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Abstract. The ambient calculus of Cardelli and Gordon is a process
calculus for describing mobile computation where processes may reside
within a hierarchy of locations, called ambients. The dynamic semantics
of this calculus is presented in a chemical style that allows for a com-
pact and simple formulation. In this semantics, an equivalence relation,
called spatial congruence, is defined on the top of an unlabelled transition
system.
We show that it is decidable to check whether two ambient calculus pro-
cesses are spatially congruent or not. This result is based on a natural
and intuitive interpretation of ambient processes as edge-labelled un-
ordered trees, which allows us to concentrate on the subtle interaction
between two key operators of the ambient calculus, namely restriction,
that accounts for the dynamic generation of new location names, and
replication, used to encode recursion. The result of our study is the defi-
nition of an algorithm to decide spatial congruence and a definition of a
normal form for processes that is useful in the proof of important equiv-
alence laws.

1 Introduction

Algebraic frameworks, of which process algebras are one of the most prominent
examples, have proved to be a valuable mathematical tool to reason about the
behaviour of distributed and communicating systems. Recently, Cardelli and
Gordon have proposed a new process algebra, the ambient calculus [3], for de-
scribing systems with mobile computations.

In the ambient calculus, processes may reside within a hierarchy of locations,
called ambients. Each location is a cluster of processes and sub-ambients that
can move as a group.

Ambients provide an interesting abstraction that combines, within the same
theoretical framework, three essential notions: mobile computation, site and mo-
bility. Mobile computations are computations that can dynamically change the
place where they are executed and are continuously active before and after move-
ment, like it is the case with agents. Sites are the location where these computa-
tions happen, like processors or routers. Finally, mobility represents a modifica-
tion in the sites topology that occurs, for instance, with mobile or temporarily
disconnected computers, and in the crossing of administrative boundary, like
applets crossing a firewall.

Proceedings of ASIAN’00 - 6th Asian Computing Science Conference, LNCS, pp. 1–16, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



2 Silvano Dal Zilio

Inspired by Berry’s and Boudol’s Chemical Abstract Machine model [2] and
Milner’s “chemical” presentation of the π-calculus [13], the dynamic semantics
of the ambient calculus is based on a spatial congruence relation, denoted ≡, on
which the reduction system is based. Spatial congruence identifies processes up
to elementary spatial rearrangements and allows a simple and compact presen-
tation of the reduction rules in which the sub-processes having to interact – the
redexes in λ-calculus terminology – appear in contiguous position.

This paper reports a proof that spatial congruence, one of the simplest and
most basic equivalence between processes, is decidable. That is, the problem of
checking whether two processes are spatially congruent, or not, is decidable.

To prove the decidability of spatial congruence, we use a natural and intuitive
interpretation of ambient processes as edge-labelled unordered trees. This allows
us to concentrate on the subtle interaction between restriction and replication,
two key operators of the ambient calculus. Roughly speaking, restriction accounts
for the dynamic generation of fresh location names and replication is used to
encode recursive behaviours.

The result of our study is twofold. First, we define an effective decision pro-
cedure to test spatial congruence. This procedure is based on basic algorithmic
on trees and can be easily implemented. Second, we define a normal form for
processes and a proof method that demonstrate useful in the proof of important
equivalence laws.

The decidability result presented in this paper is useful in many respects.
Since spatial congruence plays a central role in the definition of the operational
semantics, any attempt to provide a mechanical proof of semantics-based prop-
erties will rely on a formal study of spatial congruence and an implementation of
a test for equivalence of processes. Interesting examples of semantical properties
include proof of equivalences or validity of program transformations.

Another application of our result is the study of the modal logic for ambi-
ents [4], where spatial congruence is used in the definition of the satisfaction
relation. The decidability of spatial congruence is essential in the proof that
model checking, for a particular subset of the logic, is decidable.

The outline of the remainder of this paper is as follows. Section 2 introduces
the syntax of the ambient calculus and the definition of spatial congruence, and
Section 3 defines an interpretation of processes as a certain kind of edge-labelled
trees, called spatial trees. Section 4 studies a very simple notion of equivalence
between spatial trees. We prove that this equivalence is decidable and we define
a procedure to test the equivalence of spatial trees. This result relies on the
existence of a computable normal form. In Section 5, we relate spatial trees to
processes and tree equivalence to spatial congruence. Then, by transferring the
results obtained on spatial trees, we prove the decidability of spatial congruence.
Before concluding, we use our results to prove some interesting equivalence laws.
Complete definition of the calculus and omitted proofs may be found in a long
version of this paper [6].
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2 The Ambient Calculus

The following tables summarize the syntax of processes and the definition of
spatial congruence. For the sake of simplicity, we consider a minimal version of
the untyped ambient calculus that includes only mobility primitives, as defined
in [3], Section 2. In the extended version of this paper [6], we show that the results
and algorithms presented here can be smoothly extended to the full ambient
calculus.

