
A Bisimulation for the Blue Calculus

Silvano Dal-Zilio∗

9th June 1999

Abstract

The Blue calculus is a direct extension of both the lambda and the pi calculi. In
this report, we define an equivalence for this calculus based on barbed congruence, and
we prove the validity of the replication laws. For example, we prove that a replicated
resource, shared by many processes, can be safely copied and distributed.

1 Introduction

The blue calculus [9], denoted π? hereafter, is a variant of the asynchronous π-calculus (de-
noted π) that directly contains functions, in the sense that it contains the lambda calculus.
Compared with π [19], it has no choice or matching operators. Moreover, we consider in this
report a variant already used in [10], such that the usage of names is restricted to forbid
declarations on a received channel: that is only the output capability of names may be trans-
mitted. We name this condition the locality property , since it implies that no receiver on a
given name can be dynamically created. Thus π? is better defined as a variant of the “local
π-calculus” [18], a calculus considered as the basis of experimental programming languages
like Pict [27]1 or Join [15].

Nonetheless π? is not an alleviated version of the π-calculus. The main novelty, in com-
parison with the calculi already mentioned, is that abstractions: (λx)P , are processes of
the calculus, and that any process may be applied to any name. Another feature of π? is
that replication is replaced by recursion. The construct (def u = P inQ), called definition, is
comparable to the “letrec-construct” of functional languages. Definitions have also an inter-
pretation in terms of π processes. They can be viewed as the equivalent of the paradigmatic
process (νu)(!u(x̃).P | Q), which is at the core of the interpretation of functions in π. See [22]
and [23] for example.

Now that we have introduced a new calculus, the problem arises to find a satisfactory
behavioral equivalence between π?-terms and to prove “sensible” laws on the calculus using
this equivalence. A problem proved to be hard for the π-calculus. In this paper we choose
barbed congruence [20] (denoted ≈b) as our candidate equivalence and we prove the so-called
replication theorem. We briefly define these two terms now. Barbed congruence is a bisim-
ulation based behavioral equivalence that preserves a notion of observability, called barbs.
More precisely, barbed congruence is the coarser congruence that verifies these properties.

∗Email : silvano.dalzilio@sophia.inria.fr
1however one should note that in Pict, there are no implicit restrictions on the use of a received channel.

1

The replication theorem states that private resources can be safely duplicated. For example
we prove the following equation:

def u = P in (Q | R)≈b (def u = P inQ) | (def u = P inR)

We refer the reader to the Lemma 6.1, where the complete set of replication laws are listed.
In the π-calculus, an equivalent of this property can be found in the seminal tutorial by
R. Milner [21, Sect. 5.4], where the equivalence used is strong ground congruence [19]. But
this equality holds only with the side condition that the link to the resource (the channel u
in this example) may not be emitted, i.e. does not appear in object position of an output.
Another side condition is that u does not appear in subject position of an input. Only re-
cently, Merro and Sangiorgi [18] prove the same equation, without the first side condition, for
barbed congruence in π-calculus with the locality property.

The choice of barbed congruence has two main motivations. First, “it is a uniform basis
to define behavioral equivalences on different process calculi” [6]. Thus it is amenable to com-
parison with equivalences on π and the join-calculus. Second, the use of an equivalence that
is a bisimulation and a congruence, eases proofs of correctness for programs transformations
and interpretations (or encodings) of languages. Nonetheless there is a major drawback in
the choice of barbed congruence, namely that proofs of bisimilarity results involve a quantifi-
cation over all contexts. An example of this phenomenon is given in Sect. 3.1. To avoid this
pitfall, we define a labeled transition system, and a corresponding labeled bisimulation that
is finer than barbed congruence. Our goal: that is proving the replication theorem for the
barbed congruence, is achieved by proving that this bisimulation verifies the replication theo-
rem (see Lemma 6.1). This is not the only result of this report. The definition of the labeled
transition system is interesting since it yields a better understanding of the blue calculus and
its functional and “higher-order” features. In particular, it yields a better understanding on
the connection between private resources in π?, explicit substituions and the full λ-calculus.

structure of the paper The rest of the paper is organized as follows. In Sect. 2, we review
the blue calculus augmented with extensible records and we define barbed congruence. In
Sect. 4, we present the labeled transition system. In Sect. 5, we sketch the proof of validity
of the “up-to context” proof technique [25] for the labeled bisimulation. The complete proof
is given in Appendix A. We use this result to prove, at the same time, three properties: (i)
the labeled bisimulation is a congruence, (ii) it contains the structural equivalence and (iii)
it verifies the replication laws (see Sect. 6). In Sect. 7, we prove that the labeled bisimulation
is a barbed bisimulation, and thus that the replication laws are valid for ≈b . We conclude
in Sect. 8 with some examples of application of the replication laws and some final remarks.

2 The Calculus

The blue calculus is a variant of the mini asynchronous π-calculus [7], in which functions, or
abstractions in the λ-calculus terminology, are directly embedded. It has no choice, matching
or guarded output operators. While π enforces an indirect style of programming, in the sense
that one has to explicitly manage “result channels” to implement functions, π? provides a
better “programming notation” for higher-order concurrency. Indeed G. Boudol shows in [9]

2

Table 1: Syntax of the Blue Calculus: π?

P,Q,R ::= u
∣∣ (λu)P

∣∣ (Pu)
∣∣ def u = P inQ

∣∣ (functional part)
O
∣∣ (P | Q)

∣∣ (νu)P
∣∣ 〈u ⇐ P 〉

∣∣ (π-calculus part)
[]
∣∣ [R , l = P]

∣∣ (P l) (record part)

that π, compared to π?, is a “continuation passing style calculus”.

The terms of π? (extended with records) are given in Tab. 1. In the definition of the
calculus, we use two disjoint categories of names: channel names, denoted u, v, w . . . , and
labels, denoted k , l ,m The semantics of the calculus is given in a chemical style [5]. For
convenience, we split the description of our calculus along three syntactical categories. For
each category, we examine the reduction relation → , and the structural equivalence ≡. The
description uses the standard notion of evaluation context. Contexts, denoted C,D, . . . are
defined using the syntax of π?-terms, plus a constant [] . We denote C[P] the process obtained
by filling the hole in C with the process P . Evaluation contexts, E,F, . . . , are contexts such
that the hole does not occur within an abstraction, a record or a declaration:

E ::= []
∣∣ (Eu)

∣∣ (E | P)
∣∣ (P | E)

∣∣ (νu)E
∣∣ def u = P in E

∣∣ (El)

As usual, ũ denotes the tuple of names (u1, . . . , un), and the symbol ε is used to denote the
empty tuple. We will sometimes use (λũ)P instead of (λu1). . . (λun)P , and (νũ)P instead
of (νu1). . . (νun)P . We also denote (Pũ) the process (Pu1 . . . un). Two general rules can be
given on the reduction relation:

P → P ′ P ≡ Q
Q → P ′

(red equiv)

P → P ′ E evaluation context
E[P] → E[P ′]

(red context)

Concerning the structural equivalence, we assume that α-convertible processes are equal.

2.1 Description of the Functional Fragment of π?

The functional part of our calculus is generated by the grammar

P,Q,R . . . ::= u
∣∣ (λu)P

∣∣ (Pu)
∣∣ def u = P inQ

Thus it is the “small” λ-calculus extended with the (recursive) definition operator. We use
the adjective small since a process can only be applied to a name and not to another process:
we say that the blue calculus is name passing. Nonetheless, the “high-order” λ-calculus
application can be recovered using the definition

(P Q) =def def u = Q in (P u) (u 6∈ fn(P) ∪ fn(Q))

There is a main difference here with respect to the original presentation of π? [9]. We have
replaced “floating definitions” 〈u = P 〉, equivalent to an infinite parallel composition of

3

“one-shot” declarations, by a construction that mixes together restriction, replication and
definition: (def u = P inQ) =def (νu)(〈u = P 〉 | Q).

To ensure the locality property , i.e. that no received names can be used as subject part of a
declaration, we split the category of channel names in two. We consider variables: x, y, p, . . .
on one side, and references: u, v, . . . on the other side. References are bound by restrictions:
(νu)P , while variables are bound by λ-abstractions: (λx)P , and definitions: def p = R inP .

There is another convention. Let D be the sequence (p1 = P1, . . . , pn = Pn), such that
the pi’s are pairwise distinct. We call D an environment. To simplify notations, we denote
by (def D inP) the following process.

def D inP =def def p1 = P1 in (def p2 = P2 in (. . .def pn = Pn inP))

We also allow empty definitions, such that n = 0. In this case, we denote D by ∅, and we
regard (def ∅ inP) as identical to P .

We assume the reader is familiar with the notions of free and bound variables, α-conversion
and substitution (denoted P{u/x}). We denote fn(P) (resp. bn(P)) the set of free (resp.
bound) names and variables in P . These sets are defined as usual considering that binders
are abstractions and definitions. We denote def(D) the set of names defined by D, that is
the set {p1, . . . , pn} with the notation used above.

For the functional subset of π?, the axioms defining structural equivalence are [8]:

(def p = R inP) | Q ≡ def p = R in (P | Q) (p 6∈ fn(Q))

def p = R in ((νu)P) ≡ (νu)(def p = R inP) (u 6∈ fn(R))

(def p = R inP)u ≡ def p = R in (Pu) (u 6= p)

((νu)P)v ≡ (νu)(Pv) (u 6= v)

On the functional fragment, the reduction is defined by the “small” β reduction and the
reduction rule for definitions:

((λx)P)u → P{u/x}
(red beta)

({p} ∪ fn(R)) ∩ bn(E) = ∅
def p = R in E[p] → def p = R in E[R]

(red def)

2.2 Description of the π-calculus Fragment of π?

In this section, we consider the operators directly derived from the π-calculus, that is

P,Q,R ::= O
∣∣ 〈u ⇐ P 〉

∣∣ (P | P)
∣∣ (νu)P

The new construct introduced here is the declaration: 〈u ⇐ P 〉, that can be interpreted as a
resource, located at u, accessible only once. Roughly speaking, the declaration 〈u ⇐ (λx)P 〉
is the equivalent of the π-calculus input guard: u(x).P , while the application (uv1 . . . vn) is

4

the equivalent of the π-calculus output: ū〈ṽ〉. The declaration is useful to model processes
with a mutable state.

As stated in the previous section, and according to the conclusion of the original presen-
tation of π? [9], the use of references is restricted in our calculus: although they can appear
under a λ-abstraction, they cannot be abstracted upon. For example, (λu)〈u ⇐ P 〉 is not a
valid process. This restriction ensures the locality property, but it also ensures that a name
cannot be used both in a definition and in a declaration, like in (def u = R in (〈u ⇐ P 〉 | Q))
for example. Structural rules for the π-calculus fragment are the “scope extrusion” rule of π,
the usual rules for the commutative monoid (P, | , O) and rules managing application:

P | (Q | R) ≡ (P | Q) | R P | Q ≡ Q | P

O | P ≡ P Ov ≡ O

((νu)P) | Q ≡ (νu)(P | Q) (u 6∈ fn(Q))

(νu)(νv)P ≡ (νv)(νu)P

(P | Q)u ≡ (Pu) | (Qu) 〈u ⇐ P 〉v ≡ 〈u ⇐ P 〉

Concerning the reduction relation, there is a communication rule that consumes a declaration
and fetches the resource at the “location” of the message:

〈u ⇐ P 〉 | (uv1 . . . vn) → (Pv1 . . . vn)
(red decl)

2.3 Description of the Record Fragment of π?

Records are incrementally built from the empty record [], using the extend/update operation
[Q , l = P] that adds/overrides the field l with value P , to the record Q. Intuitively, a record
is a function from a finite set of labels to processes, and selection is function application. This
intuition is strengthened by the “dot-less” notation for selection: we use the notation (P l),
instead of the more familiar notation (P · l).

It would be convenient to add a system of kinds to tag the use of names in π? (together
with a notion of well-formed terms), in order to formalize the distinction made between labels,
variables and references. We believe that the details of this system are clear to the reader,
and we omit to define it here. In the remainder of this paper, we assume that names are
always used correctly, and we use the letters a, b, . . . to denote any names i.e., a variable, a
reference or a label. Therefore, the term (Pa) denotes an application or a record selection.

The structural rules for record selection (P l) are the same as the ones for application. For
example, we have the following equalities.

(P | Q)l ≡ (P l) | (Ql) 〈u ⇐ P 〉l ≡ 〈u ⇐ P 〉

We use [l1 = P1, . . . , ln = Pn], instead of [[[] , l1 = P1] , . . . ln = Pn], whenever the li ’s are
distinct. There are two reduction rules for records:

([Q , l = P]l) → P
(red sel)

k 6= l
([Q , l = P]k) → (Qk)

(red over)

5

This formalization of records is closely related to the one proposed by Wand [28], since there
is a single operation to either modify or add a field to a record.

3 Operational Equivalence

In the definition of a calculus, the choice of the equivalence relation used to reason about
equality between terms is a difficult task. In this paper, contrary to previous presentations of
the blue calculus, we choose for candidate a behavioral equivalence that is also a bisimulation.
This relation, called barbed congruence (≈b), is the biggest bisimulation that preserves simple
observations called barbs and that is a congruence [17]. For people familiar with bisimulation
for π, it is a variant of the weak barbed congruence [20]. Another related equivalence is the
one defined for the join-calculus [6]. In particular, the reader should note that, as in Join,
we consider the coarsest barbed bisimulation that is a congruence, instead of considering the
closure under every context of barbed bisimulation.

Nonetheless, the definition of this equivalence does not directly follow from its π coun-
terpart. Indeed, whereas the observable behaviors considered in CCS and π are the visible
outputs (a choice equivalent to observing free names in head position in π?), we choose instead
to observe the presence of values, following the intuition that the basic values are abstractions.
Note that this choice of “observables” agrees with the definition of Morris-style equivalences
for the λ-calculus [4, ex. 16.5.5]. Since we are in a concurrent calculus, we also consider that
a value in parallel with an arbitrary process is a value.

