
Observation Graph implementation for TINA toolbox

Rodrigo T. Saad, François Vernadat, Bernard Berthomieu, Silvano Dal Zilio
CNRS; LAAS;

7, avenue du Colonel Roche, F-31077 Toulouse – France
Université de Toulouse;

UPS, INSA, INP, ISAE; LAAS; F-31077 Toulouse, France
{rsaad, francois, bernard, dalzilio}@laas.fr

Abstract

Model Checking is a formal technique for the verifi-
cation of finite systems. However, it is well known that
this technique suffers from the state explosion problem.
We describe work in progress to implement in the TINA
toolbox an enumerative variant of a state based obser-
vation graph algorithm defined by Klai and Poitrenaud.

I. Introduction

Model Checking is a formal technique for the ver-
ification of finite systems. However, it is well known
that this technique suffers the drawback of the state
explosion problem. Two major strategies are known to
deal with this problem, they are: the state explosion
management and its reduction. The first one concerns
techniques interested in bypass the difficulty of dealing
with complex systems. The second group is the ones
where the complexity of the system is reduced by taking
advantage of regularities, redundancies or existing simi-
larities in the exhaustive representation.

This paper describes a work in progress to implement
in the TINA toolbox an enumerative variant of a state
based observation graph algorithm defined by [4]. The
state based symbolic observation graph presented by
Klai and Poitrenaud is a hybrid approach for checking
linear time temporal logic properties (LTL) of finite
systems combining on-the-fly and symbolic approaches
for Petri nets. In our case, we are interested at the
moment on a management strategy for the construction
of a partial enumerative state based graph, which is in
fact an abstraction of the original reachability graph. This
abstraction is based on LTL formula supplied by the user,
namely as atomic proposition set. Our motivation for
this experiment is to be able to construct partial graphs

This work has been supported by the French AESE project Topcased
and by region Midi-Pyrénées

when the size of the complete state graph is too big.
In addition, this technique is easy to be used because
different abstractions may be achieved only by providing
different sets of atomic propositions.

This paper is structured as follows: In section II, we
introduce the TINA toolbox. In section III, the state based
observation graph is formally presented. Then, section IV
discuss about its implementation into the TINA toolbox.
Some experiments and results are illustrated in section V.
Finally, section VI concludes this work and gives some
perspectives.

II. Tina ToolBox

TINA is a software environment to edit and analyze
Petri nets, Time Petri nets, and some extensions of these
nets. In addition to the usual editing and analysis facilities
of similar environments, tina - name of the exploration
engine - offers various abstract state space constructions
that preserve specific classes of properties of the state
spaces of nets, like absence of deadlocks, linear time
temporal properties, or bi-similarity. Another tool that is
part of the toolbox is the selt tool, which implements a
model-checker for an extension of linear time temporal
logic known as State/Event LTL, a logic supporting
both state and transition properties. More details about
the different tools constituting the TINA toolbox can be
found in [1].

III. Observation Graph

Considering a set AP of atomic propositions, an
observation graph can be informally presented as a graph
of state sets (aggregates), which comprehends only states
with the same atomic propositions, interconnected by
edges that modify these atomic propositions. From [4],
we extracted the following definitions:

Definition Aggregate: Let T = 〈Γ, L,→, s0〉 be a KS
over an atomic proposition set AP. An aggregate a of T
is a non empty subset of Γ satisfying ∀s, s′ ∈ a, L(s) =
L(s′).

Definition Observation Graph: Let T = 〈Γ, L,→, s0〉
be a Kripke structure(KS) over an atomic proposition
set AP. An observation graph of T is a 4-tuple G =
〈Γ′, L′,→′, a0〉 where:

• a0 ∈ Γ′ is the initial aggregate.
• Γ′ ⊆ 2Γ is a finite set o aggregates.
• L′ : Γ′ → 2AP is a labeling function satisfying
∀a ∈ Γ′, let s ∈ a, L′(a) = L(a).

• →⊆ Γ′ × Γ′ is a transition relation.

