) = Gen�(�)

� ` hu ( P i : !
(decl+)

We implicitly assume here that we are dealing with terms up to �-conversion. Otherwise
we could not be able to type an example like (�x )(�x )x for instance. Thus we, can assume
that our type inference system is enriched with a typing rule that allows two �-equivalent
processes to share the same types and, for the rest of this paper, we assume that bound
names never clash.

Type System 3 � conversion

� ` P : � P �� Q

� ` Q : �
(alpha)

3.1 Polymorphic recursion

For our analysis, only a core fragment ofML is needed. It's a �-calculus augmented with the
let-construct and the usual �x-point operator, namely rec x :M . We recall that we distinguish
(�x )P , the blue calculus �small� abstraction, and �x :M , the stronger �-calculus abstraction,
that allows substitution of terms over variables. We refer the reader to the note in page 4
and to [28, 8] where the same discussion appears. Terms of core-ML are de�ned by the
grammar

M ::= x
�� (MM)

�� �x :M �� letx = N inM
�� rec x :M

A type inference system, based on the one given by Damas in his thesis [14], is presented
in Table 4. A characteristic of the Damas-Milner Calculus is that occurrences of a function
inside the body of its (recursive) de�nition can only be used monomorphically. To overtake
this limitation, Mycroft [29] suggested a typing rule for polymorphic recursive de�nitions

INRIA



Implicit Polymorphic Type System for the Blue Calculus 11

(see Table 5 and rule (letrec +), table 8 on page 20). We di�erentiate those two type systems
by denoting with `D sequents in the presence of (rec) rule and `M whenever rule (rec +) is
used.

Type System 4 Type system for core-ML without recursion

�(x) = � � � �

� ` x : �
(taut)

� ` M 0 : � 0 �jx; x : Gen�(�
0) ` M : �

� ` letx =M 0 inM : �
(let)

� ` M : � �(x) = � 0

�jx ` �x :M : � 0 ! �
(abs)

� ` M : � 0 ! � � ` M 0 : � 0

� ` (M M 0) : �
(app)

Type System 5 Two typing rules for recursive de�nitions in ML

Damas-Milner type system (`D)
x : �;�jx `D M : �

�jx `D rec x :M : �
(rec)

Milner-Mycroft type system (`M)
x : Gen�jx

(�);�jx `M M : �

�jx `M rec x :M : �
(rec +)

The rule in Damas-Milner (DM) type system is conceivable if one considers recursive
de�nition as the result of applying a �xpoint operator to an abstraction, i.e., rec x :M '
(Y �x :M), where Y 's type is 8�:(�! �)! �. On the other hand, in the Milner-Mycroft
(MM) type inference system, the de�nition of a function f can contain recursive calls to f
at di�erent types. This ability is called polymorphic recursion. It was shown in Section 2
that the rec-operator is derivable in the blue calculus

rec x :P =def (�x )(hx = P i j x)

this gives derived rules for recursion in our polymorphic type system (see table 6 on the next
page). Looking at the corresponding rules in ML, it appears that our type inference system
is closer to Mycroft spirit.

The Milner-Mycroft type inference system is proved sound and it preserves the principal
type property of DM calculus. But, contrary to Damas type system, type inference is not
a decidable problem. Automatic and practical type inference for ML has been achieved for
the earlier implementation [27, 13] and was a major advantage of ML with respect to other
applicative programming languages. However, results concerning the type reconstruction
complexity are more recent. For almost ten years programmers thought this problem had
polynomial time complexity until Maison [26] proved in 1990 that the polymorphic type in-
ference problem is complete for exponential time. Likewise, the MM type system from 1984,

RR n�3244



12 Silvano Dal-Zilio

Type System 6 Damas and Mycroft style typing rule for declaration and associated derived
rules for recursive de�nitions

�ju; u : � `D P : �

�ju; u : Gen�ju
(�) `D hu ( P i : !

(decl)

�ju; u : � `D P : � Gen�ju
(�)� � 0

�ju `D recu:P : � 0
(rec)

� `M P : � �(u) = Gen�(�)

� `M hu ( P i : !
(decl +)

� `M P : � �(u) = Gen�(�) � � 0

�ju `M recu:P : � 0
(rec +)

which has been �implemented� in a version of ML, was shown to be undecidable in 1990.
Henglein [18] and independently Kfoury, Tiuryn and Urzyczyn [22] shown that the typabi-
lity problem in MM is log-space equivalent to semi-uni�cation, where semi-uni�cation is the
problem of solving subsumption inequations between �rst order terms. Semi-uni�cation has
been shown to be recursively undecidable. Thus we can't reasonably expect typability for
our calculus to be decidable, and we prove the undecidability of the type inference problem
in Section 7.

To achieve decidable type reconstruction in �?, it is possible to draw one's inspiration
from the Damas-Milner typing rule for the �let� construct. This provides us with new typing
rule for declarations (decl) which contrasts with (decl +) in the same way that rules (rec)
and (rec +) di�er. Those new rules, as well as the derived rules for recursion, are presented
in Table 6.

3.2 Example: a process-based cell

Just as there are more typable terms in the MM type inference system than in DM, there
are strictly more typable processes with rule (decl +). We propose a practical example to
illustrate this property.

