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Abstract. We study dynamical properties of PB systems, a new com-
putational model of biological processes, and propose a compositional
encoding of PB systems into Petri nets. Building on this relation, we
show that three properties: boundedness, reachability and cyclicity, which
we claim are useful in practice, are all decidable.

1 Introduction

We study the complexity of dynamical properties of PB systems, a new com-
putation model introduced by Bernardini and Manca [1] for modeling biological
processes. PB systems extend a previous model by Paun [9,10,11] using a notion
of nested structure of membranes, which recalls the hierarchical structures of
the living cell. Each region, delimited by a membrane, contains some objects, or
molecules to stick to the biological metaphor. The configuration of membranes
may evolve according to two kinds of rules: transformation rules, defined lo-
cally to each membrane, which model basic chemical reactions with rewriting
rules over multisets; and communication rules, which model the ability of some
molecules to transit through membranes. (Gated-pore reactions are a typical
instance of such rules.)

In [1], the authors start investigating the dynamics of PB systems. The main
focus is on periodicity, a central notion of biological processes. Indeed, many
important biological processes have a periodic or quasi-periodic behavior, such
as the ATP cycle, for instance. In this paper, we study a new notion of periodic
systems, called cyclicity, and also study two other dynamical properties, which
are familiar to the area of verification of concurrent systems, namely boundedness
and reachability.

Boundedness is a property of systems whose production and consumption
of resources (during a finite lapse of time) may be bounded. From a biologi-
cal point of view, boundedness can be interpreted as a property of sustainable
development, in the sense that long-lived processes in a cell are not allowed to
store more and more chemical components. (Clearly, a cell can accumulate only
a finite amount of material.) Reachability is the problem of deciding whether
a system may reach a given state during its execution. This is one of the most
critical property in the verification of systems as most of the safety properties of



mechanical and computing systems can be reduced to the problem of checking
whether a system may reach a “bad state”. (Another quality of reachability is
that many other properties may be recursively reduced to it.) In the context of
PB systems, reachability may take a biological interpretation. Assume we are
modeling the drug absorption activity of some cell. The system starts with some
initial drug density in the outermost region of the cell and, during evolution,
the drug start circulating and concentrating in membranes. From a biochemical
viewpoint, one can be interested if, upon evolutions, the density of drug in the
cell reaches some critical value, that is, if it reaches some special configuration
of our PB system.

We prove that cyclicity (another form of periodicity), boundedness and reach-
ability are all decidable problems for PB systems. These results are essentially
obtained by encoding PB systems as Petri nets [14], a distinguished model of
concurrent computation, and by transferring known difficult complexity results
on Petri nets. Using our encoding result, it is also possible to easily transfer
the decision procedures for these problems and therefore to obtain efficient al-
gorithms in specific cases.

Relating two apparently different formal models of computations is always
fruitful. Indeed, the transfer of results from one model to the other often leads
to a deeper understanding of the concepts involved or to the discovery of new
results. In the present case for example, the notion of periodicity, that is central
to the study of PB systems, appears almost overlooked in Petri nets, and we can
conjecture that the search for a good definition of periodic behavior, that will fit
the biological sense associated to this adjective, will be challenging. (There ex-
ists a notion of cyclic Petri net, quite distant from the notion of periodic system
found in [1].) We can draw a parallel here with the search for a comprehensive
notion of fairness in concurrent computation, which initiated the definition of
a whole family of formal characterizations, or with the formal definitions of the
concepts of secrecy and authentication in the study of cryptographic protocols,
which are still elusive.

The paper is structured as follows. Next section gives basic definitions on
multisets and periodic sequences of multisets. Section 3 and 4 define PB systems
and PBE systems, respectively. Petri nets and related notions are introduced in
Section 5. Section 6 contains our full abstraction result and illustrates the con-
struction of the Petri net associated with a PB/PBE system. Before concluding,
we prove several decidability results which can be deduced from the relation
between Petri net and PB systems.