Definition 3.1 (Barbs) A barb, we say also a value, is a process generated by the following
grammar.

V ::= (λx)P
∣∣ [Q , l = P]

∣∣ (V | P)
∣∣ (P | V)

∣∣ (νu)V
∣∣ def p = R inV

Values are the “observable terms” of π?. We denote P ↓ the fact that P is a value. The weak
version of barbs used in the definition of ≈b is P ⇓, such that P ⇓ if there exists a value V
such that P →∗ V .

With this definition, a value is a process that can reduce when it is applied to a name, or
when it is selected. In particular, the empty record [] is not a value. The definition of “being
a value” extend to contexts in a straightforward way. We say that C ↓ if and only if C[O] ↓.
It is easy to see that C ↓ implies that C[P] ↓ for all processes P . Before giving the definition
of barbed congruence, we define the notion of compositional relation.

Definition 3.2 (Compositional) The relation D is compositional, or closed under every
context, if for all context C and couple (P,Q) ∈ D , we have: (C[P],C[Q]) ∈ D .

Barbed congruence is the biggest compositional bisimulation that preserves barbs.

6

Definition 3.3 (Barbed Congruence) A relation D is a weak barbed simulation if for
every couple (P,Q) ∈ D , we have:

(i) P → P ′ implies Q →∗ Q′ and (P ′, Q′) ∈ S;

(ii) P ↓ implies Q ⇓.

The relation D is a weak barbed bisimulation, if D and D −1 are weak barbed simulations.
The processes P and Q are observationally equivalent, written P ≈b Q, if and only if (P,Q) ∈
D for some weak barbed bisimulation D that is compositional.

3.1 Properties of Barbed Congruence

In this section, we prove that beta conversion is a “valid law” of barbed congruence: this is
formally stated in Lemma 3.3. This example is interesting since it shows how quantification
over any context appears in direct proofs of congruence properties. Before proving Lemma 3.3,
we first give some intermediary results. In Lemma 3.1, we study the interaction between
contexts and observations. In Lemma 3.2, we give a property that allows to simplify the
reasoning on the reductions that a redex can perform under a context.

Lemma 3.1 (Barbs and Contexts) If the process C[P] is a value, the there are two cases.
Either (i) the context C contains a value i.e., C ↓; either (ii) the context C is an evaluation
context and P is a value.

Proof By induction on the size of C. �

We define the depth of a context C, denoted h(C), as the number of abstractions and declara-
tions that one goes through to reach the hole. We also suppose that the depth of the context
(def p = C inP), is h(C) + 1. Clearly, the depth is preserved by structural manipulation and
it equals zero if and only if C is an evaluation context.

Lemma 3.2 (Redex and Contexts) If C[((λx)P)a] → Q, then there are two possibilities

(i) the reduction comes from the context: there exists a context D, such that Q ≡
D[((λx)P a){b/y}], where {b/y} may be the identity substitution (i.e. b = y), and
where D may have two holes, i.e. two occurrences of [] . Moreover, for all processes R,
we have C[R] → D[R{b/y}], and h(D) ≤ h(C);

(ii) the reduction comes from the redex: Q ≡ C[P{a/x}].

Proof We only give the sketch of this proof here. As stated in [9], every process is structurally
equivalent to a normal form:

(νũ)(def D in (V1 | · · · | Vm | M1 | · · · | Ms | 〈v1 ⇐ R1〉 | · · · | 〈vr ⇐ Rr〉)) (1)

where the Vi’s are abstractions or records: (λx)P or [Q , l = P], and the Mi’s are applications
or selections: (P a), and where P and Q are also in normal form. We can always suppose

7

that structural equivalence is used only at the beginning and at the end of a reduction. That
is, for every reduction P → P ′, we can always suppose that there exist two processes Q and
Q′ such that: P ≡ Q, and Q → Q′, and Q′ ≡ P ′, and such that the inference of Q → Q′ does
not use rule (red equiv). Moreover, we can suppose that Q is in the normal form defined by
equation (1).

In our case, we can suppose that the context C is in normal form. The proof is made
by induction on the size of C. We only study two cases. The first is when C =def (D b). If
C[((λx)P)a] → Q, there are two possibilities:

• case D[((λx)P)a] reduces: we use the induction hypothesis;

• case there is a β-reduction with argument b: and the redex is in D. If the hole
[] , is not in the redex, then we are in case (i), with b = y. If [] is in the redex,
since D is in normal form, we have D[((λx)P)a] ≡ ((λy)B[((λx)P)a]), and therefore
Q ≡ B[((λx)P)a]{b/y}. This is case (i).

The second interesting case is when C =def (def p = D in E[p]), and when the reduction is
C[((λx)P)a] → (def p = D[((λx)P)a] in E[D[((λx)P)a]]). This is case (i), where b = y, and
the resulting context has two holes. Note that the (red def) rule is the only reduction rule
that can duplicate the hole in a context. �

With these two lemmas, we can prove the principal result of this section.

Lemma 3.3 (Beta Conversion) The rule for beta reduction is an algebraic law of our sys-
tem: ((λx)P a) ≈b P{a/x}.

Proof (Lemma 3.3) Let D be the relation:

D = Id ∪
{

(C[(λx)P a],C[P{a/x}])
∣∣ for all C, P and a

}
Note that this relation is clearly compositional. We prove that D and D −1 are weak barbed
simulations. Let P1 and P2 be the processes defined by: P1 =def C[(λx)P a] and P2 =def

C[P{a/x}]. Suppose P1 reduces in P ′1, we prove that there exists a process P ′2 such that
P2 → P ′2 and P ′1D P ′2. Using Lemma 3.2, we can exhibit two cases. Either P ′1 = P2, and
we use the fact that P2D P2, or P ′1 = D[((λx)P a){b/y}]. In this case, P2 can reduce to
P ′2 = D[P{a/x}{b/y}] and (P ′1, P

′
2) is in D . The proof is similar if we suppose that P2

reduces. We prove also that (P1, P2) ∈ D and P1 ↓ (respectively P2 ↓) implies P2 ⇓ (resp.
P1 ⇓):

• suppose P1 ↓, since ((λx)P a) is not a value, C[R] ↓ for all R and therefore P2 ↓;

• suppose P2 ↓. There are two cases. (i) for all R, C[R] ↓, and, in particular, P1 ↓; (ii) C
is an evaluation context and P{a/x} ↓. In this case, P1 → P2 ↓ and thus P1 ⇓.

Therefore, D and D −1 are weak barbed bisimulations, and thus: (P,Q) ∈ D ⇒ P ≈b Q.
The expected result follows by choosing C = [] . �

With a similar proof, it is possible to prove a similar result for definition fetching, see Propo-
sition 3.1 below. The proof is omitted in this report.

Proposition 3.1 (Definition Fetching) def p = R in p ≈b def p = R inR

8

4 Labeled Transition System with Definitions

In this section, we define a labeled transition system for the blue calculus. We recall that
(Pa) denotes either an application (Pu), or a selection (P l). We define four different kinds
of actions in the labeled transition system:

µ ::= τ
∣∣ λ a ∣∣ outu.(ṽ; ã)

∣∣ inu.(b̃; ã)

These four actions are respectively:

silent action (τ): which corresponds to internal reduction. Like in π, two processes in
parallel can synchronize during a communication. This is rule (par com) of the labeled
transition system (l.t.s.). We also have to consider two other reduction patterns though.
One for application, corresponding to the reduction rule (red beta) and to the rule (app
com) of the l.t.s.. The other for definition, that corresponds to the reduction rule (red
def) and to the rule (def com) of the l.t.s.;

lambda action (λ a): which is an action performed by a value, see rules (lambda) below,
and which corresponds to a λ-abstraction or a record;

in action (inu.(b̃; ã)): which is an input of the names ã on the channel u. The tuple b̃,
is used to remember the applications/selections than one goes through to reach the
declaration;

out action (outu.(ṽ; ã)): which is an output of the names in ã, on the channel u. In an
output action: P 7 outu.(ṽ; ã)−−−−−−−→ (D;P ′), the tuple ṽ is the set of “opened” restrictions i.e.,
the set of references in ã that were restricted and opened (scope extrusion). In the same
transition, the environment D corresponds to the opened definitions.

To distinguish the different actions, we will often use the “kind of the action µ”, denoted
κ(µ), such that κ(µ) ∈ {τ, λ,out, in}. In our transition systems, defined in Sect. 4.1, the
transitions can be schematically divided in two categories. The first category correspond to the
transitions P 7 µ−→P ′, such that κ(µ) ∈ {τ, λ, in}. The second category correspond to emissions:
P 7 outu.(ṽ; ã)−−−−−−−→ (D;P ′). In this transition, D denotes the environment (p1 = R1, . . . , pn = Rn),
and P ′ is a process.

Remark In the definition of the output action outu.(ṽ; ã), we implicitly consider that the
tuple of restricted names ṽ is not ordered: we consider that it is a “set”. This is important
to prove properties such as: (νu)(νv)P ∼d (νv)(νu)P . �

To simplify the presentation of the reduction rules and the proofs, we omit to define the sym-
metric of the rules concerning parallel composition. We also do not take α-conversion into
account. More formally, we consider that bound names are always unique and different from
each other: it is sufficient to implicitly take an underlying representation of names based on
De Bruijn indices [14]. Nonetheless, we will not explicitly use De Bruijn indices. This solu-
tion is already not tractable for hand made proofs in the λ-calculus, and it is really painful in
the π-calculus: see the work of D. Hirschkoff [16], on computer-aided bisimulation proofs for π.

The transition rules presented in this section are non-standard, even if rules concerning
lambda actions are put aside. Part of their complexity result from the “polyadic” nature of

9

the calculus: more than one name may be exchanged in a communication. Another source of
complexity follows from the higher-order presentation of the output actions. In a transition
P 7 outu.(ṽ; ã)−−−−−−−→ (D;P ′), for example, the set D is somehow “part” of the label. Therefore we are
in a situation comparable to transition systems where processes appear in labels [24]. Our
l.t.s. can be distinguished from transition system for the π-calculus for other reasons. Indeed,
in our l.t.s., τ -transitions are not equivalent to reductions obtained by the relation → . For
example we have:

〈u ⇐ Q〉 | def p = R in (u p | P) → def p = R in ((Q p) | P)
7 τ−→ ≡ def p = R in ((Q p) | (def p = R inP))

The source of this difference lies in the transition rules for out actions and, more partic-
ularly in the rule (def open), that concerns the definition operator. Intuitively, the point is
that a private resource may not be communicated outside it scope. Instead, as it is done in
rule (def open), we create a copy of the resource using a fresh name.

4.1 Definition of the Labeled Transition System

Axioms

(λx)P 7 λu−−→ P{u/x} (lambda) a 7 outu.(ε; ε)−−−−−−→ (∅; O) (out)

[R , l = N] 7 λ l−−→ N (lambda) [R , l = N] 7 λ k−−→ (Rk) (if k 6= l) (lambda)

〈u ⇐ P 〉 7 inu.(b̃; ã)−−−−−−→ (P ã) (decl)

Rules for tau, lambda and in actions

P 7 λ a−−→ P ′

P | Q 7 λ a−−→ P ′ | (Q a)
(par lambda)

P 7 λ a−−→ P ′

P a 7 τ−→ P ′
(app com)

P 7 τ−→ P ′

P | Q 7 τ−→ P ′ | Q
(par tau)

P 7 τ−→ P ′

P a 7 τ−→ P ′ a
(app tau)

P 7 µ−→ P ′ (κ(µ) ∈ {τ, λ, in} & u 6∈ fn(µ))
(νu)P 7 µ−→ (νu)P ′

(new mu)

P 7 µ−→ P ′ (κ(µ) ∈ {τ, λ, in} & p 6∈ fn(µ))
def p = R inP 7 µ−→ def p = R inP ′

(def mu)

Rules for in actions

10

P 7 inu.(b̃; ã)−−−−−−→ P ′

P | Q 7 inu.(b̃; ã)−−−−−−→ P ′ | (Q b̃)
(par in)

P 7 inu.((c, b̃); ã)−−−−−−−−→ P ′

(P c) 7 inu.(b̃; ã)−−−−−−→ P ′
(app in)

Rules for out actions

P 7 outu.(ṽ; ã)−−−−−−−→ (D;P ′) (ṽ,def(D)) ∩ fn(Q) = ∅
P | Q 7 outu.(ṽ; ã)−−−−−−−→ (D; (P ′ | Q))

(par out)

P 7 outu.(ṽ; ã)−−−−−−−→ (D;P ′) c 6∈ (ṽ,def(D))
(P c) 7 outu.(ṽ; (ã, c))−−−−−−−−−→ (D; (P ′ c))

(app out)

P 7 outu.(ṽ; ã)−−−−−−−→ (D;P ′) (v 6∈ u, ṽ, ã, fn(D))
(νv)P 7 outu.(ṽ; ã)−−−−−−−→ (D; (νv)P ′)

(new out)

P 7 outu.(ṽ; ã)−−−−−−−→ (D;P ′) (u 6= v)
(νv)P 7 outu.((v, ṽ); ã)−−−−−−−−−→ (D;P ′)

(new open)

P 7 outu.(ṽ; ã)−−−−−−−→ (D;P ′) (p 6∈ u, ṽ, ã, fn(D))
def p = R inP 7 outu.(ṽ; ã)−−−−−−−→ (D; def p = R inP ′)

(def out)

P 7 outu.(ṽ; ã)−−−−−−−→ (D;P ′) (p 6∈ u, ṽ,def(D))
def p = R inP 7 outu.(ṽ; ã)−−−−−−−→ ((p = R,D); def p = R inP ′)

(def open)

Communication rules

P 7 outu.(ṽ; ã)−−−−−−−→ (D;P ′) Q 7 inu.(ε; ã)−−−−−−→ Q′

P | Q 7 τ−→ (νṽ)(def D in (P ′ | Q′))
(par com)

P 7 out p.(ṽ; ã)−−−−−−−→ (D;P ′)
def p = R inP 7 τ−→ def p = R in (νṽ)(def D in (R ã | P ′))

(def com)

4.2 Definition of the Def-bisimulation

Using the labeled transition system for the blue calculus, it is possible to define a labeled
bisimulation, denoted ∼d , say def-bisimulation. The operator |ã| denotes the size (number
of elements) of the tuple ã.

