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Abstract. We describe a model of concurrent objects based on the blue calculus (�?), a typed
variant of the asynchronous �-calculus in which the notion of function is directly embedded. We
propose a definition for a simple concurrent object-based calculus and show how objects can be
translated in �?. We also present the type system for objects derived from our definition and we
verify the expressiveness of the object calculus by giving a direct and adequate interpretation of
Abadi and Cardelli object calculus: Ob

1<:

, that preserves subtyping.

1 Introduction

In his article [21], Milner states that the reduction relation of the �-calculus (�) is based on
the object paradigm, in the sense that “what is transmitted and bound is never an object, but
rather access to the object”. There is a strong connection with object-oriented programming
here: processes are objects (and states), and communication channels are the references used
to name/access objects. But the object-oriented paradigm is more than computing with ref-
erences. It deals with notions such as state encapsulation, dynamic dispatch and subtyping
(or inheritance). The purpose of this paper is to give a model of concurrent object computa-
tion based on a modeling of “objects as processes”. To this end, we introduce notations for
object definition and we give their translations in the blue calculus [6] (�?) extended with
records. Types for blue processes are given in a first-order type system with recursion and
subtyping.

The expressiveness of our calculus is demonstrated by an interpretation of Abadi and
Cardelli’s typed functional calculus of objects: Ob

1<:

[2], that preserves subtyping. This is
an expected result, since Sangiorgi [24] has already given a translation from Ob

1<:

to the
�-calculus, but both the encoding and the type system used are very different. In particular,
in our encoding, a method update does not create a new object but is rather modeled as a
“change of state”. Moreover, the operational correctness of our interpretation does not rely
on information supplied by the type system and our encoding is direct (i.e. does not use
continuations). Another difference is that we use imperative objects in our encoding, that is
objects that can be cloned. These reflect differences in the goals. We are not focusing on equa-
tional rules on objects, but, rather, we try to define an expressive concurrent object calculus
with a simple “implementation” in �

? and a type system based on a well established theory.
Indeed, we believe that the best way to define a concurrent object calculus is to built it on
top of an already studied process calculus. This method has several advantages, such as the
possibility to reuse theoretical results and proof techniques. For example, in this paper, the
type system for objects is not primitive and follows from the definition of the rather standard
type system of the process calculus.
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After the presentation of the blue calculus syntax, type system and operational equiva-
lence, we introduce a simple concurrent object calculus in Sect. 3. In the remainder of this
section, we show that the object operators can be derived in �

? and we give the derived type
system obtained for objects. In Sect. 4 we give an adequate encoding of Ob

1<:

and we look
at some examples of equivalences obtained using this encoding.

Related work Many theoretical studies address the problem of modeling object oriented
languages in procedural languages [16, 1], but few of them have succeeded to preserve pow-
erful features such as subtyping. In [3], the authors propose a compositional interpretation
of a typed object calculus with subtyping into a functional calculus. But the target calculus
used, F

<:�

, has second-order polymorphism, while the interpretation given in this paper
uses a first-order type system. Very recently, R. Viswanathan [26] has proposed a fully ab-
stract interpretation in a first-order �-calculus with non-extensible records. Another interest-
ing definition of a typed object calculus was given by Fisher and Mitchell [13]. But none of
those calculi can model multiple interactive objects.

In the world of concurrency, Jones [18] and Walker [27] have used the �-calculus for
translating parallel object-oriented languages and for proving the validity of certain program
transformations. But the source languages studied are untyped and rather simple. In [24],
Sangiorgi gives the first interpretation of the typed Abadi-Cardelli’s calculus with subtyping
in �, and in [19], the authors give an interpretation of the imperative object calculus. There
are also some works on the definition of concurrent calculus of objects obtained by extending
sequential languages with concurrent operators: [12, 14].

2 The Calculus

The blue calculus is a variant of the mini asynchronous �-calculus [5] in which functions
(abstractions, in the �-calculus terminology) are directly embedded. Thus it has no choice,
matching or guarded output operators. While � enforces an indirect style of programming,
in the sense that one has to explicitly manage “result channels” to implement functions,
�

? provides a better “programming notation” for higher-order concurrency. Indeed Boudol
shows in [6] that � is a “continuation passing style calculus”.

