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Abstract. We describe a method for automatically testing a model-
checker for timed behavioral properties. We consider the case of an
observer-based model-checker, meaning that the relationship between a
model and its specification is interpreted as the composition of the model
with an observer of its behavior. In this context, a major problem is to
prove the correctness of observers.

In this work, we deal with systems expressed using Fiacre, a formal mod-
elling language for realtime, reactive systems. For requirements, we con-
sider specifications expressed using a set of realtime verification patterns,
which are translated into observers. We describe a graphical verification
method that has been used to gain confidence on our interpretation of
patterns into observers. Our method provides a formal, automatic way
to check that an observer for a specification pattern is correct, that is,
a proof that an observer faithfully captures the semantics of its associ-
ated pattern. This general approach is complementary to the use of more
heavy-duty verification methods, such as interactive theorem prover, and
can be used to debug the implementation of new observers.

1 Introduction

A number of model-checking tools rely on the use of observers, meaning that
the relationship between a model and its specification is interpreted as the com-
position of the model with an observer of its behavior. However, few of these
tools provide a method to check the correctness of their observers. We are faced
with a common problem, so judiciously summarized in Plato’s famous conun-
drum: “who guards the guardians?” Our (partial) solution to this question is
quite simple, since we propose to manipulate our verification toolchain in order
to check itself. While this method is not enough to prove the correctness of a
verification tool, it is complementary to the use of more heavy-duty software
verification methods, such as interactive theorem prover, and can be used to
debug new or optimized implementations.

In this paper, we describe our method on an integrated verification toolchain
for Fiacre [5,7], a formal specification language used to model reactive systems
with hard, realtime constraints. For verification purposes, Fiacre models can be
compiled into to a generalization of Time Petri Nets [13] (TPN) with priorities
and data variables and then checked using Tina, the TIme Petri Net Analyzer.
The Tina toolbox [6] includes several tools for the edition and verification of



extended TPN, such as muse (a modal p-calculus model-checker) and selt (a
model-checker for State/Event LTL). We will make use of these two tools in our
work (see Sect. 4).

More recently, the Fiacre toolchain has been extended to support the verifi-
cation of timed behavioral properties. Instead of adapting model-checking algo-
rithms for timed extensions of temporal logic, such as TCTL, we propose a new
requirement specification language based on a set of timed patterns that extends
the specification language of Dwyer et al. [9] with hard, realtime constraints. For
example, we define a pattern “Present A after B within [d,d>[” to express that
event A must occur within d; units of time (u.t.) of the first occurrence of B, if
any, but not later than ds u.t. In our toolchain, specifications expressed using
verification patterns are translated into observers (see [1,2] for a complete de-
scription of timed patterns and observers). From this, we transform the problem
of checking timed patterns into the simpler problem of checking LTL properties
on the composition of the system with an observer.

The idea is not to automatically generate the observers from a formal defini-
tion of patterns but, rather, to provide several candidates for each pattern and
then to choose the best observer, performance-wise. To prove the correctness
of observers—and also the correctness of their implementation—we propose a
“graphical verification method" that can been used in order to gain confidence
on our verification toolchain. Our method provides a formal, automatic way to
test whether an observer for a specification pattern is correct, meaning that:
(1) the verification results obtained with the observer are sound with respect to
the semantics of patterns (if the pattern is not satisfied then the observer will
detect a problem); and that (2) the observer is innocuous, or non-intrusive (the
observer will inspect the whole state space of the system and cannot interfere
with it).

To check the correctness of an observer, we have defined in [2] a complete
framework that comprises a formal semantics for patterns and timed traces as
well as formal definitions (and proof methods) for checking the soundness and
innocuousness of observers. This formal framework has been partially imple-
mented in the Coq proof assistant [10], which means that we are able to prove
the correctness of an observer using Coq. Nonetheless, this method can be quite
tedious and problems with an observers could be detected very late during the
proof, which mean that a lot of efforts could go to waste and that it is expan-
sive to test new observers. The graphical method described in this paper is a
solution to this problem, since it allows us to “debug observers” before we prove
them correct. In this respect, the two methods are complementary: we use the
graphical proof to reason about the observer at an early step, before doing for-
mal verification. Moreover, our graphical method tests our implementation of
the tool (and not merely our definition of the observers), which mean that we
could detect problems that have been introduced during the transciption of our
algorithm into actual code.

