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Abstract

We provide a translation of Fisher-Honsell-Mitchell's delegation-based object calculus with sub-

typing into a �-calculus with extensible records. The target type system is an extension of the

system F

!

of dependent types with recursion, extensible records and a form of bounded universal

quanti�cation. We show that our translation is computationally adequate, that the typing rules of

Fisher-Honsell-Mitchell's calculus can be derived in a rather simple and natural way, and that our

system enjoys the standard subject reduction property.
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1. Introduction

The theoretical foundations of object-oriented programming have been intensively explored in the

recent past, the main purpose being to design type systems that would be safe, allowing in particular

to prevent some run-time errors like message not understood, while being at the same time �exible

enough to support object-oriented programming idioms. This has proven to be actually quite

di�cult. Some early works, following Cardelli's pioneering paper [8], developed encodings of object-

oriented constructions into calculi with records. For instance, Cook & al. in [11] proposed an

interpretation of class-based programming. In their model, an object is the �xed-point of a function

(of self) returning a record. An object can only be invoked, while inheritance acts on the object's

�generator�, by adding or updating �elds of the resulting record, and extending the scope of the

self parameter. The types, based on F -bounded quanti�cation (or else higher-order quanti�cation

and recursive types, see [18]), allow in particular to address the property identi�ed as method

specialization by Mitchell [19], by which is meant the fact that the type of a method is updated

whenever the hosting class is inherited.

Mitchell's work deals with delegation-based object-oriented programming, where a single entity,

called a prototype, may be both invoked, by messages calling for some methods to be executed, and

inherited, to build a new prototype by adding a new method or modifying an existing one. Although

this looks simpler than the class-based approach, the property of method specialization is not easy

to obtain in this setting. For this reason, Mitchell & al. proposed in [12] a primitive object calculus,

with a speci�c typing construct for prototypes, that is not derived from an encoding. Indeed,
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the authors conclude that �[method specialization] seems very di�cult to achieve directly with any

calculus of records �. Several other primitive object calculi were developed at about the same time

by Abadi and Cardelli (see for instance [1, 2]) to formalize abstractly what can be expected from the

typing of objects, while avoiding the di�culties of discovering adequate encodings in �-calculi with

records. Later on however, these authors, together with R. Viswanathan [3], solved the encoding

problem for a delegation-based calculus without object extension (hence with no non-trivial method

specialization), and Viswanathan improved their results in [20], where the target of the translation

is a �rst-order calculus.

Our purpose in this paper is to introduce an encoding of Mitchell & al. calculus, extended with

subtyping [14], into a �-calculus with extensible records equipped with a rich but fairly standard

type system, that has been recognized as a suitable framework for studying the typing of objects,

see [18, 7]. We show in particular how the typing rules for prototypes can be derived in a natural

way. The idea of the encoding is very simple. To explain it, let us �rst come back to the di�culty

of typing method specialization for prototypes: there are two seemingly opposite requirements for

types in this setting. One is that, when the prototype is invoked, its type should not tell too

much, because the prototype can be revealed upon invocation, for instance by an identity method.

In particular, the type should only exhibit the method names that are actually available, since

otherwise runtime errors could occur. On the other hand, when the prototype is inherited, its type

� or more precisely the type of the self parameter � should be �open� to potential extensions (see

[14] where the authors distinguish a �client interface� from the �inheritance interface� for an object).

This tension is solved in Cook's model, simply by ful�lling separately these two requirements.

Then the idea of our encoding is to separate the two usages of a prototype by means of record

�eld selection: in our interpretation, a prototype is a recursive record with two �elds. The �rst

one, that we call inht, contains the current value of the prototype generator, that is the function of

self that returns the record of methods. The other �eld, called invk, contains the application of the

generator to the prototype itself. The �rst �eld is selected to inherit the prototype, while the second

is selected to invoke it. We show how to type such a prototype in a system involving extensible

record types, types depending on types and a limited form of bounded universal quanti�cation, thus

deriving naturally the typing rules of [12] � or more precisely rules given by Fisher in her thesis

[15] (

1

). We also show that the subtyping of prototypes proposed in [14] arises in a very simple

way: while a �pro� type of a prototype is a record with two �elds, the �obj� type only contains the

�eld invk, thus allowing a �sealed prototype� to be only invoked. The standard subtyping rule for

recursive types allows to derive the subtyping relations of [14].

We think that our interpretation validates, and even justi�es the (non-trivial) rules designed

for primitive type constructors in Fisher and Mitchell's systems, and allows to reuse results that

can be established in the target calculus. Bruce in [6] has shown that, from a semantical point

of view, Cook and Mitchell's models are equivalent. Our interpretation con�rms this view from a

syntactical perspective, and also con�rms that Bruce's matching � that is width subtyping of the

record of methods � is the form of subtyping we need to type extensible objects, as far as the goal

is to retrieve Fisher and Mitchell's systems. Our interpretation also shows that it is possible to do

a little better, allowing the type of an updated method to be specialized to a subtype, by using

the standard subtyping relation, together with width subtyping which is useful to type self-in�icted

method update.