A discussion on how to model cells in the blue calculus can be found in conclusion
of [8]. Cells, readers may be more familiar with the term reference, used with a di�erent
meaning in this article, a classical example of mutable data structure encoded in process
calculi. Its behaviour is very much like the single bu�er of Section 2 except that accesses
(messages on get) are not destructive. First, we introduce a new operator, ha ( P; b ( Qi,

INRIA



Implicit Polymorphic Type System for the Blue Calculus 13

which combines two declarations in a single construct such that �resource fetching� becomes
correlated. This operator, subsequently denoted by pair-declarations, veri�es

�
ha ( P; b ( Qi j a ! P
ha ( P; b ( Qi j b ! Q

(3)

This construction provides us with an encoding for records [9, 33], but it is a special
kind of records since �eld extraction is not an application but a parallel composition. Thus
it is asynchronous and non-deterministic. In fact, pair-declarations are better understood
as �input-guarded choice�, ha ( (�~x )P ; b ( (�~y)Qi being operationally equivalent to the
�-calculus process a(~x):P + b(~y):Q. However it is interesting to observe that the restriction
on �? that forbid abstraction on references is exactly the restriction in �ML-with-records�
that �eld names cannot be abstracted. Using the notation for pair-declaration, a cell is the
recursively de�ned process

cell =def rec c:(�v0 )hput ( (�x )(c x); get ( (v0 j (c v0))i

We invite the reader to consider the di�erences with �imperative� style references. In particu-
lar, non-determinism and behaviours arising from the asynchronous and call-by-name nature
of blue calculus. As an exercise the reader might like to �nd how (cell f j put g j get v1 : : : vn)
evaluates and why ((put get) j get) is a deadlocked process.

Starting from the �-calculus style encodings for pairs: [P;Q] =def �b:(b P Q), described
in Section 2, one can devise an encoding for pair-declarations in the blue calculus. For the
sake of brevity, we have indexed our translation with p, the �location� of the pair, and we
suppose that this name is never captured.

ha ( P; b ( Qip =def hp ( [P;Q]i j ha ( p T i j hb ( p K i (4)

Actually, this encodings is not faithful to Equation (3). References a and b must not appear
in subject part of other declarations and we have the property

�
ha ( P; b ( Qip j a ! P j hb ( p K i
ha ( P; b ( Qip j b ! Q j ha ( p T i

(5)

stating, in particular, that after a communication on a, ha ( P; b ( Qip is still respon-
sive on b. This behaviour can be adjusted by replacing the de�nition of p in Equation (4),
namely hp ( [P;Q]i, with the more complicated process hp ( ([P;Q] j hp ( [a; b]i)i. Ho-
wever, since a cell is always responsive on both references put and get , a quick argument
shows that in the cell-example it is not necessary to change our de�nition.

It is possible to give results on the type of ha ( P; b ( Qi and ultimately of cell .
In the monomorphic type system, � `B P : �p and � `B Q : �q implies � `B [P;Q] :
((�p ! �q ! �)! �). Since T (respectively K ) has type (� ! � ! �) (resp. (�! � ! �)).
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Then ha ( P; b ( Qi is typable in `B i� �p and �q are equal. This constraint is di�erent
with a polymorphic type system. In particular we have the weaker requirement that a's type
subsumes �p and b's type subsumes �q . Their actual value depends on the type discipline
used.

For example, let us examine the cell process, where P =def (�x )(c x) and Q =def (v0 j
(c v0)).

cell =def rec c:(�v0 )

0
@ hp ( (�ab)((�f )(f a b) j ha ( P i j hb ( Qi)i

j hput ( p T i
j hget ( p K i

1
A

In its recursive de�nition, reference c appears in both P and Q. In `M, we can type
this process assuming c : 8�:(� ! �). It follows that cell is typable with the hypothesis
put : 8�:(� ! �). This is not possible in `D, where, inside its de�nition, c must have a
monomorphic type. Therefore, without polymorphic recursion, the cell process is typable
with the stronger assumption that put have type (� ! �). A consequence is that process
hu = (put 0 j P )i, which resets the cell value whenever a message on u has been consumed,
is not typable in `D if P is not an integer expression, whereas, for example,

put : 8�:(int! �); get : int; u : 8�:� `M hu = (put 0 j (�x )x)i : !

Readers familiar with ML may be surprised. Indeed the naïve extension of the ML
polymorphic type system to mutable structures is unsound and we just proved that cells are
de�nable in �? and can be typed. This di�erence in performance results from the di�erence
in evaluation strategy between the two calculi. Evaluation in �? is by name: it is not possible
to reduce a process under a declaration, whereas evaluation in ML is by need: an expression
de�ned in a let-construct is evaluated at most once and its result is shared. This good
behaviour with respects to �imperative features� was already observed in the programming
language Quest [10] where polymorphically typed expression are evaluated each time their
types are specialized. Another, more relevant, reference is MLN, the variant of ML with
polymorphism by name described in [25].

3.3 General properties

Our type system is not equipped with the usual instantiation/generalization rules. In parti-
cular, processes are always given a simple type. We choose instead to give a syntax-oriented
type system where these two operations are embedded in rules for instantiation (taut), ap-
plication (app) and declaration (decl). Nonetheless we can easily extend our type system
with generalization and instantiation and prove that both systems are equivalent. A natural
consequence is that types given to processes can �implicitly� be considered polymorphic.
Formally, the derived rule (sub) (Table 7), which states that the implicit meaning of sequent
� ` P : � is � ` P : Gen�(�), is sound. This property follows directly from (substitution)
Lemma 4.3, used in the demonstration of the subject reduction property. Another standard
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property that can be derived in our type system is (weak), which states, in particular, that
weakening is valid.