A. Observation Graph Model Checking
In [4], the equivalence between checking a given

LTL\X - LTL minus the next operator because of
the abstraction of the immediate successors - property
over the observation graph or over the original la-
beled transition system is ensured by the preservation
of maximal paths. Then, to capture all the maximal
paths of an observation graph under the form of infinite
sequences, it is enough to transform its finite maximal
paths into infinite ones. This transformation happened
when the aggregates(ai) have the presence of a dead
state (Dead(ai) := {∃s ∈ a | !s′| s → s′}) or a circuit
(Live(ai) := {∃π| π = s1 → ... → sm → ... → sn and
sm → ... → sn a circuit of a}).

As can be noticed, the AP set is extracted from the
LTL\X supplied by the user. In this work, for simplicity
reason, we refer the AP set directly as the set of places
instead of the original LTL\X .

IV. TINA impelementation

The Observation Graph algorithm has been imple-
mented using the TINA toolbox API. The main character-
istic of our implementation is to handle two reachability
algorithms: one for the observation graph itself; another
one for the local search. In addition, we take advantage
of the TINA functional architecture to allow different
input formats to make use of this abstraction without
modifying the model or the toolbox. The following
subsections present the algorithm implementation.

A. TINA toolbox Architecture
The TINA three layer functional architecture was

conceived to be easily integrated with other tools. The
first layer, the Front-end, comprehends the translators
(compilers) used to translate the input models into one
of the two internal abstract format (Time Petri Nets[2]
or Time Transition Systems[3]). The second layer is a
parameterized state exploration engine responsible for
constructing the reachability graph of the system model.
The third and final layer is the Back-end and it is
responsible for printing the results in different formats
to facilitate the toolbox integration with third-part tools.

As we mentioned before, we expect this implementa-
tion to be as transparent as possible for all the supported
input formats (Front-ends). To achieve this objective, it
becomes clear that our implementation will take place

inside the parameterized engine layer as a new reach-
ability algorithm. Particularly, in this case, the engine
parameters will be the atomic proposition set supplied
by the user.

A new reachability algorithm for TINA is achieved
by defining a new reachability structure, which compre-
hends: a state data time, a transition firing function and
a state comparison function. The observation structure
handles two reachability searches, one for the observation
and one for the local search. The main reachability search
is the observation one and it holds a state type which is
composed of a set of local state types - which is in this
case Petri Nets Markings - ordered lexicographically and
stored into a data list structure, and two Boolean values to
indicate the presence of circuits and deadlocks. Regard-
ing the firing transition function itself, this functions calls
the local search, which is in this case an ordinary Petri
Net reachability algorithm, in order to construct the local
set of states, that is to say, the set of states with the same
atomic propositions. With respect to the state comparison
function, when applied over two aggregates, it carries out
a lexicographically comparison over the states lists and
analysis if they have the same Boolean values. Obviously,
the comparison performed over each state from the list is
the same comparison function used by the local search,
which is in this case the marking comparison defined for
ordinary Petri Nets. The following section clarifies the
observation and local search.

B. Observable Search and Local Search
The graph construction is driven by the atomic propo-

sition set (AP) supplied by the user. These atomic propo-
sitions are in fact the name of places in the Petri Net and
they are going to be used to divide the transitions into two
groups: observations (ob for short) and not observations
(nob). The first group consists of the transitions that
affect the atomic propositions (AP) and the second one
the transition that do not affect the AP set.

The local search comprehends the complete set of
markings that corresponds to an aggregate(AGi), in an-
other words, all states reachable by firing until saturation
all the nob transitions. During this local search, all the
states firable by an ob transition are separated into a set
called Out(AGi). In addition, the local graph is tested
to determine the existence of circuits (Live(AGi)) and
dead-states (Dead(AGi)) to transform finite maximal
paths into infinite ones (section III-A). Circuit detection
is performed analyzing the local graph strongly con-
nected components in order to detect nodes with more
then one marking. About the dead-state detection, a state
is defined as dead if it can not be fired by an ob or a
nob transition. In the end of a local search for a given
aggregate, the local graph is discarded and only the set
Out(AGi) in conjunction with the two Boolean values
are stored.