Definition 4.1 (Similar tuples) For every relation D , we denote (def D in ã)D (def D′ in b̃)
the fact that the two following properties hold.

(i) ã and b̃ have the same size, say n. That is: |ã| = |b̃| = n;

11

(ii) for all i ∈ [1..n], the names ai and bi link to related resources i.e.,

(def D in ai)D (def D′ in bi).

We define, in Definition 4.2, the relation of def-bisimulation, that equates processes ob-
tained by “replication of the definition operators”, like for example: (def p = R in (P | Q))
and (def p = R in ((def p = R inP) | Q)). In Sect. 5 and 6, we prove that this equivalence
is included in barbed congruence.

Definition 4.2 (Def-bisimulation) The relation D is a strong d-simulation, if for all
(P,Q) ∈ D the three following properties hold:

(i) if P 7 µ−→ P ′ and κ(µ) 6∈ {out}, then there exists a process Q′ such that Q 7 µ−→ Q′ and
P ′DQ′;

(ii) if P 7 outu.(ṽ; b̃)−−−−−−→ (D;P ′), then there exists a process Q′ and an environment D′ such that
Q 7 outu.(ṽ; c̃)−−−−−−→ (D′;Q′), and P ′DQ′, and (def D in b̃)D (def D′ in c̃);

(iii) for all substitutions σ, of names for variables, we have PσDQσ.

A relation that verifies properties (i) and (ii) is called a ground simulation. We say that D is
a d-bisimulation, if both D and D −1 are d-simulations. The strong def-bisimulation relation
∼d , is defined by: P ∼d Q, if there exist a strong d-bisimulation D , such that P DQ.

It is easy to prove that the def-bisimulation does not characterize barbed congruence.
Indeed, an important algebraic law of the asynchronous π-calculus [17], that is false in the
synchronous one, is u(x).ūx ≈ O. In the blue calculus we can prove a similar law, that is
〈u ⇐ u〉 ≈b O, but obviously 〈u ⇐ u〉 6∼d O2, since the former can do an input action and
the latter is inert. Therefore, a first “improvement” could be to define an “asynchronous
bisimulation”, as was done for π in [3].

With an asynchronous bisimulation, the equality 〈u ⇐ u〉 ≈ O, becomes an algebraic law
of the system. Nonetheless, we believe that this equality is of little use, especially in the cases
where one wants to prove properties of transformations or interpretations, as it is the case
in Sect. 6.1. Indeed, the process 〈u ⇐ u〉 creates a “silly link” between a name and itself:
this process never appears in practical examples. At the opposite, we can prove that the pro-
cess (def p = u inP): the “equator” of p and u in P , is such that (def p = u inP)≈d P{u/p}.

There is another example of processes that are not def-bisimilar, while they are behav-
iorally equivalent. Let P and Q be the processes

P =def (νd)(def p = (νc)〈c = d〉 in (up | 〈d ⇐ R1〉))
Q =def (νd)(def p = O in (up | 〈d ⇐ R2〉))

Since “nobody can communicate” with the name c in (νc)〈c = d〉, it is obvious that
2and even 〈u ⇐ u〉 6≈d O, where ≈d is the weak def-bisimulation.

12

(νc)〈c = d〉 ≈b O. Therefore, since the name d remains private, nobody can communicate with
the declaration 〈d ⇐ R〉. Nonetheless the process P can make the action outu.(d; p), while
Q can only make the action outu.(ε; p). That is, only in the first transition, we can observe
that a private name is extruded.

This last example is typical of what happens in higher-order process calculi, where pro-
cesses, and not names, are exchanged during a communication. For example, the process
P can be interpreted as (νd)(ū〈(νc)(c(x).d̄〈〉)〉 | . . .), and Q as (νd)(ū〈O〉 | . . .). Like the
problem concerning asynchrony and ∼d , we believe that this category of non-bisimilar, yet
congruent processes, is not important.

5 Bisimulation Up-To

In this section, we study the “up-to context” proof technique [25], and we prove that a bisim-
ulation up-to context is a def-bisimulation. The complete proof can be found in Appendix A.
One of the interests of this proof technique, is that it allows us to avoid a direct proof that
∼d is a congruence. Other properties that follow from the proof of Th. 5.1 are listed in
Sect. 6.

We start by defining the notion of up-to contexts simulation. For each relation D , we
define DC as the smallest compositional relation that contains the transitive and reflexive
closure of D , that is:

• for all process P , we have P DC P ;

• if P DQ, then P DCQ;

• if P DCQ and QDCR, then P DCR;

• if P DCQ, then: (νu)P DC (νu)Q, and (Pa)DC (Qa), and (λx)P DC (λx)Q, and

〈u ⇐ P 〉DC 〈u ⇐ Q〉;

• if P DCQ andRDC S, then: (P |R)DC (Q |S), and (def p = P inR)DC (def p = Q inS),
and [P , l = R]DC [Q , l = S].

Definition 5.1 (Ground Simulation Up-To Contexts) The relation D is a ground sim-
ulation up-to contexts, if for all (P,Q) ∈ D we have:

(i) if P 7 µ−→ P ′ and κ(µ) 6= out, then there exists a process Q′ such that Q 7 µ−→ Q′ and
P ′DCQ

′;

(ii) if P 7 outu.(ṽ; ã)−−−−−−−→ (D;P ′), then there exists a process Q′ and an environment D′ such that
Q 7 outu.(ṽ; b̃)−−−−−−→ (D′;Q′) with P ′DCQ

′ and (def D in ã)DC (def D′ in b̃).

Likewise, we can define a notion of bisimulation up-to structural equivalence. We denote
D≡ the relation defined by: D≡ =def

{
(P,Q)

∣∣ ∃(P ′, Q′) ∈ D .P ≡ P ′ & Q ≡ Q′
}

.

13

Definition 5.2 (Ground Simulation Up-To ≡) The relation D is a ground simulation
up-to ≡, if for all (P,Q) ∈ D we have:

(i) if P 7 µ−→ P ′ and κ(µ) 6= out, then there exists a process Q′ such that Q 7 µ−→ Q′ and
P ′D≡Q′;

(ii) if P 7 outu.(ṽ; ã)−−−−−−−→ (D;P ′), then there exists a process Q′ and an environment D′ such that
Q 7 outu.(ṽ; b̃)−−−−−−→ (D′;Q′), with P ′D≡Q′ and (def D in ã)D≡ (def D′ in b̃).

We define a third notion of bisimulation up-to, namely the notion of bisimulation up-to
replication. For each relation D , we define DR as the smallest equivalence relation containing
D , that is closed under the replication laws (see Lemma 6.1), that is:

• for all process P we have P DR P . Moreover, for all processes P , Q and R, we have: if
P DRQ, then QDR P , and if P DRQ and QDRR, then P DRR;

• if P DQ, then P DRQ;

• if (def D in a)DR (def D′ in b), and if: fn(P) ∩ (def(D) ∪ def(D′)) = ∅, then:

(def D in (Pa))DR (def D′ in (Pb));

• for all processes P and Q we have:

(def p = R in (P | Q)) DR (def p = R in ((def p = R inP) | Q))
(def p = R in (P | Q)) DR (def p = R in (P | (def p = R inQ)))

(def p = R in (Pp)) DR (def p = R in ((def p = R inP)p))
(def p = R in ((λx)P)) DR ((λx)(def p = R inP)) (x 6∈ fn(R))

(def p = R in (〈u ⇐ P 〉)) DR (〈u ⇐ (def p = R inP)〉)
(def p = R, q = S inP) DR (def p = R, q = S in (def p = R inP)) (q 6∈ fn(R))
(def p = R, q = S inP) DR (def p = R, q = (def p = R inS) inP) (q 6∈ fn(R))

With the relation DR , we can define the notion of simulation up-to replication.

Definition 5.3 (Ground Simulation Up-To Replication) The relation D is a ground
simulation up-to replication, if for all (P,Q) ∈ D :

(i) if P 7 µ−→ P ′ and κ(µ) 6= out, then there exists a process Q such that Q 7 µ−→ Q′ and
P ′DRQ′;

(ii) if P 7 outu.(ṽ; ã)−−−−−−−→ (D;P ′), then there exists a process Q and an environment D′ such that
Q 7 outu.(ṽ; b̃)−−−−−−→ (D; |Q′), with P ′DRQ′ and (def D in ã)DR (def D′ in b̃).

In this report, we prove that a bisimulations up-to is a def-bisimulation, that is we have the
following theorem.

14

Theorem 5.1 (The Up-To Proof Technique) Let D be a relation closed by substitution
of names for variables. (i) : If D and D −1 are ground simulation up-to contexts, then D
is a def-bisimulation, that is D ⊆ ∼d . (ii) : If D and D −1 are ground simulation up-to
structural equivalence, then D ⊆ ∼d . (iii) If D and D −1 are ground simulation up-to
replication, then D ⊆ ∼d .

The complete proof of Th. 5.1 is given in Appendix A. This proof is very technical,
therefore, in this section, we only give the sketch of the proof. In this proof, we use the
function F (X) defined by:

F (X) = X ∪ ∼d ∪
{

(P,Q)
∣∣ ∃R.(P,R) ∈ X and (R,Q) ∈ X

}
∪
{

((νu)P, (νu)Q)
∣∣ (P,Q) ∈ X

}
∪
{

((P a), (Q a))
∣∣ (P,Q) ∈ X

}
∪
{

(〈u ⇐ P 〉, 〈u ⇐ Q〉)
∣∣ (P,Q) ∈ X

}
∪
{

((λx)P, (λx)Q)
∣∣ (P,Q) ∈ X

}
∪
{

([P1 , l = P2], [Q1 , l = Q2])
∣∣ (P1, Q1) and (P2, Q2) ∈ X

}
∪
{

(P1 | P2, Q1 | Q2)
∣∣ (P1, Q1) and (P2, Q2) ∈ X

}
∪
{

(def p = P1 inP2,def p = Q1 inQ2)
∣∣ (P1, Q1) and (P2, Q2) ∈ X

}
∪ D(X) ∪ E

In this section, we do not define the relation E and the function D. The reader can find these
definitions in Appendix A.

The function F (X) is a function that, given a relation X, makes the closure under “all the
operators of π?”. In particular, for every relation D , it is clear that the relation

⋃
n≥0 F

n(D)
(exists and) is compositional and that it verifies the relation:

DC ⊆
⋃
n≥0

Fn(D)

One can see F as an example of “respectful” function, as defined by D. Sangiorgi in[25]. Just to
give an intuition, the relations D(X) and E are such that they (respectively) makes a closure
under “basic replication laws” (see Lemma 6.1 and Definition 5.2) and “structural equivalence
laws”. In particular, we prove that: D≡ ⊆

⋃
n≥0 F

n(D), and that: ≡ ⊆
⋃
n≥0 F

n(E), and
that DR ⊆

⋃
n≥0 F

n(D).

Unfortunately, we have to prove the three properties of Th. 5.1 together. That is, we
cannot split the proof in three different parts: one for the up-to context proof technique, the
other for the up-to ≡, and the last for up-to replication. This is why the definition of F (X)
is so complex.

We denote D∞ the relation D∞ =def
⋃
n≥0 F

n(D). In particular (DC ∪ D≡ ∪ DR) ⊆
D∞ . Rather than proving Th. 5.1 directly, we prove that D∞ is a def-simulation. More
precisely we prove Lemma 5.1, that is a more general property than Th. 5.1:

Definition 5.4 (Ground Simulation Up-To F) we say that D is a ground simulation
up-to F , if for all (P,Q) ∈ D we have:

15

(i) if P 7 µ−→ P ′ and κ(µ) 6= out, then there exists a process Q such that Q 7 µ−→ Q′ and
P ′D∞Q′;

(ii) if P 7 outu.(ṽ; ã)−−−−−−−→ (D;P ′), then there exists a process Q and an environment D′ such that
Q 7 outu.(ṽ; b̃)−−−−−−→ (D; |Q′), with P ′D∞Q′ and (def D in ã)D∞ (def D′ in b̃).

It is clear that the three notions of simulation up-to defined at the beginning of this section are
instances of simulation up-to F , Then, to prove Th. 5.1, it is sufficient to prove the following
property.

Lemma 5.1 (Bisimulation Up-To F) if D and D −1 are ground simulations up-to F ,
and if D is closed by substitution of references for variables, then D∞ is a def-bisimulation,
that is D∞ ⊆ ∼d .

Proof It is easy to prove that, if D is closed by substitution of references for variables, then
the same property holds for Fn(D), and thus for D∞ . Therefore, we only need to prove that
D∞ is a ground bisimulation. To prove this last property, we prove the property (]): for all
integer k, the relation F k(D) is a simulation up-to F . More precisely, we prove by induction
on k that if (P,Q) ∈ F k(D), then:

(i) if P 7 µ−→ P ′ and κ(µ) 6= out, then there exists a process Q such that Q 7 µ−→ Q′ and
P ′D∞Q′;

(ii) if P 7 outu.(ṽ; ã)−−−−−−−→ (D;P ′), then there exists a process Q and an environment D′ such that
Q 7 outu.(ṽ; c̃)−−−−−−→ (D′;Q′), with P ′D∞Q′ and (def D in ã)D∞ (def D′ in c̃).

The proof in the case k = 0 is straightforward, since F 0(D) is the identity relation. The
general case is proved in appendix A.