Type System 7 Subtyping and weakening

� ` P : � Gen�(�) � � 0

� ` P : � 0
(sub)

� ` P : � x 62 fn(P )

�jx; x : � ` P : �
(weak)

A direct application of rule (sub) is the derived rule for process application

� ` P : � 0 ! � 00 � ` Q : � Gen�(�) � � 0

� ` (P Q) : � 00
(app)

4 Subject reduction

A commonly expected property from type system for programming languages is that well-
typed expressions remains well-typed after reduction. Moreover we expect to preserve ty-
pings. That is (� ` P : �) and (P ! Q) ) � ` Q : � . This property is called subject
reduction. But, as pointed out by Boudol in [8, sec. 4], the �message sharing rule�, i.e.,
relation (P u j Q u) + (P j Q) u, is not compatible with an extension of the blue calculus
to parametric polymorphism. That is, (P u j Q u) may be typable even if ((P j Q) u) is
not.

Example 4.1
We use the nil type constant to represent idle processes or �silent� termination of operators.
Suppose we have modeled a distributed application in which a message server, possibly
connected with di�erent databases, is able to print request results on a private medium. In
�?, this server can be viewed as a simple replicated declaration hprint = : : :i with print of
type 8�:�! nil. We can de�ne, in the same context, two specialized servers that applies
their argument to the integer value 1 and the boolean value true happ2one = (�f )(f 1)i and
happ2true = (�f )(f true)i whose respective types are (int! nil)! nil and (bool! nil)! nil.
Then, the process ((app2one print) j (app2true print)) has type nil, while ((app2one j
app2true) print) is not typable.

We demonstrate the subject reduction property for a restricted version of the reduction,
*�! , such that structural equivalences is replaced by the weaker relation of heating * (see

Section 2). In particular * is not symmetric, and thus is not an equivalence. However it is
easy to be convinced that + is not necessary in reduction. Results proved in this section
are for Mycroft-style type system, `M, but are valid with `D. Subsequently we denote typing
sequent with ` whenever a property is true for both system.

Theorem 4.1 (Subject reduction)
Reduction preserves typing

� ` P : � and P *�! Q implies � ` Q : �
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It is easy to show that typing is preserved by the heating relation.

Lemma 4.1
Heating preserves typing

� ` P : � and P * Q implies � ` Q : �

Proof by induction on the structure of P * Q. �

To prove the main theorem we need to demonstrate basic substitutions lemmas. That is
properties between typings and substitution over processes and environments. Lemma 4.2
states that we can substitute a reference to a variable in a process whenever its type is more
general. Lemma 4.3 states that typings are invariant under substitution of simple type to a
type variable.

Lemma 4.2 (Substitution lemma (on references))
If �; v : �; x : � ` P : � 0, with x variable and � � � , then

�; v : � ` P [v=x] : � 0

Lemma 4.3 (Substitution lemma (on type variables))
let � be a type variable and ! be a simple type, then

� ` P : � ) �[!=�] ` P : � [!=�]

Proof (Lemma 4.2 and 4.3) The proofs of these lemmas are similar and use induction
on the inference structure of sequent �; v : �; x : � ` P : � 0 or � ` P : � . The details are
self-evident. Lemma 4.2 is less standard than Lemma 4.3 and is only used in the case for
rule (�) in the following proof. It is interesting to remark that this lemma is not necessary
if we replace �-reduction by the rule

((�x )P u) ! (�x )(P j hx = ui)) (v fresh)

inspired by Equation (1) presented in page 4 �

We can demonstrate the result stated at the beginning of this section

Proof (Theorem 4.1) we use induction on the inference P *�! Q.

case (struct): the result follows directly from Lemma 4.1 and the induction hypothesis.
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case (app): By assumption we have that P u *�! Q u with P *�! Q and � ` (P u) : � .
Therefore, it must be the case that

� ` P : � 0 ! � �(u) = � � � 0

� ` P u : �
(app)

We have � ` P : � 0 ! � , then, using induction, we have that � ` Q : � 0 ! � . Applying
rule (app) it follows that � ` (Q u) : � . Case (par) and (new) are similar.

case (�): the last reduction step is (�x )P u ! P [u=x]. It must be the case that the last
rules used to infer sequent � ` (�x )P u : � are

�; x : � 0 ` P : �

� ` (�x )P : � 0 ! �
(abs)

�(u) = � � � 0

� ` (�x )P u : �
(app)

�; x : � 0 ` P : � and �(u) = � � � 0, therefore, using Lemma 4.2, it follows that
� ` P [u=x] : � .

case (�): By assumption, we have that the last reduction step is (u j hu ( P i) ! P .
Therefore, the derivation for � ` (u j hu ( P i) : � is

� ` P : � 0 �(u) = Gen�(�
0)

� ` hu ( P i : �
(decl +)

�(u) = � � �

� ` u : �
(taut)

� ` (u j hu ( P i) : �
(par)

We have that Gen�(�
0) � � , therefore it exists a substitution S over variables from

fn(� 0) n fn(�) such that S� 0 = � . Using Lemma 4.3, S� ` P : S� 0 and, as fn(�) \
domain(S) = ;, S� = �. It follows that � ` P : � .