2 Basic Definitions

In this section, we recall some preliminary definitions about multisets and peri-
odic sequences. The interested reader may find complete informations in [1,10,11].
Consider a finite alphabet X' of abstract symbols called objects. A multiset over



Y is a mapping u : X — N. For any a € X, the value u(a) is the number of
objects of type a in the multiset u, also called the multiplicity of a in u. Given
two multisets u, v over X, we write u = v the equality of the two multisets u and
v, and u < v if the multiset w is included in v, that is, u(a) < v(a) for all a € X.

A multiset u over X can be conveniently encoded by a string over the alphabet
Y, say w = aqf(al) ...a"“")_ This representation is not unique and any permu-
tation of w gives an admissible encoding. In this paper, we will interchangeably
use the expressions “the multiset represented by the string w”, “the multiset w”
or “the string w”, we shall also use the notation w(a) for the multiplicity of a
in the multiset w.

An infinite sequence (w;);en of multisets is ultimately periodic if there exists
to,p € Nsuch that forallte Nand 1 <j <p:

Wiytj = Wigtpttj - (1)

An infinite sequence (w;);en of multisets is ultimately almost periodic if there
exists tg,p € N such that forallt e Nand 1 < j <p:

Wiotj < Wigtpttj - (2)

The least integers p and t( satisfying (1) or (2) are called the period and the
transient of (w;);en, respectively. An ultimately periodic sequence with a null
transient (i.e. g = 0) is called periodic. Similarly, an ultimately almost periodic
sequences with a null transient is called almost periodic.

3 PB systems

In this section we briefly recall basic definitions about PB systems (see [1] for
more on this subject).

Definition 1 (PB system). A PB system is a structure Il = (I, M, R, o),
where I' is a finite alphabet of symbols, M is a finite tree representing the mem-
brane structure, R is a finite set of rules and g is the initial configuration, that
is a mapping from membranes of IT (nodes in M) to multisets of objects from
I'. Rules can be of the following two forms:

1. wd [V - wd [juw (communication rules)

2. [iu — [;v (transformation rules)
where u, v’ ,v,v" € I'* and ¢ s a node in M.

A configuration (for IT), u, is a distribution of objects from I" in membranes
of I1. We say that there is a transition 4 — p’ if p’ can be obtained from p by
applying a rule in R. A computation with initial configuration g is a sequence
of transitions pg — p1 — o ...

Our definition of PB systems slightly differs from the original version found
in [1]. First, we explicitly consider the spatial distribution of membranes instead



of relying on structural conditions about initial configurations (for example the
property of being well-parenthesized). Second, we do not distinguish an output
membrane. Indeed, this distinguished membrane is only used to define the “final
result” of an evolution whereas, in this paper, we are exclusively interested in
dynamical aspects of the system.

Another, more significant difference, appears in the definition of the opera-
tional semantics. In our model, following typical algebraic models of concurrent
computation like CCS and Petri nets, reduction rules are applied in an “asyn-
chronous” and non-deterministic manner, whereas the operational semantics of
P-systems is usually based on a mazimum-parallel reduction relation (in which
configurations evolve by applying the maximal number of non-interfering transi-
tion rules). While the two kinds of semantics may not always be simply related,
it is easy to see that a configuration reachable using the maximum-parallel re-
duction strategy is also reachable in our setting.

A PB system with initial configuration ug is wltimately periodic (resp. ulti-
mately almost periodic) if there exists a computation with initial configuration
o which is ultimately periodic (resp. ultimately almost periodic).

It is important to remark that, due to non-determinism, there are possibly
infinitely many computations originating from the same initial configuration.
Anyway, we call ultimately periodic (resp. ultimately almost periodic) a sys-
tem with initial configuration py which admits at least one ultimately periodic
(resp. ultimately almost periodic) computation. Taking inspiration from Petri
nets terminology, we say that a PB has structurally the property P if P holds
for all possible initial configurations. In Section 7, we give results on periodic and
structurally periodic systems and propose an adequate condition for a system to
enjoy these properties. We also prove (Proposition 5) that almost every periodic
PB-system also exhibits an infinite number of aperiodic computations. More pre-
cisely, we prove that “uniformly periodic” systems, such that all computations
are periodic (with or without the same period), are restricted to systems with a
unique, deterministic, computation.