The operators of the ambient calculus can be separated into two categories:
spatial constructs, which describe the “spatial configuration” of processes, and
temporal constructs, which describe their, possible, dynamic behaviours.

Spatial constructs are composed of restriction, void, composition and repli-
cation, which are commonly found in process calculi, and include an original
constructor, n[P ], called an ambient. In the minimal ambient calculus, temporal
constructs are only composed of actions, act n.P , where n is an ambient name
and P is a process. In the full ambient calculus, temporal constructs also in-
clude the input and output operators defined in [3], which are missing from our
presentation. As pointed out in [4], this separation is similar to the distinction
between static and dynamic constructs made in CCS [12].

Capabilities and processes:

act n ::= capability
in n can enter n
out n can exit n
open n can open n

P,Q,R ::= processes
(νn)P restriction
0 void
P | Q composition
!P replication
n[P ] ambient
act n.P action

In a restriction, (νn)P , the name n is bound with scope P . The set of free
names occurring in a process P , written fn(P ) is defined as follows, where re-
striction is the only binders. We identify processes up to consistent renaming of
bound names.

Free names, fn(P ), of process P :

fn((νn)P ) ∆= fn(P ) \ {n} fn(0) ∆= ∅
fn(P | Q) ∆= fn(P ) ∪ fn(Q) fn(!P ) ∆= fn(P )
fn(n[P ]) ∆= {n} ∪ fn(P ) fn(act n.P ) ∆= {n} ∪ fn(P )

The rules defining spatial congruence can also be separated in different cat-
egories. The first two categories of rule state that it is an equivalence relation
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and a congruence. The third category states that parallel composition is an as-
sociative and commutative operator with identity element 0. Another category
specifies properties of replicated processes, !P , which acts like an infinite par-
allel composition of replicas of P . The last category describes scoping rules for
the restriction operator, (νn)P , used to model the dynamic generation of new
ambient names.

Spatial congruence: P ≡ Q

P ≡ P (Struct Refl)
Q ≡ P ⇒ P ≡ Q (Struct Symm)
P ≡ Q,Q ≡ R⇒ P ≡ R (Struct Trans)

P ≡ Q ⇒ (νn)P ≡ (νn)Q (Struct Res)
P ≡ Q ⇒ (P | R) ≡ (Q | R) (Struct Par)
P ≡ Q ⇒ !P ≡ !Q (Struct Repl)
P ≡ Q ⇒ n[P ] ≡ n[Q] (Struct Amb)
P ≡ Q ⇒ act n.P ≡ act n.Q (Struct Action)

P | Q ≡ Q | P (Struct Par Comm)
(P | Q) | R ≡ P | (Q | R) (Struct Par Assoc)
P | 0 ≡ P (Struct Par Zero)

!(P | Q) ≡ !P | !Q (Struct Repl Par)
!0 ≡ 0 (Struct Repl Zero)
!P ≡ P | !P (Struct Repl Copy)
!P ≡ !!P (Struct Repl Repl)

(νn)(νm)P ≡ (νm)(νn)P (Struct Res Res)
(νn)0 ≡ 0 (Struct Res Zero)
n 6∈ fn(P ) ⇒ (νn)(P | Q) ≡ P | (νn)Q (Struct Res Par)
n 6= m ⇒ (νn)m[P ] ≡ m[(νn)P ] (Struct Res Amb)
n 6= m ⇒ (νn)act m.P ≡ act m.(νn)P (Struct Res Action)

Almost every rule in the spatial congruence definition has an equivalent in
the corresponding π-calculus equivalence, called structural congruence. The most
significant differences lies in the axioms for replication, (Struct Repl Par) and
(Struct Repl Repl), that are missing in the traditional definition of structural
congruence [13]. As a matter of fact, these axioms are also missing in the seminal
presentation of the ambient calculus [3], where the relation ≡ is also called struc-
tural congruence. These differences have motivated our change in terminology.

Intuitively, the structural congruence relation of the π and ambient calculi
should be decidable relations. But the author is not aware of any proof that
structural congruence is decidable (or undecidable!) and these results seem very
difficult to obtain.

The rules added to spatial congruence are similar to the rules proposed in [7,8]
to extend the standard definition of structural congruence in the π-calculus. In
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these papers, the authors proved that the resulting equivalence is decidable.
Another related work is [10], where Hirschkoff independently proposed a similar
extension to structural congruence and proved the decidability result using a
more algorithmic approach. We go back to these results in Section 7, where we
review related works.

Since the definition of the operational semantics is not needed in our study,
we omit the definition of the reduction relation from the presentation. The reader
interested in a thorough introduction to the ambient calculus is referred to [3].

3 Spatial Trees

We define an interpretation of spatial processes as a certain kind of edge-labelled
unordered trees, which we name spatial trees. A spatial tree will represent the
hierarchy defined by ambients nesting, using the traditional notion of hierarchy
defined by sub-trees. In our intuition, edges stands for ambients and are tagged
with an ambient name, nesting stands for ambient encapsulation and, following
our analogy, parallel composition of processes naturally arises as trees sharing the
same root. Since it is not possible to define a process containing an unbounded
number of nested ambients, we will only consider finite-depth trees.