Once proved the property (]), it is clear that D∞ is a def-bisimulation. It follows that:
D∞ ⊆ ∼d . Then, to prove Th. 5.1, we use the fact that: D ⊆ F (D) ⊆

⋃
n≥0 F

n(D) =
D∞ ⊆ ∼d . �

Note that, in the definition of F (X), we use the relation ∼d . Indeed we have F (X) = X∪
∼d ∪ . . . Therefore a corollary of Lemma 5.1 is that bisimulation “up-to strong bisimulation”
are def-bisimulation. Th. 5.1 is also a corollary of this lemma. For example, suppose that D is
closed under substitutions, and that D and D −1 are bisimulations up-to contexts. Therefore,
since obviously DC ⊆ D∞ , we have that D and D −1 are simulations up-to F and, using
Lemma 5.1 we can prove that D∞ is a def-bisimulation and thus: D ⊆ D∞ ⊆ ∼d .

6 Properties of the Def-Bisimulation

A direct consequence of Th. 5.1 is that the strong bisimulation is a congruence that contains
structural equivalence.

Theorem 6.1 The strong def-bisimulation is a congruence and contains structural equiva-
lence, that is: ≡ ⊂ ∼d , and, for any context C, we have P ∼d Q ⇒ C[P]∼d C[Q].

16

Proof The identity relation Id , is a particular example of bisimulation up-to contexts. There-
fore, using the proof of Th. 5.1, we prove that:

⋃
n≥0 F

n(Id) ⊆ ∼d , and the second property
follows from the fact that ≡⊆

⋃
n≥0 F

n(Id).
Likewise, to prove that ∼d is a congruence, we use the fact that it is a particular example

of bisimulation up-to contexts. Indeed, using the notation of the proof of Th. 5.1, we prove
that

⋃
n≥0 F

n(∼d) is a strong bisimulation, and thus:
⋃
n≥0 F

n(∼d) ⊆ ∼d . This implies
that F (∼d) ⊆ ∼d , that is ∼d is closed under contexts. �

The last result states that definitions can be “distributed under every contexts”. Therefore,
definitions act like substitutions. This will be exemplified at the end of Sect. 6.1.

Lemma 6.1 (Replication Laws) The following laws hold:

(i) If p 6∈ fn(P), thus def p = R inP ∼d P ;

(ii) def p = R in (P | Q)∼d def p = R in ((def p = R inP) | Q);

(iii) if p 6= q and q 6∈ fn(R), then

def p = R in (def q = S inP) ∼d def p = R, q = S in (def p = R inP)
def p = R in (def q = S inP) ∼d def q = (def p = R inS) in (def p = R inP)

(iv) def p = R in (〈u ⇐ P 〉)∼d 〈u ⇐ (def p = R inP)〉;

(v) if x 6∈ fn(R), then def p = R in ((λx)P)∼d (λx)(def p = R inP)

(vi) for every context C that does not bind the names free in R, and for every process P ,
the following law hold: def p = R in (C[P])∼d def p = R in (C[(def p = R inP)]).

An immediate corollary of laws (i) and (ii), is that: def p = R in (P | Q)∼d (def p = R inP) |
(def p = R inQ), which is the law announced in introduction of this report.

Proof The properties (i) to (v) are direct consequences of the fact that F (∼d) ⊆ ∼d . To
prove Lemma 6.1-(vi), we prove that the two processes P1 and P2 such that:

D =def def p = R in C and P1 =def D[P] and P2 =def D[def p = R inP]

are bisimilar. Let J.K be the function on processes such that (in each case, we suppose that
we have used α-conversion to avoid the capture of free names in R):

Jdef p = R inuK = def p = JRK inu
Jdef p = R in ((λx)P)K = def p = JRK in (λx)(Jdef p = R inP K)

Jdef p = R in (P a)K = def p = JRK in (Jdef p = R inP K a)
Jdef p = R in ((νu)P)K = def p = JRK in (νu)(Jdef p = R inP K)
Jdef p = R in (P | Q)K = def p = JRK in (Jdef p = R inP K | Jdef p = R inQK)

Jdef p = R in (〈u ⇐ P 〉)K = def p = JRK in 〈u ⇐ (Jdef p = R inP K)〉

Jdef p = R in (def q = S inQ)K = def p = JRK in
(

def q = Jdef p = R inSK

in Jdef p = R inQK

)
and such that J.K is an homomorphism in the other cases. The function J.K is used to “maxi-
mally” distribute definitions. If we add the constant [] , such that Jdef p = R in [] K = [] ,

17

this function extends to a function from contexts to contexts. Using the distribution laws, it
is easy to prove that, for all process P , we have: JP K ∼d P and: JDK[P]∼d D[P]. Therefore
it is obvious that:

P1 ∼d JP1K = JDK[Jdef p = R inP K] and D[Jdef p = R inP K]∼d P2

The expected result i.e., P1 ∼d P2, follows from the transitivity of ∼d . �

6.1 Interpretation of the λ-Calculus

Let Λ denotes the untyped λ-calculus.

M,N,L ::= x
∣∣ λx .M

∣∣ (MN)

We consider the full calculus, that is without any particular reduction strategy, and we de-
note ↔β the β-conversion relation, that is the smallest congruence such that (λx .M)M ↔β

M{N/x}. The replication laws can be used to prove the correctness of a (very) simple inter-
pretation from Λ to π? already sketched in Sect. 2.1. Our interpretation of Λ is

LxM = x
Lλx .MM = (λx)LMM

L(MN)M = def p = LNM in (LMM p) p 6∈ fn(M,N)

In the following, we will make no distinction between variables of Λ and names of π?. We
prove that the interpretation of a Λ-redex, is a redex of π?. Let P [x:=Q] be the process
defined by

P [x:=Q] =def def x = Q inP if x 6∈ fn(Q)

Therefore, using Lemma 3.3, we have

L(λx .M)NM = ((λx)LMM p)[p:=LNM]≈b (LMM{p/x})[p:=LNM]

To reason about the interpretation of β reduction, we assume that the replication laws are
valid for barbed congruence. This result, stated in Th. 7.1, is proved latter. With this
hypothesis, we can prove that:

(LMM{p/x})[p:=LNM]≈b LMM{LNM/x} = LM{N/x}M

Therefore we can prove that the interpretation of beta convertible terms are equivalent.

Theorem 6.2 If M ↔β N , then LMM ≈b LNM.

More precisely, we can draw a parallel between the replication laws and the transformations
defined in the λ-calculus with explicit substitutions [1]. Indeed, if we extend Λ with explicit
substitutions: M [x:=N], and if we define LM [x:=N]M to be the process LMM[x:=LNM], we can
prove that:

let x, y be two variables such that x 6= y and y 6∈ fn(R)

(P [y:=Q])[x:=R] ≈b (P [x:=R])[y:=(Q[x:=R])]
x[x:=R] ≈b R (Proposition 3.1)
y[x:=R] ≈b y (Lemma 6.1-(i))

Lλy .MM[x:=LNM] ≈b (λy)(LMM[x:=LNM]) (Lemma 6.1-(v))
LM LM[x:=LNM] ≈b L(M [x:=N]) (L[x:=N])M (Lemma 6.1-(ii))

18

This last result has to be compared with the remark of R. Milner [22, Sect. 4], that the
correspondence between the λ-calculus with explicit substitution and the π-calculu may be
closer than between the λ-calculus and the π-calculus.

7 Relation between Transitions and Reduction

In this section, we prove that the labeled transition system is “faithful” to the notion of
reduction. That is, a reduction P → Q in the original calculus can be mapped to a τ -
transition of the labeled reduction system (this is Lemma 7.2). Nonetheless, a main difference
with labeled semantics defined for π is that τ -actions are not equivalent to reduction. The
following example was already given in Sect. 4.2

〈u ⇐ Q〉 | def p = R in (u p | P) → def p = R in ((Q p) | P)
7 τ−→ ≡ def p = R in ((Q p) | (def p = R inP))

The intuition is that, in the extrusion of bound references, definitions are duplicated. To
establish this formally, we need a preliminary result proved in Appendix B.

Lemma 7.1 (Relation Between Transitions and Actions)

(i) tau actions: if P 7 τ−→ P ′ and E is an evaluation context, then E[P] 7 τ−→ E[P ′];

(ii) lambda actions: if P 7 λ a−−→ P ′, then (Pa) → P ′;

(iii) in actions: if P 7 inu.(b̃; ã)−−−−−−→ P ′, then (P b̃) | (uã) → P ′;

(iv) out actions: if P 7 outu.(ṽ; ã)−−−−−−−→ (D;P ′), then there exists a process R such that:

P ≡ (νṽ)(def D in (uã | R)) and (νṽ)(def D inR)∼d (νṽ)(def D inP ′)

In Lemma 7.1, we have related each kind of actions to a reduction rule. For example, λ -
actions are associated with the (red beta) rule. With this property, we can prove that the
l.t.s. simulates the reduction, that is:

Lemma 7.2 The relation 7 τ−→ simulates → , that is, if there is a reduction from a process P
to a process P ′, then there exists an equivalent (labeled) transition up-to structural equivalence,
that is:

(i) if P → P ′, then there exists R such that P ≡ R, and R 7 τ−→ R′, and R′ ≡ P ′.

Conversely, the existence of a tau transition implies the existence of a reduction. In this case,
the residuals are bisimilar. That is:

(ii) if P 7 τ−→ P ′, then there exists R such that P → R, and R∼d P ′.

Proof (Lemma 7.2) The proof of property (i) is made by induction on the inference of
P → P ′.

• case (red equiv): we have P ≡ Q and Q→ P ′. Thus, using the induction hypothesis,
there exists R and R′ such that Q ≡ R, R 7 τ−→ R′, R′ ≡ P ′. The result follows from
transitivity of the structural equivalence: P ≡ Q ≡ R ⇒ P ≡ R;

19

• case (red context): we have P = E[Q], Q → Q′ and P ′ = E[Q′]. Therefore there
exists R such that Q ≡ R 7 τ−→ R′ ≡ Q′. Using Lemma 7.1-(i) and the fact that ≡ is a
congruence, it follows that P ≡ E[R] 7 τ−→ E[R′] ≡ P ′;

• case (red beta) and (red sel): in the first case, we have P = ((λx)Q)u and P ′ =
Q{u/x}. Therefore rule (lambda) implies that: (λx)Q 7 λu−−→ Q{u/x} and rule (app
lambda) implies that P 7 τ−→ P ′. The proof is similar in the second case;

• case (red decl): Let ã be the tuple (a1, . . . , an). We have P = (〈u ⇐ Q〉 | uã) and
P ′ = (Qã). Therefore, using rule (decl) we have: 〈u ⇐ Q〉 7 inu.(ε; ã)−−−−−−→ (Qã). Moreover,
using rule (out) and (app out), we have: (uã) 7 outu.(ε; ã)−−−−−−→ (∅; Oã). Thus, using rule (par
com), it follows that: P 7 τ−→ def O in (P ′ | (Oã)) ≡ P ′;

• case (red def): we have P = (def p = T in E[p]) and P ′ = (def p = T in E[T]), with
the side condition that p and the free name of T are not bound by E. Using the
structural equivalence, we can always suppose that E is in normal form i.e.,

E = (νṽ)(def D in ([] ã | Q))

Thus P ≡ R =def (νṽ)(def D, p = T in (pã | Q)), and using rule (out), (app out), and
(def com) we have:

P ≡ R 7 τ−→ (νṽ)(def D, p = R in (T ã | (O ã | Q))) ≡ P ′

The proof of the second property is made by induction on the inference of P 7 τ−→P ′. We make
a case analysis on the last rule.

• case (par tau), (app tau), (new mu) and (def mu): the result follows from rule
(red context) and the fact that ∼d is a congruence;

• case (app lambda): here we have a β reduction, that is: P = (Qa) and Q 7 λ a−−→ P ′.
The result follows from Lemma 7.1-(ii). The case of record selection is similar;

• case (par com) and (def com): we have P 7 outu.(ṽ; ã)−−−−−−−→(D;P ′) andQ 7 inu.(ε; ã)−−−−−−→Q′ implies
P | Q 7 τ−→ (νṽ)(def D in (P ′ | Q′)). Therefore, using Lemma 7.1-(iii), Q | (uã) → Q′

and, using Lemma 7.1-(iv), there exists R such that P ≡ (νṽ)(def D in (uã | R)) and
(νṽ)(def D inR)∼d (νṽ)(def D inP ′). Combining these two properties we obtain:

(P | Q) ≡ (νṽ)(def D in (uã | R)) | Q
≡ (νṽ)(def D in (R | (Q | uã)))
→ (νṽ)(def D in (R | Q′)) (2)
∼d (νṽ)(def D in (P ′ | Q′)) (3)

where relation (2) is proved using Lemma 7.1-(iii) and rule (red context), and re-
lation (3) is proved using Th. 6.1. In the last relation, we also use the fact that
fn(Q) ∩ (ṽ,def(D)) = ∅ implies fn(Q′) ∩ (ṽ,def(D)) = ∅. The proof is similar in
the case (def com).

�

20

We prove now that a process is a value, in the sense of Definition 3.1, if and only if we can
derive a lambda action from it.

Lemma 7.3 (Characterization of Values) The process P is a value, denoted P ↓, if and
only if there exists a name a such that P 7 λ a−−→ P ′.

Proof The first implication is proved by induction on the size of P , and the reverse property
is proved by induction on the inference of P 7 λ a−−→ P ′. �

Finally we prove our main result, stating that the def-bisimulation is included in the barbed
congruence.

Theorem 7.1 The def-bisimulation is a barbed-bisimulation, that is P ∼d Q implies P ≈b Q.

Proof In Sect. 5, we already proved that ∼d is symmetric and that it is a congruence.
Therefore it is enough to prove that (1): the def-bisimulation ∼d is a bisimulation, and that
(2): the def-bisimulation preserves the barbs: P ∼d Q and P ↓, implies Q ↓.