The terms of �? (extended with records) are defined using three disjoint kinds of names.
Variables: x; y; z � � � 2 V , references: u; v; w � � � 2 R and labels: k ; l ;m � � � 2 L. In the syntax,
given in Table 1, D (in def D inP ) is a sequence of definitions x

1

= P

1

; : : : ; x

n

= P

n

, with
the x

i

’s pairwise distinct1.

Table 1 Syntax of the Blue Calculus: �?

a ::= x

�

�

u P ::= a

�

�

(�x)P

�

�

(P a)

�

�

O

�

�

(P j P )

�

�

(�u)P

�

�

hu ( P i

�

�

def D inP

�

�

[ ]

�

�

[ l = P ; P ]

�

�

(P �l)

For convenience, we split the description of our calculus along three syntactical cate-
gories. For each of these cases, we examine the reduction relation (! ), the structural equiv-

1 a definition can be empty, regarding “def inP = P” as identical to P
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alence (�) and the type system. The description uses the standard notion of evaluation context.
Contexts are defined using the syntax of �?-terms, plus a constant [:] . Evaluation contexts,
E [], are contexts such that the hole does not occur within an abstraction, a record or a decla-
ration:

E [] ::= [:]

�

�

(E [] a)

�

�

(E [] j P )

�

�

(P j E [])

�

�

(�u)(E [])

�

�

def D inE []

�

�

(E [] �l)

Two general rules can be given on the reduction relation:

P ! P

0

^ P � Q ) Q ! P

0 and P ! P

0

) E [P ] ! E [P

0

]

Concerning the structural equivalence, we assume that �-convertible processes are equal.
The type system presented here is the Curry-style type system of [6], extended to support
records, recursion and subtyping. In particular we have two type constants, ? and >, that
are, respectively, the smallest and the largest types:

�; �; ! : : : ::= ?

�

�

>

�

�

�

�

�

��:�

�

�

(� ! �)

�

�

[ ]

�

�

[ l : � ; � ]

2.1 Description of the Functional Fragment of �?

The functional part of our calculus is obtained using the constructs:

P;Q;R : : : ::= : : :

�

�

a

�

�

(�x)P

�

�

(P a)

�

�

def D inP

that is the “small” �-calculus extended with the definition operator: def D inP . We use the
term small since a process can only be applied to a name and not to another process: we say
that the blue calculus is name passing. Nonetheless, the “high-order” �-calculus application
can be recovered using the definition:

(P Q) =

def

def x = Q in (P x) (x 62 fn(P ) [ fn(Q))

There is a main difference here with respect to the original presentation of �? [6]. We have
replaced “floating definitions” hu = P i (equivalent to an infinite parallel composition of
“one-shot” declarations: !hu ( P i) by a construction that mixes together restriction, repli-
cation and definition: def x = R inP =

def

(�x )(hx = Ri j P ).

We note by def(D) the set of variables defined by D, while fn(P ) is the set of free names
and variables in P . In the functional subset of �?, binders are abstractions: (�x) and defini-
tions: def D inP . As usual, we write (�x

1

: : : x

n

)P instead of (�x
1

): : : (�x

n

)P and we use ~x

to denote the tuple of variables x
1

; : : : ; x

n

. Structural equivalence is defined by the following
axioms [7]:

(def D inP ) j Q � def D in (P j Q) def(D) \ fn(Q) = ;

def D in (def D

0

inP ) � def D;D

0

inP def(D

0

) \ fn(D) = ;

def D in ((�u)P ) � (�u)(def D inP ) u 62 fn(D)

(def D inP ) a � def D in (P a) a 62 def(D)

((�u)P ) a � (�u)(P a) a 6= u

we define also “small” � reduction and the reduction rule for definitions:

((�x)P a) ! Pfa=xg

def D;x = R;D

0

inE [x a

1

: : : a

n

] ! def D;x = R;D

0

inE [R a

1

: : : a

n

] (x 62 bn(E))

The typing rules for this fragment of our calculus are presented in Type System 1. Rule (def)
uses the subtype relation (<:) defined in Sect. 2.3.
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Type System 1 �-Calculus Fragment

x : �; � ` x : �

(taut)
x : �; � ` P : �

0

�

jx

` (�x)P : � ! �

0

(abs)
� ` P : � ! �

0

� ` a : �

� ` (P a) : �

0

(app)

� [ fx

i

: �

i

1�i�n

g ` R

i

: �

i

� [ fx

i

: �

i

1�i�n

g ` P : !

