
Learning Binary Shapes as Compression

and its Cellular Implementation

Silvano Dal-Zilio Thierry M. Bernard

�

Perception System Laboratory, ETCA/CREA/SP

16 bis, Av. Prieur de la Côte-d'Or

F-94114 Arcueil Cedex, FRANCE

vg@etca.fr

Abstract

We present a methodology to learn how to recognize bi-

nary shapes, based on the principle that recognition may

be understood as a process of information compression.

Our approach, directed towards adaptive target track-

ing applications, is intended to be well suited to �ne-

grained parallel architectures, such as cellular automata

machines that can be integrated in arti�cial retinas.

This methodology, fruitfully explained within the

frame of mathematical morphology, is then particular-

ized in the perspective of its actual implementation.

1 Introduction

We have shown it feasible and valuable to gather on the

same chip a photosensitive array with a programmable

array processor, making up what we call a programmable

arti�cial retina [3]. Present technological levels allow the

integration of a 128�128 grid with each site containing a

photodiode, a non-standard analog-to-binary converter,

a memory of 8 bits, a logical unit, and connections to

closest neighbors. Global SIMD control signals are dis-

tributed all over the chip to each pixel.

Several research teams tend to con�ne to image pre-

processing only the contribution of the \retinal concept".

Unlikewise, it is our belief that programmable arti�cial

retinas can and must \handle" shapes in order to pro-

vide the vision system they belong to with meaningful

enough information, thus suppressing any communica-

tion bottleneck. Instead of outputing full or partial im-

ages, particular information reduction mechanisms are

to be setup, as detailed hereunder.

Handling shapes in general relates to the �eld of pat-

tern recognition. In the case of retinas, a �rst stage to

reach is exempli�ed by target tracking applications. This

calls for algorithms that are primitive, since little a pri-

ori information is needed, but reactive, as fast adaptation

to target appearance evolution { which can be expected

thanks to the retinal concept { is desirable.

�

Presented at ACCV'95, Singapore, 5-8 december 1995

Target tracking applications imply shape resemblance

detection, which usually relies on a total description of

the reference shape (by opposition to using features).

From this point of view, a key idea exploited in this pa-

per is that learning and recognition may be understood as

processes of information compression [9]. Following the

minimum length description principle [1], the best solu-

tion to represent a set of data is the one that minimizes

its encoding (with regard to some criteria).

Here, binary images are considered, along with the

shapes that they represent. Their encoding is performed

thanks to morphological operators. Minimization will

be partial as trade-o�s must be found with running the

algorithms on massively parallel SIMD cellular architec-

tures (especially those that can be integrated on a retina

chip).

The paper is organized as follows. In section 2, Math-

ematical Morphology (MM) [8] is used to present our

approach and to formulate some general purpose algo-

rithms for shape learning and recognition. As far as

notations are concerned, set di�erence is denoted by n,

erosion by 	, dilation by �, and opening by �. Section

3 introduces an alternative framework for the expression

of our algorithms, namely TItBITs. This framework

is more practical as it is directly derived from a reti-

nal model of data-parallel computation. Then section 4

presents simulation results about actually running the

algorithms on a programmable arti�cial retina.

2 Learning by compression

Compression is performed by extracting redundancy

from a shape. Much like steepest descent minimization

procedures, a possible strategy is to look at once for the

best matching { i.e. the most redundant { pattern P in

shape I. Of course, the search space can be very large.

For the moment, let us suppose that P has been found.

One gets a compressed image, the \factor" F = I 	 P,

and a remainder image, R = I n (I � P). Exceptionally,

R may be empty, corresponding to the ideal situation of

pure shape decomposition. But this is hardly ever possi-

/* compression of shape I */

tree compress(image I) f

if (I features low redundancy) f

return I; /* I is considered as a pattern */

g else f

P = best matching pattern in I;

tree.pattern = P;

tree.factor = compress(I 	 P);

tree.remainder = compress(I n (I � P));

return tree;

g

g

/* recognition of a shape coded by T in J */

image �nd(tree T , image J) f

if (T is a leaf) f

return (J 	 T .pattern);

g else f

return ((�nd(T .factor;J) 	 T .pattern)

\ �nd(T .remainder; J));

g

g

Table 1: Recursive compression and recognition algo-

rithms. The tree-structure is expressed using a C-style

notation. In order to �nd shape I in image J , a recogni-

tion tree is used, simply obtained by a depth-�rst search

on the result of compress. This is illustrated in Fig. 2,

where tree (b) is turned into tree (c).

ble. In the general case, the couple (F;P) can be viewed

as a coarse description of I, whereas the non-empty re-

mainder R, part of I that cannot be \recovered" from

F , keeps a record of some details.