For convenience, and to avoid confusion, we use a distinct category of names,
called markers, to model restricted ambient names. Markers are ranged over by
x, y, . . . We use η to denote a name, n, or a marker, x. We use K, L, . . . to denote
sets of names, and X,Y,Z . . . for sets of markers.

A multiplicity, µ, is either 1 or ∞. A cone, C, is either the empty vector,
written ε, an action: µact η.T , or an edge: µη[T ] or !X.T , where T is a spatial
tree and X is a non-empty set of markers.

A spatial tree is a finite vector of cones, C1+ · · ·+Ck, also written
∑

i∈1..k Ci.
The + operator is commutative and associative, with identity element ε; spatial
trees are identified up to these equations.

Cones and spatial trees:

µ ::= multiplicity
1 single
∞ infinite

C ::= cone
ε empty vector
µact η.T action
µη[T ] edge tagged η
!X.T replicated edge with markers X

S, T ::= spatial trees
C1 + · · ·+ Ck vector of cones

Cones are a special type of spatial trees. The cone !X.T represents an infinite
copy of the tree T such that, in each copy, the elements of X are replaced with
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fresh markers. In an edge, !X.T , the markers in X are bound with scope T . Spatial
trees are identified up to consistent renaming of bound markers.

Free markers, fm(T ), of tree T :

fm(ε) ∆= ∅ fm(!X.T ) ∆= fm(T ) \ X

fm(µn[T ]) ∆= fm(T ) fm(µact n.T ) ∆= fm(T )
fm(µx[T ]) ∆= fm(T ) ∪ {x} fm(µact x.T ) ∆= fm(T ) ∪ {x}
fm(S + T ) ∆= fm(S) ∪ fm(T )

We write T{n←x} for the capture-avoiding substitution of the marker x for
each occurrences of the name n in the tree T . For convenience, we extend the
replication constructor, !X.T , to the empty set of markers as follows:

!∅.ε
∆= ε

!∅.µact η.T
∆=∞act η.T

!∅.µη[T ] ∆=∞η[T ]
!∅.!X.T

∆= !X.T

!∅.(S + T ) ∆= !∅.S + !∅.T

Proposition 3.1. We have !∅.!∅.T = !∅.T .

Since we have a notion of free and bound markers, we can define a notion of
connected tree, that is, tree whose sub-trees share mutual markers.

Connected trees:

A tree
∑

i∈1..p Ci is connected if and only if there are no partitions of 1..p into
two non-empty subsets, I, J , such that fm(

∑
i∈I Ci) ∩ fm(

∑
i∈J Cj) = ∅.

Using this definition, we can compute for each tree the (unique) set of its
connected sub-trees as follows. For all tree T

∆=
∑

i∈1..p Ci we can construct a
graph as follows.

(1) Let N be the set of cones {C1, . . . , Cp}.
(2) Let G be the graph with nodes in N and edges between nodes that have at

least one common free marker.
(3) Compute the connected components of the graph G, say G1, . . . ,Gk.

The connected parts of T , written conn(T ), is the set {T1, . . . , Tk} such that for
all i ∈ 1..k the spatial tree Ti is the vector of the cones included in Gi. Basic
properties of the connected components of a spatial tree are:

Proposition 3.2. If {T1, . . . , Tp} is the set of connected components, conn(T ),
of a tree T then T = T1 + · · ·+Tp, and for each j ∈ 1..p the tree Tj is connected.
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4 Equality of Spatial Trees

We define a reduction relation between trees, X ` S → T , parameterised by
a set of markers, X, called the effect of the reduction. This reduction relation
captures the essential intuitions of the equivalence between edge-labelled trees
and every rule in its definition corresponds to basic axioms of spatial congruence.
For instance, rule (Red Zero) implies that “empty cones can be forgotten” and
corresponds to rule (Struct Par Zero) of structural congruence. Likewise, rule
(Red Add Edge) implies that “two infinite copies of a sub-tree can be replaced
by only one copy” and corresponds to rule (Struct Repl Copy). We also define
the equivalence induced by →, in almost the same way the λ-calculus reduction
relation induces β-equivalence.

In this section, we prove that every spatial tree can be factorised to an irre-
ducible form, also called a normal form, which is not related to the reduction
sequence used to compute it. Normal forms provide us with a unique represen-
tative for each tree and, more significantly, allow us to define a formal procedure
to test the equivalence of trees, a key result in the proof of the decidability of
spatial congruence.