Outline. The rest of the paper is organized as follows. In Sect. 2, we give a brief
definition of Fiacre and introduce the technical notations necessary to define the



semantics of patterns and time traces. In Sect. 3, we present a selection of timed
patterns and define their corresponding observers using the Fiacre syntax. Be-
fore concluding, we describe our graphical verification method and show how to
use muse—our modal p-calculus model-checker—to automatize the verification
process.

2 Technical Background

We consider systems modeled using Fiacre (see Sect. 2.1) and requirements ex-
pressed using specification patterns, which define timing and behavioral con-
straints on the execution of a system. The requirements, and the semantics of
Fiacre are based on a notion of timed traces (defined in Sect. 2.2), which are
sequences mixing events and time delays. In the remainder of the text, we will
use two alternative methods to define sets of timed traces: Metric Temporal
Logic—a timed extension of LTL—and first-order formulas over timed traces.

2.1 The Fiacre Language

Fiacre (http://projects.laas.fr/fiacre/) is a formal specification language de-
signed to represent both the behavioral and timing aspects of reactive systems.
The design of the language is inspired by Time Petri Nets for its timing primi-
tives, while the integration of time constraints and priorities into the language
can be traced to the BIP framework [3]. A formal definition of the language
is given in [5,7]. Fiacre programs are stratified in two main notions: processes,
which are well-suited for modeling structured activities, and components, which
describes a system as a composition of processes, possibly in a hierarchical man-
ner. We give in Fig. 1 a simple example of Fiacre specification for a mouse button
with double-click. The behavior, in this case, is to emit the event double if there
are more than two click events in strictly less than one unit of time (u.t.).

Processes: a process is defined by a set of parameters and control states, each as-
sociated with a set of complex transitions (introduced by the keyword from). The
initial state of a process is the state corresponding to the first from declaration.
Complex transitions are expressions that declares how variables are updated and
which transitions may fire. They are built from deterministic constructs avail-
able in classical programming languages (assignments, conditionals, sequential
composition, ...); non-deterministic constructs (such as external choice, with
the select operator); communication on ports; and jump to a state (with the
to or loop operators). For example, in Fig. 1, we declare a process named Push
with four communication ports (click to delay) and one local boolean variable,
dbl. Ports may send and receive typed data. The port type none means that no
data is exchanged; these ports simply act as synchronization events. Regarding
complex transitions, the expression for sl, for instance, declares two possible
behavior when in state sl: first, on a click event, set dbl to true and stay in state
sl; second, on a delay event, change to state s2.



process Push [click : none, component Mouse [click : none,
single : none, single : none,
double : none, double : none] is

delay : none] is port delay : none in [1,1]

states 0, sl, s2 priority delay > click

var dbl : bool := false

par
from sO click; to sl Push [click, single, double, delay]
from sl end

select

click; dbl := true; loop
[] delay; to s2
end

from s2
if dbl then double
else single end;
dbl := false; to s0

Fig. 1. A double-click example in Fiacre

Components: a component is built from the parallel composition of processes
and/or other components, expressed with the operator par Py || .. .|| P, end. In
a composition, processes can interact both through synchronization (message-
passing) and access to shared variables (shared memory).

Components are the unit for process instantiation and for declaring ports
and shared variables. The syntax of components allows to associate timing con-
straints with communications and to define priority between communication
events. The ability to express directly timing constraints in programs is a distin-
guishing feature of Fiacre. For example, in the declaration of component Mouse
(see Fig. 1), the port statement declares a local event delay and asserts that
a transition from sl to s2 should take exactly one unit of time. Additionally,
the priority statement asserts that a transition on event click cannot occur if a
transition on delay is also possible.

Probes and observers: the Fiacre language has been extended, recently, to allow
the definition of observers, which are a distinguished category of sub-programs
that interact with other Fiacre components only through the use of probes. A
probe is used to observe modifications in the system without interfering with it;
probes react to the occurrence of an event without engaging in it.

