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Abstract. In this paper, we study a model of migrating objects based on the blue calculus extended
with a very simple system of localities and we show how two migration behaviors can be defined,
namely those of bouncing and quiet objects. These “migration control abstractions” are defined sep-
arately from other aspects of the object definition and can be easily reused, thus providing more
flexibility in the definition of “migration constraints”.

1 Introduction

The purpose of this extended abstract is to study how the behavior of concurrent objects
with respect to migration, can be defined orthogonally from other aspects of the object defi-
nition, such as synchronization constraint for example. To give the reader an intuition: many
researches have been conducted on the problem of defining synchronization abstractions for
concurrent objects [10, 7], likewise, we are interested here in the definition of migration ab-
stractions that can be reused to implement distributed objects. To this end, we give two ex-
amples of objects that act, respectively, according to the well-known client/server and agent
paradigms.

We first present the calculus used to define objects, namely a version of the blue calcu-
lus [4] enriched with a simple model of localities so that we can deal with migration. In this
distributed blue-calculus (D�

?), objects can be represented “as processes” [8]. In particular,
we study in Sect. 3, the canonical example of the mutable cell. Then we show, using a slight
modification in the process definition, how one can mimic two migration behaviors: the ob-
ject that always resides at the same location and the object that migrates to the location of its
clients.

2 The Calculus

The blue calculus (�?) is a direct extension of both the � and the � calculi. In this paper,
we consider a very simple distributed version of the original calculus introduced in [4] (see
Table 1) obtained by adding locations, located processes ([a :: P ]) and a primitive for code
transfer (go a:P ).

In D�

?, terms are defined using three disjoint kinds of names: references: u; v; w � � � 2
R, labels: k; l;m � � � 2 L and localities (or places) a; b; c � � � 2 P . The definition def D inP

(where D is a sequence of mutually recursive definitions u

1

= P

1

; : : : ; u

n

= P

n

, with the
u

i

’s pairwise distinct) is a restricted an replicated version of the declaration hu ( P i, that
can be understood as a resource, located at u, accessible only once1. An important restriction
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1 the declaration hu ( (�x)P i is the equivalent of the �-calculus input guard u(x):P . This construct is useful
to model processes with a mutable state.
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imposed over terms is that no declaration can be defined on an abstracted reference (e.g.,
(�u)hu ( P i is not a valid process). This restriction, equivalent in � to the one that forbids
reception on received names, ensures that no new declaration on a given reference can be
dynamically created.

Table 1 Syntax of the Blue Calculus with Simple Location System: D�

?

x ::= u

�

�

a values

P ::= O

�

�

(P j P )

�

�

(�u)P

�

�

go a:P

�

� processes
u

�

�

(�x)P

�

�

(P x)

�

� agents
hu ( P i

�

�

def u

1

= P

1

; : : : ; u

n

= P

n

inP

�

� declarations

[ l

i

= P

i

1�i�n

]

�

�

(P �l) records

S ::= [a :: P ]

�

�

(S j S)

�

�

(�u)S locations

The model chosen to deal with distribution is very simple. A site is a named box, [a ::

P ], containing a running threads P . For the sake of simplicity, we consider a flat system of
locations (that is located processes are not nested) as in [9, 2]. We consider also the operation:
go a:P , that spawns a thread P in the location a and we denote u@a the process go a:u

that sends a message at location a. The reduction semantics of D�

? is given in a chemical
style [3] and uses a structural equivalence (�). The definition of the reduction relation (! )
uses the standard notion of evaluation context (E []), i.e. contexts such that the hole does not
occur under a guard2. The definition includes three general rules:

Q � P P ! P

0

Q ! P

0

P ! P

0

E [P ] ! E [P

0

]

P ! P

0

[a :: P ] ! [a :: P

0

]

We refer the reader to [4, 8] for a full presentation of the reduction semantics for the
calculus without localities. Axioms for structural equivalences are the usual axioms for the
�-calculus (including scope extrusion) extended with rules to manage application. We have
omitted the rules for record selection, (P �l), that acts like application and we refer the reader
to [5] for details. We also add two new axioms in the distributed calculus to allow spawning
of restricted names over locations: ({) to distribute references restricted by a (�u)P state-
ment, and (|) to distribute definition over parallel composition. Note that the equivalent of
relation (|) in the �-calculus, is obtained by using a behavioral equivalence. This is the the
well-known replication theorem of [11, 12] in the case of channels with output-only capabil-
ities.

def D in (def D

0

inP ) � def D;D

0

inP (def D inP ) x � def D in (P x)