�

To conclude, let us give a simple example that demonstrates the need to forbid reference
abstraction in the subject part of a declaration. Let R be the (invalid) process

R =def hu ( P i j ((�x )hx ( Qi u) (u not in P or Q)

and � be a context such that �(u) = �, � ` P : �p and � ` Q : �q , e.g.,

Q = (�x )(+ x 1); �q = int! int; P = (�x )x; �p = �! � and � = 8�:�p

For R to be well-typed, it is su�cient that � = Gen�(�p) (rule (decl +)) and � � �q (rules
(decl +), (abs) and (app)). R reduces in one �-reduction step to

R ! R0 = hu ( P i j hu ( Qi = hu ( (�x )xi j hu ( (�x )(+ x 1)i

The conditions required to type R0 in � are stronger, since we must have � = Gen�(�p) =
Gen�(�q), constraints which are trivially false.
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This problem does not arise in system `B, i.e., the monomorphic type system is sound in
the blue-calculus without restriction on reference abstraction. We are in a situation quite
comparable to the naïve extension of the ML polymorphic type system to references.,and in
fact, to all imperative constructs. Many type systems, have been proposed for typing poly-
morphic references: Tofte [34], Mac Queen, Wright and Leroy ([24] gives a good overview).
It would be interesting to study how those systems can be adapted to �?. An intuition is
given in Appendix A.

5 Principal types

Beside subject reduction, an important property for type systems is the principal type pro-
perty, which states that for any process P and context �, such that P is typable in �, there
is a type that represents all of the possible typings of P in �.

Theorem 5.1 (Principal type)
If P is typable in the context � (i.e., 9� 0;� `M P : � 0 is derivable), there exists a �more
general� type scheme � such that for every derivable sequent � `M P : � , � � � .

Proof See Appendix B. �

We extend the subsumption relation � to type schemes and typing environments

� � � i� 8�; �� � ) � � �

�� � i� 8(u : �) 2 �; 9(u : �) 2 � and �� �

the sequent � ` P : � is said to be more general than � ` P : ! if there is a substitution
S such that S(�) � � and Gen�(�) � S(Gen�(!)). The intuition is that the most general
typing (if it exists) expects less from the context and provides more. With this de�nition,
it happens that a �most general typing� can't be given in every case. More speci�cally, we
have that `M lacks the principal typing property [20].

Example 5.1
a : 8�:� ` (a a) : � and a : 8�:(�! �) ` (a a) : � ! �

But we can prove that for every typable process P , there is a particular typing which
represent all the possible typing of P . A property comparable for ML to Theorem 1:5:3
in [11].

Theorem 5.2
For every typable process P there exists a most general typing �p ` P : �p such that: if
� ` P : !, there is a substitution S such that Gen�p(�p)�S(Gen�(!)) and �p�S(�jfn(P )).
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Table 2 translation from ML to �? J:K : ML 7! �?

JxK = x
J�x :MK = (�x )JMK
JM NK = (�v)(JMK v j hv = JNKi) (v fresh)

= def hv = JNKi in (JMK v)
Jletrecu1 = N1 and : : : inMK = (�~u)(JMK j hu1 = JN1Ki j : : : )

= def hu1 = JN1Ki j : : : in JMK

Proof The proof is a direct consequence of results shown in Appendix B. For example,
using the same notation as in Theorem 5.1, we associate with the process of Example 5.1
the vector (8�:�;8�:�), i.e., the typing a : 8�:� ` (a a) : �.

6 Relationship with ML

In ML, recursive de�nitions are only used in the de�nition part of a let-construct. This
yields a derived construct, letrec, which is a shorthand for

letrecx = N inM =def letx = rec x :N inM

Practically, the letrec construct is a more general operator which allows mutually recursive
function declarations in ML (letrecu1 = N1 and : : : inM).

De�nition 6.1 (def J inP )
We distinguish a new syntactic category in the grammar of �?, namely declaration bodies,
which are the parallel composition of (linear or replicated) declarations B ::= D j � � � j D.
The def-construct, def B inP , is a �? derivable operator used as shorthand for

def B inP =def (�~u)(B j P ) where ~u = decl(B)

with the restriction that decl(B) \ decl(P ) = ;.

Side condition decl(B)\decl(P ) = ; ensure that there is no rede�nition in P of references
de�ned in B. That is, there is no declarations in P with subject part in decl(B). This
property is preserved by reduction since, although the scope of restricted declarations can
be widened (this is the classical scope extrusion mechanism of �-calculus), no declarations
can be dynamically created. Table 2 gives a simple translation from ML (with mutually
recursive declarations) to the subset of the blue calculus in which declarations are replaced
with def-operators.

Derived typing rules for the def-construct can be given in both our Damas and Mycroft
like type system but, drawing one's inspiration from ML typing rules for the letrec construct
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(see Table 8), we de�ne a new type inference system `8B such that we restrict type poly-
morphism to occur only in the def-construct. Rules for this new system are given in Table 9
with the derived rule for the def-construct in `M. It is interesting to compare this new type
system with the implicit typing à la ML devised for the join-calculus [16], where authors
ran across the same classical limitation of typing for mutually-recursive functions.