�

jx

1

;:::x

n

` def x

1

= R

1

; : : : ; x

n

= R

n

inP : !

(def)

2.2 Description of the �-calculus Fragment of �?

In this section, we consider the operators directly derived from the �-calculus, that is:

P;Q;R : : : ::= : : :

�

�

O

�

�

hu ( P i

�

�

(P j P )

�

�

(�u)P

The new construct introduced here is the declaration: hu ( P i, that can be interpreted as a
resource, located at u, accessible only once2. This construct is useful to model processes with
a mutable state.

According to the conclusion of the original presentation of �? [6], the use of references is
restricted in our calculus: although they can appear under a �-abstraction, they can’t be ab-
stracted upon. For example, (�u)hu ( P i is not a valid process. This restriction ensures that
no new declaration on a given reference can be dynamically created, i.e. the well-known re-
striction that no receiver can be created on received names. Structural rules for this fragment
are the “scope extrusion” rule of �, the usual rules for the commutative monoid (P; j ; O) and
rules managing application:

O j P � P P j Q � Q j P

P j (Q j R) � (P j Q) j R ((�u)P ) j Q � (�u)(P j Q) (if u 62 fn(Q))

(P j Q) a � (P a) j (Q a) hu ( P i a � hu ( P i

Reduction consumes a declaration and fetches its definiendum at the output location:

hu ( P i j u a

1

: : : a

n

! P a

1

: : : a

n

Type System 2 �-Calculus Fragment

� ` O : ?

(nil)
�; u : � ` P : �

�; u : � ` hu ( P i : ?

(decl)

� ` P : �

�

jx

` (�x )P : �

(new)
� ` P : � � ` Q : �

� ` P j Q : �

(par)

2 the declaration hu ( (�x)P i is the equivalent of the �-calculus input guard u(x):P
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2.3 Description of the Record Fragment of �?

Records are incrementally built from the empty record: [ ], using the extend/update oper-
ation: [ l = P ; Q ] that adds/overrides the field l with value P to the record Q. Intuitively,
a record is a function from a finite set of labels to values, and selection is function applica-
tion. Therefore, the structural rules for records selection (P � l) are the same as the ones for
application.

(P j Q) �l � (P �l j Q �l) hu ( P i �l � hu ( P i � � �

We use [ l

1

= P

1

; : : : ; l

n

= P

n

] instead of [ l

1

= P

1

; : : : ; [ l

n

= P

n

; [ ] ] ] whenever the l

i

’s are
distinct. There are two reduction rules for records:

[ l = P ; Q ] �l ! P and [ l = P ; Q ] �k ! Q �k (if k 6= l)

Our formalization of records is closely related to the one proposed by Wand [28], since there

Table 2 Subtyping Rules

� � !

� <: !

(sub axiom)
?<: �

(sub bottom)
� <: >

(sub top)

�

1

<: �

2

�

2

<: �

3

�

1

<: �

3

(sub trans)
� <: � ) � <: !

��:� <: ��:!

(sub rec)

!

1

<: �

1

�

2

<: !

2

�

1

! �

2

<: !

1

! !

2

(sub arrow)
� <: �

0

! <: !

0

[ l : ! ; � ]<: [ l : !

0

; �

0

]

(sub record)

is a single operation to either modify or add a field to a record. Thus, the definition of a
maximal type (that types error processes, such as a “bad selection”: ([ ] �l)) is crucial to prove
subject reduction (and principal type if the type system is extended with polymorphism).
Indeed, it allows the expression of “constraints” on types equivalent to those expressible
with row-variables [23].