4 PBE systems

In [1], the authors provide an interesting extension of PB systems: PB systems
with environment (or PBE for short). In this model, there is an environment
regularly providing molecules at the boundaries of the outermost membrane of
the PB system. These molecules evolve according to special rules of the envi-
ronment and can interact with the PB system. The intuition behind this model
is that the environment provides resources for the PB system and, eventually,
collects garbages. To simplify our presentation, we consider an abridged model
of environment, but much of our results can be extended to the full definition
found in [1].

Definition 2 (PBE system). A PBE system is a structure Il = (I M, R, E,
Rg, po), where (I'y M, R, uo) is a PB system, and E = wy « --- - wy, is a se-



quence of multisets over I', and Rg is a finite set of environment rules, that is,
transformation rules acting on the multisets contained in the environment E.

A configuration v of a PBE system is a triple (¢, e, ) where ¢ € N is the cycle
step for the environment, e € I'* is the current environment content and y is the
configuration of the PB system. We use the notation E(t) for the #th element of
the sequence E and, since an environment correspond to a cyclic behavior, we
extend this definition to all indices ¢ € N assuming that E(t + k) = E(¢).

A transition from the configuration v = (¢, e, 1) is obtained in two steps:

1. apply to e a rule in Rg U R and add E(t) to e;
2. apply to p a rule in R and increment ¢ by 1.

Similarly to previous sections, we denote this fact by v — v/. Remark that,
at this point, all definitions of dynamical properties about PB systems extend
in a natural manner to PBE systems.

5 Petri Nets

Petri nets are a very popular model for the analysis and representation of concur-
rent systems that has draw much attention from the community of verification of
concurrent systems. Interestingly enough, the Petri net model was proved equiva-
lent to the vector addition systems [6] of Karp and Miller, a simple mathematical
structure defined to analyze the computations of vector-parallel architectures.
Correspondingly, in this paper, we show an equivalent result relating Petri nets
with a model for “biological computation”, the PB systems of Bernardini and
Manca.

The interest of relating PB systems with the (seemingly different) Petri net
model of computation is that collected works on Petri nets span over more
than twenty five years and have lead to several important results on decidability
issues, new notions of equivalences and modal logics for expressing temporal and
behavioral properties (with the associated model-checking algorithms). We may
therefore hope to transfer these results to the setting of PB systems.

Definition 3 (Petri net). A Petri net N is a tuple (P, T, F, po) where P and
T are two disjoint finite sets, and F : (P x T)U (T x P) — N is a flow function
and g is the initial marking. A marking, u, is a mapping P — N from places to
integers. The elements of S and T are called places and transitions, respectively,
and the elements of F are called arcs.

Given a Petri net N = (P, T, F, po), a marking, p, associates an integer,
wu(p), to every places p € P. The intuition is that every place contains a bag of
tokens and that transitions may take tokens from some places to others following
the arcs which are connected to it. An arc F(p,t) = n represents a flow from
the place p to the transition ¢ carrying (and necessitating at least) n tokens; an
arc F(t,p) = n represents a flow from the place ¢ to the place p; and F(p,t) =
F(t,p) = 0 represents no connection at all.



A transition t is firable from a marking u, written pu L, if for all places
p € P, it holds F(p,t) < u(p). If ¢ is firable from p, firing ¢ from p leads to
a new marking p’, a relation denoted p AN i, such that for all p € P we
have p/(p) = u(p) — F(p,t) + F(t,p). A marking p’ is reachable from p, denoted

p — i/, if there exists a sequence of transitions tg,t1,...,t, such that
to ty tn /
o [y — Pty = > [, = [

The set of all Petri nets is a semi-group and nets may be composed using
a simple operation, called parallel composition, defined as follows. The parallel
composition of the nets Ny = (S1, 71, Fi, p1) and Ny = (Sa, Ta, Fa, u2), denoted
Ni||Na, is the net obtained by simply merging the set of places, transitions and
arcs, that is, Ny||Ny = (51 U Sy, Ty U T, Fy + Fo, uy + p2), where addition of
functions is defined place-wise. (Note that this operator strongly relies on the
names chosen for places and transitions.)