Reduction: X ` S → T

(Red Zero)

∅ ` T + ε→ T

(Red Add Edge)

∅ ` ∞η[T ] + µη[T ]→∞η[T ]

(Red Add Action)

∅ ` ∞act η.T + µact η.T →∞act η.T

(Red Add Repl)

∅ ` !X.T + !X.T → !X.T

(Red Copy)

X ` !X.T + T → !X.T

(Red Sub)
X ` T → S X ⊆ Y

Y ` T → S

(Red Repl)
X ` T → S (Z = Y ∩ fm(S))

X \ Y ` !Y.T → !Z.S

(Red η)
X ` T → S (η 6∈ X)

X ` µη[T ]→ µη[S]

(Red +)
X ` T → S (fm(R) ∩ X = ∅)

X ` T + R→ S + R

(Red Action)
X ` T → S

X ` µact η.T → µact η.S

The rules for reduction can be separated in two categories. Rules (Red Zero)
to (Red Copy) that involve two cones, or critical pairs, of which only (Red Copy)
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can extend the effect. Rules (Red Repl) to (Red Action), the structural rules,
which states that the relation → is compositional.

In a reduction, X ` S → T , the effect X records the markers that must not
appear free in the result of the reduction.

We can derive an equivalent of rules (Red Add Repl), (Red Copy) and (Red
Repl), for the special case where the set X is empty.

– ∅ ` !∅.T + !∅.T →∗ !∅.T .
– ∅ ` !∅.T + T →∗ !∅.T .
– If ∅ ` T → S then ∅ ` !∅.T →∗ !∅.S.

Next, we define the equivalence relation on spatial trees induced by →.

Equivalence relation between trees: S ∼X T and S ≈ T

The relation ∼X is the smallest reflexive, symmetric and transitive relation such
that if X ` S → T then S ∼X T . The relation ≈ is such that S ≈ T if and only
if there exist two finite injective mappings, σ1, σ2, and a set of markers X such
that dom(σ1) = fm(S) and dom(σ2) = fm(T ) and Sσ1 ∼X Tσ2.

From the structural rules of →, it is trivial to show that ∼X is a congruence
and that if Y ⊆ X then ∼Y ⊆ ∼X ⊆ ≈. Basic properties of ≈ are:

Proposition 4.1. The relation ≈ satisfies the congruence properties, that is, if
(fm(S) ∪ fm(T )) ∩ fm(R) = ∅ and S ≈ T then S + R ≈ T + R; if S ≈ T then
µn[S] ≈ µn[T ]; if S ≈ T then µact η.S ≈ µact η.T .

We prove that the reduction relation on spatial trees is locally confluent.

Lemma 4.2. If X1 ` T → T1 and X2 ` T → T2 then there exists a tree S such
that X1 ∪ X2 ` T1 →∗ S and X1 ∪ X2 ` T2 →∗ S.

Proof. By induction on the derivation of X1 ` T → T1. For the sake of brevity,
we only consider the cases in which the two reductions originate from critical
pairs that share a common cone. The complete proof can be found in [6].

In the particular case considered here, the tree T must be a composition,
R1 + C + R2 + T ′, where Xi ` Ri + C → Si and Ti = Si + Rj + T ′ for each
i ∈ {1, 2} and i 6= j. These must have been derived from (Red +) and therefore
we have the side condition (?) fm(R2 + T ′) ∩ X1 = fm(R1 + T ′) ∩ X2 = ∅.

The proof follows by a case analysis on the rules used to derive the two
reductions X1 ` R1 + C → S1 and X2 ` R2 + C → S2.

(Red Zero)-(Red Zero) Then C = ε and T1 = T2 = R1 + R2 + S. Trivial.
(Red Add Edge)-(Red Add Edge) Then R1 = µ1η[R], R2 = µ2η[R], S1 =

S2 =∞η[R] and C is a cone µη[R] for some multiplicities µ1, µ2, µ such that
∞ ∈ {µ, µi} for each i ∈ {1, 2}. Trivial. Case (Red Add Repl)-(Red Add
Repl) is similar.
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(Red Add Edge)-(Red Copy) Then C is an edge µη[R] and it must be the
case that R1 = µ1η[R] and R2 = !X.µη[R], where µ or µ1 is an infinite
multiplicity and X ⊆ X2. This case is impossible since (Red Copy) implies
that fm(η(R1)) ∩ X2 6= ∅, which conflicts with the side condition (?). Case
(Red Copy)-(Red Add Edge) is similar.

(Red Add Repl)-(Red Copy) Then T = R + !X.R + !X.R + T ′ and S1 =
R + !X.R and S2 = !X.R + !X.R, where X1 = ∅ and X2 = X. By (Red Copy)
and (Red +), we have that X ` T1 → !X.R + T ′. By (Red Add Repl) and
(Red +), ∅ ` T2 → !X.R + T ′, as required.

(Red Copy)-(Red Copy) Then C = !X.R for some tree R and sets of markers
X, such that R1{X←X1} = R2{X←X2} = R and (X1∪X2)∩ fm(T ′) = ∅. By
(Red Copy) and (Red +), we get that X2 ` T1 → !X.R + T ′ and X1 ` T2 →
!X.R + T ′, as required. ut

Since it can be proved that the reduction relation is decreasing, in the sense
that the number of symbols in the definition of a tree decreases after a reduction,
there can only be a finite number of reductions from any tree and we have:

Theorem 4.3. The relation → is strongly normalizing and confluent.