A typical probe declaration is of the form path/obs, where obs denotes the
observable and path defines its context, that is a path to the component (or pro-
cess) instance where Oobs is defined. In our setting, the observable events are
instantaneous actions involved in the evolution of the system: it can be a tran-
sition on the port p (denoted event p); a process that enters the state s (denoted
state s); or an expression including shared variables, say exp, that changes value
(denoted value exp). For instance, in the case of the double-click program, a probe
triggered when the (first) instance of process Push, under the component Mouse,
is in the state s2 would have the form (Mouse/1/state s2). Finally, probes can be



composed using boolean connectives. For instance, the probe not (Mouse/event
click) is triggered by any event that is not a communication over the port click.

process NeverTwice [A:sync] is component Obs is
states idle, once, error port p:sync is Mouse/event click
from idle A ; to once par NeverTwice [p] end

from once A ; to error

Fig. 2. A simple observer example

An observer is a regular Fiacre program where ports are associated to probes
(using the keyword is); ports associated with a probe have the reserved type sync.
We give a naive example of observer in Fig. 2, where the component Obs monitors
synchronizations on the event click. In this example, the process neverTwice will
reach the state error if its probe parameter, A, is triggered more than once. In
the remainder of the text, we use the notation (Mouse || Obs) to denote the
program obtained by concatenating the declaration of these two components
(i.e. the code from Fig. 1 with the code from Fig. 2). As a consequence, we are
able to detect if the system can emit two single click events just by checking if
the process neverTwice can reach the state error in (Mouse || Obs). This can be
easily achieved using an LTL model-checker (the selt tool in our case) with the
property [1-(0bs/1/state error) (always, not Obs/1 is in state error, where
Obs/1 is the first process instance in the definition of Obs).

2.2 Timed Traces, Metric Temporal Logic and First-Order formulas
over Traces

A timed trace is a (possibly infinite) sequence of events and time delays. In our
context, observable events are: communication on a port; the state of processes;
and the value of variables. We use a dense time model, meaning that we consider
rational time delays and work both with strict and non-strict time bounds. In
this setting, a timed trace o is a possibly infinite sequence of events A, B, ... and
duration d(§) with § € Q. Given a finite trace o and a—possibly infinite—trace
o’, we denote oo’ the concatenation of o and o’. We will also use the function
A(o), that returns the duration (time length) of a trace o. The semantics of
a system expressed with Fiacre, say S, can be defined as a set of timed traces:
o = S if the trace o is in S. We say that a system S satisfies a timed requirement
P if the trace in S are also in P.

The semantics of a timed pattern will be expressed as the set of all timed
traces where the pattern holds. A first approach to define set of traces is to use
timed extensions of temporal logic, such as Metric Temporal Logic (MTL) [12].
MTL is is an extension of LTL where temporal modalities can be constrained by
a time interval. For instance, a system satisfies the MTL formula A Uy 51 B if, for
all its traces, the event B must occur at a time tg € [1, 3] and A holds everywhere



in the interval [0,%o[; we have o = A Uy g1 B if and only if 0 = 01 B0y with
A(oy) € [1, 3] and, for all event w in 01, w = A. (In the following, we will also use
a weak version of the “until modality”, denoted A W B, that does not require
B to eventually occur.) We refer the reader to [14] for a presentation of the logic
and a discussion on the decidability of various fragments of MTL.

An advantage of using MTL is that it provides a sound and unambiguous
framework for defining the meaning of patterns. Nonetheless, this partially de-
feats one of the original goal of patterns, that is to circumvent the use of temporal
logic in the first place. For this reason, we propose an alternative way for defining
the semantics of patterns that relies on First-Order Formulas over Timed Traces
(FOTT). For instance, when referring to a timed trace o and an event A, we
can define the “scope” o after A—that determines the part of o located after
the first occurrence of A—as the trace oo denoted by the first-order formula
F(o,09) ' 301.0 =01 Aoy A A ¢ o1.

Since the model-checking problem for MTL is undecidable [14], it is not
enough to simply translate each pattern into a MTL formula to check whether a
pattern is true for a Fiacre model. This situation can be somehow alleviated. For
instance, the problem is decidable if we disallow punctual timing constraints, of
the form [d,d]. Still, while we may rely on timed temporal logics as a way to
define the semantics of patterns, it is problematic to have to limit ourselves to
a decidable fragment of a particular logic—which may be too restrictive—or to
rely on multiple realtime model-checking algorithms—that all have a very high
complexity in practice. To solve this problem, we propose to rely on observers
in order to reduce the verification of timed patterns to the verification of LTL
formulas. This is, approximately, what we exemplified with the observer Never-
Twice defined in Fig. 2. In the next section, we provide for each pattern, P, a pair
(ObsP, ¢p) of a Fiacre observer and a LTL formula such that, for any Fiacre
model S, we have that S satisfies P if and only if (S || ObsP) satisfies ¢p.