Note

For lack of space, we have omitted most of the formal description of Fisher-Honsell-Mitchell's typing

system. We hope that the reader unfamiliar with it can grasp some idea of it from our interpretation.

(

1

)

we could perhaps have used Cook's typing, involving F -bounded quanti�cation, but for the purpose of translating

Fisher-Honsell-Mitchell's systems this looks less convenient.
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2. The Calculus of Prototypes

The calculus of prototypes introduced by Fisher, Honsell and Mitchell in [12] is a �-calculus extended

with constructions for building prototypes from the empty one, namely prototype extension, denoted

hP  + ` = Qi, and method update hP  ` = Qi. There is also an operation of method invocation,

written P ( `. In [12] the notation hP  � ` = Qi is introduced, to mean either hP  + ` = Qi or

hP  ` = Qi. Then the evaluation of prototypes mainly consists in the following transition:

hP  � ` = Qi ( ` ! QhP  � ` = Qi

There are actually several possible ways to de�ne the evaluation mechanism for prototypes. In [12]

a subsidiary �bookkeeping� transition system is used to set the construction of a prototype into an

appropriate shape. In [15] an evaluation strategy is de�ned, that uses an auxiliary �get method�

function, to extract the method of a given name from a prototype. A similar technique is used in [4]

where the language is enriched with a notation for method extraction. Another auxiliary operation

is used in [16], which is a combination of method extraction and self-application. Moreover, in

that paper no distinction is made between the two ways of building prototypes, and the notation

hP  ` = Qi stands for prototype extension as well as method update � or override. The two facets

of this operation are revealed in the typing system.

Since from the operational point of view our translation mimics the prototypes exactly as they

are described in [16], we adopt the syntax of this paper. We assume given a denumerable set X of

variables, and a denumerable set K, disjoint from X , of keys, or labels, used as method names. We

use x; y; z : : : and `; k to range over X and K respectively. The grammar for terms is as follows:

P; Q

..

..

x j W j (PQ) �-calculus

j (P ( `) method invocation

j S(P; `;Q) subsidiary operation

W

..

..

�xP j O values

O

..

..

hi empty prototype

j hP  ` = Qi prototype extension/update

As usual we denote the term hhhi  `

1

= P

1

i � � �  `

n

= P

n

i by h`

1

= P

1

; : : : ; `

n

= P

n

i. We assume

the reader is familiar with the notions of free and bound variables, �-conversion and substitution.

This applies to terms, types, typing contexts, and so on. Given any such item X we denote by

fv(X) the set of its free variables, and [

X

=

x

]Y denotes the result of substituting X for x in Y .

The meaning of the auxiliary operation S(P; `;Q) is that it extracts from the prototype P the

method of name ` and applies it to Q. Then the (lazy) evaluation relation over prototypes is given

by the following rules:

(�xP )Q ! [

Q

=

x

]P

(O ( `) ! S(O; `;O)

S(hP  ` = Qi; `; P

0

) ! (QP

0

)

S(hP  k = Qi; `; P

0

) ! S(P; `; P

0

) k 6= `

P ! P

0

)

8

>

<

>

:

(PQ)! (P

0

Q)

(P ( `)! (P

0

( `)

S(P; `;Q)! S(P

0

; `;Q)

As usual we denote by

�

! the re�exive and transitive closure of this relation, and we denote by P+

the fact that there exists a value W such that P

�

!W . Since evaluation is deterministic, this value,

if it exists, is unique, and we may denote it eval(P ).
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There are several versions of the type system for the calculus of prototypes. The system presented

in [14] is essentially the one of [12], enriched with a form of subtyping. Here we use a simpli�ed

version of the system given in Fisher's thesis [15]. The simpli�cations are as follows: we adopt the

system of Chapter 3 of [15], which does not involve variance annotation nor existential quanti�cation,

with a restriction on the assumptions regarding row variables given below. Moreover, we do not

take subsumption into account in the simpli�ed system (this will be dealt with in a next section).

Then the typing system we consider here is de�ned as follows. The grammar of kinds, types and

rows is

kind

..

..

T j �

�

..

..

M j T! M where M = f`

1

; : : : ; `

n

g

�

..

..

t j (�

1

! �

2

) j pro t:�

�

..

..

r j [] j [�; ` : � ] j (�t:�) j (��)

The kind T is that of well-formed types (the only constraint is on pro t:�). The kind f`

1

; : : : ; `

n

g is

that of a row which does not contain the keys `

1

; : : : ; `

n

. The typing contexts are

�

..

..

; j �; x : � j �; t :: T j �; r <:

w

�

Notice that an assumption about a row variable r only involves the �width subtyping� relation <:

w

.