(P j Q) x � (P x) j (Q x) (hv ( P i x) � hu ( P i

(go a:P ) x � go a:(P x) def D in (go a:P ) � go a:(def D inP )

({) [a :: (�u)P ] � (�u)([a :: P ]) (|) def D in (P j Q) � (def D inP j def D inQ)

2
E [] ::= [:]

�

�

(E [] x)

�

�

(E [] j P )

�

�

(P j E [])

�

�

(�u)(E [])

�

�

def D inE []

�

�

(E [] �l)
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The reduction relation embeds different mechanisms. “Small” � reduction (1), definition
folding (2), resource fetching (3) and record selection (4):

(1) (�x)P y ! Pfy=xg

(2) def D;u = R;D

0

inE [u x

1

: : : x

n

] ! def D;u = R;D

0

inE [R x

1

: : : x

n

] (u 62 bn(E))

(3) hu ( P i j u x

1

: : : x

n

! P x

1

: : : x

n

(4) [ l = P ; Q ] �l ! P and [ l = P ; Q ] �k ! Q �k (k 6= l)

We also add the reduction rule for the go statement (note that process P cannot execute
under the guard go a:P )

(5) [b :: (go a:P j Q)] j [a :: R] ! [b :: Q] j [a :: (P j R)]

Example 1. A typical reduction sequence in D�

? is the one such that a message carrying a
private reference is send remotely.
�

[b :: def u = R in (v@a u j P )]

j [a :: hv ( Qi]

�

�

�

[b :: go a:(def u = R in v u) j def u = R inP ]

j [a :: hv ( Qi]

�

!

�

�

[b :: def u = R inP ]

j [a :: def u = R in (Q u)]

�

(if u 62 fn(Q))

To conclude, let us just state that, while the blue calculus is a name passing calculus (that
is a process can only be applied to a name and not to another process), the “high-order”
�-calculus application can be recovered using the definition:

(P Q) =

def

def u = Q in (P u) (u 62 fn(P ) [ fn(Q))

Moreover this definition of application is coherent with our model of distribution since we
can prove that (go a:P ) Q � go a:(P Q).

3 Modeling Objects in the Blue Calculus

In this extended abstract, we will concentrate on a single example of object, namely the
“mutable cell”. Although it is only an example, it is a representative one, since in [8] we
show how to derived a “complete” calculus of concurrent objects using cells and extensible
records. Thus, the result given for the cell example can be derived for more general objects.
The constructs of this object calculus, together with its derived operational rules, are given
for information in Sect. 3 (consideration on types are omitted). Let R

o

(b) denotes the record:

R
o

(b) =

def

�

get = (�x)(o b j x b); put = (�x)(o x)

�

The cell process with “name “ O is defined by:

CELL(O) =

def

def o = (�b)hO ( R
o

(b)i in o

and the application: (CELL(O) a

0

), initializes the cell to the value a

0

. It is easy to see that3

(CELL a

0

j O �get r) and (CELL a

0

j O �put a) evaluate in a deterministic way:

(CELL a

0

) j (O �get r) ! def o = (�b)hO ( R
o

(b)i in (hO ( R
o

(a

0

)i j O �get r)

! def o = (�b)hO ( R
o

(b)i in (R
o

(a

0

) �get r)

!

�

def o = (�b)hO ( R
o

(b)i in (o a

0

j r a

0

) � (CELL a

0

) j r a

0

(CELL a

0

) j (O �put a) !

�

def o = (�b)hO ( R
o

(b)i in (o a) � (CELL a)

3 to simplify the examples, we use CELL to denote CELL(O)
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It is interesting to notice the linear use of the reference O in (CELL(O) a). If the cell is
invoked, we consume the unique declaration hO ( R

o

(a)i. Thus, a unique message (o a

0

),
acting like a lock, is freed in the evaluation process, which, in turn, frees a single declaration
hO ( R

o

(a

0

)i. Thus, we have the invariant that there is exactly one resource available at
address O, and that this resource keeps the last value passed in a (O �put) call.

4 A Concurrent Calculus of Objects

More elaborate objects than the (canonical) example of the mutable cell can be defined. In
this section, we introduce a calculus of concurrent objects by specifying a set of operators and
their operational semantics, and we define these operators (and their associated reduction
rules) with an encoding in �

?. In the specification of this calculus (Table 2), we distinguish
a subset O of references (which we call objects names, O;A;B; � � � 2 O) and we use L to
denote an “object body”: L = l

1

= &(x

1

)P

1

; : : : ; l

n

= &(x

n

)P

n

.