The idea is not to provide a generic way of obtaining the observer from a for-
mal definition of the pattern. Rather, we seek, for each pattern, to come up with
the best possible observer in practice. To this end, using our toolchain, we com-
pare the complexity of different implementations on a fixed set of representative
examples and for a specific set of properties and kept the best candidates. The
need to check multiple implementations for the same patterns has motivated the
need to develop a lightweight verification method for checking their correctness.

3 A Catalog of Realtime Patterns

We have defined a catalog of patterns, using a hierarchical classification bor-
rowed from Dwyer [9]. Patterns are built from five basic categories—existence,
absence, universality, response and precedence—and can be composed using logi-
cal connectives. In each category, generic patterns may be specialized using scope
modifiers—such as before, after, between—that limit the range of the execution
trace over which the pattern must hold. Finally, timed patterns are obtained us-
ing one of two possible kind of timing modifiers that limit the possible dates of



events referred in the pattern: within /—used to constraint the delay between
two given events to be in the time interval I—and lasting D—used to constraint
the length of time during which a given condition holds (without interruption)
to be greater than D. Due to the limited space, we present only a selection of
timed patterns; a complete catalog is available in [1].

Next, we give examples of existence, absence and response patterns. Existence
patterns are used to express that, in every trace of the system, some events must
occur. On the opposite, absence patterns are used to express that some condition
should never occur. Finally, response patterns are used to express “cause—effect”
relationship, such as the fact that an occurrence of a first kind of events must
be followed by an occurrence of a second kind of events.

In the following, we use the symbol I as a shorthand for the time interval
[d1, d2]. The observers for the pattern obtained with other time intervals—such
as [dy,ds], |d1,-- [, or in the case d; = do—are essentially the same, except for
some slight modifications on the priorities and on the time constraints of some
ports. We describe a selected number of patterns. In each case, we define the
semantics of the pattern, P, using a MTL formula and a FOTT formula. In the
case of FOTT, we use formulas, F'(c), with only one free variable, o, with the
intended meaning that o |= P if and only if F(¢) is true.

{ Present A after B within [ }

The pattern holds for traces such that A occurs at a date ty after the first occur-
rence of B, with ty € I. The pattern is also satisfied if B never holds.
MTL def.:  (-B) W (B A True Uy A)
FOTT def.: Voi,02. (0 = 01Bo2AB ¢ 01) = 303,04 . 02 = 03AcaNA(03) € 1
LTL formula:  []-(Present/state error)

process Present [A:sync, B:sync] is
states idle, start, watch, error, stop
from idle B; to start
from start wait [d1, d1]; to watch

from watch select
A; to stop
unless
wait [d2 —d1, ---[; to error

Listing 1.1. Observer for Present A after B within [dy, da|

The observer (see Listing 1.1) is composed of one process that monitors the
system through the ports A and B (that should be instantiated with the relevant
probes). The process is initially in state idle and moves to start when B is triggered.
When in state start for d; u.t., the observer moves to state watch (this is the
meaning of the wait operator). The select operator is a non-deterministic choice,
with unless coding priorities. Hence, in state watch, the observer moves to ok if




an A occurs, unless do — d; u.t. elapses, in which case it moves to error. As a
consequence, the pattern is false whenever process Present can reach state error.
Hence the associated LTL formula, ¢p, is []-(Present/state error).

[ Present first A before B within | J

If B occurs then the first occurrence of A holds ty u.t. before the first occurrence
of B with tg € 1. (The difference with Present B after A within I is that B should
not occur before the first A.)