Moreover, in Fisher's thesis, there is a kind annotation, that is the assumption is r <:

w

� :: �; here

we omit this annotation since in our simpli�ed system this � is always T! ;. The type judgements

are

� ` � well-formed context � ` � <:

w

�

0

subrow

� ` � :: T type is well-formed � ` P : � term has type

� ` � :: � row has kind

For lack of space, we omit most of the rules of the system, which are quite standard. For instance

the only interesting rule for well-formedness of types is

� ; t :: T ` � ::M

� ` pro t:� :: T

where the well-formedness of the context � ; t :: T implies that t is not free in �. The interesting

rules for typing terms are:

� ` �

� ` hi : pro t:[]

(empty pro)

� ` P : pro t:� ; � ; t :: T ` � <:

w

[` : � ]

� ` P ( ` : [

pro t:�

=

t

]�

(pro ()

where [` : � ] denotes [[]; ` : � ],

� ` P : pro t:�

� ; t :: T ` � :: f`g

� ; r <:

w

�t:[�; ` : � ] ` Q : [

pro t:(rt)

=

t

](t! �)

� ` hP  ` = Qi : pro t:[�; ` : � ]

r 62 fv(�) (pro ext)

and

� ` P : pro t:�

� ; t :: T ` � <:

w

[` : � ]

� ; r <:

w

�t:� ` Q : [

pro t:(rt)

=

t

](t! �)

� ` hP  ` = Qi : pro t:�

r 62 fv(�) (pro over)

4



We also need a rule for the subsidiary operation:

� ` P : pro t:� ; � ` Q : pro t:�

0

; � ; t :: T ` �

0

<:

w

� <:

w

[` : � ]

� ` S(P; `;Q) : [

pro t:�

0

=

t

]�

(subsid)

As we said, there are two distinct rules for typing the construction hP  ` = Qi. In the �rst one,

the premise � ; t :: T ` � :: f`g indicates that in the prototype P there is no method named `, and

then this rule allows to type a true extension. On the other hand, the premise � ; t :: T ` � <:

w

[` : � ]

says the a method with name ` is already provided by P , with result type � . Then one may override

this method, with another one having the same result type. We refer to [12] for examples of typing.

3. Encoding Prototypes with Extensible Records

As a target for our encoding of prototypes, we use a �-calculus enriched with extensible records.

We also �nd it convenient to use an explicit �xpoint construct. The syntax of the calculus is as

follows:

M; N : : :

..

..

x j V j (MN) �-calculus

j �xx:M �xpoint

j (M:`) �eld selection

V

..

..

�xM j R values

R

..

..

[] empty record

j [M; ` = N ] record extension

where x 2 X and ` 2 K. For ease of readability, one quite often writes (�xM) for �xM , and

MN for (MN), and similarly M:` for (M:`). We denote by [`

1

= M

1

; : : : ; `

n

= M

n

] the record

[� � � [[]; `

1

= M

1

] � � � `

n

= M

n

]. The evaluation relation ! for the �-calculus with records is the least

one satisfying the following rules:

(�xM)N ! [

N

=

x

]M

�xx:M ! [

�xx:M

=

x

]M

[M; ` = N ]:` ! N

[M;k = N ]:` ! M:` k 6= `

M !M

0

)

(

MN !M

0

N

M:`!M

0

:`

Again, since evaluation is deterministic, we may denote by eval(M) the unique value V , if it exists,

such that M

�

! V .

Now we turn to the interpretation of the calculus of prototypes. To represent a prototype, say

h`

1

= P

1

; : : : ; `

n

= P

n

i, where the P

i

's are functions of the prototype itself (usually in the form of

a self parameter), we shall use a function returning a record

G = � self [`

1

= M

1

self ; : : : ; `

n

= M

n

self ]

This is an �object de�nition� in Cook's model (see [11, 13]), also called �object generator� (see [2, 3]).

We cannot however use directly this representation with a �self-application semantics�, because of

well-known typing problems (see for instance [2]), nor a �recursive-record semantics� [8], since it

has di�culties in modelling the method update operation. As we said in the introduction, in our

interpretation of a prototype, we separate the two usages we have of it, namely invocation and
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inheritance. This idea of separating the usages of an object is embodied in the �split-method� of

[3, 20], but we cannot use this speci�c approach here because the set of methods of a prototype is

not �xed once for all. To give our translation, let us introduce a notation: we de�ne

proto =

def

�x p:�z:[ inht = z ; invk = z(pz) ]

! �z:[ inht = z ; invk = z(proto z) ]

Then the translation [[:]] from the �-calculus of prototypes to the �-calculus of extensible records is

given by � omitting the part of the translation that regards the �-calculus, which is trivial:

[[hi]] = proto(� self [])

[[hP  ` = Qi]] = proto(� self [[[P ]]:inht self; ` = [[Q]] self])

[[P ( ` ]] = [[P ]]:invk:`

[[S(P; `;Q)]] = ([[P ]]:inht [[Q]]):`

In the translation we obviously assume that the name self is not free in the source terms. To

shorten the notation, we shall replace self by the ordinary �-variable x in the sequel. Notice that

our translation also allows us to de�ne a �(pre)method extraction� operation, that may be denoted

(P ,! `), as follows:

[[P ,! `]] = � self (([[P ]]:inht self ):`)