Table 2 Specification of Operators and Reduction Rules for Objects in �

?

&(x)P method with self parameter x and body P

objO =

n

l

i

= &(x

i

)P

i

1�i�n

o

in P object with n methods l
1

; : : : ; l

n

P(\ l invocation of method l

O l = &(x)Q update of method l with body &(x)P

clone(O) cloning of object O

Let L =

def

l

1

= &(x

1

)P

1

; : : : ; l

n

= &(x

n

)P

n

objO = fLgin E [O(\ l

j

] !

�

?

&

objO = fLgin E [P

j

fO=x

j

g]

objO = fLgin E [O l

j

= &(x)P ] !

�

?

&

objO = fl

j

= &(x)P; l

i

= &(x

i

)P

i

i 6=j

gin E [O]

objO = fLg in E [clone(O)] !

�

?

&

objO = fLg in (objA = fLg in E [A]) (A 62 bn(E))

An example of object is the one that produces an infinite copy of itself. Let L be the body:
l = &(x)(clone(x) j x(\ l), then:

objO = fLg in O(\ l !

�

�

?

&

objO = fLg in (objA = fLg in (A j O(\ l)) !

�

�

?

&

: : :

another example, using method overriding, is:

objO = fLg in (O l = &(x)x)(\ l !

�

?

&

objO = fl = &(x)xg in O(\ l

!

�

?

&

objO = fl = &(x)xg in O

4.1 Interpretation of the Derived Object Constructs

Processes modeling objects are inspired from the encoding of the mutable cell. In the def-
inition given in Table 3, an object (objO = fl

i

= &(x

i

)P

i

1�i�n

gin P ), is a cell with an ad-
ditional field clone to allow object cloning. In this definition, a method &(x)P is an abstrac-
tion (�x)P . This function, also called premethod, has one argument: the name of the cur-
rent object (also called the self-parameter). The cell “memorizes” a record of premethods:
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[ l

i

= (�x

i

)P

i

1�i�n

], as in the classical recursive records semantics [6]. Note that we restrict
the scope of an object name to the definition of the object it refers to. Thus we have the in-
variant that there is a unique declaration for each object names. Moreover, method update
returns “a reference” to the modified object. This is almost the behaviour of (sequential)
objects in the & calculus of Abadi and Cardelli [1].

S
o

(b) =

def

2

4

get = (�x)(o b j x b O);

modify = (�x)(x o b j O);

clone = (o b j x

clone

b)

3

5

OBJ(O) =

def

def o = (�b)hO ( S
o

(b)i in o

Table 3 Definition of the Derived Operators for Objects

P(\ l =

def

(P �get (�x)(x �l)) clone(O) =

def

(O �clone)

O l = &(x)Q =

def

(O �modify (�ob)(o [ l = (�x)Q ; b ]))

objO =

n

l

i

= &(x

i

)P

i

1�i�n

o

in P =

def

�

def x

clone

= (�b)(�A)(OBJ(A) b j A)

in (�O)((OBJ(O) [ l

i

= (�x

i

)P

i

1�i�n

]) j P )

Another remark is that we use only field selection and application in the definition of
cloning, method invocation and method update. Thus the definition of structural equiva-
lence allows us, for example, to derive the following laws, showing that these (derived)
operators acts like application:

(def D inP j Q)(\ l � def D in (P(\ l j Q(\ l) (hu ( P i(\ l) � hu ( P i

The next result states that there is an operational correspondence between !

�

?

&

(defined in
Table 2) and ! . These properties are proved using a simple induction.

Theorem 2 (Operational Equivalence). The specification of the object reduction rules is com-
plete with respect to the encoding of objects in �?: P !

�

?

&

P

0

) P !

�

P

0. It is also sound: P ! Q

implies that Q !

�

Q

0 with P !

�

?

&

Q

0.

5 Quiet Versus Bouncing Cells

In our model of distribution, synchronization (rule (3)) does not extend over location bound-
aries. Thus communication is local, and, to interact with a remote declaration at location a,
one has to first spawn a message at a. For example, the process ([b :: u] j [a :: hu ( P i])

is inert while ([b :: u@a] j [a :: hu ( P i]) reduces to ([b :: O] j [a :: P ]). Another remark
is that the result of the communication is always executed at the location of the declaration.
This is reminiscent of the client-server paradigm of computation such that clients “controls”
the computation, that takes place at the server location, by sending remote messages.
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The “migration behavior” of the mutable cell object and of the declaration hO ( R
o

(b)i

are equal. For example, to read the content of the mutable cell from a remote location, one
has to (1) move to the location of the cell, then (2) invoke the method read and finally (3)
fetch the result back. After completion, the cell is still at the same location.