MTL def.:  (0B) = ((wAAN-B)U (AA-BA (=-BU; B)))
FOTT def.: Voi,02 . (0 = 01Boa AB ¢ 01) = J03,04 . 01 = 03A0u AN A ¢
o3 NA(os) €1
LTL formula: (<> Obs/value (foundB=true)) => ([]-(Obs/1/state error))

process Obsl [A: sync] (&flag: bool, &oundB: bool) is
states idle, start, watch, error
from idle A; to start
from start wait [d1, d1]; flag=true; to watch
from watch on (foundB=false); wait [d2> — di, ---[; to error

process Obs2 [B: sync] (&flag: bool, &oundB: bool) is
states idle, stop
from idle on (flag=true); B; foundB=true; to stop

component Obs[A:sync, B:sync] is
var flag:bool = false, foundB:bool := false

par

Obsl [A] (&flag, &oundB
|| Obs2 [B] (&flag, &oundB
end

Listing 1.2. Observer for Present A before B within [d1, d2|

The observer (see Listing 1.2) is composed of two processes which communicate
via shared variables (flag and foundB). The process Obs2 sets the value of the
shared variable foundB to true when it sees the first occurrence of B. In the
unique transition of Obs2, the operator on acts as a guard, meaning that the
transition can fire only if the condition (flag = true) is true. Concurrently, the
process Obsl monitors the occurrences of A and sets the value of flag to true
for the time interval [dy,ds] after the first occurrence of A. The pattern is not
satisfied if flag is true and foundB is false after (do — dy) u.t. (assuming that
there would be an occurrence of B in the future). Therefore, the associated LTL
property states that if B eventually occurs (eventually foundB is true) then Obsl
must not reach its error state (always Obs/1/state error is false).




Absent A lasting D }

There is a time interval, whose duration is at least D, where A never occurs
MTL def.:  O(Op,pj—A)
FOTT def.:  Jo1,02,03 . (0 = 010203 AN A & o2 A A(o2) > D)
LTL formula: <> Absent/state ok

process Absent [A: sync] is
states watch, ok
from watch select
A; to watch

unless
wait [D, D]; to ok

Listing 1.3. Observer for Absent A lasting D

The observer (see Listing 1.3) is composed of one processes which is reinitialized
to state watch at each occurrence of A, unless there is no occurrence of A for D
u.t. (in which case Absent proceeds to state ok). This observer relies on the fact
that timing constraint are reinitialized at each transition of the system (except
for loop transitions). In this case, the pattern is satisfied if “something good
happens”, that is if eventually Absent reaches ok.

{ A leadsto first B within [ J

Every occurrence of A must be followed by an occurrence of B within time interval
I (considering only the first occurrence of B after A).
MTL def.: O(A = (-B) U; B)
FOTT def.: Voi,02. (0 = 01A02) = 303,04 . 02 = 03BoaNA(o3) € INB ¢ 03
LTL formula:  []-(Leadsto/state error)

process Leadsto [A: sync, Bisync] is
states idle, start, watch, error
from idle A; to start
from start wait [d1, ---[; to watch
from watch select

B; to idle
unless
wait [d2 — dy, ---[; to error

Listing 1.4. Observer for A leadsto first B within [dy, da[

The observer (see Listing 1.4) moves to state start when A is triggered. Then,
after d; u.t., it moves to state watch where it waits for an occurrence of B before




do — dy u.t. elapses, in which case it is reinitialized. If no B occur, the process
moves to state error. Like in the first case, the pattern is false if Leadsto can reach
state this state.

4 Testing the Correctness of Patterns

To prove that an observer Obs for the pattern P is correct, we need to prove that,
for every system S, the program (S || Obs) satisfies the LTL formula ¢p if and
only if for all trace o in S, o = P. In [2], we define a theoretical framework to
prove exactly these kind of properties. Efforts are also under way to completely
mechanize these proofs using the Coq proof assistant [?]. Nonetheless, formal
proofs of correctness can be quite tedious. Therefore, to detect possible problems
with an observer early on (that is, before spending a lot of efforts doing a formal
proof of correctness) we also propose a “graphical verification method”. This is
akin to debugging our observers.

In the remainder of this section, we describe our method using the particular
case of the pattern Present A after B within [4, 5[. Therefore, we assume that Obs
is the observer Present defined in Listing 1.1 (with d; = 4 and dy — d; = 1).

Universal Program. The first step, in our method, is to get rid of the universal
quantification on all possible systems, S, that is introduced by our definition of
correctness. The idea is to check the observer on a particular Fiacre program—
called Universal—that can generate all possible combinations of delays and events
between the pair of events A and B. We give an example of universal process in
Listing 1.5 (where we already compose this process with the observer Present).