Now the process can be repeated and recursively ap-

plied to both F and R. This recursive procedure, pre-

sented as compress in Tab. 1, yields a pattern-tagged

binary tree where every subtree is the compression of

an initial shape subpart. Fig. 2 shows (a) the procedure

and (b) the output tree for an elementary example. This

potentially compact representation of shape I naturally

features a hierarchy among the leaves of the tree. In-

deed, the contribution of a given leaf to the initial shape

is its cumulated dilation by the di�erent patterns that

seperate it from the root of the tree.

But the main point is that a shape recognition algo-

rithm, presented as procedure �nd in Tab. 1, can be

directly derived from this tree, thus turning compression

into a learning process. The two procedures are bound

by the following relationship:

Theorem 1

�nd (compress(I); J) = J 	 I

A proof of this result can be obtained through a simple recursion

on the depth of the compression tree:

� if compress(I) is reduced to a leaf (due to the low redundancy

of I), then procedure �nd returns J 	 I by de�nition,

� else, I has been compressed into (F

[I]

� P

[I]

) [R

[I]

. Following

our recursion hypothesis:

�nd(compress(F

[I]

); J) = (J 	 F

[I]

)

�nd(compress(R

[I]

); J) = (J 	R

[I]

)

Then, by de�nition of �nd,

�nd(compress(I); J) =

�

(J 	 F

[I]

) 	 P

[I]

�

\ (J 	R

[I]

)

= J 	

�

(F

[I]

� P

[I]

)[R

[I]

�

= J 	 I

Inspired by a compression approach, compress and

�nd are generic procedures allowing to compute erosions

by complex structuring elements that are only known

at run time. They can be very fast if patterns and re-

mainders that are generated have a small size or a small

integral. Indeed, the required computations will be e�-

ciently performed on massively parallel SIMD cellular ar-

chitectures. The importance of these procedures comes

from the fundamental role played by erosion as a tool

for shape recognition. The rest of the paper will be con-

cerned with actually implementing them.

3 From MM to TItBITs

In order to make the above algorithmsmore practical, we

prefer to express them using the family of Translation

Invariant Binary Image Transforms (TItBITs), as de-

�ned in previous work of the team [4]. TItBITs can

be considered as an operational version of Mathemati-

cal Morphology (MM). As a hint for easier comprehen-

sion, MM is to rational languages what TItBITs are to

�nite state automata. TItBITs are grounded on a data-

parallel model of computation, which is actually the one

supported by our home-made retina [3]. In this model,

a set of binary planes interact with each other. Planes

can be shifted, complemented or set to a copy of an-

other. Parallel interaction between planes are also pos-

sible: given two planes, one can receive the conjunction

or disjunction of both. Considering that each plane sup-

ports a binary image { which is modeled as a subset of

Z

2

, Z the set of naturals { we de�ne a TItBIT counter-

part for each retinal operation. Shifting will corresponds

to the translation of an image I by a vector v = (v

i

; v

j

),

denoted I[v] (f(i; j) 2 Z

2

; (i�v

i

; j�v

j

) 2 Ig). Likewise,

we de�ne complementation (I = Z

2

n I), conjunction

(I:J = I \ J) and disjunction (I + J = I [J).

Similarities between TItBITs and boolean functions

are obvious. The retina architecture can be viewed as

a 2-D cellular automaton, and a TItBIT as the boolean

formula computed in each place. But, with the help of

a graphical representation (see Fig. 1), a deeper similar-

ity appears between TItBITs and images. Indeed points

that remains after applying a TItBIT are the \origin" of

particular patterns included in the initial image, and to-

tally described by the monomials in the TItBIT \normal

disjunctive form". Unlike MM, \black and white" points

are symmetrically treated here. Moreover, the TItBIT

[(0; 0)]:[(0; 1)] + [(0; 0)]:[(0;�1)]