There is a standard graphical representation of Petri net, exemplified in Fig-
ure 1. Circles represent places, black bars represent transitions and directed
weighted edges represent arcs. (A missing label is equivalent to a weight of 1.)
A marking, p, is represented by groups of u(p) tokens located at each place p
in the net. For example, a marking that assigns the integer 2 to the place p is
represented by two tokens (depicted e) located in p. The first net depicted in
Figure 1 corresponds to a Petri net with 4 places (labeled a,b, ¢ and d) and 3
transitions, in the configuration a — 2,b — 3 (or equivalently to the multiset
aabbb). The second figure shows the system after the firing of transition 5. In
this state, only the transitions ¢; and t3 are enabled and they may fire concur-
rently (one transition may not hamper the firing of the other). Last figure shows
the state of the system after the firing of ¢3.

Fig. 1 Graphical representation of a Petri net
ty




6 Encoding PB and PBE systems

In this section we define an encoding of PB systems into Petri nets that pre-
serves reduction. This encoding allows one to deduce fundamental results on the
dynamics of PB systems from known results about Petri nets.

Consider the PB system IT = (I, M, R, ug). The encoding of IT is decom-
posed into two separate steps. First, we associate to each membrane i of IT a
Petri net N; that corresponds to transformation rules — that is rules that are
purely local to one membrane. Second, the nets N; are merged into a larger
Petri net and special transitions between the sub-nets N; are added in order
to code communication rules. The resulting Petri net, denoted [IT], is obtained
compositionally from the rules in IT. Moreover, the size of [II] is proportional
to the size of II.

Remark that Petri nets do not explicitly model locality, like in PB systems,
but the hierarchical structure of membranes is reflected by the communication
links between sub-nets.

For every membrane i € T, define the Petri net N; = <SZ-, T;, F;, ,uf)> as
follows. There is one place a; € N; for every symbol a € I', and one transition
t, for every transformation rule p € R that acts on the membrane i. The flow
function F; is the function such that for any rule p: [;u — [;v (with u,v € I'*)
we have F(a;,t,) = u(a) and F(t,,a;) = v(a) for all a € I'. The initial marking
ph is the mapping associating to each place a; (i.e. a is a molecule in I') the
number of molecules a in the membrane 3.

Now, consider the Petri net N = (S, T, F, w) obtained by merging the nets
N; for i € M, that is ||, ,, Vs, extended with one transition for every communi-
cation rules in IT. (By construction, the places and transitions used in the N; are
all distinct.) The set of places of N is S = [J;,, Si, and the set of transitions, T,
is equal to R, the set of rule (names) of I7, that is, the union of (;c,, T3) (the
names of the transformations rules of IT) with the names of the communications
rules of IT. The initial marking w is the union of the markings uf, for all i € M.
In the sequel, this marking is denoted [uo].

The flow function F' of N is the union of the functions Fj;, for i € M,
and such that for any communication rule p : w.w'[;v'.v — w.v'[;v'.v and all
a € I', given j is the (unique) name of the membrane containing membrane 4,
we have F'(a;,t,) = u.u'(a), and F(a;,t,) = v'.v(a), and F(t,,a;) = v'.v(a), and
F(t,,a;) =uv'(a).

It is easy to see that the Petri net [I7] has | X|| M| places, the product of the
number of symbols by the number of membranes, and |R| transitions.

Theorem 1. Given a PB system IT = (I', M, R, o), if u — p’ in II then there
exists a firable transition [u] — [p'] in [II]. Conversely, if [u] — [u'] in [H]
then p — p' in II.

Proof. By case analysis on the transition rules of I7.



Ezample 1. The Petri net given in Figure 1 corresponds to a simple PB system,
I1, made of a single membrane, 4 different types of atoms i.e. I' = {a,b, ¢, d},
and the following 3 transformations rules:

ty1:[c — [acce
to: [abb — [ed
ts:[d —[bb

The distribution of tokens in [II] corresponds to the initial configuration aabbb.
O

We show that an environment, F (with the implicit associated set of rules
Rg), may also be interpreted as a Petri net, and we provide a compositional en-
coding, [(E, Rg)], of E. What is more surprising is that the action of controlling
a PB system, I, by an environment, F/, corresponds to the parallel composition
of the nets encoding IT and E. Therefore all the results given in this paper for
PB systems can also be lifted to PBE systems.