As one can see, our interpretation is very close to Cook's model, separating objects from object

generators, with inheritance acting on the generators; in particular, extending and updating a

prototype are operationally the same. There is a di�erence with Cook's model, however, since

prototypes feature runtime extension. Let us see an example of how the translation works. We

have, if we let G = �x[[[P ]]:inhtx; ` = [[Q]]x]

[[hP  ` = Qi ( `]] = (protoG):inht:`

�

! [ inht = G ; invk = G(protoG) ]:invk:`

�

! [[Q]](protoG)

= [[QhP  ` = Qi]]

Our aim for the rest of this section is to show the soundness of our translation from an operational

point of view. More precisely, we aim at establishing that a prototype converges � i.e. evaluates to

a value � if and only if its translation converges. To this end, we de�ne a relation S between the

source and target calculi de�ned as follows: S is the least relation satisfying

xS x

�xP S �x[[P ]]

P SM ) (PQ)S (M [[Q]])

[[O]]

�

!M ) O SM

P SM & M:invk

�

! N ) (P ( `)S (N:`)

P SM & M:inht [[Q]]

�

!M

0

) S(P; `;Q)S (M

0

:`)

It is easy to see that the following holds:

Lemma 3.1. P S [[P ]] for any P , and if O SM then M

�

! [ inht = G ; invk = G(protoG) ] for some

G.
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Notice also that P SM ) [[P ]]

�

!M . Now we prove that the relation S is a �simulation�, that is:

Lemma 3.2.

(i) P SM & P ! P

0

) 9M

0

: M

�

!M

0

& P

0

SM

0

(ii) P SM & M !M

0

) 9P

0

: P

�

! P

0

& P

0

SM

0

Proof: (i) we prove this point by induction on the de�nition of P ! P

0

, and on the de�nition of

S. If P = (�xQ)S and P

0

= [

S

=

x

]Q, then we have M = (�x[[Q]])[[S]], and it is easy to see that

[[P

0

]] = [

[[S]]

=

x

][[Q]], therefore we may let M

0

= [[P

0

]], since P

0

SM

0

by the previous lemma.

If P = (O ( `) and P

0

= S(O; `;O), then we have M = N:` with [[O]]

�

! L and L:invk

�

! N

for some L. Since [[O]] = (proto�xR) for some R, it is easy to see that N

�

! [

[[O]]

=

x

]R. Now let

M

0

= [

[[O]]

=

x

]R:`. We have M

�

!M

0

, and [[O]]:inht [[O]]

�

! [

[[O]]

=

x

]R, therefore P

0

SM

0

by de�nition

of S.

If P = S(hP

0

 ` = Qi; `; P

1

) and P

0

= (QP

1

) then there exist M

0

and N such that [[O]]

�

!M

0

where O = hP

0

 ` = Qi and M

0

:inht [[P

1

]]

�

! N with M = N:`, and it is easy to see that

N

�

! [[[P

0

]]:inht [[P

1

]]; ` = [[Q]][[P

1

]]]

Therefore we may let M

0

= [[Q]][[P

1

]]. The case where P = S(hP

0

 k = Qi; `; P

1

) and P

0

=

S(P

0

; `; P

1

) is similar: again there exist M

0

and N such that [[O]]

�

!M

0

where O = hP

0

 k = Qi,

and M

0

:inht [[P

1

]]

�

! N with M = N:`. Then

N

�

! [[[P

0

]]:inht [[P

1

]]; ` = [[Q]][[P

1

]]]

and therefore we have M

�

! ([[P

0

]]:inht [[P

1

]]):` = M

0

, and P

0

SM

0

by de�nition of S.

If P = (Q ( `) and P

0

= (Q

0

( `) with Q ! Q

0

, then M = N:` for some N such that there

exists L with QS L and L:invk

�

! N . By induction hypothesis, there exists L

0

such that L

�

! L

0

and Q

0

S L

0

. Moreover one can check that, since Q is not a value, we must have N = L

00

:invk with

L

�

! L

00

. Since evaluation is deterministic, we have L

0

�

! L

00

or L

00

�

! L

0

, and in any case we can �nd

N

0

such that N

�

! N

0

and L

0

:invk

�

! N

0

, and we let M

0

= N

0

:`. The case where P = S(P

0

; `; P

1

)

and P

0

= S(P

0

0

; `; P

1

) with P

0

! P

0

0

is similar: there exist L and N such that M = N:` with

L:inht [[P

1

]]

�

! N and P

0

S L. Again one uses the induction hypothesis, and observes that since P

0

is not a value, N = L

00

:inht [[P

1

]] for some L

00

such that L

�

! L

00

.

In the case where P = (P

0

Q) and P

0

= (P

0

0

Q) with P

0

! P

0

0

, we simply use the induction

hypothesis.

(ii) We proceed by induction on the de�nition of S. The case where M = (N [[Q]]) with P = (P

0

Q)

and P

0

S N is easy: we have either N = �x[[P

0

0

]] and P

0

= �xP

0

0

withM

0

= [

[[Q]]

=

x

][[P

0

0

]] = [[[

Q

=

x

]P

0

0

]],

and we use the previous lemma, or M

0

= (N

0

[[Q]]) with N ! N

0

, and we use the induction

hypothesis. If O SM and M !M

0

then O SM

0

.