We can define an algorithm to decide the equivalence of spatial trees based
on this result. To decide if S1 ∼X S2, you compute the normal form of S1 and
S2, that is, the spatial trees S′1, S

′
2 such that X ` Si →∗ S′i and S′i is irreducible

for each i ∈ 1..2. By Theorem 4.3, these trees exist and can be computed using
a finite number of reductions. Then, you verify whether the normal forms are
equal.

Theorem 4.4. The equivalences ∼X and ≈ are decidable.

Proof. To decide if S1 ∼X S2, you compute the normal form of S1 and S2, that
is, the spatial trees S′1, S

′
2 such that X ` Si →∗ S′i and S′i is irreducible for each

i ∈ 1..2. By Theorem 4.3, these trees exist and can be computed using a finite
number of reductions. Then, you verify whether the normal forms are equal.
This amount to test the equality of trees up to the renaming of bound markers
and the associativity-commutativity of +. Since this is a decidable problem, we
get that ∼X is decidable.

To decide if S1 ≈ S2, you test whether S1σ1 ∼X S2σ2 for each finite injective
mapping σ1, σ2 and for each set X such that such that dom(σ1) = fm(S1) and
dom(σ2) = fm(S2) and X ⊆ fm(S1σ1) ∪ fm(S2σ2). It is sufficient to consider
mappings σ1, σ2 that have their image in a fresh set of markers that has the
cardinality of fm(S1)∪ fm(S2). Since the sets fm(S2) and fm(S1) are finite, and
since ∼X is decidable, we get that ≈ is decidable. ut

Using the strong normalization property, we can define a notion of normal
form for trees. For all spatial trees T , there is a tree T ′ such that T ≈ T ′ and:

T ′ ∆=
∑

i1∈I1

µi1ηi1 [Ti1 ] +
∑

i2∈I2

!Xi2 .Ti2+
∑

i3∈I3

µi3act ni3 .Ti3 (4.1)
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Where (1) I1, I2 and I3 are finite and pairwise disjoint sets of indices; (2)
for all indices i ∈

⋃
j∈1..3 Ij , the tree Tj is in normal form; (3) for all i, j ∈ I1, if

ηi = ηj then Ti 6∼∅ Tj or µi = µj = 1; and (4) for all i, j ∈ I2, if !Xi.Ti ∼∅ !Xj .Tj

then i = j.
It is worth mentioning that, contrary to a typical situation with normal

forms found in other theoretical frameworks, the normal form given in (4.1) is
syntactically smaller than the spatial trees associated with it.

5 Relation Between Trees and Processes

We define the tree semantics of processes, that is, a mapping from ambient
processes to spatial trees, and we relate spatial congruence with the equivalence
on spatial trees. Then, by transferring the decidability result obtained in the
previous section, we infer the decidability of spatial congruence. This semantics
extends a similar definition given in an extended version of [4] for a calculus
without name restriction.

In the definition of the tree semantics of processes, we use a new operation
on trees called exponentiation, exp(T ), obtained as the outcome of replicating
every connected part of T . More formally, the exponentiation of a tree T , is
the composition !X1.T1 + · · · + !Xp.Tp where {T1, . . . , Tp} = conn(T ) are the
connected parts of T and Xi = fm(Ti) for each i ∈ 1..p.

Tree semantics:

[[0]] ∆= ε (Zero)
[[act η.P ]] ∆= 1act η.[[P ]] (Action)
[[n[P ]]] ∆= 1n[[[P ]]] (Amb)
[[!P ]] ∆= exp([[P ]]) (Repl)
fm([[P ]]) ∩ fm([[Q]]) = ∅ ⇒ [[P | Q]] ∆= [[P ]] + [[Q]] (Par)
x 6∈ fm([[P ]]) ⇒ [[(νn)P ]] ∆= [[P ]]{n←x} (Res)

In the same way tree composition, S + T , corresponds to parallel composi-
tion for processes, exponentiation is the analogue of replication, Furthermore,
it is possible to prove properties of this derived operator corresponding to rules
(Struct Repl), (Struct Repl Par), (Struct Repl Repl) and (Struct Repl Copy)
respectively.

Proposition 5.1.

(1) If S ≈ T then exp(S) ≈ exp(T ).
(2) If fm(S) ∩ fm(T ) = ∅ then exp(S + T ) ≈ exp(S) + exp(T ).
(3) The function exp(.) is idempotent: exp(exp(T )) = exp(T ).
(4) For all spatial trees T we have exp(T ) + T ≈ exp(T ).

Using these properties, it is easy to prove that the axiomatisation of spatial
congruence is sound.
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Lemma 5.2. If P ≡ Q then [[P ]] ≈ [[Q]].

Next, we prove the completeness of our axiomatisation. We start by defining
an inverse mapping from trees to processes.