Assume E is the environment E(j) = w; € I'* for all j € 1.k, with I" =
{ai1,...,a,}. We suppose a fixed set of rules for the PB systems, say {p1,..., pm }-
The Petri net [(E, Rg)] is the parallel composition of the nets E; (depicted in
Figure 2) for all ¢ € 1..k, together with the Petri net encoding Rg (build exactly
like the net N; in the encoding of PB systems). We give more intuitions on the
encoding of E' in the following example.

Fig. 2 The Petri net E;: encoding one step of the environment £

wj(ar) wj(an)

seq

Sj

Sj+1

The encoding of the PBE system (I, M, R, E, Rg, po) is the parallel com-
pOSitiOl’l [[<F7 M7 Ra M0>]]HH<E7RE>]]

Theorem 2. Given a PBE system II = (I, M, R, E, Rg, uo), if p — u' in IT
then there exists a firable transition [u] — [1'] in II. Conversely, if [u] — [1']
in [H] then u — u' in I1.

The example given in Figure 3 displays the Petri net corresponding to the
Brusselator (with an empty initial configuration): a model of chemical oscilla-
tions based on the famous Belousov-Zhabotinsky used as an example in [1]. The



Brusselator is a system over the alphabet {a,b,c,d,z,y}, with only one mem-
brane and the following set of rules:

pr:la — [z
p2:[br —[yd
p3: [zaxy — [xzx
psilz — e

We also give an encoding of the environment E = (ab,{p1}) - (ab,{p1}) -
(ab,{p2}) - (ab,{ps}) - (ab,{ps}), with R = (). We encode a simple example of
PBE with resources, an extension of PBE systems such that each element in the
environment sequence F specifies also the set of reactions that may take place
in the controlled PB systems. The intuition behind this extension is that an en-
vironment, beyond bringing repeatedly new molecules to the system, may also
promote or hinder some chemical reactions. To build the encoding of an envi-
ronment with resources, it is enough to erase from the nets E; (for all j € 1..k)
the arcs between r; and the rule names not mentioned in E(j).

Fig. 3 Encoding of the Brusselator and its environment

The net [(E,0)] given in Figure 3 is essentially a linked chain of transitions
and places (s1;w1;...;85;ws;s1) which sequentially enables the transitions w;
for 7 € 1..5 and then loops. In this example, the transition w; corresponds to the
i*h component of the environment, of the form (ab, {p;}) in our example. When
fired, a transition w; generates a token in the places a and b (modeling the fact
that the environment brings a molecule a and a molecule b in the Brusselator)
and a token in the place r;. To ensure the synchronization between firings in the
(encoding of the) Brusselator and firings in the environment, we also rely on an
extra-place, seq, which ensure that a transition p; in [II] may only fire after a
firing of some transition w; in [(E, 0)] and conversely.



7 Decidability results

In this section, we go back over some significant complexity results on Petri
nets. Theorems 1 and 2 allow to transfer these results to PB/PBE systems. We
begin with the study of two dynamical properties typical of the verification of
concurrent systems, boundedness and reachability, and conclude with the study
of different notions of periodicity.

Reachability and boundedness are two general properties of interest when
working on Petri nets. Given a net, N, with initial marking, ug, we say that
the marking p is reachable from N if there exists a sequence of firings po —
H1 — ... — lp = p of the net. We say that a net is bounded if its set of
reachable markings is finite. A bounded net implies that there exists some integer
k bounding the number of tokens that may be present at each place (the net is
said to be k-safe).

The boundedness and reachability problems are decidable, even if they tend
to have a very large complexity in theory. (Petri nets are an important source of
natural non-primitive problems!) A good survey of the known decidability issues
for Petri nets, from which the results in this section are taken, is given in [4].