If M = N:` and P = (Q ( `) with QS N

0

for some N

0

such that N

0

:invk

�

! N , then we have

either M

0

= N

00

:` with N ! N

00

, in which case PSM

0

, or N = [N

0

; k = N

1

], with M

0

= N

1

if k = ` and M

0

= N

0

:` if k 6= `. Then one can see that one must have Q = hQ

0

 k = Q

1

i

with N

0

= [[Q

0

]]:inht [[Q]] and N

1

= [[Q

1

]][[Q]]. If k = ` we let P

0

= (Q

1

Q), and otherwise we let

P

0

= S(Q

0

; `;Q), and we use the previous lemma.

The case where M = N

0

:` and P = S(P

0

; `; P

1

) with P

0

S N and N:inht [[P

1

]]

�

! N

0

is similar:

either M

0

= N

00

:` with N

0

! N

00

, in which case PSM

0

, or N

0

= [N

0

; k = N

1

], with M

0

= N

1

if

k = ` and M

0

= N

0

:` if k 6= `. Again one must have P

0

hQ

0

 k = Q

1

i with N

0

= [[Q

0

]]:inht [[P

1

]]

and N

1

= [[Q

1

]][[P

1

]], and it is easy to conclude

As a corollary, we can now prove the soundness of our translation:
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Proposition (Computational Adequacy) 3.3. A prototype P converges if and only if its

translation converges, that is P+ , [[P ]]+. More precisely,

eval([[P ]]) = eval([[eval(P )]])

Proof: if P

�

! W there exists N such that [[P ]]

�

! N and W S N by the Lemma 3.2(i), since

P S [[P ]] by Lemma 3.1. Now if W = �xQ then N = �x[[Q]] = [[W ]], and if W is hi or hQ ` = T i

then [[W ]]

�

! N

�

! [ inht = G ; invk = G(protoG) ] for some G by the de�nition of S and the Lemma

3.1.

Conversely if [[P ]]

�

! V , by the Lemma 3.2(ii) there exists Q such that P

�

! Q and QS V . It is

easy to see, from the de�nition of S, that this can only hold if Q is a value, with [[Q]]

�

! V

4. Deriving the Typing Rules

In this section we show how to derive the typing rules for prototypes. We �rst introduce a type

system T for our �-calculus with extensible records. This system features arrow types and extensible

record types � also called row expressions, following [21] �, as well as recursive types, types depending

on types [17] and a limited form of bounded universal quanti�cation [9]. Moreover, we will only

allow types which are well-formed with respect to a system of kinds. There are two basic kinds,

2

,

the kind of record types, and

3

, the kind of types. Since we also have type operators, the syntax

of kinds and types is the following:

�

..

..

2

j

3

j (�! �)

�; � : : :

..

..

t j (� ! �) j [] j [�; ` : � ] j (�t

�

:�) j (

V

t

�

:�) j (��) j (8t ^ �:�)

For instance

3

!

2

is the kind of interfaces, that is functions from types to records. In (8t ^ �:�),

the variable t is bound in �, but not in � (hence we do not have F -bounded polymorphism).

Dependent types are used as prototype's interface (see [13, 18]), which typically are of the form

V

t

3

:[`

1

: �

1

; : : : ; `

n

: �

n

]. Bounded quanti�cation is used to model the fact that such an interface

may be extended.

The preorder in (8t ^ �:�) is width subtyping (of rows, not records), as this is precisely the notion

of subtyping one needs in order to derive the typing of method specialization (see the comments

at the end of this section). We use the notation ^ since our axiomatization of this preorder makes

it slightly more generous than <:

w

of [15]. For instance we have [` : �

0

; ` : � ] ^ [` : � ], but the �rst

of these record types is not even well-formed in Fisher's system. In our setting, we allow a row

[[�; ` : �

0

]; ` : � ] to be well-formed, and this will simplify the type system, but the reader should

notice that this is a (width) subtype of [�; ` : �

0

] only if �

0

= � . This means that, by contrast with

Fisher's system, [�; ` : � ] ^ � is not valid in general � if � exhibits a �eld ` with a type di�erent

from � .

Our type system is given in Curry's style, because types are implicit in the source calculus

of prototypes, and also because this simpli�es the presentation. The typing contexts of T are as

follows:

�

..

..