(1) Suppose P ∼d Q and P → P ′. We prove that there exists a process Q′ such that Q→ Q′

and P ′ ∼d Q′. From Lemma 7.2-(i), it follows that there exists a process R such that
(]) : P ≡ R, R 7 τ−→ R′ and (\) : R′ ≡ P ′. From Th. 6.1 and property (]), it follows
that Q∼d R. Therefore, since P ∼d Q, there exists a process S such that: Q 7 τ−→ S with
R′ ∼d S, and also (using Th. 6.1 and property (\)): P ′ ∼d S. Finally, using Lemma 7.2-
(ii), there exists a process Q′ such that: Q → Q′ and Q′ ∼d S, and thus such that:
Q′ ∼d P ′;

(2) Suppose P ↓. From Lemma 7.3, it follows that there exists a name a such that P 7 λ a−−→P ′.
Since P ∼d Q, there exists a process Q′ such that Q 7 λ a−−→ Q′, and thus Q ↓.

�

This last result implies that the replication laws are also valid for barbed congruence, that
is we have the following properties.

Theorem 7.2 (Replication Laws)

def p = R in (P | Q) ≈b (def p = R inP) | (def p = R inQ)
def p = R in (Pa) ≈b def p = R in ((def p = R inP)a)

def p = R in (def q = S inP) ≈b def q = (def p = R inS) in (def p = R inP)
def p = R in (〈u ⇐ P 〉) ≈b 〈u ⇐ (def p = R inP)〉
(def p = R in ((λx)P)) ≈b (λx)(def p = R inP) (x 6∈ fn(Q))

8 Conclusion

To my knowledge, there is no direct proof of any non-trivial laws for barbed congruence,
that is a proof exhibiting a barbed bisimulation that contains the desired equalities. In his
article on the interpretation of Λ in π [22], R. Milner gives an insightful intuitive reason for
this fact: the reduction relation informs us solely on the internal behavior of a process P ; it

21

describes how P ’s parts may interact with each other, but not how P may interact with the
environment.

A first solution to reduce the proofs to a tractable size, is to prove a context lemma,
like G. Boudol did in [9] for example, and to use “up-to” proof techniques. But, with these
techniques, one can only prune the set of contexts that have to be considered. Therefore,
the most useful solution is certainly to define a labeled bisimulation that is included in the
congruence and to prove the interesting properties with this equivalence.

In this report, we have used this last solution to prove that an extended formulation of
the replication theorem is valid for barbed congruence. Only recently, a similar property
was proved for the local π-calculus [18]. But this calculus is not polyadic and the labeled
bisimulation used is not higher-order.

The method used in the proof of this key result is also interesting. The major novelty
is that τ -transition does not match reduction, i.e. P 7 τ−→ P ′ does not imply P → P ′ (see
Lemma 7.2). This “trick” has greatly simplified our proofs. Another key step is the use of
the up-to context proof method, instead of a direct proof that ∼d is a congruence: in π, one
generally proves that a bisimulation is a congruence, by exhibiting one bisimulation for each
constructor, a method that is not possible for π?.

To conclude, I presented some applications that stress the importance of the replication
theorem. In Sect. 6.1, we have used the replication laws to prove the correctness of an
encoding of (Λ,↔β). A similar result is given in [12], where the source language considered
is a calculus of primitive objects [2]. In this article, we define a set of derived constructs for
imperative “named objects”, where imperative means that an object can be cloned. In this
setting, an object is a π? process, denoted (obj o is (li = ς(xi)Pii∈I) in P), such that selection
of the field lj on the reference o, triggers the execution of the method Pi with xi bound to o

obj o is (li = ς(xi)Pii∈I) in (o⇐\ lj) →∗ obj o is (li = ς(xi)Pii∈I) in (Pj{o/xj})

The replication theorem is used to prove algebraic laws such as, under certain hypotheses on
the occurrences of o in P and Q, namely that the object o is used only for cloning:

obj o is (li = ς(xi)Pii∈I) in (clone(o)) ≈b obj o is (li = ς(xi)Pii∈I) in o

obj o is (li = ς(xi)Pii∈I) in (P | Q) ≈b (obj o is (li = ς(xi)Pii∈I) in P) |
(obj o is (li = ς(xi)Pii∈I) in Q)

Another application of the replication theorem is found in the distributed calculus of [11],
built on top of π?. In this calculus, we consider the rule

(?) def p = R in (P | Q) ≡ (def p = R inP) | (def p = R inQ)

as primitive in the definition of the structural equivalence. Note that the “soundness” of
this system is implied by Lemma 6.1-(ii). The reason that motivates this choice, is that it
simplifies the definition of the reduction relation. Let us define part of the syntax of the
distributed π?, denoted Dπ? here, to argument this claim. This calculus extend π? with
locations: [s :: P], that stands for the process P located at the site s, and with an RPC like
construct: go s′.Q, used to spawn the process Q at the site s′. In Dπ?, the following reduction

22

is admissible(
[s :: def p = R in (go s′.p | P)] |

[s′ :: Q]

)
→

(
[s :: def p = R inP] |

[s′ :: def p = R in p | Q]

)

Thus, rule (?) allows one to consider that private and replicated resources are basic bricks that
can be safely copied in a communication between distant locations. Another interpretation
is that, if efficiency is not taken into account, an RPC communication amounts to send the
code of the function being called at the location of the client. This intuition is at the heart
of the paradigm of remote evaluation [26].

23

A Proof of the Up-To Technique Theorem

In this section we prove Lemma 5.1. Note that we proved in section 5 that this lemma implies
Th. 5.1. Let F (X) be the function from relations to relations sketched in Sect. 5. That is
F (X) =def G(X) ∪ D(X) ∪ E , where G(X) is a function that makes a closure over π?’s
operators, and D(X) is a function that makes a closure over “basic distribution laws”, and
E is a relation used to recover the “structural equivalence laws”.

G(X) = X ∪ ∼d ∪
{

(P,Q)
∣∣∃R.(P,R) ∈ X and (R,Q) ∈ X

}
∪
{

((νu)P, (νu)Q)
∣∣ (P,Q) ∈ X

}
∪
{

((P a), (Q a))
∣∣ (P,Q) ∈ X

}
∪
{

(〈u ⇐ P 〉, 〈u ⇐ Q〉)
∣∣ (P,Q) ∈ X

}
∪
{

((λx)P, (λx)Q)
∣∣ (P,Q) ∈ X

}
∪
{

([P1 , l = P2], [Q1 , l = Q2])
∣∣ (P1, Q1) and (P2, Q2) ∈ X

}
∪
{

(P1 | P2, Q1 | Q2)
∣∣ (P1, Q1) and (P2, Q2) ∈ X

}
∪
{

(def p = P1 inP2,def p = Q1 inQ2)
∣∣ (P1, Q1) and (P2, Q2) ∈ X

}
D(X) = {(def D in (P a),def D′ in (P b))| (def D inu,def D′ in v) ∈ X and

fn(P) ∩ (def(D) ∪ def(D′)) = ∅ }
∪ {(def p = R in (P | Q),def p = R in ((def p = R inP) | Q))}
∪ {(def p = R in (P p),def p = R in ((def p = R inP) p))}
∪
{

(def p = R in ((λx)P), (λx)(def p = R inP))
∣∣x 6∈ fn(R)

}
∪ {(def p = R in (〈u ⇐ P 〉), 〈u ⇐ (def p = R inP)〉)}
∪
{

(def p = R, q = S inP,def p = R, q = S in (def p = R inP))
∣∣ q 6∈ fn(R)

}
∪
{

(def p = R, q = S inP,def p = R, q = (def p = R inS) inP)
∣∣ q 6∈ fn(R)

}
E = {(P | O, P)} ∪ {(P | Q,Q | P)} ∪ {(P | (Q | R), (P | Q) | R)}

∪
{

(def p = R inP, P)
∣∣ p 6∈ fn(P)

}
∪
{

((νu)P, P)
∣∣u 6∈ fn(P)

}
∪ {(def p = R in ((νu)P), (νu)(def p = R inP))}
∪
{

(def p = R, q = S inP,def q = S, p = R inP)
∣∣ q 6= p, p 6∈ fn(S), q 6∈ fn(R)

}
∪ {((νu)(νv)P , (νv)(νu)P)}
∪
{

((νu)P | Q, (νu)(P | Q))
∣∣u 6∈ fn(Q)

}
∪
{

((def p = R inP) | Q,def p = R in (P | Q))
∣∣ p 6∈ fn(Q)

}
∪
{

(((νu)P) a, (νu)(P a))
∣∣ a 6= u

}
∪
{

((def p = R inP) a,def p = R in (P a))
∣∣ a 6= p

}
∪ {((P | Q) a, (P a) | (Q a))}
∪ {(〈u ⇐ P 〉 a, 〈u ⇐ P 〉)} ∪ {(O a, O)}

The function F is monotonic and for all n ≥ 1, we have X ⊆ F (X) ⊆ Fn(X). Thus, for
every relation D , we can define the relation D∞ =def

⋃
n≥0 F

n(D). It is straightforward
to prove that if D is closed by substitution of names for variables, then the same holds for
Fn(D), and thus for D∞ . Moreover, is easy to prove that, for every relation D , the relation⋃
n≥0G

n(D) is a congruence, and that the relation
⋃
n≥0G

n(E) contains ≡. Concerning
the function D(X), it is easy to prove that DR ⊆ D∞ . Moreover, it is possible to prove
that (def D inu)D∞ (def D′ in v), implies (def D inP{u/x})D∞ (def D′ inP{v/x}), when-
ever (def(D) ∪ def(D′)) ∩ fn(P) = ∅.

24

In this section, we prove that if D is a bisimulation up-to F (see Lemma 5.1), then D∞
is a def-simulation. We have already noted that it is closed by substitutions, therefore it is
sufficient to prove that D∞ is a ground simulation. Before to establish this result, we prove
two intermediary lemmas.

Lemma A.1 Let D be a bisimulation up-to F , and let D∞ be the relation
⋃
n≥0 F

n(D),
defined above. Let ã, c̃ be two tuples, and D,D′ be two definitions lists such that:

(def D in ã)D∞ (def D′ in c̃). The following properties hold:

(i) if P D∞Q and (fn(P) ∩ def(D)) = (fn(Q) ∩ def(D′)) = ∅, then

(def D in (P ã))D∞ (def D′ in (Q c̃))

(ii) if P 7 inu.(b̃; ã)−−−−−−→ P ′ and fn(P) ∩ (def(D) ∪ def(D′)) = ∅, then there exists a process P ′′

such that P 7 inu.(b̃; c̃)−−−−−−→P ′′ and (def D inP ′)D∞ (def D′ inP ′′). And if P 7 inu.(ã; b̃)−−−−−−→P ′ and
fn(P) ∩ (def(D) ∪ def(D′)) = ∅, then there exists a process P ′′ such that P 7 inu.(c̃; b̃)−−−−−−→
P ′′ and (def D inP ′)D∞ (def D′ inP ′′);

Let a, c be two names such that (def D in a)D∞ (def D′ in c).

(iii) if P 7 λ a−−→ P ′ and fn(P) ∩ (def(D) ∪ def(D′)) = ∅, then there exists a process P ′′ such
that P 7 λ c−−→ P ′′ with (def D inP ′)D∞ (def D′ inP ′′).

Proof Let ã, c̃ be two tuples of the same size, and P,Q be two processes such that P D∞Q.
For the first property, we make an induction on the size of ã.

• case |ã| = 0: since
{

(def p = R inP, P)
∣∣ p 6∈ fn(P)

}
is a subset of D∞ , we have

(def D inP)D∞ P D∞QD∞ (def D′ inQ)

in the cases such that (fn(P) ∩ def(D)) = (fn(Q) ∩ def(D′)) = ∅;

• case |ã| = n+ 1: suppose that (def D in (P ã))D∞ (def D′ in (Q c̃)). The pair

((def D in (Pa)), (def D′ in (Pc))) is in D∞ , therefore, using the transitivity of D∞ ,
and the fact that it is a congruence, we have:

def D in (P ã an+1) = def D in ((def D inP ã) an+1)
D∞ def D′ in ((def D inP ã)cn+1)
D∞ def D′ in ((def D′ inQ c̃) cn+1)
D∞ def D′ in (Q c̃ cn+1)

We prove the second property by induction on the inference of P 7 inu.(b̃; ã)−−−−−−→ P ′. Let µa =
inu.(b̃; ã) and µc = inu.(b̃; c̃):

• case (decl): we have P = 〈u ⇐ P1〉 7 µa−−→ P ′ = (P1 ã). Therefore: P 7 µc−−→ (P1 c̃) and,
since P1D∞ P1, the expected result: (def D in (P1 ã))D∞ (def D′ in (P1 c̃)), follows
from Lemma A.1-(i);

• case (new mu): we have P = (νu)P1 and P1 7 µa−−→ P ′1 implies P 7 µa−−→ (νu)P ′1. Therefore,
using the induction hypothesis, it follows that there exists a process P ′′1 such that
P1 7 µc−−→ P ′′1 , with (def D inP ′1)D∞ (def D′ inP ′′1). The result follows from the fact that
D∞ is a congruence. The proof is similar in the case (def mu) and (par in);

25

• case (app in): we have: P = (P1 b) and P1 7 inu.((b, b̃); ã)−−−−−−−−→ P ′1, implies (P b) 7 µa−−→ P ′1.
Using the induction hypothesis, it follows that there exists a process P ′′1 such that
P1 7 inu.((b, b̃); c̃)−−−−−−−−→ P ′′1 and (def D inP ′1)D∞ (def D′ inP ′′1). The result follows from the
fact that (P b) 7 µc−−→ P ′′1 .