The observation search constructs the aggregates from
the AP set. The initial aggregate (AG0) is computed

from the initial marking(S0) by calling the local search
algorithm. Then, the local search algorithm returns all
the exit states (Out(AG0)) in conjunction with the
circuit and dead properties associated for this aggregate.
Next, for each firable ob transition from the exit states
(Out(AG0)), a new aggregate is computed by calling
the local search algorithm from the set of reachable
states (IN(AG1)). This procedure is repeated over and
over again until there is no more unexpanded set of
reachable states (IN(AGi)). Furthermore, two aggre-
gates are seen as equivalent if they have the same exit
states (Out(AGi) = Out(AGj)) and if both have or
not the dead (Dead(AGi) = Dead(AGj)) and the live
(Live(AGi) = Live(AGj)) properties defined for their
local set of markings. Figure 1 shows the observation
and local search.

Besides, in order to provide more freedom for further
extensions, i.e. the addition of time intervals and data
structure, we decided that both the nob transitions and
the ob transitions are fired by the local search algorithm.
In the case of the ob transitions, the observation search
gives the exit state and the ob transition to be fired as
the initial state for the local search.

Figure 1. Observable and Local Search.

C. Example
In order to clarify the observation graph algorithm

presented before, this section presents a small Petri Net
example, which is a Token Ring model with only one
site for simplicity. Figure 2 shows the Petri Net and the
places highlighted (AP = {idle1, wait1, cs1}) in gray
are used as the abstraction to construct the partial graph.

Figure 2. Token Ring Petri Net example.

First, based on the supplied AP set, the transitions
from the model are separated into observation (tob

= {1 rel, 1 work, 1 ask}) and non-observation(tnob

= {1 exit, 1 entry}). Second, the first aggregate
(AG0) is obtained by applying the local search from

the initial marking(S0 = {idle1, token1}). The lo-
cal search constructs the local graph by firing until
saturation all tnob transitions. Third, the input states
for aggregate AG1 (IN(AG1) = {(token1, wait1),
(after1, wait1)}) is obtained by firing the tob transi-
tion 1 ask from the AG0 exit states OUT (AG0) =
{(idle1, token1), (after1, idle1)}. Once again, from the
input set (IN(AG1)), the local search is used to con-
struct the local graph and the exit states are returned
(OUT (AG1) = {(token1, wait1)}). Next, the AG2

input states (IN(AG1) = {(cs1)}) are obtained by firing
the tob transition 1 work from the OUT (AG1). Finally,
the last edge connecting AG2 and AG0 is achieved by
applying the tob transition 1 rel from the OUT (AG2).
Figure 3 illustrates this example.

Figure 3. Token Ring Observation Graph.

A final remark about this example is the loop edges
inserted at aggregates AG0 and AG1 to ensure the
infinite maximal paths (Figure 3).

V. Experiments and Results

In this section we present two experiments performed
with our preliminary implementation of the observa-
tion graph. The first one was to generate an observa-
tion graph when the complete graph is not feasible.
For this experiment we chose the Token Ring exam-
ple (Figure 2) increasing the number of sites. Figure
4 illustrates the results table, where the first column
presents the complete graph and the following two
columns the resulting graphs considering an abstraction
of 1 (AP = {cs1, wait1, idle1}) and 8 sites (AP =
{..., cs8, wait8, idle8}), respectively. These results were
achieved using a 2.00GHz Intel Core 2 Duo with 2GB
of memory and 2048 KB of cache memory.

N. Sites Complete. Graph Observable. Graph
1 sites is Ob. 8 sites is Ob.

16 Nodes = 2621440 Nodes = 3 Nodes = 1280
Time = 296.944s Time = 308.196s Time = 285.455s

1 site is Ob. 8 sites is Ob. Graph
17 Not Treated Nodes = 3 Nodes = 1280

Time = 2204.056s Time = 9887.150s
Figure 4. Token Ring Results.