Process semantics of trees:

([ε]) ∆= 0 (Empty)
([1act n.T ]) ∆= act n.([T ]) (Action 1)
([∞act n.T ]) ∆= !act n.([T ]) (Action ∞)
([1n[T ]]) ∆= n[([T ])] (Edge 1)
([∞n[T ]]) ∆= !n[([T ])] (Edge ∞)
([!{x1, . . . , xp}.T ]) ∆= !(νn1). . .(νnp)([T{x1←n1} . . . {xp←np}]) (Repl)
where {n1, . . . , np} is a set of pairwise distinct names not free in ([T ]).
([S + T ]) ∆= ([S]) | ([T ]) (Sum)

The composition of the two interpretations ([.]) and [[.]] differs from the identity
over processes. For instance, we have ([[[(νu)0]]]) = ([[[0]]]). Nonetheless, we can
draw a simple relation between a process and the meaning of its interpretation.
See Proposition 5.3 (2) below.

Let the meaning of a tree T , written mean(T ), be the process (νK)([Tσ]),
where σ is a bijection from fm(T ) to a set of fresh names and K is σ(fm(T )),
the image of σ. Properties of mean(.) are:

Proposition 5.3. (1) If S ≈ T then mean(S) ≡ mean(T ) and (2) for all pro-
cesses P we have mean([[P ]]) ≡ P .

Let P and Q be two processes such that [[P ]] ≈ [[Q]]. By Proposition 5.3 (1),
mean([[P ]]) ≡ mean([[Q]]). By Proposition 5.3 (2), P ≡ mean([[P ]]) and Q ≡
mean([[Q]]). Hence, by transitivity of spatial congruence, P ≡ Q. This proves
that our interpretation of processes as spatial trees is complete, that is:

Lemma 5.4. If [[P ]] ≈ [[Q]] then P ≡ Q.

Lemmas 5.2 and 5.4 state a full abstraction result between ambient processes
and spatial trees with respect to the equivalences ≡ and ≈ respectively. There-
fore, every problem in the ambient calculus can be expressed in terms of problem
on spatial trees. For instance, to decide whether P ≡ Q, a possible method is to
compute [[P ]] and [[Q]] and to verify if they are equivalent. By Theorem 4.4, this
problem is decidable. It follows that:

Theorem 5.5. The relation ≡ is decidable.

Using our interpretation of processes as spatial trees, we obtain another result
for free. Indeed, through Lemma 5.4 and the normal form for spatial trees given
in Section 4, we obtain a normal form for ambient processes that is unique up
to very simple spatial transformations, that is, commutativity-associativity of
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the parallel composition and the reordering of restrictions. If L is a finite set
of names {n1, . . . , np}, we write (νL)P for the process (νn1) . . . (νnp)P . For all
processes P , there is a process P ′ such that P ≡ P ′ and:

P ′ ∆= (νL)(
∏

i1∈I1
ni1 [Qi1 ] |

∏
i2∈I2

!ni2 [Qi2 ] |
∏

i3∈I3
!(νLi3)Qi3

|
∏

i4∈I4
act ni4 .Qi4 |

∏
i5∈I5

!act ni5 .Qi5)
(5.1)

Where (1) the set of indices I1, . . . , I5 are finite and pairwise disjoint; (2) for
all i ∈

⋃
j∈1..5 Ij , the processes Qj are in normal form; (3) for all i ∈ I1, j ∈ I2,

if ni = nj then Qi 6≡ Qj ; (4) for all i, j ∈ I3, if (νLi)Qi ≡ (νLj)Qj then i = j.

6 Applications

We can apply the results given in this paper to prove interesting equivalence
laws like, for example, the one listed in Lemma 6.1 below. The laws examined
in this section are particularly interesting because they are, at the same time,
very useful in the formal study of the ambient calculus, and very difficult to
prove directly, that is, for example, using an induction on derivations of the
form P ≡ Q.

In the particular example of Lemma 6.1, we study three equivalence laws
extracted from the presentation of Cardelli’s and Gordon’s modal logic for am-
bients [4], a logic used to describe properties of processes. These laws are essential
to prove the soundness of several axioms of the logic.

An interesting fact is that we follow a similar proof technique in each case.
We start by using the full abstraction result obtained in Section 5 to restate
the problem in terms of equivalence between spatial trees, then, we prove the
desired equivalence by exhibiting a property invariant by the reduction relation
over trees.

Lemma 6.1.

(1) If P | Q ≡ 0 then P ≡ 0 and Q ≡ 0.
(2) If n[P ] ≡ Q | R then either Q ≡ n[P ] and R ≡ 0, or Q ≡ 0 and R ≡ n[P ].
(3) If m[P ] ≡ n[Q] then m = n and P ≡ Q.

Proof. We only sketch the proof for case (1). Proofs for the other cases are
similar and can be found in [6].

By the full abstraction result stated in Section 5, this problem is equivalent
to prove that for every spatial trees, S, T , if S + T ≈ ε then S ≈ ε and T ≈ ε.
By Theorem 4.3, since ε is an irreducible spatial tree with no free markers, this
is also equivalent to prove that if S + T →∗ ε then S →∗ ε and T →∗ ε.