The process Universal has only one state and three possible transitions. Each
transition changes the value of a shared integer variable, x. The first and second
transitions of Universal can be fired without time constraints. In our context, the
probe A will be triggered to the event “setting x to 1”7 and B to “setting x to 2”.
The third transition reset the value of x to 0 immediately.

process Universal (& : nat) is
states sO

from sO select
x = 1; to s0
[] x:=2; to s0
unless
on (x<> 0); wait [0,0]; x := 0; to sO

component Main is
var x : nat : =0
port A : sync is value (x=1), B : sync is value (x=2)
par Universal (&) || Present [A, B] end

Listing 1.5. Universal program in Fiacre




Graphical Verification. The next step is to use our verification toolchain to
generate the state graph for the program (Universal || Present). The state graph
should be generated with a “discrete time” abstraction, where special transitions
(labeled with t) are used to model the flow of time. Label t stands for the “tick”
of the logical clock: a transition t, between two states, asserts that 1 u.t. has
passed. This construction can be obtained using the tool tina [6] with its flag
-F1 (with tina, it is also possible to generate the state graph with many different
abstractions, including dense time models).

The resulting graph is displayed in Fig. 3. This state graph has been generated
and printed using the tool nd, which is also part of the Tina toolset; nd is an
editor and animator for extended Time Petri Nets that can export nets and state
graphs in several, machine readable formats. This graph has only 26 states and
can therefore be easily managed manually. The main factor commanding the
number of states is the value of the timing constraints used in the pattern; in
our observations, all the generated state graphs were of manageable size.

The transitions in the state graph are also quite straightforward: transitions
labeled with A or B are the observable events (we call A, B and t the external
transitions); label z denotes internal transitions in the system (in the case of
Universal, it is the transition that reset x to 0); the remaining labels correspond
to transitions in the observer Present. The transition from state 2 to 3 corresponds
to the observer entering the state start; likewise for the transitions labeled with
watch, stop and error.

We can already debug the pattern Present A after B within [4, 5] by visually
inspecting the state graph. For soundness, we need to check that, when the
pattern is not satisfied (for traces o such that o }~ P), then the observer will
detect a problem (observer Present eventually reaches the state error.) Actually
we can observe that, starting from the initial state of the system (labeled 0),
after the first occurrence of a B (in state 2), and after 4 units of time (after 4
transitions labeled i), the system reach a state (numbered 13 in the state graph)
such that: (1) if we do not see an A before 1 u.t. then we have an error; and
(2) if we see an A then we will never see an error. In this context, to “see an
A before 1 u.t.” correspond to following a path—starting from state 13—where
a transition labeled with A is before any transition labeled with i. Likewise,
“errors” correspond to any state states where error can be observed (state 17 in
our case) or that cannot be reached without first observing error (i.e. states 20,
22 and 23). We will make these definitions more formal in the next paragraphs.

For innocuousness we need to check that, from any state, it is always pos-
sible to reach a state where event A (respectively B and 4) can fire. Indeed, it
means that the observer cannot censor the observation of a particular sequence
of external transitions or the passing of time.

This graphical verification method has some drawbacks. As such, it relies on
a discrete time model and only works for fixed values of the timing parameters
(we have to fix the value of di and ds). Nonetheless, it is usually enough to
catch some errors in the observer before we try to prove the observer correct
more formally.



Fig. 3. State graph for (Universal || Present)

Automation of our Method. A problem with the previous approach is that it
essentially relies on an informal inspection (and on human interaction). We show
how to solve this problem by replacing the visual inspection of the state graph by
the verification of modal p-calculus formulas. (the Tina toolset includes a model-
checker for the p-calculus called muse.) The general idea rests on the fact that
we can interpret the state graph as a finite state automaton and (some) sets of
traces as regular languages. This analogy is generally quite useful when dealing
with model-checking problems. We start by defining some useful notations.

Label expressions, are boolean expressions denoting a set of (transition) labels.
For instance, Lext = (AV BV t) denotes the external transitions, while the ex-
pression (not B) denotes the set of all labels except B. We use the expression T
to denote the conjunction of all possible labels, e.g. T = (not B) V B.

Regular (path) expressions. In the following, we consider regular expressions
build from label expressions. For example, the regular expression Tick = t -
(not t)* denotes a set of traces that contains only one t— which means traces of
duration 1—located in the first position. We remark that it is possible to define
the set of traces where Present holds using the union of two regular languages:
(1) the traces where B never occurs, Ry = (not B)*; and (2) the traces where



there is an A 4 u.t. after the first B:
Ry = (not B)* - B - (not t)* - Tick - Tick - Tick - Tick-A-T* (1)

It is a folklore result that regular expressions can be interpreted as temporal
logic formulas. Next, we use the connection between regular expressions and LTL
to check the soundness of the Present observer. We study the limitation of this
approach and show that the use of a branching logic is more interesting.