 

[a :: (CELL a

0

) j P ] j

[b :: (O@a �get r@b) j Q]

!

!

�

[a :: (CELL a

0

) j (r@b a

0

) j P ] j [b :: Q]

!

�

[a :: (CELL a

0

) j P ] j [b :: (r a

0

) j Q]

Likewise, objects created using the cell also share the same “migration behavior”, i.e. they
are quiet objects since they never leave the location of their creation.

In this section, we define a new migration abstraction, namely the agent behavior, based
on a new declaration statement: hu ( P i

agent

(see Tab. 5), that can be derived in D�

?.
Roughly speaking, the result of a remote communication involving hu ( P i

agent

takes place
at the client location instead of the declaration one.

Table 4 Two Distributed Cells

CELL(O) =

def

def o = (�b)hO ( R
o

(b)i

c=s

in o

AGTCELL(O) =

def

def o = (�b)hO ( R
o

(b)i

agent

in o

The operational semantics of an agent declaration strongly depends on the distribution
of the processes. Indeed in �

? (and in �) there are no explicit locations and (therefore) where
a communication comes from is not observable. But this information does count in a dis-
tributed setting. If we redefine the cell object using hO ( [ : : : ]i

agent

instead of hO ( [ : : : ]i,
denoting it AGTCELL, we obtain a mutable cell bouncing from locations to locations accord-
ing to communications with the client.

 

[a :: (AGTCELL a

0

) j P ] j

[b :: (O@a �get r) j Q]

!

!

�

 

[a :: P ] j

[b :: (AGTCELL a

0

) j (r a

0

) j Q]

!

to sketch the derivation of this new construct, let us just say that remote messages [b :: u@a]
are translated to [b :: go a:(u b)] (that is the same message with, as extra argument, the
“departure location”), and that the declaration hu ( P i

agent

and hu ( P i

c=s

are defined by:

hu ( P i

agent

=

def

hu ( (�a)(go a:P )i

hu ( P i

c=s

=

def

hu ( (�a)P i (with a 62 fn(P ))

Other object migration abstractions can be uniformly defined by first defining a new
kind of declaration. For example, an applet object can be interpreted as an object that does
not change location but that spawn a copy (or clone) of itself at the location of its client.
We can give this behavior to an object using, for its definition, a new declaration construct,
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hu ( P i

applet

(see Tab. 5), that can also be derived in D�

?. For example hu ( P i

applet

can
be translated to:

hu ( P i

applet

=

def

def x = hu ( (�a)(go a:P j x)i inx

Table 5 Client/Server, Agent and Applet Communications

0

@

[a :: hu ( P i

c=s

j R] j

[b :: (def D inu@a v

1

: : : v

n

) j Q]

1

A

!

�

 

[a :: (def D inP v

1

: : : v

n

) j R] j

[b :: Q]

!

 

[a :: hu ( P i

agent

j R] j

[b :: (def D inu@a v

1

: : : v

n

)) j Q]

!

!

�

 

[a :: R] j

[b :: (def D inP v

1

: : : v

n

) j Q]

!

 

[a :: hu ( P i

applet

j R] j

[b :: (def D inu@a v

1

: : : v

n

)) j Q]

!

!

�

 

[a :: hu ( P i

applet

j R] j

[b :: (def D inP v

1

: : : v

n

) j Q]

!

6 Conclusions and Future Work

A challenging problem encountered in the design of programming languages with concur-
rent objects, is to be able to express the synchronization control of objects in a compositional
and reusable way. Now that “network-oriented” languages have added functionalities to re-
motely download code and to migrate objects, a similar problem arises in the description of
the migration behavior.

In the present paper, we have presented how two abstractions for the definition of the
migration behavior can be applied to define mutable cell objects that react differently when
invoked by a remote client. Using a translation of a calculus of concurrent objects in �

?

defined in [8], we claim that those abstractions can be uniformly applied to every object
creation. Moreover, These abstractions can be transposed to other process calculi, and in
particular to distributed versions of the �-calculus [14, 9, 2], and to other interpretation of
objects [13].

The principal advantage of defining “standardized behaviors of migration”, is that we
can define migrating objects from objects designed in an non-distributed language without
adding any explicit thread of control, thus providing a flexible and simple way to auto-
matically add migration features to objects. But further works must be done to define more
elaborated behaviors than those presented in this abstract. For example it will be interesting
to give an accurate model of the mobile agents behavior as defined in TELESCRIPT [15].
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