Type System 8 Typing rules for letrec in ML

� [ fui : Gen�i
(�i)g `M Ni : �i � [ fui : Gen�i

(�i)g `M M : �

� `M letrecu1 = N1 and : : : inM : �
(letrec +)

� [ fui : �ig `D Ni : �i � [ fui : Gen�i
(�i)g `D M : �

� `D letrecu1 = N1 and : : : inM : �
(letrec)

(where �i = � [
�
uj : �j

�
� j 6= i

	
)

Type System 9 `8B, a new polymorphic type system for �?

� [ fui : Gen�i
(�i)g `M Ri : �i � [ fui : Gen�i

(�i)g `MM P : �

� `M def (hui ( Rii) inP : �
(def +)

�; u : � `8B P : �

�; u : � `8B hu = P i : !
(decl -)

� [ fui : �ig `8B Ri : �i � [ fui : Gen�i
(�i)g `8B P : �

� `8B def (hui ( Rii) inP : �
(def -)

(where �i = � [
�
uj : �j

�
� j 6= i

	
)

It is possible to demonstrate a result equivalent to the one presented by Boudol in [8,
Proposition 4:2]. Let � ` M : � [ML] denote sequents from the ML type system (see
table 4 on page 11). In the same way, let � ` P : � [�?] denote sequents inferred using the
polymorphic type system for �?.

Theorem 6.1 (Equivalence on typings)
If � `D M : � [ML] then � `8B JMK : � [�?]. Conversely if � `8B JMK : � [�?] then
� `D M : � [ML] with � = �j(fn(�)nfn(M)) . This property is true with `M [ML] and `M [�?].
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7 Type reconstruction complexity

As stated in Section 3.1, the typability in MM type inference system has been proved
undecidable [22, 18]. Therefore, an immediate consequence of Theorem 6.1 is

Theorem 7.1
The type inference problem for `M [�?] is undecidable.

In fact, we can prove a �ner property quoting F. Henglein in [18]: �for every system of
inequations I, there is a log-space computable expression of the form rec x :M where e is
let and rec-free,i.e., e is a pure �-term, such that I is semiuni�able if and only if rec x :M
is MM typable�. Another reduction is given by A. J. Kfoury et al. in [22] with the same
characteristics. As the translation fromML-term to �?-term preserve typings (Theorem 6.1),
we obtain a reduction from semi-uni�cation to typabilty in `M [�

?]. Moreover,

Lemma 7.1 (semi-uni�cation reduce to typability in `M)
for every system of inequations I, there is a log-space computable expression of the form
rec x :P such that P has no recusive de�nition (i.e., no declarations hu = Qi with u 2 fn(Q))
and that I is semi-uni�able if and only if rec x :P is MM typable.

Proof for Theorem 7.1 follows since semi-uni�cation has been shown recursively undeci-
dable [21, 36]. We show in fact that typability in the Damas-like type inference system `D
is also undecidable

Theorem 7.2
The type inference problem for `D [�?] is undecidable.

Proof To prove Theorem 7.2, it is su�cient to prove that the semi-uni�cation problem re-
duces to typability in `D. Suppose there's a typing judgment � `M rec u:au : � such that there
is no recursive declaration in au. We �rst prove that4 � `D (�u)(def v = u in (hu = avi j v)) :
�. Let v be a new reference and av = au[v=u]:

� `D (�u)(def v = u in (hu = avi j v)) : �

from the relation � `M recu:au : � and the rule given in table 6 on page 12, we deduce that
there exists a type � such that (we use � for Gen�(�))

�; u : � `M au : � � � �

� `M recu:au : �
(rec +)

By hypothesis, av has no recursive de�nitions (it is even su�cient to suppose that av is the
translation of a pure �-term), then 8�;� `M au : � ) � `D au : � . Moreover, v is fresh. Then
�; v : � `D au : � (weakening) and �; v : � `D av : � (same as lemma 4.2 on page 16).

4def v = u in (hu = avi j v) =def (�v)(hv = ui j hu = avi j v)
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�; v : � `D av : � u 62 fn(av)

�; u : �; v : � `D av : �
(weakening)

�; u : �; v : � `D hu = (a v)i : �
(decl)

� � �

�; u : �; v : � `D hu = avi j v : �
(par)

It is also the case that
� � �

�; u : � `D u : �
(taut)

v fresh

�; u : �; v : � `D u : �

�; u : �; v : Gen�(�) `D hv = ui : �
(decl)

Then, applying rules (par) and (new):

� `D (�u)(def v = u in (hu = avi j v)) : �

using Lemma 7.1, it follows that for every system of inequations I, we can exhibit a �?

process P such that I is semi-uni�able i� P is typable in the system `D. �

8 Conclusion

We have presented, in the present paper, a type system for �? with polymorphic recursion
adapted from the ML typing discipline, and we proved it enjoys subject reduction and the
principal type property.