Linear Time Specification. We already used LTL to define the “acceptance con-
dition” of our observer. Therefore it is natural to use it again to check the system
(Universal || Present). We assume a basic knowledge of LTL; we use X to denote
the LTL next operator and T for the constant true. The idea is to define LTL
formulas for the regular expressions Ry and Ry and to check them on the state
graph of (Universal || Present). To this end, we define two useful derived operators,
o and —*.

If ¢r is the LTL formula corresponding to R and L is a label expression,
then (L o ¢r) = (LAX¢g) is the formula corresponding to (L - R); it is the
formula matching a trace with the head in L and the tail matching R. Likewise,
we define the formula (L -* ¢r) = (not L) U ¢p, that corresponds to the
regular expression (not L)*- R. With our notations, we can define the derived op-
erator Tick(¢p) = t o (t —*x ¢) = (tAX((not t) U ¢)), that corresponds
to the expression Tick - R. As a consequence, the formula corresponding to the
expression Rs defined in (1) is simply:

¢(R2) =B-* (Bo (t —* (Tick (Tick (Tick (Tick (A0T))))))) (2)

The final step is to check that the observer agrees with every trace conforming
to Ry. For this, we simply need to check that, for every trace o such that o =
®(R2), we have 0 = ¢p, where ¢p is the LTL formula associated to the observer.
Therefore, in the case of Present, it is enough to check the formula ¢(Rg) =>
([J-error). This can be done with selt, the LTL model-checker provided with
Tina, using the same syntax than in this section.

This approach has some drawbacks. First, because of the semantics of LTL,
this method only works with infinite (maximal) traces, whereas regular expres-
sion also capture finite traces. An instance of this problem can be seen in the
interpretation of the expression R; = (not B)*, used in our running example.
Indeed, a correct choice for ¢(R;) is the formula []1-B, that cannot be de-
fined using our two derived operators, o and -*. Second, this method is not
enough to check soundness or innocuousness. For innocuousness, we need to
check that the transition A may always eventually happen; this is a typical
example of formula that cannot be expressed in LTL (but that is expressible
in CTL). Concerning soundness, we only proved half of the property. Actually,
we can prove that the property (¢(R;) V ¢(Rz)) <=> ([] - error) is false;
a trace not satisfying ¢(R1) V ¢(R2) will not necessarily raise an error in the
observer. The problem lies in the treatment of time divergence (and of fair-
ness), as can be seen from the counter-example produced by our model-checker:



B.start.z.t.t.t.t.watch.t.t.--- (ending with a cycle of t transitions). This
is an example where the error transition is continuously enabled but never fired.
We show how the use of a branching time logic solve these problems.

Branching Time Specification. Like in the previous paragraph, we show how to
interpret regular expressions over traces using a temporal logic. In this case, the
target logic is a u-calculus with modalities for forward and backward traversal of
the graph . (Many temporal logics can be encoded in the p-calculus, including,
CTL+) In this setting, the semantics of a formula v is the set of states where v
holds. The basic modalities are <L>t and 9<L>. A state s is in <L>¢ if and only
if there is a (successor) state s’ in ¢ and a transition from s to s’ with a label
in L. Symmetrically, s is in ¥<L> if and only if there is a (predecessor) state s’
in ¢ and a transition from s’ to s with a label in L. We should also use T, the
true formula (matching all the states); 0, that denotes the initial state; and the
least fixpoint operator min X | % (X).

For example, the formula <A>T matches all the states that are the source of
an A-transition and Reach_A = min X | (A>T V<-(AVBVt)>X) matches all
the states that can lead to an A using only internal transitions. As a consequence,
we can test innocuousness by checking that the formula (Reach_A AReach_B
AReach_t) is true for all states.