; j �; x : � j �; t ^ � j �; t :: �

and the type judgements are � ` �, � ` � :: �, � ` � ^ �, � ` M : � , with the same meaning as

above, plus � ` � <: � and � ` � � � where � is our notion of type equality. We omit the rules by

which this is a congruence, that contains ��-conversion, that is:

((

V

t

�

:�)�) � [

�

=

t

]�

(�t

�

:�) � [

�t

�

:�

=

t

]�

8



All the rules of the system, for well-formedness of contexts, kinding of types, subtyping judgements

� ` � ^ � and for typing terms, collected in the appendices, are fairly standard (except perhaps for

what regards width subtyping of rows). More precisely, system T consists in the rules collected in

the �rst three appendices. Let us comment on some of the rules: regarding the subtyping of rows,

� ` � ^ [` : � ]

� ` [�; ` : � ] ^ �

expresses the fact that if we know that a row � contains an ` �eld with type � , then extending it

with ` : � actually does not modify it. This rule will be used for typing method update. One should

remark that, although in T we have the usual subsumption rule

� `M : � ; � ` � <: �

� `M : �

this is of limited use, since the only way to infer � ` � <: � in T is by means of the rule

� ` � ^ �

� ` � <: �

That is, in T we only have �width subsumption�. One should also observe that we have no sub-

typing rule for bounded quanti�cation. However, using the rules of instanciation, subsumption and

generalization, one can achieve the same e�ect. That is, the following inference is valid:

� `M : (8t ^ �:�) ; � ` �

0

^ � ; � ` � ^ �

0

� `M : (8t ^ �

0

:�

0

)

(0)

Our type system is quite close to the one of [7] (see also [18] for a complete description of the

same system without recursion), with some di�erences: we do not use maximal types >(�), nor

existentially quanti�ed types, but we use extensible records rather than just records, and recursion

at any kind. Our system is also very close, apart from what concerns subtyping, to the one sketched

by Mitchell in [19]. At least super�cially, it does not look much more complicated than the system

for prototypes sketched above.

To see how the typing rules for prototypes are mimicked in our system, let us �rst give some

valid inferences. To this end, we introduce some notations. Let us de�ne:

� =

def

3

!

2

 =

def

(

3

!

2

)!

2

� =

def

�p



:

V

s

�

:�o

2

:[ inht : (8s

0

^ s:ps

0

! s(ps

0

)) ; invk : so ]

& =

def

V

t

�

:(8s

0

^ t:�s

0

! t(�s

0

))

It is easy to see that, for any �:

(��) � [ inht : (& �) ; invk : �(��) ] (1)

and therefore the following rule is admissible:

� ` G : (& �)

� ` (protoG) : (��)

(2)

This holds in particular whenever G = � self [`

1

= M

1

self ; : : : ; `

n

= M

n

self ] is an object generator,

which can be given the type & (

V

t

3

:�) where � = [`

1

: �

1

; : : : ; `

n

: �

n

], using the assumption that self

9



has type (�s

0

) with constraint s

0

^ (

V

t

3

:�), and that the M

i

's have type t ! �

i

. In this case the

type of (protoG) is

�(

V

t

3

:�) � [ inht : (8s

0

^ �:�s

0

! [

�s

0

=

t

]�) ; invk : [

��

=

t

]� ] with � =

V

t

3

:�

One can see that invk is a record of type [`

1

: �

0

1

; : : : ; `

n

: �

0

n

], thus exhibiting only the method names

that are actually available in the prototype, while inht is a function that takes arguments of type

��

0

with �

0

^ �, that is any possible extension to the original prototype, and returns the record of

methods �specialized� to this extension. Another admissible rule, derived using the law (1), is:

� `M : (��) ; � ` � ^

V

t

3

:[` : � ]

� `M:invk:` : [

��

=

t

]�

(3)

Again using (1), one can check that for G = �x[M:inhtx; ` = Nx] the following is a valid inference:

� `M : (��) ; � ` �

0

^ � ; � ` N : (8s ^ �

0

:�s! [

�s

=

t

]�)

� ` G : (8s ^ �

0

:�s! [�(�s); ` : [

�s

=

t

]� ])

Now if we try to exploit the rule (2), to build a prototype out of G, we have to �nd a way

to replace [�(�s); ` : [

�s

=

t

]� ] by �

0

(�s). An obvious solution is �

0

=

V

t

3

:[�t; ` : � ], since then

[�(�s); ` : [

�s

=

t

]� ] � �

0

(�s), and this gives us another admissible rule:

� `M : (��) ; � `

V

t

3

:[�t; ` : � ] ^ � ; � ` N : (8s ^

V

t

3

:[�t; ` : � ]:�s! [

�s

=

t

]�)

� ` (proto�x[M:inhtx; ` = Nx]) : �(

V

t

3

:[�t; ` : � ])

(4)

There is another possibility, however, which is �

0

= � and � ^

V

t

3

:[` : � ], since in this case the

following inference is valid:

� ` � ^

V

t

3

:[` : � ]

� ` [�(�s); ` : [

�s

=

t

]� ] ^ �(�s)

� ` �s! [�(�s); ` : [

�s

=

t

]� ] ^ �s! �(�s)

Using the inference (0) above, this gives us the following admissible rule:

� `M : (��) ; � ` � ^

V

t

3

:[` : � ] ; � ` N : (8s ^ �:�s! [

�s

=

t

]�)

� ` (proto �x[M:inhtx; ` = Nx]) : (��)

(5)

Finally it is easy to see � still using (1) � that the following is admissible:

� `M : (��) ; � ` �

0

^ � ^

V

t

3

:[` : � ] ; � ` N : (��

0

)

� ` (M:inhtN):` : [

��

0

=

t

]�

(6)

Now the translation from the simpli�ed version of Fisher's system sketched in Section 2 to our type

system should be clear. As far as types are concerned, it is given by

[[pro t:�]] = �(

V

t

3

:[[�]])

(the rest is trivial, e.g. [[�t:�]] =

V

t

3

:[[�]]). Regarding the kinds, we let [[M]] =

2

and [[T]] =

3

.