(error) [ ] � [ l : > ; [ ] ]

(swap) [ l : � ; [ k : ! ; � ] ] � [ k : ! ; [ l : � ; � ] ] (if k 6= l)

(crush) [ l : � ; [ l : ! ; � ] ] � [ l : � ; � ]

For example, the restriction operation Pnl of [8], that removes a field of label l from P , can be

Type System 3 Record-Calculus Fragment

� ` [ ] : [ ]

(void)
� ` P : � � ` Q : !

� ` [ l = P ; Q ] : [ l : � ; ! ]

(record)

� ` P : [ l : � ; ! ]

� ` (P �l) : �

(selection)
� ` P : � � <: !

� ` P : !

(subt)
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coded in �

? with [ l = e ; P ] (and e a constant of type >). We also define an equivalence over
types, � � !, that is a congruence with three axioms. In particular one can prove, using rule
(error), that [ ] � [ l

1

: >; : : : ; l

n

: > ]. Rules for subtyping are rather standard. In particular,
the usual notion of width subtyping can be derived in our system.

Proposition 1 (Width subtyping). [ l

1

: �

1

; : : : ; l

n+m

: �

n+m

] <: [ l

1

: �

1

; : : : ; l

n

: �

n

]

The proof uses the rules (sub record), (swap) and (error). For example [ k : �; l : � ]<: [ l : � ] is
a consequence of: [ k : � ; [ l : � ] ] <: [ k : > ; [ l : � ] ] � [ l : �; [ k : > ] ] � [ l : � ]. We also have
the standard result of subject reduction.

Proposition 2 (subject reduction for Type System 1 + 2 + 3). If � ` P : � and P ! P

0,
then � ` P

0

: � .

2.4 Operational Equivalence

We define a relation of observational equivalence between �

?-terms ( � ) used to prove the
correctness of our interpretation of Ob

1<:

(Theorem 6). This relation is the biggest bisimu-
lation that preserves simple observations called barbs and that is a congruence [17] (is is a
variant of the weak barbed congruence [20]). But, whereas the observable behaviours con-
sidered in CCS and � are the visible outputs3, we choose instead to observe the presence of
values, i.e. abstractions, as in the definition of traditional Morris-style equivalences in the �-
calculus [4, ex. 16:5:5]. We say that the process P is a value (is observable) if it is structurally
equivalent to (�~u)((�x)V j R). This is denoted P #. The weak version of barbs used in the
definition of � is P + =

def

9V; P !

�

V #.

Definition 3. A relation S is a weak barbed simulation if for each (P;Q) 2 S, (1) : whenever
P ! P

0 then Q !

�

Q

0 and (P

0

; Q

0

) 2 S; (2) : P + implies Q +. S is a (weak) barbed bisim-
ulation if S and S

�1 are (weak) barbed simulation. P and Q are observationally equivalent,
written P �Q, iff (P;Q) 2 S for some weak barbed bisimulation S that is also a congruence.

3 Modeling Objects in the Blue Calculus

Before to introduce the specification of the object constructs and their translation in �

?, we
present the example of the prototype of all objects: the mutable cell. Indeed, in our intuition,
the object identity is the reference at which the object state can be fetched, its state is a record
of methods (as in the classical recursive records semantic [8]) and encapsulation is naturally
implemented using mutable cells. Let R

o

(b) denotes the record:

R
o

(b) =

def

�

get = (o b j b); put = (�x)(o x)

�

The cell process with “name “ O is defined by:

CELL(O) =

def

def o = (�b)hO ( R
o

(b)i in o

3 this is equivalent to observe free names in head position in �?
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Application: (CELL(O) a

0

), initializes the cell to the value a
0

. It is easy to see that4
(CELL a

0

j

O �get) and (CELL a
0

j O �put a) evaluate in a deterministic way:

(CELL a
0

) j (O �get) ! def o = (�b)hO ( R
o

(b)i in (hO ( R
o

(a

0

)i j O �get)

! def o = (�b)hO ( R
o

(b)i in (R
o

(a

0

) �get)

! def o = (�b)hO ( R
o

(b)i in (o a

0

j a

0

) � (CELL a

0

) j a

0

(CELL a

0

) j (O �put a) !