These are interesting results for the blue calculus as a programming notation for higher-
order concurrency. But a type system is hardly helpful if one cannot gives an algorithm
that can tell whether or not a program is type-correct. A �rst approach will be to restrict
our type discipline. This is the intention behind the introduction of system `8B. The type
reconstruction problem in `8B trivially reduces to �rst order-uni�cation and, consequently,
is decidable: it is possible, for example, to adapt the deterministic type inference algorithm
given in [14]. Other approaches use the more expressive system `M. The simplest solution
is to provide explicit type declarations for every reference. One can also devise speci�c type
inference algorithms [29] or an algorithm based on semi-algorithms for semi-uni�cation [18,
sec. 5]: we trade o� expressiveness for a type inference algorithm guaranteed to �nish only
for well-typed programs.

It is also interesting to understand why those algorithms are more complicated than for
the �ML with polymorphic recursion� case. Contrary to the ML let-construct (and the join
of [15]), the scope of declarations are not syntactically �xed in the blue calculus. Therefore,
if we think of �? in terms of programming languages and of declarations in terms of function
de�nitions, we are in the case where all function declarations are top-level and mutually re-
cursive. Moreover, a reference can appear in subject part of many declarations, a situation
comparable to multiply de�ned functions. This problem is called incremental polymorphic
type checking with update by Mycroft in [30] and It is exactly the case of the programming
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language Prolog where predicates are incrementally and mutually de�ned. Type systems
for Prolog have been extensively studied [31] and it should be possible to adapt them to
our need.

An other interesting contribution of this work are the consequences we can draw on the
�-calculus. Simple translation exists between the blue calculus and the asynchronous �
calculus [4, 19]. Therefore, one can easily deduce that it is not possible to devise an implicit
type system �à la ML� for the �-calculus along the lines of `M. Indeed, the same arguments
applies in each case. For the same reason, one can easily derive a polymorphic type system
for �ia, Michele Boreale's calculus [3], from our type system for the restricted version of �?

used in this article, i.e., without abstraction on references. In fact, at the cost of simple
transformation, it is also possible to type �I , the sub-language of the �-calculus such that
only private names can be exchanged among processes.

Acknowledgments

Thanks for comments from Didier Rémy who suggested that typability in `D, the natural
adaptation of the Damas-Milner type system to the blue calculus, was undecidable. I am
also thankful to Julian Rathke and Gérard Boudol for valuable comments on this article.

A Polymorphism and higher-order references

An approach, commonly taken in ML to constrain polymorphism in references, consists in
tagging type variables that appears free in a reference type. Those variables are often called
weak or dangerous. Generalization is then rede�ned to make special treatments of weak
variables. The simplest, but over-restrictive, approach consists in forbidding generalization
of weak variables.

A weak variables is denoted ��. We extend this notation to types ((� 0 ! �)
�
=def

� 0
�
! ��). Drawing a parallel with ML, we rede�ne the type system to weaken poten-

tially dangerous generic type variables. In particular we have to consider a rule to type
abstraction on references

� ` P : � �(u) = � 0
�

�jx ` (�u)P : � 0
�
! �

(abs �)

Remember that with our conventions, u is a reference and � 0 is a simple type. Then, rule (abs
�) allows abstraction on u with the classical limitation that u's type is not a type scheme.
Otherwise we have to consider system F types such that quanti�cation is not restricted to
be top-level.

We also rede�ne the subsumption relatiion � to be such that 8�:�� ��. More formally,
we forbid weak variables in generalization of type schemes, i.e., 8~�:��! i� exist some simple
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types (~�i)1�i�n such that ! = � [ ~�i=~�] and the �i's have no weak variables. Let us see what
happens with the example given Section 4

R =def hu ( (�x )xi j ((�x )hx ( (�y)(+ y 1)i u)

Using rule (abs �), it follows that

x : (int! int)� ` hx ( (�y)(+ y 1)i : !
=) ; ` (�x )hx ( (�y)(+ y 1)i : (int! int)

�
! !

With the new de�nition for subsumption, 8�:(�! �) � int� ! int�. Therefore the unique
valid typing is u : int� ! int� ` R : !, which is preserved after reduction.

We have only sketched out a polymorphic type system for the original blue calculus, i.e.,
without restrictions on references. But there is enough subtleties in the type discipline for
the calculus studied in this paper to reserve a full treatment for ongoing research.

B Principal type

This appendix contains a proof for the principal type property, Theorem 5, stated in the
paper.

B.1 Type semantics

Let T be the sets of all monomorphic and polymorphic types augmented with a greatest
element >, the error types, such that 8� 2 T ; � � >. Theorem B.1 is a well known result.
It appears, for example, in [29].

Theorem B.1
(T ;�) is a partial order with least element 8�:�, greatest element > and such that any
subset X � T has a greatest lower bound

d
X .

Let us brie�y explain the intuition behind the use of partial order theory. We denote by
T (�; P ) the set of P 's type in the environment �

T (�; P ) =
�
�
��� ` P : �

	
and we consider the slightly modi�ed type system where rules for instantiation and genera-
lization are added.