Concerning soundness, we define the equivalent of the operators o and —x*.
Assuming L is a label expression, we denote (¢ o L) the formula ¥<L>; if ¥
corresponds to the regular expression R then <L> corresponds to R- L. Likewise,
we use the notation (¢ * L) for the formula min X | ¢ VX<L> and (¢ -* L)
instead of (¢ * (not L)). The formula (¢ * L) matches all the states reach-
able from states where v is true using (finite) sequences of transition with label in
L. Therefore, (g * L) corresponds to R-L* and (‘0O -* B) corresponds to (not
B)*. Finally, we can define the formula Tick(v) as a shorthand for (¢pot) —*t.
Using these notations, the formula corresponding to the expression Rs defined
in (1) is:

¥(Ry) = ((Tick (Tick (Tick (Tick (((‘0-*B) 0oB) -*t)))))oA) *T (3)

By construction, The formula ¥ i (corresponding to the regular expression R)
is true in all the states reachable from the initial state using a sequence of transi-
tion that matches R. To check the soundness of observer Present, we need to prove
that the transition error cannot be triggered from any of the state reachable by a
sub-expressions of Ry. We denote ¥p the disjunction of formulas corresponding
to these sub-expressions. The definition of errors is also a little bit more involved
than in the previous case. We say that a state is “erorred” if the transition error
is enabled (the formula <error>T is true) or if the state can only be reached by
firing the error transition (the formula (T<error>*T) A (‘0-*B)). We denote
Errored the formula <error>TV ((T<error>*T) A (‘0-*B)). Finally, we can
prove the soundness of Present by checking the formula ¥p <=>Errored.

5 Related Work, Contributions and Conclusion

Few works consider the verification of model-checking tools. Indeed, most of
the existing approaches concentrate on the verification of the model-checking



algorithm, rather than on the verification of the tool itself. For example, Smaus
et al. [17] provide a formal proof of an algorithm for generating Biichi automata
from a LTL formula using the Isabelle interactive theorem prover. This algorithm
is at the heart of many LTL model-checker based on an automata-theoretic
approach. The problem of verifying verification tools also appears in conjunction
with certification issues. In particular, many certification norms, such as the DO-
178B, requires that any tool used for the development of a critical equipment
be qualified at the same level of criticality than the equipment. (Of course,
certification does not necessarily mean formal proof!) In this context, we can cite
the work done on the certification of the SCADE compiler [16], a tool-suite based
on the synchronous language Lustre that integrates a model-checking engine.
Nonetheless, only the code-generation part of the compiler is certified and not
the verification part.

Concerning observer-based model-checking, most of the works rely on an au-
tomatic way to build observers from a formal definition of the properties. Aceto
et al. [4] propose a method to verify properties based on the use of test automata.
In this framework, verification is limited to safety and bounded liveness prop-
erties since the authors focus on properties that can be reduced to reachability
checking. In the context of Time Petri Net, Toussaint et al. [18] also propose a
verification technique based on “timed observers”, but they only consider four
specific kinds of time constraints. None of these works consider the complexity or
the correctness of the verification problem. Another related work is [11], where
the authors define observers based on Timed Automata for each pattern.

To the best of our knowledge, the notion of probes is totally new in the context
of formal specification language. Paun and Chechik propose a somewhat similar
mechanism in [8,15]—in an untimed setting—where they define new categories
of events. However our approach is more general, as we define probes for a richer
set of events, such as variables changing state.

Compared to these works, we have made several contributions. We define
a complete verification framework for systems with hard realtime constraints.
This framework includes the definition of a set of high-level timed specification
patterns; a model-checking toolset and a method to verify the correctness of
the framework. Our approach eliminates the need to rely on model-checking
algorithms for timed extensions of temporal logics that—when decidable—are
very complex and have bad performances. This work is also our first public
application of the probe technology, that was added to Fiacre only recently. We
believe that

We have described a simple, graphical verification method that can be used
to gain confidence on the implementation of our model-checking tools. We show
how to automatize this method so as to avoid human errors. This result also prove
the usefulness of having access to a complete toolbox, with different kind of tools
(editors, model-checkers, ...), and working with common file formats. The use
of “graphical” verification methods is part of the model-checking folklore; the
technique is known by some people but has never really been documented. The
overall method is quite close in spirit to refinement-based techniques.



In many respects, we apply a generic bootstrapping technique, by which we
use our existing LTL model-checker to implement and check a model-checker for
a more complex temporal logic. While we describe our method on a particular
specification language, and for a particular set of tooling, our method is quite
general and could be applied on a different setting.
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