�

def o = (�b)hO ( R
o

(b)i in (o a) � (CELL a)

It is interesting to notice the linear use of the reference O in (CELL(O) a). If the cell is
invoked, we consume the unique declaration hO ( R

o

(a)i. Thus, a unique message (o a

0

),
acting like a lock, is freed in the evaluation process, which, in turn, frees a single declaration
hO ( R

o

(a

0

)i. Thus, we have the invariant that there is exactly one resource available at
address O, and that this resource keeps the last value passed in a (O �put) call.

We give two generalizations of the mutable cell that will be useful to define the processes
modeling objects. First, we define a n-ary cell, i.e. a cell that memorizes n different values.
This cell uses a record with 2n fields: put

1

; : : : ; put

n

and get

1

; : : : ; get

n

instead of R
o

(b):

R
o

(b

1

; : : : ; b

n

) =

def

2

6

6

4

: : : 1�i�n

get

i

= (o b

1

: : : b

n

j b

i

);

put

i

= (�x

i

)(o b

1

: : : x

i

: : : b

n

);

: : :

3

7

7

5

NCELL(O) =

def

def o = (�b

1

: : : b

n

)hO ( R
o

(b

1

; : : : ; b

n

)i in o

(NCELL(O) a

1

: : : a

n

) j O �get

i

!

�

(NCELL(O) a

1

: : : a

n

) j a

i

It is also possible to define a cloneable cell. To this end, we extend, in CELL, the record R
o

(b)

with a new field clone and we add a recursive definition around this new cell definition. A
selection on the field clone produces a fresh cell memorizing a copy of its current value:

S
o

(b) =

def

[ clone = (o b j x

clone

b) ; R
o

(b) ] CELL(O) =

def

def o = (�b)hO ( S
o

(b)i in o

CCELL(O) =

def

def x

clone

= (�b)(�A)((CELL(A) b) j A) in CELL(O)

(CCELL(O) a

0

) j O �clone !

�

def x

clone

= : : : in (CELL(O) a

0

) j (x

clone

a

0

)

!

�

def x

clone

= : : : in (CELL(O) a

0

) j (�A)(CELL(A) a
0

j A)

3.1 A Concurrent Calculus of Objects

In order to handle more elaborate objects than the (canonical) examples of mutable cells, we
introduce a calculus of concurrent objects by specifying a set of operators and their opera-
tional semantics. In the remainder of the section, we prove that these operators (and their
associated reduction rules) are derived from �

?. We study also the derived types given to
objects. In the specification of this calculus (Table 3), we distinguish a subsetO of references
(which we call objects names, O;A;B; � � � 2 O) and we use L to denote an “object body”:
L = l

1

= &(x

1

)P

1

; : : : ; l

n

= &(x

n

)P

n

.

4 to simplify the examples, we use CELL to denote CELL(O)
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Table 3 Specification of Operators and Reduction Rules for Objects in �

?

&(x)P method with self parameter x and body P

objO =

n

l

i

= &(x

i

)P

i

1�i�n

o

in P object with n methods l
1

; : : : ; l

n

P(\ l invocation of method l

P l = &(x)Q update of method l with body &(x)P

clone(O) cloning of object O

Let L =

def

l

1

= &(x

1

)P

1

; : : : ; l

n

= &(x

n

)P

n

objO = fLgin E [O(\ l

j

] !

�

?

&

objO = fLgin E [P

j

fO=x

j

g]

objO = fLgin E [O l

j

= &(x)P ] !

�

?

&

objO = fl

j

= &(x)P; l

i

= &(x

i

)P

i

i 6=j

gin E [O]

objO = fLg in E [clone(O)] !

�

?

&

objO = fLg in (objA = fLg in E [A]) (A 62 bn(E))

An example of object is the one that produces an infinite copy of itself. Let L
1

be the
body: l = &(x)(clone(x) j x(\ l), then:

objO = fL

1

g in O(\ l !

�

�

?

&

objO = fL

1

g in (objA = fL

1

g in (A j O(\ l)) !

�

�

?