The proposition follows by showing that for any finite set of cones, (Ci)i∈I ,
if X `

∑
i∈I Ci →∗ ε then X ` Ci →∗ ε for all i ∈ I. This can be proved by an

easy induction on the derivation of X `
∑

i∈I Ci →∗ ε.
Now, assume P | Q ≡ 0. By Lemma 5.2, [[P ]] + [[Q]] ≈ ε. Hence, there exists

a set X such that [[P ]] + [[Q]] ∼X ε. By Lemma 4.2, and since ε is an irreducible
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spatial trees, we get that X ` [[P ]] + [[Q]]→∗ ε, and therefore, X ` [[P ]]→∗ ε and
X ` [[Q]]→∗ ε. Hence, [[P ]] ≈ ε and [[Q]] ≈ ε. By Lemma 5.4, P ≡ Q ≡ 0. ut

Next, we prove three equivalence laws that validate the distribution of name
restriction over void, ambient, and parallel composition. These laws play an
essential role in the definition of axioms for an extension of the ambient modal
logics with an operator for name restriction [5].

Lemma 6.2.

(1) If (νn)P ≡ 0 then P ≡ 0
(2) If (νn)P ≡ m[Q] then there exists R such that P ≡ m[R] and Q ≡ (νn)R.
(3) If (νn)P ≡ Q |R then there exist two processes, P1, P2, such that P ≡ P1 |P2,

and Q ≡ (νn)P1, and R ≡ (νn)P2.

Proof. Proof of (1) is similar to the proof of Lemma 6.1 (1) sketched above.
In particular, we use the property that for any finite set of cones, (Ci)i∈I , if
X `

∑
i∈I Ci →∗ ε then X ` Ci →∗ ε for all i ∈ I.

For (2), assume (νn)P ≡ m[Q]. By Lemma 5.2, [[(νn)P ]] ≈ [[m[Q]]]. Therefore,
for every fresh marker, x, we have [[P ]]{n←x} ≈ 1m[[[Q]]]. By definition of≈, there
exist two finite injective mappings, σ1, σ2 and a set X such that [[P ]]σ1{n←y} ∼X

1m[[[Q]]σ2] where y = σ1(x). Let S be the normal form of [[P ]]σ1. Therefore,
S ≈ [[P ]]σ1 ∼Y 1m[[[Q]]σ2{y←n}]. Since S is in normal form, it must be the
case that S = 1m[T ] for some tree T such that T ≈ [[Q]]σ2{y←n}. Let R be
the process mean(T ). Then, [[m[R]]] ≈ S ≈ [[P ]] and, by Lemma 5.4, m[R] ≡ P .
Moreover, [[(νn)R]] ≈ T{n←y} ≈ [[Q]]. By Lemma 5.4, (νn)R ≡ Q, as required.

For (3), Assume (νn)P ≡ Q | R. By Lemma 5.2, [[Q | R]] ≈ [[(νn)P ]].
Therefore, for every fresh marker, x, we have [[Q]] + [[R]] ≈ [[P ]]{n←x}, where
fm([[Q]])∩ fm([[R]]) = ∅. By definition, there exist two finite injective mappings,
σ1, σ2 and a set X such that [[Q]]σ1 + [[R]]σ1 ∼X [[P ]]σ2{n←y}, where y = σ2(x).

Let S, T and O be the normal forms of [[Q]]σ1, [[R]]σ1 and [[P ]]σ2 respectively.
Hence, S + T ∼Y O{n←y} for some set of markers Y such that X ⊆ Y and
with the side condition: fm(S)∩ fm(T ) = ∅. Assume

∑
i∈1..p Ci is the, common,

normal form of S + T and O{n←y}. Since S, T and O are normal forms, there
exist three families of spatial trees in normal form, (Si)i∈1..p, (Ti)i∈1..p, and
(Oi)i∈1..p, such that:

(1) S =
∑

i∈1..p Si and T =
∑

i∈1..p Ti and O =
∑

i∈1..p Oi.
(2) Si + Ti ∼Y Oi{n←y} for each i ∈ 1..p.
(3) Y ` Si + Ti →∗ Ci and Y ` Oi{n←y} →∗ Ci for each i ∈ 1..p.

The proof follows by constructing the spatial trees corresponding to the
processes P1, P2. We proceed by defining two families of trees, (S′i)i∈1..p and
(T ′

i )i∈1..p, and proving that Oi ∼Y (S′i + T ′
i ), and Si ∼Y S′i{n←y}, and Ti ∼Y

T ′
i{n←y} for each i ∈ 1..p. The trees S′i and T ′

i are defined by case analysis on
the definition of Ci.

(Empty) Then Ci = ε. Since S, T and O are in normal form, it must be the
case that Si = Ti = Oi = ε. Let S′i = T ′

i = ε. Trivial.
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(Action) Then Ci = µact η.S′. Since Oi is in normal form, it must be the case
that Oi{n←y} = µact η.S′. Let S′i = Si{y←n} and T ′

i = Ti{y←n}. Trivial.
We follow the same definition for the cases where Ci is an edge.