We prove the third property by induction on the inference of P 7 λu−−→ P ′. The property is
trivial if a is a label, or if a = b. Therefore, in the following proof, we consider that a is bound
by D:

• case (lambda): we have P = (λx)P1. The result follows from the fact that

(def D inP{a/x})D∞ (def D′ inP{c/x})

We obtain this result by using the “laws in D(X)”, to distribute the definitions over
any construct of P . Then we use the fact that, for all Q such that (fn(Q) ∩ (def(D) ∪
def(D′))) = ∅, the relation (def D in (Q a))D∞ (def D′ in (P c)) is valid.

• case (par lambda): The result follows from property (i) and the rule of distribution
of definitions over parallel composition;

• case (new mu) and (def mu): the result follows from D∞ being a congruence.

�

Lemma A.2 (In Actions and Application) If P 7 inu.(b̃; ã)−−−−−−→ P ′, then there exists an in-
transition such that P 7 inu.((b̃, a); (ã, a))−−−−−−−−−−→ P ′′ with P ′′ ≡ (P ′ a).

Using rule (app in), we obtain, as a corollary, that if P 7 inu.(ε; ã)−−−−−−→P ′, then (P a) 7 inu.(ε; (ã, a))−−−−−−−−→P ′′

with P ′′ ≡ (P ′ a).

Proof The proof is by induction on the inference of P 7 inu.(b̃; ã)−−−−−−→ P ′. For convenience we will
use µ to denote the action inu.(b̃; ã), and µa to denote the action inu.((b̃, a); (ã, a)). We
make a case analysis on the last rule.

• case (decl): we have 〈u ⇐ P 〉 7 µ−→ (P ã) for all b̃ and ã. Therefore 〈u ⇐ P 〉 7 µa−−→ (P ã a);

• case (new mu): we have P = (νu)P1 and P1 7 µ−→ P ′1 implies P 7 µ−→ P ′ = (νu)P ′1.
Therefore, since a 6= u, we can use the induction hypothesis and rule (new mu) to
prove that (νu)P 7 µa−−→ (νu)P ′′1 with P ′′1 ≡ (P ′1 a). The result follows from (νu)P ′′1 ≡
(νu)(P ′1 a) ≡ (νu)P ′1 a. We have a similar proof in the case (def mu);

• case (par in): we have P = (P1 | Q1) and P1 7 µ−→ P ′1 implies P 7 µ−→ P ′ = (P ′1 | (Q1 b̃)).
Using the induction hypothesis and rule (par in), it follows that P 7 µa−−→ (P ′′1 | (Q1 b̃ a))
with P ′′1 ≡ (P ′1 a). The result follows from (P ′′1 | (Q1 b̃ a)) ≡ ((P ′1 a) | (Q1 b̃ a)) ≡
(P ′1 | (Q1 b̃)) a;

• case (app in): let ξ be the action inu.((c, b̃); ã). We have P = (P1 c) and P1 7 ξ−→ P ′1
implies P 7 ξ−→ P ′ = P ′1. Using the induction hypothesis and rule (app in), it follows that
P 7 µa−−→ P ′′1 with P ′′1 ≡ (P ′1 a), which is the expected result.

�

26

We now prove the main result of this appendix, that is: if D and D −1 are bisimulations
up-to F , then D∞ is a ground simulation. More precisely, we simultaneously prove two
properties: if (P,Q) ∈ F k(D), then

• if P 7 µ−→ P ′ and κ(µ) 6= out, then there exists a process Q′ such that: Q 7 µ−→ Q′, and
P ′D∞Q′;

• if P 7 outu.(ṽ; ã)−−−−−−−→ (D;P ′), then there exists a process Q′ and an environment D′ such that:
Q 7 outu.(ṽ; c̃)−−−−−−→ (D′;Q′), with P ′D∞Q′, and |ã| = |c̃| (say n), and for all i ∈ [1..n] we have
(def D in ai)D∞ (def D′ in ci).

This proof is made by induction on k and on the definition of F (X).

Since F 0(X) = Id , the case for k = 0 is straightforward: the identity relation is clearly a
bisimulation. For the case k = (n + 1), the proof is divided along the three main subsets of
F (X). Note that, using the property of E and G(X) given at the beginning of this appendix,
it is easy to prove that P ≡ Q implies P D∞Q. Likewise, using the property of G(X), it is
easy to prove that D∞ is compositional.

A.1 Rules for Congruence

case P DQ or P ∼d Q: by definition, the relations D and ∼d are included in D∞ . There-
fore the results follows from the definition of the bisimulation up-to F .

case (P,Q) ∈ Fn(D) and (Q,R) ∈ Fn(D): suppose that P 7 µ−→P ′ and κ(µ) 6= out. We use
the induction hypothesis to prove that R 7 µ−→ R′ and P ′D∞R′, and the induction hypothesis
again to prove that Q 7 µ−→ Q′ and R′D∞Q′. The result follows from the transitivity of D∞ .
The proof is similar in the case of output actions.

case P = (νu)P1 and Q = (νu)Q1:

• case κ(µ) 6= out: the last rule for inferring P 7 µ−→P ′ is (new mu), and P ′ = (νu)P ′1 with
P1 7 µ−→P ′1. Using the induction hypothesis, it follows that Q1 7 µ−→Q′1 with (P ′1, Q

′
1) ∈ D∞

and, using rule (new mu), there exists a transition Q 7 µ−→ (νu)Q′1. The result follows from
(νu)P ′1D∞ (νu)Q′1;

• case κ(µ) = out: if the last rule is (new out), then there exists a process P ′1 and an
environment D such that P ′ = (D; (νu)P ′1) and P1 7 µ−→ (D;P ′1). Using the induction
hypothesis, it follows that Q1 7 µ−→ (D′;Q′1) with (P ′1, Q

′
1) ∈ D∞ . Like in the previous

case, the result follows using rule (new out) and the fact that (P ′1, Q
′
1) ∈ D∞ implies

((νu)P ′1, (νu)Q′1) ∈ D∞ ;

Suppose the last rule is (new open). Thus P1 7 out v.(ṽ; ã)−−−−−−−→ (D;P ′1) and u 6= v. Using
the induction hypothesis, it follows that Q1 7 out v.(ṽ; c̃)−−−−−−→ (D′;Q′1) with: (P ′1D∞Q′1) and
(def D in ã)D∞ (def D′ in c̃), that is the expected result.

27

case P = (P1 a) and Q = (Q1 a): we make a case analysis on the last rule of the transition
P 7 µ−→ P ′. Suppose that P1 7 µ1−−→ P ′1 (with κ(µ1) 6= out):

• case (app tau): we have µ = µ1 = τ . We use the induction hypothesis to prove that
Q1 7 τ−→ Q′1 with P ′1D∞Q′1. The result follows applying rule (app tau);

• case (app com): we have µ = τ and µ1 = λ a. Using the induction hypothesis, we
prove that there exists a transition Q1 7 µ1−−→ Q′1 with P ′1D∞Q′1. The result follows from
rule (app com);

• case (app in): we have µ1 = inu.((a, b̃); ã) and µ = inu.(b̃; ã). Using the induction
hypothesis, there exists a transition Q1 7 µ1−−→Q′1 with P ′1D∞Q′1. The result follows from
rule (app in);

• case (app out): we have P1 7 outu.(ṽ; ã)−−−−−−−→ (D;P ′1) implies P 7 outu.(ṽ; (ã, c))−−−−−−−−−→ (D; (P ′1 c)).
Using the induction hypothesis, it follows that Q1 7 outu.(ṽ; c̃)−−−−−−→ (D′;Q′1) with P ′1D∞Q′1
and (def D in ã)D∞ (def D′ in c̃). The result follows from rule (app out) and the fact
that a 6∈ (def(D) ∪ def(D′)) implies (def D in a)D∞ aD∞ (def D′ in a).

case P = (λx)P1 and Q = (λx)Q1: the last rule is necessarily (lambda). The result
follows from the fact that D∞ is closed by instantiation. The proof is similar in the case
P = [P1 , l = P2] and Q = [Q1 , l = Q2] and in the case P = 〈u ⇐ P1〉 and Q = 〈u ⇐ Q1〉.

case P = (P1 | P2) and Q = (Q1 | Q2): If the last rule of the judgment P 7 µ−→ P ′ is (par
tau), (par lambda), (par in) or (par out), the result follows from the induction hypothesis
and the fact that (P,Q) ∈ D∞ implies (P b̃,Q b̃) ∈ D∞ for any tuple of names b̃. The only
interesting case is such that the last rule used is (par com). Suppose that P1 7 outu.(ṽ; ã)−−−−−−−→ (D;P ′1)
and P2 7 inu.(ε; ã)−−−−−−→ P ′2 and P ′ = (νṽ)(def D in (P ′1 | P ′2)). Using the induction hypothesis, it
follows that Q1 7 outu.(ṽ; c̃)−−−−−−→ (D′;Q′1) with (†) : P ′1D∞Q′1 and (def D in ã)D∞ (def D′ in c̃).
Using Lemma A.1, this last property implies that there exists P ′′2 such that:

P2 7 inu.(ε; c̃)−−−−−−→ P ′′2 with (def D inP ′2)D∞ (def D′ inP ′′2)

Finally, we use the induction hypothesis on the pair (P2, Q2) to prove that: Q2 7 inu.(ε; c̃)−−−−−−→ Q′2
with Q′2D∞ P ′′2 , which implies that:

(‡) : (def D′ inQ′2)D∞ (def D′ inP ′′2)D∞ (def D inP ′2)

Therefore there is a τ -transition from Q such that: Q 7 τ−→ Q′ = (νṽ)(def D′ in (Q′1 | Q′2)).
Since the variables in def(D) (resp. def(D′)) are not free in P ′1 (resp. Q′1), we have that

P ′ = (def D in (P ′1 | P ′2)) D∞ (P ′1 | def D inP ′2)
D∞ (Q′1 | def D′ inQ′2)D∞ (def D′ in (Q′1 | Q′2)) = Q′

In this deduction, we also use the properties (†) and (‡), and the fact that D∞ is a congruence.

28

case P = (def p = P1 inP2) and Q = (def p = Q1 inQ2): The interesting cases are for the
rule (def open) and (def com).

• case (def open): suppose that P2 7 out p.(ṽ; ã)−−−−−−−→ (D;P ′2) and that the open transition is:

P 7 out p.(ṽ; ã)−−−−−−−→ ((p = P1, D) | P ′2)

Using the induction hypothesis, there exists a transition Q2 7 out p.(ṽ; c̃)−−−−−−→ (D′;Q′2) with

(i) : (def D in ã)D∞ (def D′ in c̃) (ii) : P ′2D∞Q′2 (iii) : P1D∞Q1

The result follows from the fact that (i) and (iii) implies:

(def p = P1, D in ã)D∞ (def p = Q1, D
′ in c̃)

and that (ii) and (iii) implies: (def p = P1 inP ′2)D∞ (def p = Q1 inQ′2);

• case (def com): suppose that P2 7 out p.(ṽ; ã)−−−−−−−→ (D;P ′2), and that the τ -transition is:

P 7 τ−→ def p = P1 in (νṽ)(def D in (P1 ã | P ′2))

Using the induction hypothesis, there exists a transition from Q2 such that Q2 7 out p.(ṽ; c̃)−−−−−−→
(D′;Q′2) with the properties (i), (ii) and (iii) given in the previous case. Therefore we
can exhibit a τ transition from Q such that:

Q 7 τ−→ def p = Q1 in (νṽ)(def D′ in (Q1 c̃ | Q′2))

Since the variables in def(D) (resp. def(D′)) are not free in P1 and P ′2 (resp. Q1 and
Q′2), we have that:

(def D in (P1 ã | P ′2)) D∞ ((def D in (P1 ã)) | P ′2)
(def D′ in (Q1 c̃ | Q′2)) D∞ ((def D′ in (Q1 ã)) | Q′2)

Using Lemma A.1-(i), we conclude that (def D′ in (Q1 c̃))D∞ (def D in (P1 ã)). The
result follows from the fact that D∞ is a congruence.

A.2 Distribution Laws

case P = def D in (P1 a) and Q = def D′ in (P1 b): with the assumption that
(def D inu)Fn(D) (def D′ in v), and that fn(P1)∩(def(D)∪def(D′)) = ∅. It is easy to prove
that, with this property, P D∞Q implies (def D in (P a))D∞ (def D′ in (Q b)). Suppose that
P1 7 µ1−−→ P ′1. We make a case analysis on the transition rule applied to reduce (P a):

• case (app tau): the result follows from (def D in (P ′1 a),def D′ in (P ′1 b)) ∈ D∞ and
the fact that (†) : fn(def D in (P ′1 a)) ∩ def(D) = fn(def D′ in (P ′1 b)) ∩ def(D′) = ∅;

• case (app com): we have µ1 = λ a and (P1 a) 7 τ−→P ′1. Therefore, using Lemma A.1-(iii),
we conclude that there exists P ′′1 such that (‡) : P1 7 λ b−−→ P ′′1 and

((def D inP ′1)D∞ (def D′ inP ′′1)). The result follows from the fact that (‡) implies
(P1 b) 7 τ−→ P ′′1 , and from property (†);

• case (app in) and (app out): in the first case we have µ1 = in c.(a, b̃; ã) and
(P1 a) 7 in c.(b̃; ã)−−−−−→ P ′1. Therefore, using Lemma A.1-(ii), there exists a process P ′′1 such
that P1 7 in c.(b, b̃; ã)−−−−−−−→ P ′′1 such that (def D inP ′1)D∞ (def D′ inP ′′1). The result follows
from property (†). Proof is similar in the case of rule (app out): in this case we also
use the fact that fn(P1) ∩ def(D) = ∅ and P1 7 out c.(ṽ; ã)−−−−−−→ P ′1 implies ã ∩ def(D) = ∅.

29

case P = def p = R in (P1 | Q1) and Q = def p = R in ((def p = R inP1) | Q1): we sup-
pose that P1 7 µ1−−→ P ′1 and we make a case analysis on the last two rules of the derivation
P 7 µ−→ P ′. Since the role of Q1 is symmetric, we will not study the cases where the transition
comes from Q1.