&

: : :

3.2 Interpretation of the Derived Object Constructs

Processes modeling objects are inspired from the encoding of the mutable cell. In the defini-
tion given in Table 4, an object (objO = fl

i

= &(x

i

)P

i

1�i�n

gin P ), is a n-ary cell with a field
clone to allow object cloning and 2n fields to allow method invocation (get

l

i

) and method
update (put

l

i

). In this definition, a method &(x)P is an abstraction (�x)P . This function, also
called premethod, has one argument: the name of the current object (also called the self-
parameter). Note that we restrict the scope of an object name to the definition of the object it
refers to, and that method update returns “a reference” to the modified object. This is almost
the behaviour of Ob

1<:

(see Table 5),

T
o

(O; b

1

; : : : ; b

n

) =

def

2

6

6

6

6

4

: : :

get

l

i

= (o b

1

: : : b

n

j b

i

O);

put

l

i

= (�x

i

)(o b

1

: : : x

i

: : : b

n

j O);

: : :

clone = (o b

1

: : : b

n

j x

clone

b

1

: : : b

n

)

3

7

7

7

7

5

OBJ(O) =

def

def o = (�b

1

: : : b

n

)hO ( T
o

(O; b

1

; : : : ; b

n

)i in o

Another remark is that we use only field selection and application in the definition of
cloning, method invocation and method update. Thus the definition of structural equiva-
lence allows us, for example, to derive the following laws, showing that these (derived)
operators acts like application:

(def D inP j Q)(\ l � def D in (P(\ l j Q(\ l) (hu ( P i(\ l) � hu ( P i
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Table 4 Definition of the Derived Operators for Objects

P(\ l =

def

(P �get

l

) clone(O) =

def

(O �clone) P l = &(x)Q =

def

(P �put

l

(�x)Q)

objO =

n

l

i

= &(x

i

)P

i

1�i�n

o

in P =

def

�

def x

clone

= (�f

1

: : : f

n

)(�A)(OBJ(A) f
1

: : : f

n

j A)

in (�O)((OBJ(O) (�x

1

)P

1

: : : (�x

n

)P

n

) j P )

The next result states that there is an operational correspondence between !

�

?

&

(defined in
Table 3) and ! . These properties are proved using a simple induction.

Theorem 4 (Operational Equivalence). The specification of the object reduction rules is com-
plete with respect to the encoding of objects in �?: P !

�

?

&

P

0

) P !

�

P

0. It is also sound: P ! Q

implies that Q !

�

Q

0 with P !

�

?

&

Q

0.

3.3 Derived Type System for Objects

We present now the derived type system for objects obtained using Type System 1 + 2 + 3.
We first define an abbreviation: (obj �), for the type of T

o

(O; b

1

; : : : ; b

n

). It can be proved
that:

0

@

O : �; b

1

: (� ! �

1

); : : : ; b

n

: (� ! �

n

);

o : (� ! �

1

)! � � �! (� ! �

n

)!?;

x

clone

: (� ! �

1

)! � � � ! (� ! �

n

)! �

1

A

` T
o

(O; b

1

; : : : ; b

n

) :

2

6

6

4

1�i�n

get

l

i

= �

i

;

put

l

i

= (� ! �

i

)! �;

clone = �

3

7

7

5

Thus the type of an object, which is also the type of its object name, O, is the recursive type:

(obj [ l

i

: �

1�i�n

i

]) =

def

�t:

2

6

6

4

1�i�n

get

l

i

= �

i

;

put

l

i

= (t! �

i

)! t;

clone = t

3

7

7

5

A first remark is that an object type is not covariant. That is �<:� does not implies (obj �)<:

Type System 4 Derived Type System for Objects

Let � = [ l

i

: �

1�i�n

i

]

�; x

i

: (obj �) ` P

i

: �

i

�;O : (obj �) ` P : �

�

jO

` objO =

n

l

i

= &(x

i

)P

i

1�i�n

o

in P : �

� ` O : (obj �)

� ` clone(O) : (obj �)

�; x : (obj �) ` P : �

j

� ` Q : (obj �)

� ` Q l

j

= &(x)P : (obj �)

� ` P : (obj �)

� ` P(\ l

j

: �

j

(obj �). Indeed, the type �
i

of an object method is invariant since it appears covariantly in
field get

l

i

and contravariantly in put

l

i

. Nonetheless, if an object O
1

(of type (obj �

1

), with



10

�

1

= [ l

i

: �

i

1�i�n

]) has less methods than another object O
2

(of type (obj �

2

), with �

2

=

[ l

i

: �

i

1�i�n+m

]), then (obj �

2

)<: (obj �

1

) and O

2

can be used wherever O
1

can. We say that
O

2

subsumes O
1

.