(j) Southward projection

(b) (e)

(a) (d)

(h) Dilation

(g) Erosion

legend

(c) (f)

2

1

(k)

Figure 1: TItBITs can be simply presented as operators that recognize a certain number (disjunction) of binary

masks on an input image. Each mask is made of tiles (conjunction) that identify a '1' (a), a '0' (b) or do not care

(c). The binary result of the recognition appears on the output image at the origin of the TItBIT, indicated by a

2

-sign, as shown in (d), (e) and (f). These notations are illustrated with the elementary erosion (g) and dilation

(h). Then (j) displays an original southward projection TItBIT that lets the image crumble down in (k). Of course,

each mask corresponds to a boolean monomial and the arrows show the recognition for each of the two.

retina model provides a \time and space complexity"

measure, related to the size and number of TItBITs, and

the number of planes used in a computation.

tree compress(image I) f

if (I features low redundancy) f

return I; /* I is considered as a TItBIT,

that recognizes mask I */

g else f

choose (i; j) such that

jI[(0; 0)]:I[(i; j)]j is maximal

tree.pattern = [(0; 0)]:[(i; j)]; /* = P */

tree.factor = compress(P(I));

tree.remainder =

compress (I n ([(0; 0)] + [(�i;�j)])(P(I)));

return tree;

g

g

Table 2: Using TItBITs to express a possible version of

the compression algorithm (an example is given Fig. 2).

Tab. 2 shows a possible version of the compress

algorithm formulated within the TItBIT framework.

For the sake of simplicity, a particular class of pat-

terns is used, formed by the conjunction of two trans-

lations: [(i

1

; j

1

)]:[(i

2

; j

2

)]. Thanks to shift invariance,

[(0; 0)]:[(i; j)] patterns form an equivalent subclass. This

choice is dictated by the combinatorial explosion of an

exhaustive search through the TItBIT space (isomorphic

to the boolean functions space). It certainly does not

lead to the best compression rates. However every shape

can be compressed using this family.

But let us come back to the central issue of this pa-

per. The motivation for designing algorithms like com-

press and �nd is to allow programmable arti�cial reti-

nas to manipulate shapes, such that they can output re-

ally meaningful information. Are these algorithms suit-

able ? The version of compress presented in Tab. 2

is mostly composed of TItBIT computations, that can

be easily performed. However, there are other necessary

facilities regarding information communication:

� Checking whether jI[(0; 0)]:I[(i; j)]j is maximal or

not requires comparisons between correlation mea-

sures that must be computed. Likewise, an integral

measure is useful for evaluating the redundancy of

I. Fortunately, the power supply of our retina can

be opportunistically exploited [2] as an analog bus

or as an analog adder connected to each pixel, to

compute global measures on the image. Operating

the chip in some peculiar way, current consumption

measurements can yield the integral or correlation

values that are needed.

� The patterns that form the compression tree pro-

duced by compress are going to be used by �nd.

In particular, all the remainders featuring low re-

dundancy (cf bottom of Fig. 3) are images that

hopefully contain a few dots only, and that have

to be output to be used as TItBITs. Instead of the

(a)

(b)

(c)

Figure 2: The compression process corresponding to the algorithm in Tab. 2 is illustrated in (a). The root contains

the image to be compressed. Each node gives birth to a compressed image (right), called the factor, and to a

remainder (left). Vertices are tagged with the TItBIT that performs the erosion of the shape by the best matching

pattern. At the leaves, images can be themselves handled as TItBITs. Then, on the right side, only the compression

tree (b) is kept, and a depth �rst search on it yields the recognition tree (c).

whole image, only the adresses of these dots should

be output. An associative communication protocol

is needed. It turns out that the above global mea-

sures allow to emulate such a protocol with an ac-

ceptable e�ciency. Yet, it is also possible to provide

dedicated hardware for this functionality [6].

Another important point concerns the number of binary

planes (TItBIT model) that are necessary to run the al-

gorithms. Procedure compress only needs 4 of them

for an e�cient implementation. Procedure �nd may re-

quire the storage of several intermediate images due to

the depth of the remainder branches in the recognition

tree (a remainder that was still redundant has generated

another remainder). If d is the maximum of all these

depths, then d+3 binary planes have to be used. In the

case of a linear tree, like that shown on Fig. 2, d = 1.