Translating the contexts in the obvious way (where r <:

w

� is translated into r ^ [[�]]), we have:

Theorem. If � ` M : � can be inferred in the type system for prototypes, then [[�]] ` [[M ]] : [[� ]]

can be proved in the type system T for the �-calculus with extensible records.
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The derived inferences (2) to (6) allow us to retrieve the rules (empty pro), (pro (), (pro ext),

(pro over) and (subsid) respectively, with � =

V

t

3

:[[�]] in the last four cases. One should notice that

the only use of subsumption we made is in deriving the rule (pro over), via the inference (0). One

should also observe that our inference (4) is actually slightly more general than the corresponding

rule (pro ext), since for the premise � ` � ^

V

t

3

:[�t; ` : � ] to be valid with � =

V

t

3

:[[�]] there may

actually be two cases: either � does not contain the �eld `, in which case we are typing a true

extension, as in the rule (pro ext), or � does contain the �eld `, but then it must be, thanks to the

axiomatization of ^, of type � , and this is actually a particular case of inference (5). Remark that

in the latter the premise regarding N is stronger (a bounded quanti�cation is contravariant in the

bound) than in (4), and this is needed to type self-in�icted update, as in the standard �movable

point� object � see [12].

Our result is a completeness result similar to the one obtained by Abadi & al. in [3]. Its

converse does not hold, for some interesting reasons: there is a slight di�erence in the modelling

of prototypes between Fisher-Honsell-Mitchell's calculus and our encoding � or Cardelli's [8] and

Cook's [11] models, for that matter �, which is that the underlying record representing the prototype

is, in the former, a record of pre-methods, which are functions of self, while it is a record of methods,

where the self parameter is free, in the latter. In other word, the self parameter is �late bound� in

the recursive record or generator model, while it is bound earlier � that is, before extension � in

Fisher-Honsell-Mitchell's prototypes. Then for instance the prototype

hhhi  k = � self (self:`)i  ` = � self (self:`)i

is not typable in Fisher-Honsell-Mitchell's type system (see [12] for a similar example), while its

translation is typable in our system. In fact, this prototype has �semantically� (modulo permutation

of �elds of di�erent names in a record) the same translation as

hhhi  ` = � self (self:`)i  k = � self (self:`)i

because both are represented by the �same� generator, and the latter is typable in Fisher-Honsell-

Mitchell's calculus.

Finally, one may notice that, when we specialize the inferences (3), (4) and (5) with � =

V

t

3

:[[�]],

where � is supposed to be of record kind, we could reformulate these inferences using a preorder

introduced by Bruce in [6] and now called matching, denoted <#, which may be de�ned as follows:

� ` � ^ �

0

� ` pro t:� <# pro t:�

0

Then the reformulated admissible rules would be nothing else than the rules recently proposed for

Fisher-Honsell-Mitchell's calculus of prototypes by Bono and Bugliesi in [5]. As shown by Bruce

in [6], matching is precisely the kind of subtyping we need in typing the operations of extension

and update on prototypes (though the paper [6] actually deals with classes). This explains why we

need, at the lower level of records, to use width subtyping.

5. Objects and Subtyping

As we said, our type system T for the �-calculus of extensible records only makes use of a particular

form of subtyping. It has been remarked by Fisher and Mitchell in [13] that adding the subsumption

rule in the typing of prototypes, one actually does not gain anything, since �in pure delegation based

languages, no subtyping is possible�. This is easy to explain looking at our translation: one easily

sees that & is invariant in its type parameter (the bound � in 8t ^ �:� is in a contravariant position),

and therefore � is invariant too. For this reason we cannot deal with the preorder proposed by Bono

11



and Liquori [4] for the calculus of prototypes, nor with the width subtyping of prototypes of �xed

size as it is done by Abadi and Cardelli in [2], at least if we stick to the translation given here � it

might be possible to combine it with the translation of [3, 20], allowing their �assembled� objects

to be part of the syntax, but this looks a bit ad hoc.

In a subsequent paper [14], Fisher and Mitchell enriched their calculus by distinguishing, at

the level of types, prototypes from objects, which are �sealed prototypes�. The distinction is that

objects feature only method invocation, but no extension or update. Then a new type construct

obj t:� is introduced together with three new rules, which are essentially the following, where the

typing contexts are enriched with new constraints t <: � :

� ; t <: t

0

` � <: �

0

� ` pro t:� <: obj t

0

:�

0

� ; t <: t

0

` � <: �

0

� ` obj t:� <: obj t

0

:�

0

� ` P : obj t:� ; � ; t : T ` � <:

w

[` : � ]

� ` P ( ` : [

obj t:�

=

t

]�

Now consider our typing system T enriched with subtyping. That is, we introduce an extension,

called T

<:

, of T in which we have a new kind of contexts, namely �; t <: � , and new rules for

inferring the judgements � ` � <: � � the rules are given in the fourth appendix. If we let

[[obj t:�]] = !(

V

t

3

:�) where ! =

def

V

s

�

:�o

2

:[ invk : so ]

then it is easy to see, using the standard rule for subtyping recursive types, that the three rules above

can be derived in our system with subtyping. Notice that [[obj t:�]] � �t

3

:[invk : �] and therefore

this is essentially what Bruce & al. [7] call the �classical recursive record encoding� (see also [13]

� 6.3), which is the natural typing of Cardelli's recursive records [8].