Proposition 5 (Subsumption). (obj [ l

1

: �

1

; : : : ; l

n+m

: �

n+m

]) <: (obj [ l

1

: �

1

; : : : ; l

n

: �

n

])

The proof of this result follows from Proposition 1 and rule (sub rec) in Table 2. Subsumption,
as polymorphism in ML or subtyping for records, is important to allow reuse of code, since
it allows the definition of functions that behaves uniformly over inputs of different types.
An example is the function: (�a)(a(\repaint ), of type: ((obj [ repaint : ? ])!?), that can be
applied to every objects with a method repaint of type ?.

4 Interpretation of Abadi and Cardelli Object Calculus

Abadi and Cardelli [1] have defined a functional calculus of primitive objects: &, that formal-
izes aspects of object-oriented languages such as the notion of self (methods can refer to the
object through self), subsumption (an object can emulate another object with fewer methods)
or method update. In this paper, we study Ob

1<:

, a variant of & with first-order type system
and subtyping. Although & has no notion of names or “identity”, nor notion of concurrency,
the constructs introduced in Table 3 are obviously inspired from Abadi-Cardelli’s one. This
is reflected by the simplicity of the interpretation of Ob

1<:

given in this section.

Table 5 Objects, Reduction and Types in Ob

1<:

x variable
&(x)b method with self parameter x and body b
[ l

i

= &(x

i

)b

i

1�i�n

] object with n methods labeled l

1

; : : : ; l

n

o�l invocation of method l of object o
o�l

(

) &(x)b update of method l of object o with method &(x)b

o !

&

v = [ l

i

= &(x

i

)b

i

1�i�n

] 1 � j � n

o�l

j

!

&

b

j

fv=x

j

g

(select)
o !

&

[ l

i

= &(x

i

)b

i

1�i�n

] 1 � j � n

o�l

j

(

) &(x)b !

&

[ l

j

= &(x)b; l

i

= &(x

i

)b

i

i6=j

]

(update)

Let A be [ l

i

: B

i

1�i�n

].

E;x : A ` x : A

(axiom)
E; x

i

: A ` b

i

: B

i

8i 1 � i � n

E ` [ l

i

= &(x

i

)b

i

1�i�n

] : A

(object)

E ` a : A 1 � j � n

E ` a�l

j

: B

j

(select)
E ` a : A E; x : A ` b : B

j

1 � j � n

E ` a�l

(

) &(x)b : A

(update)

the relation of subtyping is such that [ l
i

: B

i

1�i�n+m

] <: [ l

i

: B

i

1�i�n

].

E ` a : A A<: B

E ` a : B

(subsumption)

The syntax and semantics of Ob
1<:

is given in Table 5. There is a unique binder in this
calculus, namely & , that binds occurrences of x in a method declaration: &(x)b. We consider
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the weak reduction relation (such that reduction under binders is forbidden). In particu-
lar, terms of the form [ l

i

= &(x

i

)b

i

1�i�n

] are values. We assume also that o !

&

o

0 implies
E [o] !

&

E [o

0

], where E [] are &’s evaluation contexts: [:] , (E []�l

i

) and (E []�l

i

(

) &(x)b).

In Table 6, we give a translation of Ob
1<:

into our calculus of cloneable objects derived
from �

?. With this interpretation, the operation of substituting a variable with a term is re-

Table 6 Interpretation of Ob
1<:

JxK = clone(x) Jo�lK = JoK(\ l Jo�l

(

) &(x)bK = (JoK l = &(x)JbK)

J[ l

i

= &(x

i

)b

i

1�i�n

]K = objO =

n

l

i

= &(x

i

)Jb

i

K

1�i�n

o

in O

J[ l

i

: B

i

1�i�n

]K = (obj [ l

i

: JB

i

K

1�i�n

]) J;K = ; JE; x : AK = JEK; x : JAK

placed by substituting a variable with the name of a resource where the term can be fetched.
This is standard when you code a “term passing” calculus in a name passing calculus, as in
the encoding of the �-calculus in � [21]. The following theorem states that there is an op-
erational correspondence between (Ob

1<:

; !