The best known-algorithm to test whether a Petri net is bounded may require
an exponential space in the size of the net. More precisely, it may require at most
space 2¢"1°8™ for some constant c. (This complexity is almost optimal because
Lipton proved [7] that deciding boundedness requires at least space 2¢V™.) The
same property is much simpler if we require the boundedness of the net N for
all possible initial markings. In this case, the net N is said to be structurally
bounded. Indeed, using a clever reduction involving linear programming, Memmi
and Roucairol proved [8] that the structural boundedness problem has only a
polynomial time complexity.

As a corollary, we prove that boundedness is a decidable property for PB
systems. We say that a PB system II, with initial configuration g, is bounded
if there are only finitely many configurations which are reachable starting from
po (that is, if [I7] is a bounded net).

Theorem 3 (Boundedness). Given a PB system IT and an initial configura-
tion g, it is decidable to know whether II is bounded.

For the complexity of the reachability problem, there exists only an expo-
nential space lower bound [7], while the known algorithms require non-primitive
recursive space. However, tighter complexity bounds are known for many re-
stricted classes of nets: it is EXPSPACE-complete for symmetric Petri nets,
such that every transition ¢ has a symmetric transition whose occurrence “un-
does” the effect of ¢; it is NP-complete for Petri nets without cycles; ...

Many complexity problems can be reduced to the boundedness or the reach-
ability problem. Thus, most of the usual properties of interest for verification
purposes are decidable. Intuitively, these decidability results follow from the



monotonic nature of Petri net reductions: if a transition may fire for some mark-
ing M, it may also fire for a marking with more tokens (say M + L where addition
of markings is defined place-wise). Disregarding the simplicity of this intuition,
formal proofs of these results have proved very complicated. In the case of the
reachability problem, for example, and in spite of important research efforts, the
decidability results remained elusive for nearly 30 years. Therefore, it is interest-
ing to transfer these difficult results to the setting of PB systems. For example,
we may directly obtain the following properties using our main theorem.

Theorem 4 (Reachability). Given a PB system I, with initial configuration
o, and a configuration w, it is decidable to prove that there exists an integer
n > 0 and a sequence of transitions pg — 1 — -+ — py = @ in I1.

As a corollary, we prove that periodicity is a decidable property.

Proposition 1 (Periodicity). Given a PB system IT with initial configuration
1o, it is decidable to know if it is periodic.

Proof. From Theorem 4, considering uy both as an initial and as a target con-
figuration.

Many variants of the reachability property are recursively equivalent to it. We
mention these problems here since they can be related to properties of biological
processes, the subject that motivated the definitions of PB systems.

— The home states problem. A marking of a Petri net is a home state if it is
reachable from every reachable state. That is, it is always possible to cycle
through a home state. The home state problem consists in deciding, given a
net N and a marking u, if ¢ is a home state. A Petri net is called cyclic if
its initial marking is a home state.

— The sub-marking reachability problem. The equivalent of reachability for
sub-markings, that is partially specified markings, such that only the number
of tokens on some places is given. On PB system, this problem is equivalent
to checking whether there is some reachable configuration which contains
some given numbers of molecules in some given membranes.

— Deadlock problem. It consists in proving that every reachable marking en-
ables at least one transition. That is, the system may infinitely evolve with-
out stopping. The deadlock problem is reducible in polynomial time to the
reachability problem [2].

The decidability of the deadlock problem can be directly restated in terms
of evolutions in a PB system.

Proposition 2 (Non-termination). Given a PB system II and an initial con-
figuration ug, it is decidable to know whether all computations starting with pg
are infinite.



We have already proved that periodicity is a decidable property, that is, it is
decidable to know whether a PB system admit at least one periodic computation.
The remainder of this section further develops the study of periodic behaviors.
We start by a result relating boundedness and the existence of an ultimately
periodic computation.

Proposition 3 (Ultimate periodicity). Consider a PB system II and an
initial configuration pg. If IT is bounded then II is ultimately periodic.