Regarding the full type system with subtyping T

<:

for our �-calculus with extensible records,

our main result is type safety. Indeed, we can prove the subject reduction property:

Theorem (Subject Reduction). If � `M : � is provable in T

<:

and M !M

0

then � `M : �

0

is provable in T

<:

.

Our proof, which, not surprisingly, is quite long and technical, di�ers from Compagnoni's one [10]; in

particular, since we have recursive types, we cannot rely on a strong normalization result. However,

since we have no subtyping rule for bounded quanti�cation, we can make a direct proof, analysing

the typing of a compound term in typings of its components.

It is possible to exploit subsumption to gain another typing rule for method update, where the

type of the method is specialized to a subtype (this is valid in Cook's system, as observed in [13]).

To this end one would use a more standard bounded quanti�cation (8t <: �:�), and then the derived

inference (4) could be generalized to one involving the premiss � `

V

t

3

:[�t; ` : � ] <: � (a similar

remark is made by Bruce in [6]). To type �self-in�icted� method update however, we still need width

subtyping ^. One may regard this improved system as the right one to adopt for typing prototypes.
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Appendix: well-formedness of contexts and kinding

; ` �

� ` � ::

3

� ; x : � ` �

(y)

� ` �

� ; t :: � ` �

(z)

� ` � :: �

� ; t ^ � ` �

(z)

� ` � ::

2

� ` � ::

3

� ` �

� ` t :: �

t :: � 2 �

� ` � :: �

� ` t :: �

t ^ � 2 �

� ` � ::

3

; � ` � ::

3

� ` (� ! �) ::

3

� ` �

� ` [] ::

2

� ` � ::

2

; � ` � ::

3

� ` [�; ` : � ] ::

2

� ; t :: � ` � :: �

� ` (�t

�

:�) :: �

(z)

� ; t :: � ` � :: �

� ` (

V

t

�

:�) :: �! �

(z)

� ` � :: �! � ; � ` � :: �

� ` (��) :: �

� ; t ^ � ` � ::

3

� ` (8t ^ �:�) ::

3

(z)

(y) x 62 dom(�), (z) t 62 fv(�)

Appendix: width subtyping

� ` �; � :: �

� ` � ^ �

� � �

� ` � ^ � ; � ` � ^ �

� ` � ^ �

� ` �

� ` t ^ �

t ^ � 2 �

� ` � ^ �

� ` � <: �

� ` �; � ::

3

; � ` �

0

^ � ; � ` � ^ �

0

� ` � ! � ^ �

0

! �

0

� ` � ::

2

� ` � ^ []

� ` � ^ �

0

; � ` � ::

2

; � ::

3

� ` [�; ` : � ] ^ [�

0

; ` : � ]

� ` � ^ [` : � ]

� ` [�; ` : � ] ^ �

� ` � ::

2

; � ` �; �

0

::

3

� ` [[�; k : �

0

]; ` : � ] ^ [[�; ` : � ]; k : �

0

]

k 6= `

� ; t :: � ` � ^ �

� ` (

V

t

�

:�) ^ (

V

t

�

:�)

t 62 fv(�)

� ` (��) :: � ; � ` � ^ �

0

� ` (��) ^ (�

0

�)

Appendix: typing

� ` �

� ` x : �

x : � 2 �

� ; x : � `M : �

� ` �xM : � ! �

� `M : � ! � ; � ` N : �

� ` (MN) : �
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� ; x : � `M : �

� ` �xx:M : �

� `M : [` : � ]

� `M:` : �

� ` �

� ` [] : []

� ` R : � ; � `M : �

� ` [R; ` = M ] : [�; ` : � ]

� ` �

0

^ � ; � `M : (8t ^ �:�)

� `M : [

�

0

=

t

]�

� ; t ^ � `M : �

� `M : (8t ^ �:�)

� `M : � ; � ` � <: �

� `M : �

� `M : � ; �;�

0

` �

� ; �

0

`M : �

Appendix: subtyping

� ` � :: �

� ; t <: � ` �

t 62 fv(�)

� ` � :: �

� ` t :: �

t <: � 2 �

� ` �

� ` t <: �

t <: � 2 �

� ` � <: � ; � ` � <: �

� ` � <: �

� ` �; � ::

3

; � ` �

0

<: � ; � ` � <: �

0

� ` � ! � <: �

0

! �

0

� ` � ::

2

; � ::

3

; � ` � <: �
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