&

) and (�

?

; ! ) and that our interpretation of
types is correct.

Theorem 6 (�? simulates Ob
1<:

). Our encoding of Ob
1<:

is complete: o !

&

o

0

) JoK !

�

� Jo

0

K, and sound: JoK ! P ) o!

&

o

0 with JoK !

�

� Jo

0

K. Moreover the interpretation of types
is correct. That is A<: B iff JAK <: JBK, and E `

Ob

1<:

a : A implies JEK `

�

?

JaK : JAK.

The proof of Theorem 6 uses an intermediate result to prove that objO = fLgin JbKfO=xg is
operationally equivalent to Jbfv=xgK whenever (objO = fLg in O) is the translation of v:

Lemma 7 (“object-replication” theorem). Let M[] be a “multi-hole” context. If O does not ap-
pear in M[], then: objO = fLg in M[clone(O)] � M[objO = fLg in O]. As a corollary, if O
does not appear in P and Q, except possibly in a clone(O) statement, then:

(1) objO = fLg in (P j Q) � (objO = fLg in P ) j (objO = fLg in Q)

(2) objO = fLg in clone(O) � objO = fLg in O

Our interpretation can be easily extended to an imperative variant of Ob
1<:

by defining
Jclone(o)K =

def

clone(JoK) and Jletx = o in bK =

def

def x = JoK in JbK (we obtain the imper-
ative &-calculus of [1], but with a “call-by-name” let-operator). It is interesting to note that
some equivalences true in the imperative calculus [15] are preserved by the translation.

Lemma 8 (Some Equivalences on JOb

1<:

K). If v is the object [ l
i

= &(x

i

)b

i

1�i�n

], then

Jclone(v)K � JvK and:

Jv �l

j

K � def x

j

= JvK in Jb

j

K J(v �l

j

(

) &(x)b)�l

j

K � def x

j

= Jv �l

j

(

) &(x)bK in JbK
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5 Conclusions and Future Work

We have presented a concurrent calculus of imperative objects derived from the blue calcu-
lus and we have used it to give an encoding of Ob

1<:

, a typed sequential object calculus, that
preserves subtyping. Process calculi have been extensively used for reasoning on the foun-
dation of object-oriented computation, but our aim was different here. Instead of focusing on
the definition of a formal semantics for an existing programming languages, we have rather
tried to prove that �? is a suitable basis for the design of a higher-order concurrent program-
ming language with object-oriented features. This goal was achieved by interpreting objects
as a special kind of processes. In this respect, we follow Pierce’s and Turner’s works on the
asynchronous � calculus, that was motivated by the design of the PICT [25] programming
language.

The encoding of Abadi and Cardelli typed object calculus was a successful test for the
expressiveness of �?, since we give a simple and direct (i.e. without use of a continuation
passing style) typed interpretation of Ob

1<:

in a first order process-calculus. It is interesting
to note that our interpretation of types is similar to the one given in [26]. This lead us to the
conjecture that our encoding can be extended to Ob

1<:�

, a variant of Ob
1<:

with recursive
types.

Development of the work presented here are being conducted at the moment. For exam-
ple, using result obtained on �

? [10], we have defined a polymorphic type system “a la ML”
for our object calculus. There is also ongoing work aiming at adding a notion of location to
�

? [11]. It would be interesting then to give an interpretation of distributed object-oriented
languages, such as OBLIQ [9], that lacks a formal definition and techniques to reason about
program equivalences, in a distributed blue calculus. Another application is the modeling
of Object Request Brokers, like CORBA. Indeed, record types are reminiscent of the interface
description language used in ORBs [22]. Thus, we believe that �? is a calculus suitable for
the verification of distributed objects applications built using these tools. Finally, it will be
interesting to study the equivalence obtained on the &-calculus using the operational equiva-
lence, � , defined in Sect. 2.4 and the encodings of & terms in �

?. Some examples were given
in Lemma 8.
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