• case (par tau) followed by (def mu): we have µ1 = τ and

P ′ = def p = R in (P ′1 | Q1). Therefore, using rule (def mu), (par tau) and (def mu),
we can exhibit a transition

Q 7 τ−→ def p = R in (def p = R inP ′1 | Q1)

The proof is similar in the case (par lambda) followed by (def mu);

• case (par in) followed by (def mu): we have µ1 = inu.(b̃; ã) and

P ′ = def p = R in (P ′1 | Q1 b̃). Since the last rule is (def mu), the names ã must be
different from p (this is also true for b̃). Therefore, using rule (def mu), (par in) and
(def mu), we can exhibit a transition

Q 7 µ−→ def p = R in (def p = R inP ′1 | Q1 b̃)

The proof is similar in the case (par out) followed by (def mu);

• case (par com) followed by (def mu): the most interesting case is such that
P1 7 outu.(ṽ; ã)−−−−−−−→ (D;P ′1) with p ∈ ã. In this case, we exhibit a transition from Q using
rule (def open), (par com) and (def mu). In particular we have{

P ′ = def p = R in ((νṽ)(def D in (P1 | Q1)))
Q′ = def p = R in ((νṽ)(def p = R,D in ((def p = R inP1) | Q1)))

The result follows from P ′D∞Q′. In the case p 6∈ ã, we exhibit a transition from Q
using rule (def out), (par com) and (def mu);

• case (par out) followed by (def open): we have (P1 | Q1) 7 outu.(ṽ; ã)−−−−−−−→ (D; (P ′1 | Q1))
and

P 7 outu.(ṽ; ã)−−−−−−−→ P ′ = ((p = R,D) | def p = R in (P ′1 | Q1))

Thus, using rule (def open), (par out) and (def mu), we can exhibit a transition from
Q such that

Q 7 outu.(ṽ; ã)−−−−−−−→ Q′ = ((p = R,D) | def p = R in ((def p = R inP ′1) | Q1))

The result follows from P ′D∞Q′ and the fact that, for all P D∞Q:

(def p = R inP)D∞ (def p = R inQ)

• case (par out) followed by (def com): we have µ = τ and µ1 = out p.(ṽ; ã) and
P ′ = def p = R in (R ã | (P ′1 | Q)). Thus, using rule (def com), (par tau) and (def mu)
we can exhibit a transition

Q 7 τ−→ Q′ = def p = R in (def p = R in (R ã | P ′1) | Q)
D∞ def p = R in ((def p = R in (R ã) | def p = R in (P ′1)) | Q)
D∞ P ′

The cases such that the “reduction comes form Q1”, that is such that Q1 7 µ1−−→Q′1, are similar
and use the fact that ((def p = R inP) a)D∞ (def p = R in (P a)).

30

case P = def p = R in (P1 p) and Q = def p = R in ((def p = R inP1) p): we suppose
that P1 7 µ1−−→ P ′1 and we make a case analysis on the last two rules of the derivation P 7 µ−→ P ′:

• case (app tau) followed by (def mu): we have µ = µ1 = τ and P ′ = def p = R in (P ′1 p).
Therefore, using rule (def mu), (par tau) and (def mu), we can exhibit a transition

Q 7 τ−→ def p = R in (def p = R inP ′1 p)

• case (app com) followed by (def mu): we have µ = τ , µ1 = λ p and P ′ =
def p = R inP ′1. We forgot here the proof that there exist a process P ′′1 such that
for all name b: P1 7 λ v−−→ P ′′1 {v/x}. In particular, this implies P ′1 = P ′′1 {p/x}.
To avoid name clashes, we use a fresh name q and we sometimes convert the process
(def p = R inP) to (def q = R{q/p} inP{q/p}). Remember that, following the remark
in Sect. 4, we consider that α-equivalence is implicit.

Using rule (def mu), (app tau) and (def mu) we can exhibit the transitions

P 7 τ−→ P ′ = def p = R in (P ′′1 {p/x})
Q 7 τ−→ Q′ = def p = R in (def q = R{q/p} in (P ′′1 {q/p}{p/x}))

The result follows from the fact that D∞ contains the set of all the pairs:

((def D inP{u/x}), (def D′ inP{v/x}))

with the side conditions that (def D inu)D∞ (def D′ in v);

• case (app in) followed by (def mu): we have µ1 = inu.(p, b̃; ã) and P ′ = def p = R inP ′1.
Since the last rule is (def mu), the names ã must be different from p (this is also true for
b̃). Therefore, using rule (def mu), (app in) and (def mu), we can exhibit a transition

Q 7 µ−→ def p = R in (def p = R inP ′1)D∞ (def p = R inP ′1) = P ′

• case (app out) followed by (def open): we have P1 7 outu.(ṽ; ã)−−−−−−−→ (D;P ′1) and

P 7 outu.(ṽ; (ã, p))−−−−−−−−−→ P ′ = ((p = R,D); def p = R in (P ′1 p))

The interesting case is such that p was already in ã. Thus, using rule (def open), (app
out) and (def open), we can exhibit a transition from Q such that (we choose a fresh
name q to replace the bound name p inside P1 and we denote Rq the process R{q/p})

Q 7 outu.(ṽ; ã, q)−−−−−−−−→ Q′ = ((q = Rq, p = R,D) | def q = Rq in (def p = R inP ′1))

The result follows from (def q = Rq in (def p = R inP ′1))D∞ (def p = R inP ′1) and the
fact that:

(def p = R,D in (ã, p))D∞ (def q = Rq, p = R,D in (ã, q))

The proof is similar in the case P = def p = R, q = S inP andQ = def p = R, q = S in (def p = R inP),
and in the case P = def p = R, q = S inP and Q = def p = R, q = (def p = R inS) inP .

31

case P = def p = R in ((λx)P1) and Q = (λx)(def p = R inP1): the side condition is x 6∈
fn(R). The last two rules of the derivation P 7 µ−→P ′ have to be (lambda) followed by (def mu).
Therefore µ = λu and P ′ = def p = R in (P1{u/x}). The result follows from rule (lambda)
and the fact that x 6∈ fn(R) implies (def p = R inP1){u/x} = def p = R in (P1{u/x}). In
the symmetric case, we use the fact that the derivation Q 7 µ−→ Q′ use the rule (lambda).

case P = def p = R in (〈u ⇐ P1〉) and Q = 〈u ⇐ (def p = R inP1)〉: we use the fact
that the last two rules of P 7 µ−→ P ′ have to be (decl) followed by (def mu). Therefore 〈u ⇐
P1〉 7 inu.(b̃; ã)−−−−−−→ (P ã) and, since the last rule is (def mu), p 6∈ b̃ ∪ ã. The result follows from the
fact that p 6∈ ã implies (def p = R inP1) ã ≡ def p = R in (P1 ã).

A.3 Rules for Structural Equivalence

case P = P1 | O and Q = P1: if κ(µ) 6= out, the last rule of P 7 µ−→ P ′ is (par tau),
(par lambda) or (par in), it is (par out) otherwise. The result follows from (O ã)D∞ O and
(P | O)D∞ P . The proof of the symmetric case is similar.

case P = P1 | Q1 and Q = Q1 | P1: the only interesting case is rule (par com). Suppose
that P1 7 outu.(ṽ; ã)−−−−−−−→ (D;P ′1), Q1 7 inu.(ε; ã)−−−−−−→ Q′1 and P 7 τ−→ (νṽ)(def D in (P ′1 | Q′1)). Therefore we
can exhibit a transition for Q such that Q 7 τ−→ (νṽ)(def D in (Q′1 | P ′1)). The result follows
from the fact that P D∞Q implies (νṽ)(def D inP)D∞ (νṽ)(def D inQ). The proof is similar
in the case P = P1 | (Q1 | R1) and Q = (P1 | Q1) | R1.

case P = def p = R inQ and p 6∈ fn(Q):

• case κ(µ) 6= out: thus the last rule of P 7 µ−→ P ′ is (def mu) and Q 7 µ−→ Q′ implies
P 7 µ−→ def p = R inQ′. Since p 6∈ fn(Q) implies that p 6∈ fn(Q′), the result follows from
(def p = R inQ′)D∞Q′;

• case κ(µ) = out: let µ be the action outu.(ṽ; ã)). Since p 6∈ fn(Q), the last rule cannot
be (def com). Suppose the last rule is (def out), we have: Q 7 µ−→ (D′;Q′) implies P 7 µ−→
(D′; def p = R inQ′). The result follows from the fact that (def p = R inQ′)D∞Q′
and that (def D′ in ã)D∞ (def D′ in ã). Suppose the last rule is (open def). We have
P 7 µ−→ ((p = R,D′) | Q′). Since p 6∈ fn(Q), we conclude that p 6∈ ã and p 6∈ fn(D′).
Therefore (def p = R,D′ in ã)D∞ (def D′ in ã) (which is the expected result).

The proof is similar in the case P = (νu)Q and u 6∈ fn(Q).

case P = def p = R in ((νu)P1) and Q = (νu)(def p = R inP1): the side condition is that
u 6∈ fn(R). Suppose that P1 7 µ1−−→P ′1 (with κ(m1) 6= out). Thus the last two rules of the transi-
tion P 7 µ−→P ′ are (new mu) followed by (def mu). Thus we can exhibit an equivalent transition
from Q using rule (def mu) and thus rule (new mu). The proof is similar if P1 7 outu.(ṽ; ã)−−−−−−−→
(D;P ′1). The proof is similar in the symmetric case, that is if P = (νu)(def p = R inP1) and
Q = def p = R in ((νu)P1). It is also similar in the case: P = (def p = R, q = S inP) and
Q = (def q = S, p = R inP), and in the case: P = (νu)((νv)P) and Q = (νv)((νu)P).

32

case P = ((νu)P1 | Q1) and Q = (νu)(P1 | Q1): the most interesting case is such that the
last rule of P 7 µ−→ P ′ is (par com). We consider the case such that P1 makes an out transition
(with the last rule being (new out)) and Q1 makes an in transition. The proof is similar if
the transition from P1 ends with rule (open new). All the other cases are similar to the case
P = ((νu)P1 a). Suppose that:

(νu)P1 7 out p.(ṽ; ã)−−−−−−−→ (D; (νu)(P ′1)) P ′ = (νṽ)(def D in ((νu)(P ′1) | Q′1))

Therefore, we can exhibit a “matching transition” from Q such that:

Q 7 τ−→ Q′ = (νu)((νṽ)(def D in (P ′1 | Q′1)))

The result follows from the fact that the processes P ′D∞Q′ (since they are structurally
equivalent). The proof of the symmetric case is similar.

case P = def p = R inP1 | Q1 and Q = def p = R in (P1 | Q1): the only interesting case
in such that the last two rules of P 7 µ−→ P ′ are (def com) followed by (par tau). In every other
cases we are in a situation similar to the previous proof. Thus we have: µ = τ and:

P1 7 out p.(ṽ; ã)−−−−−−−→ (D;P ′1) P ′ = def p = R in ((νṽ)(def D in (R ã | P ′1))) | Q1

Therefore we can exhibit a transition

Q 7 τ−→ Q′ = def p = R in ((νṽ)(def D in (R ã | P ′1 | Q1)))

The result follows from the fact that P ′D∞Q′ (since they are structurally equivalent).
The proof is similar in the symmetric case. The proof is also similar in the case P =
def p = R in ((νu)P1) and Q = (νu)(def p = R inP1).

case P = (def p = R inP1) a and Q = def p = R in (P1 a): the side condition is that
a 6= p. The only interesting case in such that the last two rules of P 7 µ−→ P ′ are (tau def)
followed by (app tau). In every other cases we are in a situation similar to the previous
demonstration. Thus we have: µ = τ and:

P1 7 out p.(ṽ; ã)−−−−−−−→ (D;P ′1) P ′ = def p = R in ((νṽ)(def D in (R ã | P ′1))) a

Therefore we can exhibit a transition Q 7 τ−→Q′′ = def p = R in ((νṽ)(def D in (R ã a | P ′1 a))).
The result follows from the fact that P ′D∞Q′ (since they are structurally equivalent). The
proof is similar in the symmetric case.

case P = (νu)P1 a and Q = (νu)(P1 a): we consider the last two rules of P 7 µ−→ P ′. If
κ(µ) 6= out, the last two rules are (new mu) followed by (app lambda), (app tau) or (app in).
In the other case, it is (new out) or (new open) followed by (app out).

• case (new mu) followed by (app com): in this case: µ = τ , P1 7 λ a−−→P ′1, P ′ = (νu)P ′1
and we can exhibit a transition Q 7 τ−→ (νu)P ′1. The result follows from the fact that
(νu)P ′1D∞ (νu)P ′1. The proof is similar in the case (new mu) followed by (app in);

• case (new mu) followed by (app tau): in this case: µ = τ , P1 7 τ−→P ′1, P ′ = (νu)P ′1 a
and we can exhibit a transition Q 7 τ−→ (νu)(P ′1 a). The result follows from the fact that
((νu)P ′1 a)D∞ (νu)(P ′1 a);

33

• case (new out) followed by (app out): in this case: κ(µ) = out, P1 7 µ−→ (D;P ′1),
P ′ = (D; ((νu)P ′1 a)) and we can exhibit a transition Q 7 µ−→ (D; (νu)(P ′1 a)). The result
follows from ((νu)P ′1 a)D∞ (νu)(P ′1 a). The proof is similar in the case (new open)
followed by (app out).

The proof of the symmetric case is similar.

case P = (P1 | Q1) a and Q = (P1 a) | (Q1 a): we study the last two rules of the derivation
P 7 µ−→ P ′. The first case is such that the transition comes “only from” P1 (respectively from
Q1), that is it is such that P1 7 µ

′
−−→ P ′1 implies that (P1 | Q1) 7 µ

′
−−→ (P ′1 | Q1 ã).