Type System 10 generalization and instantiation

� ` P : � � 62 fn(�)

� ` P : 8�:�
(gen)

� ` P : � � � �

� ` P : �
(inst)
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In this new (equivalent) type system, rule (gen) can be used at the end of a typing to give a
type scheme to a process. This is reminiscent of our discussion on rule (sub) in Section 3.3.
Properties of our type system can now be rephrased in this formal framework. For example,
using Lemma 4.3, we have the property that T (�; P ) is an ideal

�1 2 T (�; P ) ^ �1 � �2 ) �2 2 T (�; P )

Likewise, the principal type property is equivalent to

� =
l
T (�; P ) is in T (�; P ) (6)

since, by de�nition of the greatest lower bound, 8�;� ` P : � ) �� �. Such ideal are called
principal. In fact, it is su�cient to prove the weaker relation�

� ` P : �1
� ` P : �2

) � ` P : �1 u �2 (7)

As we are interested in results for the syntax directed type system `M, we demonstrate
instead the equivalent equation

8<
:

� `M P : �1
� `M P : �2
8~�:� = �1 u �2

) � `M P : � (8)

B.2 Cartesian product over types

We introduce some notations necessary for the proof of Equation (8). Let Tn denotes the
set of type vectors of size n, or rather type schemes vectors

� ::= (�i)1�i�n
� ::= (�i)1�i�n
	 ::= �

�� 8�:	
We use � to range over � and  over universally quanti�ed vectors (element of 	). Sub-
sumption is de�ned like � on T . Remark that �n is not the usual �product order� �n =def

(� � � � � � �) such that  1 �
n  2 , 8i:( i1 �  i2)�

~� simple types
8i �i[~�=~�]� �i

) 8~�:(�i)1�i�n �n (�i)1�i�n

this de�nition is extended to quanti�ed type vectors

 1 �n  2 i� 8�;  2 �n � )  1 �n �

Regarding the de�nition of type schemes given Section 3, it would have been more natural
to consider quanti�ed vectors of simple types instead of type schemes vector, i.e., we could
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have replaced � with � in de�nition of 	. In fact, each element of Tn has an equivalent in
this form, e.g.,

(8�:�;8�:(� ! �))�2 8�0�1:(�0; (� ! �1))

where � denotes the (classical) equivalence such that � � � , � � � and � � �. This is
equivalent to writing a type in its �canonical form� (remark that here, the representant is
not unique).

Theorem B.2
(Tn;�n) is a partial order with least element (8�:�)1�i�n, greatest element (>)1�i�n and
such that any subset X � Tn has a greatest lower bound

d
X .

Proof Let  1 and  2 be in Tn. We consider their representations in �canonical form�:
 1 = 8~�:(�i)1�i�n and  2 = 8~�:(!i)1�i�n. It is easy to prove that subsumption between
type vectors is related to subsumption between types following the equation

 1 �n  2 , 8~�:(�1 ! � � �! �n)� 8~�:(!1 ! � � �! !n)

In particular

8~�:(�1 ! � � �! �n) =
d

1�j�k

�
8~�j :(!j1 ! � � �! !jn)

�

) 8~�:(�i)1�i�n =
d

1�j�k

�
8~�j :

�
!ji

�
1�i�n

�

�

Remark that Tn is not equivalent to the sets of type schemes vectors, e.g., the vector
8�:(�; �) is in 	 n�. Let us denote D((�i)1�i�n) the set of type variables appearing free in
more than one �i

D((�i)1�i�n) =def

�
�
�� 9i 6= j; � 2 fn(�i) and � 2 fn(�j)

	

We suppose, for the rest of the paper, that type vectors are given in the �second canonical
form�

	 ::= 8~�:(�i)1�i�n with ~� � D((�i)1�i�n)

B.3 Proof

We could associate to each environment � (� =def x1 : �1; : : : ; xn : �n) the type vector  =def

(�1; : : : ; �n) 2 �, and to each typing judgment � `M P : �, the vector (�1; : : : ; �n; �) 2 �,
also denoted (; �). Inversely, we associate to 8~�:(; �) the typing � `M P : � such that
� = 8~�:� and ~� \ fn() = ;. Remember that, with our convention, ~� � D((; �)). Since we
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are not allowed to give type scheme to variables, the de�nition of � is not immediate. Let
�i be the i

th component of . If xi is a reference, (xi : �i) 2 �, else, let �i = 8~�:! (~� fresh
variables), (xi : !) 2 �.

Equation (8) is a direct sub-case of Equation (9) such that �1 = �2 = �

8>><
>>:

�1 `M P : �1
�2 `M P : �2
8~�:(; �) = (1; �1) u (2; �2)

� = 8~�:�

) � `M P : � (9)

To demonstrate Equation (9) we need some basic properties on the greatest lower bound.
The proof of Lemma B.1 is a trivial adaptation of the argument in proof of Theorem B.2.

Lemma B.1
1. 8~�:(�i)1�i�n =

d
j

�
8~�j :

�
�ji

�
1�i�n

�
) 8~�:�i �

d
j

�
8~�j :�ji

�

2. 8~�:(; �) =
d
i(i; �

i
1 ! � i2) )

8<
:

9(�1; �2): � = 8~�:(�1 ! �2)

8~�:(;8~�:�2) =
d
i(i; �

i
2)

8~�:�1 =
d
i(�

i
1)

3. 8~�:(; �1; �2) =
d
i(i; �

i
1; �

i
2) ) 8~�:(; �1) =

d
i(i; �

i
1)

Proof
proof is by induction on P .

case x: x is a reference We have, by assumption, that 8~�:(; �) = (1; �1) u (2; �2) and
�i(x) = �ix � �i. Or �

1
x u �

2
x � �i (i 2 f1; 2g) ) �1x u �

2
x � �1 u �2. Therefore,

using Lemma B.1, proposition 1, with �(x) =def �x, we prove that the following
diagram holds

8~�:�x
�

//�1x u �
2
x

�

��
8~�:� �1 u �2�

oo

Then 8~�:�x� 8~�:�, which implies �x� �� � , where � = 8~�:� and ~� \ fn() = ;.
Using the (taut) rule, we have �(x) = �x � � ) � `M x : � as required.

x is a variable We use the previous notations with the di�erences that the �ix's are
monomorphic (�ix = �i) and that �(x) = �x with �x = 8~�~�:�x � �1x u �

2
x

8~�:(8~�:�x) �
,,YYYY

Y

�1 u �2
�rrffff
f

8~�:(8~�:�)
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Then, it is su�cient to choose ~� = ~� to prove the result.

case (P u): We suppose here that u is a reference since, like in the previous case, we
can easily adapt the proof if u is a variable. It must be the case that there is � 01
and � 02 such that �i `M P : � 0i ! �i with �i(u) = �iu � � 0i (i 2 f1; 2g). Using the
induction hypothesis, it follows that � `M P : � with 8~�:(;8~�:�) =

d
i(i; �

0
i ! �i).

Moreover, using Lemma B.1, proposition 2, there is !0 and ! such that � = !0 ! !,
8~�:(;8~�:!) =

d
(i; �i) and 8~�~�:!0 =

d
(� 0i ).Therefore � `M P : !0 ! ! and, using the

proof from the previous case, we have �(u) = �u� 8~�:!0� !0. The result follows after
application of the (appl) rule � `M (P u) : � .

case (�x )P : There is � 0i such that �i; x : � 0i `M P : �i. Let 8~�:(; �) =
d
(i; �

0
i ! �i) and

� = 8~�:� with ~� fresh variables. Using Lemma B.1, proposition 2, it follows that there
is !0 and ! such that � = (!0!!). Moreover, 8~�:(;8~�:!0;8~�:!) =

d
i(i; �

0
i ; �i). Using

the induction hypothesis (x is a variable), we prove that �; x : � 0 `M P : � . Remark
that this is coherent with the proof for the �rst case since 8~�:!0 and 8~�:! have the
same quanti�ed variables. The result follows using the (abs) rule � `M (�x )P : !0 ! !
with 8~�:(;8~�:(!0 ! !)) =

d
i(i; �

0
i ! �i).

case (P1 j P2): We have, by assumption, that �i `M (P1 j P2) : �i. Therefore �i `M P1 : �i
(resp. P2). Using induction we have that � `M P1 : � (resp. P2) with 8~�:(;8~�:�) =d
i(i; �i). The result follows by using the (par) rule � `M (P1 j P2) : � .

case (�u)P : It must be the case that there are two type schemes, �1 and �2, such that
�i; x : �i `M P : �i. Let 8~�:(; �; �) =

d
i(i; �i; �i) and � = 8~�:� with ~� fresh. Using

induction, we have that �; u : � `M P : � and using Lemma B.1, proposition 3, we
have that 8~�:(;8~�:�) =

d
i(i; �i). Therefore the result follows by using the (new)

rule � `M (�u)P : � .

case hu ( P i: We have, by assumption, that �i `M P : �i. It must be the case that
�i `M P : !i with �i(u) = �iu = Gen�i(!i). Let 8~�:(; �) =

d
i(i; !i) and �(u) = �u.

Using Lemma B.1, proposition 1, we have that

8~�:�u �
d
i �

i
u =

d
iGen�i(!i)

8~�:� �
d
i !i

We �rst show �u � Gen�(�) proving �u � Gen�(�) and Gen�(�)� �u

1. �iu � !i; i 2 f1; 2g ) 8~�:�u � !1 u !2
) 8~�:�u � 8~�:�
) �u � �
) �u � Gen�(�)

The last step of this deduction is proved by reducing it to the absurd. Suppose
8~�:�u � Gen�(�). Since �u � �, there must be a generic type variable, �, free in
both � and �u and not in fn(�). Or � 2 fn(�) (resp. � 2 fn(�u)) implies � free
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in !i (i 2 f1; 2g) (resp. Gen�i(!i)) and � 62 fn(�) implies � 62 (fn(�1) \ fn(�2)).
Then � is generalized in one of the Gen�i(!i), which contradicts the fact that �
is free in Gen�1(!1) and Gen�2(!2).

2. 8~�:� � !i; i 2 f1; 2g ) Gen�(8~�:�)� Gen�i(!i); i 2 f1; 2g
) Gen�(8~�:�)�

d
iGen�i(!i)

) Gen�(8~�:�)� 8~�:�u
) � � �u

Here the �rst step deserves a proof. This is left to the reader since it is basically
the same argument that in the previous demonstration.

Let ! be the instantiation of � to fresh variables. Using induction we have � `M P : !
with �(u)� Gen�(!). By applying rule (decl+), it follows that for every type � , � `M
hu ( P i : � . For example, let � be a type such that 8~�:(0;8~�:�) =

d
i(i; �i). Using

Lemma B.1, proposition 3, we have 0 = . Therefore � `M P : � with 8~�:(;8~�:�) =d
i(i; �i).

�
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