(Repl) Then Ci = !Y′.T ′. Since Oi is in normal form, it must be the case that
Oi{n←y} = !Y′.T ′′ + T ′′′ and T ′ ∼Y∪Y′ T ′′. Since Si and Ti are in normal
form and fm(Si) ∩ fm(Ti) = ∅, it must be the case that either (1) Si ∼Y Ci

or (2) Ti ∼Y Ci. Assume we are in case (1). Let S′i = (Si + T ′′′){y←n} and
T ′

i = Ti{y←n}. Then S′i{n←y} ∼Y Ci + T ′′′ ∼Y Ci ∼Y Si, and (S′i + T ′
i ) =

(Si + Ti + T ′′′){y←n} ∼Y (Ci + T ′′′){y←n} ∼Y Oi, as required.

An easy induction on the definition of
∑

i∈1..p Ci proves that
∑

i∈1..p Si ∼Y∑
i∈1..p S′i{n←y}, and

∑
i∈1..p Ti ∼Y

∑
i∈1..p T ′

i{n←y}, and O ∼Y

∑
i∈1..p(S

′
i +

T ′
i ). Let P1 and P2 be the processes mean(

∑
i∈1..p S′i) and mean(

∑
i∈1..p T ′

i )
respectively. Hence, [[P ]] ≈ O ∼Y [[P1]] + [[P2]] and, by Lemma 5.4, P ≡ P1 | P2.
Moreover, [[(νn)P1]] ≈

∑
i∈1..p Si ≈ [[Q]] and [[(νn)P2]] ≈

∑
i∈1..p Ti ≈ [[R]]. By

Lemma 5.4, (νn)P1 ≡ Q and (νn)P2 ≡ R, as required. ut

Given three processes, P,Q and R, such that (νn)P ≡ Q | R, we define
a solution of Lemma 6.2 (3) to be a couple (P1, P2) such that P ≡ P1 | P2,
Q ≡ (νn)P1, and R ≡ (νn)P2. For example, the next equations give a solution
to a non-trivial instance of (3) obtained by following the steps described in the
proof of Lemma 6.2.

(νn) (!(νn)n[0] | n[0])︸ ︷︷ ︸
P

≡ !(νn)n[0]︸ ︷︷ ︸
Q

| !(νn)n[0]︸ ︷︷ ︸
R

≡ (νn) (!(νn)n[0] | n[0])︸ ︷︷ ︸
P1

| (νn) !(νn)n[0]︸ ︷︷ ︸
P2

It is not clear how to prove Lemma 6.2 (3) without using spatial trees as
an intermediate representation, and it is even less clear how to obtain solutions
for this law. Therefore, it is interesting to note that, following the constructive
approach taken in this paper, our proof not only demonstrates that there is
always a solution, but also describes an algorithm to compute it.

7 Discussion

We propose an algorithmic method to decide whether two ambient processes are
spatially congruent, or not. This method is based on an intuitive interpretation
of processes as edge-labelled trees, and a strongly normalizing rewriting system.

The definitions and proof techniques defined in this paper can easily be trans-
posed to other process calculi equipped with a chemical semantics, such as the
π-calculus for instance, and natural candidates for comparison are [7] and [10].
Other examples of calculi amenable for the same study include the spi-calculus
of Abadi and Gordon [1] and some process calculi of concurrent objects, like
TyCo [14] and concς [9].
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Our definition of spatial congruence is very similar to the definition of the
π-calculus equivalence given in [7]. Hence, we obtain a new proof of decidability
for structural congruence. A major difference with Engelfriet’s and Geselma’s
work is that we propose a more direct approach, and define an algorithm to
decide the equivalence of processes.

In the work of Hirschkoff [10], the decidability of structural congruence is
proved using a rewriting system, as it is the case in this paper. There are two
main differences with Hirschkoff’s approach. First, we use an intermediate data
structure, the spatial trees, which eliminate the need to explicitly manipulate
the associative and commutative parallel composition operator. Second, we use
an exponentiation function in the interpretation of processes. These two differ-
ences should result in a more efficient algorithm. Another distinguishing feature
of our work is the definition of an effective technique for proving equivalence laws.

The results obtained in this paper are interesting because they lay the formal
basis for the development of an algorithm to check spatial congruence. Such au-
tomatic tool for testing the equivalence of processes is a necessary component in
machine-based verification of properties of the ambient calculus. A benefit of the
algorithm obtained with our approach, which has been successfully implemented
by Romain Kervarc and Daniel Hirschkoff [11], is that it is based on well-studied
algorithmic over trees, such as associative-commutative tree unification.

Another interest of our study is given in Section 6, where we apply our
theoretical framework to the proof of equivalence laws used in the definition of
Cardelli’s and Gordon’s modal logic for mobile ambients [4,5].
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