• case (par tau) followed by (app tau): we have µ = τ , P1 7 µ−→P ′1, (P1 |Q1) 7 µ−→(P ′1 |Q1)
and P 7 τ−→ (P ′1 | Q1). Therefore (using rule (app tau) and then (par tau)) we can exhibit
a transition Q 7 τ−→ Q′ = (P ′1 | Q1);

• case (par lambda) followed by (app tau): we have: µ = τ , P1 7 λu−−→ P ′1, (P1 |
Q1) 7 λu−−→ (P ′1 | Q1 a) and P 7 τ−→ (P ′1 | Q1 a). Therefore (using rule (app tau) and then
(par lambda)) we can exhibit a transition Q 7 τ−→ Q′ = (P ′1 | Q1 a);

• case (par in) followed by (app in): in this case µ = in v.(b̃; ã). Let µ′ be the action
in v.((a, b̃); ã), we have: P1 7 µ

′
−−→ P ′1, (P1 | Q1) 7 µ

′
−−→ (P ′1 | Q1 a b̃) and P 7 µ−→ (P ′1 | Q1 a b̃)).

Therefore (using rule (app in) and then (par in)) we can exhibit a transition Q 7 µ−→Q′ =
(P ′1 | (Q1 a) b̃);

• case (par out) followed by (app out): in this case µ = out v.(ṽ; (ã, a)). Let µ′

be the action out v.(ṽ; ã), we have: P1 7 µ
′
−−→ (D;P ′1), (P1 | Q1) 7 µ

′
−−→ (D; (P ′1 | Q1)) and

P 7 µ−→ (D; ((P ′1 | Q1) a)). Therefore we can exhibit a transition Q 7 µ−→Q′ = (D; ((P ′1 a) |
(Q1 a))).

The last case is such that the last two rules are (par com) followed by (app tau). For example
we have P1 7 outu.(ṽ; ã)−−−−−−−→ (D;P ′1), Q1 7 in v.(ε; ã)−−−−−−→ Q′1, (P1 | Q1) 7 τ−→ (νṽ)(def D in (P ′1 | Q′1)) and
P 7 τ−→ (νṽ)(def D in (P ′1 | Q′1)) a. Therefore, using rule (app out) and Lemma A.2, we can
exhibit the transitions (P1 a) 7 outu.(ṽ; (ã, a))−−−−−−−−−→ (D;P ′1 a) and (Q1 a) 7 in v.(ε; (ã, a))−−−−−−−−→ Q′′1 with Q′′1 ≡
(Q′1 a). Using rule (par com) it follows that Q 7 τ−→ Q′ = (νṽ)(def D in ((P ′1 a) | Q′′1)) ≡ P ′.

case P = 〈u ⇐ P1〉 a and Q = 〈u ⇐ P1〉: the only possibility is for 〈u ⇐ P1〉 to “make an
in-action”. In this case, we have Q = 〈u ⇐ P1〉 7 in v.(b̃; ã)−−−−−−→ P1 ã. Since we can also derive the
transition 〈u ⇐ P1〉 7 in v.((a, b̃); ã)−−−−−−−−→ P1 ã, it follows, using rule (app in), that P 7 in v.(b̃; ã)−−−−−−→ P1 ã.
The proof is similar in the case P = (O a).

�

B Proofs of Relations between Transitions and Reduction

Lemma B.1 (Preservation of τ Reductions) If P 7 τ−→P ′ and E is an evaluation context,
then E[P] 7 τ−→ E[P ′].

Proof The proof is made by induction on the size of E. Suppose that P 7 τ−→ P ′, the case
E = [] is straightforward;

34

• case (E a) and (El): the result follows from rule (app tau);

• case (E | P) and (P | E): the result follows from rule (par tau);

• case (νu)E: the result follows from rule (new mu);

• case (def D in E): the result follows from rule (def mu).

�

Lemma B.2 (Lambda Actions) If P 7 λ a−−→ P ′, then (P a) → P ′.

Proof In this proof, we suppose that have an application and not a record selection (the
proof is the symmetric case is similar). The proof is made by a case analysis on the last rule
of P 7 λ a−−→ P ′.

• case (lambda): we have P = (λx)Q and P ′ = Q{a/x}, thus the result follows from
rule (red beta);

• case (par lambda): we have P 7 λ a−−→ P ′ implies (P | Q) 7 λ a−−→ (P ′ | Q). Therefore, using
the induction hypothesis: (P a) → P ′. The result follows from rules (red equiv) and
(red context): (P | Q) a ≡ (P a) | (Q a) → P ′ | (Q a);

• case (new mu) and (def mu): in the first case, we have P = (νv)Q, P ′ = (νv)Q′

and Q 7 λ a−−→ Q′. Therefore, using the induction hypothesis: (Q a) → Q′. Or the side
conditions of rule (new mu) implies that a 6= v, thus: (P a) ≡ (νv)(Q a)→ (νv)Q′. The
proof is similar for the case (def mu).

�

Lemma B.3 (In Actions) If P 7 inu.(b̃; ã)−−−−−−→ P ′, then (P b̃) | (u ã) → P ′.

A corollary of this property is that: if P 7 inu.(ε; ã)−−−−−−→ P ′, then P | (u ã) → P ′.

Proof Let ã (resp. b̃) be the tuple (a1, . . . , an) (resp. (b1, . . . , bm)). We make a case analysis
on the last rule of P 7 inu.(b̃; ã)−−−−−−→ P ′.

• case (decl): we have P = 〈u ⇐ Q〉 7 inu.(b̃; ã)−−−−−−→ (Q a1 . . . an) = P ′ and (P b̃) ≡ P .
Therefore, using structural equivalence and rule (red decl), we have: (P b̃) | (u ã)→ P ′;

• case (new mu) and (def mu): in the first case we have P = (νu)Q, P ′ = (νu)Q′ and
Q 7 µ−→ Q′. The side condition implies that u 6∈ a, ã, b̃, thus:

(((νu)Q) b̃) | (u ã) ≡ (νu)(Q b̃ | (u ã))

The result follows from the induction hypothesis and rule (red context). The proof is
similar in the case (def mu);

• case (par in): we have P 7 inu.(b̃; ã)−−−−−−→P ′ implies P | Q 7 inu.(b̃; ã)−−−−−−→P ′ | (Q b̃) and (P | Q) b̃ ≡
(P b̃) | (Q b̃). The result follows from the induction hypothesis and rule (red context);

35

• case (app in): in this case, we use the fact that with our notations: ((P c) b̃) is P (c, b̃).

�

Lemma B.4 (Out Actions) If P 7 outu.(ṽ; ã)−−−−−−−→ (D;P ′), then there exists R such that:

P ≡ (νṽ)(def D in (u ã | R)) and (νṽ)(def D inR)∼d (νṽ)(def D inP ′)

Proof The intuition behind Lemma B.4 is that, under an evaluation context, we can always
“lift” definitions up to the top-level. We make a case analysis on the last rule of P 7 outu.(ṽ; ã)−−−−−−−→
(D;P ′).

• case (out): we have P = a7 outu.(ε; ε)−−−−−−→(∅; O). Or a ≡ (νε)(def in (a | O)) and O∼d (νε)(def in O).
The result follows by choosing R =def O;

• case (par out), (app out), (new out) and (def out): in case (par out), for example,
we have P 7 outu.(ṽ; ã)−−−−−−−→(D;P ′). Thus there existsR such that P ≡ (νṽ)(def D in (u ã | R))
and the side condition fn(Q) ∩ (def(D) ∪ ṽ) = ∅ implies:

(P | Q) ≡ (νṽ)(def D in (u ã | (R | Q)))

The result follows from ≡ ⊂ ∼d and ∼d is a congruence (see Th. 6.1);

• case (new open) and (def open): in the case (new open) we use the fact that P ∼d Q
implies (νu)P ∼d (νu)Q. This is a consequence of the fact that ∼d is a congruence. In
the case (def open), we also have to use Lemma 6.1 to prove that:

(νṽ)(def p = S,D inR)∼d (νṽ)(def p = S,D in (def p = S inR))

�

36

References

[1] Mart́ın Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lévy. Explicit
substitutions. Journal of Functional Programming, 1(4):375–416, October 1991. Also
appeared as SRC Research Report 54.

[2] Mart́ın Abadi and Luca Cardelli. A Theory of Objects. Springer-Verlag, 1996.

[3] Roberto M. Amadio, Ilaria Castellani, and Davide Sangiorgi. On bisimulations for the
asynchronous pi-calculus. Theoretical Computer Science, 195(2):291–324, 1998.

[4] Hendrik Pieter Barendregt. The Lambda Calculus, Its syntax and Semantics. North
Holland, 1981.

[5] Gérard Berry and Gérard Boudol. The chemical abstract machine. Theoretical Computer
Science, 96:217–248, 1992.

[6] Michele Boreale, Cédric Fournet, and Cosimo Laneve. Bisimulations in the join-calculus.
In D. Gries and W.P. de Roever, editors, Proc. of PROCOMET ’98 – Programming
Concepts and Methods, pages 68–86. Chapman & Hall, June 1998.

[7] Gérard Boudol. Asynchrony and the π-calculus. Technical Report 1702, INRIA, 1992.

[8] Gérard Boudol. Typing the use of resources in a concurrent calculus. In Proc. of
ASIAN ’97 – Asian Computing Science Conference, Lecture Notes in Computer Sci-
ence, Kathmandu, December 1997. Springer-Verlag.

[9] Gérard Boudol. The π-calculus in direct style. Higher-Order and Symbolic Computation,
11:177–208, 1998. Also appeared in Proc. of POPL ’97, p. 228–241, January 1997.

[10] Silvano Dal-Zilio. Implicit polymorphic type system for the blue calculus. Technical
Report 3244, INRIA, September 1997.

[11] Silvano Dal-Zilio. Quiet and bouncing objects: Two migration abstractions in a simple
distributed blue calculus. In Hans Hüttel and Uwe Nestmann, editors, Proc. of SOAP ’98
– 1st International Workshop on Semantics of Objects as Processes, volume NS-98-5 of
BRICS Notes Series, pages 35–42. BRICS, July 1998.

[12] Silvano Dal-Zilio. Objets concurrents dans un π-calcul applicatif. In Proc. of JFLA ’99 –
10ème Journées Francophones des Langages Applicatifs, February 1999. Also appeared
in english in [13].

[13] Silvano Dal-Zilio. Concurrent objects in the blue calculus. Also appeared in french in [12].

[14] Nicolaas Govert de Bruijn. Lambda-calculus notation with nameless dummies: a tool for
automatic formula manipulation with application to the Church-Rosser theorem. Indag.
Math., 34(5):381–392, 1972.

[15] Cédric Fournet and Georges Gonthier. The reflexive chemical abstract machine and the
join-calculus. In Proc. of POPL ’96 – 23rd Annual ACM Symposium on Principles of
Programming Languages, pages 372–385, January 1996.

37

[16] Daniel Hirschkoff. Mise en oeuvre de preuves de bisimulation. Thèse d’état, École Na-
tionale des Ponts et Chaussées, 1999.

[17] Kohei Honda and Nobuko Yoshida. On reduction-based process semantics. Theoretical
Computer Science, 152(2):437–486, 1995.

[18] Massimo Merro and Davide Sangiorgi. On asynchrony in name-passing calculi. In Proc.
of ICALP ’98, volume 1443 of Lecture Notes in Computer Science. Springer-Verlag, 1998.

[19] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, parts
i and ii. Journal of Information and Computation, 100:1–77, 1992.

[20] Robin Milner and Davide Sangiorgi. Barbed bisimulation. In W. Kuich, editor, 19th
ICALP, volume 623 of Lecture Notes in Computer Science, pages 685–695. Springer-
Verlag, 1992.

[21] Robin Milner. The polyadic π-calculus: a tutorial. Technical Report ECS-LFCS-91-
180, Laboratory for Foundations of Computer Science, University of Edinburgh, 1991.
Reprinted in Logic and Algebra of Specification, F. Bauer, W.Brauer and H. Schwicht-
enberg, Eds, Springer Verlag, 1993, 204–246.

[22] Robin Milner. Functions as processes. Mathematical Structures in Computer Science,
2:119–141, 1992.

[23] Davide Sangiorgi. The lazy lambda calculus in a concurrency scenario. Information and
Computation, 111(1), 1994.

[24] Davide Sangiorgi. Bisimulation for higher-order process calculi. Information and Com-
putation, 131(2):141–178, 1996.

[25] Davide Sangiorgi. On the bisimulation proof method. Mathematical Structures in Com-
puter Science, 8(5):447–479, October 1998.

[26] James W. Stamos and David K. Gifford. Remote evaluation. ACM Transactions on
Programming Languages and Systems, 12(4):537–565, October 1990.

[27] David N. Turner. The Polymorphic Pi-Calculus: Theory and Implementation. PhD
thesis, University of Edinburgh, 1995.

[28] Mitchell Wand. Complete type inference for simple objects. In Proc. of LICS ’87 – 2nd
Symposium on Logic in Computer Science, pages 37–44, 1987. A corrigendum to the
article appeared in LICS ’88.

38

	Introduction
	The Calculus
	Description of the Functional Fragment of $elax pi ^{star }$�uturelet @let@token
	Description of the $pi $-calculus Fragment of $elax pi ^{star }$�uturelet @let@token
	Description of the Record Fragment of $elax pi ^{star }$�uturelet @let@token

	Operational Equivalence
	Properties of Barbed Congruence

	Labeled Transition System with Definitions
	Definition of the Labeled Transition System
	Definition of the Def-bisimulation

	Bisimulation Up-To
	Properties of the Def-Bisimulation
	Interpretation of the $lambda $-Calculus

	Relation between Transitions and Reduction
	Conclusion
	Proof of the Up-To Technique Theorem
	Rules for Congruence
	Distribution Laws
	Rules for Structural Equivalence

	Proofs of Relations between Transitions and Reduction