From Figure 4, TINA was not capable to generate the
complete graph for a model with 17 sites. However, a

partial graph was possible considering an abstraction of
up to 8 sites. In addition, this table show the difference
between the time consumed for 1 and 8 sites on the last
row. This difference can be explained because, depend-
ing on the selected AP set, the number of equivalent
aggregates may increase and therefore a longer time
will be expanded generating local graphs that belongs
to equivalent aggregates.

The second experiment was performed to extend this
abstraction for models with time constraints. Previously,
on the implementation section, we presented its major
particularity, which is its double search reachability al-
gorithm. This double reachability algorithm holds one
search for the observation graph itself and another one
for its local graph. In order to allow the observation
abstraction for TPN models, it is sufficient in this case to
consider a local time search, in other words, to instruct
TINA to perform a local search using the TPN reachabil-
ity search instead of the ordinary Petri Net search. As a
consequence, the time constraints are taken into account
by the local state type, the firing and the comparison
function. We state here that it is enough because our
observation search uses the local state type and compari-
son function to define its state (list of exit states) and the
comparison of two aggregates (comparison of their list
of exit states). Figure 5 presents a simple Time Petri Net
example where the atomic propositions are highlighted
in gray (AP = {P1, P3}).

Figure 5. Time Petri Net Example.
Figure 6a) shows a partial observation graph explo-

ration where the exit states are highlighted in yellow and
gray. First of all, it is partial because this figure presents
two separated aggregates (AG0 and AG3) that are in
fact equivalent and consequently, they have the same
exit states (highlighted in gray) and the same properties
(Live = false and dead = false) on their local graphs.
Second, despite of the fact that aggregates AG1 and AG2

have exit states with the same marking (highlighted in
yellow), these exit states differs from AG1 and AG2

because they have different time constraints on their
local graphs, thus they are not equivalent. The aggregate
comparison, performed over the list of exit states, could
take into account the time constraints because it reuses
the local search state comparison function, which is in
this case the Time Petri Net state comparison. Figure 6b)
presents the complete observation graph for this example.
VI. Conclusion and Future Works

We described the implementation of an abstraction
approach to generate partial reachability graphs using

a) Partial Observation Graph.

b) Complete
Observation
Graph.

Figure 6. Time Observable Graph

TINA toolbox. From experimentation 1 (section V), we
were able to build partial graphs when the complete one
were not feasible. In contrast with [4], in our case we do
not use BDD (Binary Decision Diagrams) to compress
the list of exit states mainly because we do not want
to restrict the freedom provided by TINA API, i.e. data
structure and time intervals. Nevertheless we do agree
that both strategies are complementary and may result in
combined benefits. Thus, we are going to investigate, for
further implementations, compression techniques not so
restrictive like BDD.

About our implementation, it already takes into ac-
count some degrees of freedom to allow further experi-
ments extensions. For example, our next step it to extend
the Observable Graph to accept data structures (FIFO
queues, record, union, etc) as part of the local search
states. This extension will follow the same idea described
to add time intervals V.

References

[1] F. Vernadat B. Berthomieu, P.-O. Ribet. The tool
tina – construction of abstract state spaces for petri
nets and time petri nets. International Journal of
Production Research, 42(14), 2004.

[2] B. Berthomieu, M. Menasche, and REA Mason.
An enumerative approach for analyzing time Petri
nets. Information Processing: proceedings of the
IFIPcongress 1983, 9:41–46, 1983.

[3] T.A. Henzinger, Z. Manna, and A. Pnueli. Timed
Transition Systems. In REX Workshop, pages 226–
251, 1991.

[4] K. Klai and D. Poitrenaud. MC-SOG: An LTL Model
Checker Based on Symbolic Observation Graphs. In
Applications and Theory of Petri Nets 2008: 29th
International Conference, Petri Nets 2008, Xi’an,
China, June 23-27, 2008, Proceedings. Springer,
2008.