The version of compress shown in Tab. 2 does not al-

ways produce linear tree. However, redundancy tend to

disappear very quickly from successive remainders, so d

will generally remain small. Finally, these algorithms

do �t the memory shortage of programmable arti�cial

retinas.

4 Simulations

As mentionned before, there are trade-o�s to �nd be-

tween an intrinsic compression strategy and its actual

exploitation for learning and recognizing shapes at run

time with a programmable retina. For the simulation

result presented in Fig. 3, the compression strategy is

reduced to one of its simplest form. Indeed, patterns

that used to be chosen in a certain search space are

now �xed (known at compilation time). Plain shapes

like silhouettes can be e�ciently described as the union

of a reduced set of disks of variable centers and radius.

Refering to Tab. 2, this can be approximately obtained

by making (i; j) rotate among the 8 closest neighbors of

the origin (0; 0): disks actually become octogons. Us-

ing this techique, remainders are generally made of a

few sparse dots, sometimes gathered into curve pieces.

When segments (straight pieces) are encountered (cf top

center of Fig. 3), they can be themselves reduced to their

extremities and possibly some intermediate dots. This

is because an octogon is already the cumulated dilation

of 4 segments. This transformation is easily supported

within the TItBIT retina model.

Figure 3: Compression of a silhouette within the TItBIT retina model. Unlike the version presented in Tab. 2,

patterns here are prede�ned such that their cumulated dilation is as close as possible to a regular growing octogon.

Above, 3 successive steps are presented. The legend is as follows: white (dots) for the remainder, dark grey (areas)

for the contribution of the remainder to the description of the shape, medium grey for parts of the initial shape

already contributed to by previous remainders. In the center image, note that a whole segment of the remainder

has been replaced by 4 white dots. Suppressed points appear in black. Under, all the remainders are represented

on a single image. The later the remainders have been obtained during compression, the darker they appear.

5 Conclusion

What we have presented in this paper is a methodol-

ogy for fast shape learning and recognition that �ts the

organization of vision systems based on programmable

arti�cial retinas [3]. The emphasis has been put on the

gereral foundations and trade-o�s rather than on the de-

sign of operational algorithms. There are obvious rela-

tionships with existing techniques of \shape decompo-

sition into meaningful parts" as well as decomposition

into particular structuring elements (e.g. maximal con-

vex polygons [5] or 3 � 3 element [7]). From this point

of view, compression stands out as a unifying concept.

As far as retinal adaptive target tracking is concerned,

the tree representation we have come up with now has

to be improved to become robust with regard to shape

deformation, occlusion and rotation. Also, the inside and

outside of a shape have to be learned simultaneously. A

whole program for further research...

References

[1] T. Bellotti and A. Gammerman. A minimal length

encoding system. Technical Report NC-TR-95-035,

NeuroCOLT, May 1995.

[2] T. M. Bernard and P. E. Nguyen. Vision through

the power supply of the NCP Retina. In IST/SPIE

Symp. on Electronic Imaging: Science and Technol-

ogy / CCDs and solid state optical sensors V, Febru-

ary 1995.

[3] T. M. Bernard, B. Y. Zavidovique, and F. J. Devos.

A programmable arti�cial retina. IEEE Journal of

Solid-State Circuits, 28(7):789{798, July 1993.

[4] P. Garda, A. Reichart, H. Rodriguez, F. Devos, and

B. Zavidovique. Une r�etine �electronique automate

cellulaire. Traitement du Signal, 5(6):435{449, 1988.

[5] A. Held and A. Keiichi. On the decomposition of

binary shapes into meaningful parts. Pattern Recog-

nition, 27(5):637{47, 1994.

[6] J. Lazzaro et al. Silicon auditory processors as com-

puter peripherals. IEEE Transactions on Neural Net-

works, 4(3):523{528, May 1993.

[7] H. Park and R. T. Chin. Decomposition of ar-

bitrarily shaped morphological structuring element.

IEEE Trans. on Pattern Analysis and Machine In-

telligence, 17(1), January 1995.

[8] J. Serra. Image Analysis and Mathematical Morphol-

ogy. San Diego: Academic Press, 1982.

[9] G. J. Wol�. Towards a new concept of software. Soft-

ware Engineering Journal, 9(1):27{38, July 1994.