Proof. Assume [II] with initial configuration [uo] is bounded. If IT halts then
we are done. Otherwise, let U be the set of configurations which are reachable
starting from . Consider a computation (u;);en of II. (Since the system may
not halt, the computation is necessarily infinite.) We have u; € U for all i € N
and U has finite cardinality, therefore there exists jo, p € N such that uj, = pjo4p
(we may assume that jo is minimal with this property). Therefore, we may build
a periodic sequence of computations of II, say (w;);en, such that w; = p; for all
i < jo and w; = U(;i—j,) mod p Otherwise. Hence II is ultimately periodic.

Since structural boundedness (the property that a net is bounded for all
possible initial markings) is decidable, the previous proposition gives an adequate
condition for structural ultimate periodicity. This condition can be efficiently
checked since structural boundedness is in PTIME [8].

Propositions 1 and 2 only refer to the existence of one periodic computation.
In the study of biological systems, we may be interested in a stronger property,
akin to the notion of regularity in discrete dynamical systems, namely that
every computation of a PB system, IT, may be “approximated” by a sequence
of periodic computations of II. Taking our inspiration from the decidability of
the home states problem (and therefore of the problem of testing whether a net
is cyclic), we give a sufficient condition for regularity.

Proposition 4 (Cyclicity). Consider a PB system II, if [II] is cyclic then
every finite computation of II may be extended into an infinite periodic compu-
tation of II.

Periodicity and regularity are not precise enough to wholly characterize the
global dynamic of the systems. In particular, the following proposition shows
that a system with at least two different periodic computations has an extremely
complex dynamics. This result suggests that, when looking after systems that
exhibit simple, repetitive behavior, one should concentrate on “almost degen-
erated systems”, with practically no internal concurrency and only one cyclic
computation.

Proposition 5. If a PB system, II, has at least two distinct periodic computa-
tions then the following three statements hold:

— the system II has (at least) a countable set of periodic computations;
— the system II has a countable set of ultimately periodic computations;
— the system II has an uncountable set of aperiodic computations.



Proof. Assume there are at least two periodic computations in II, that is, at
least two cycles, C of length p and D of length ¢, in the “transitions graph”
associated to II. From any infinite boolean sequence, w, we may built a valid
computation of I1, say C,,, as follows.

We build the computation sequence C,, gradually, as the limit of a sequence
of computations (C;);en. Intuitively, C,, is obtained as the concatenation of the
sequence of transitions in C and the sequence of transitions in D, following the
value of the bits in w. For example, the sequence 0110 ... will correspond to the
computation C-D-D-C-....

Let #4(w, j) be the number of occurrences of the boolean b in the prefix of
size j of w and let r equals p.#to(w, j) +q.#1 (w, ). At step 0, define Cy (i) = C(i
mod p) for all indices ¢ € N. At step j, if w(j) = 0 then define C;(i) = C(i — )
for all indices ¢ € N such that » < ¢ < r+p and C;(i) = C;_1(i) otherwise.
Conversely, if w(j) = 1 then define C;(i) = D(i — r) for all indices ¢ € N such
that » < i <r + ¢ and C;_1(i) otherwise. Let C\, = lim; . Cj.

For every infinite sequence of boolean w, the sequence of transitions C,, is
a valid computation of II. Therefore, for every different periodic sequence w
(there is a countable number of such sequences), we obtain a different periodic
computation C,, of II. Moreover, choose a real number z in [0, 1] and let w be its
binary expansion. If x is rational then C,, is ultimately periodic and if = is not
rational then C), is aperiodic. Therefore there is a countable set of ultimately
periodic computations of the form C, in I and an uncountable set of aperiodic
computations of the form C,, in IT.

Before concluding, we remark that most of the results presented here may
not be preserved if we slightly extend the semantics of PB systems. Indeed, we
have seen that most of interesting dynamical properties on “standard” Petri nets
are decidable. The situation is much different when Petri nets are extended with
inhibitor arcs, that is with transitions that get enabled when a given place is
empty. The reachability problem is still decidable for nets with only one inhibitor
arc [13], but it is a folklore result that reachability is undecidable for nets with
(at least two) inhibitors arcs (see for example [12]).

By our main theorem, it follows that many problems on PB systems will
become undecidable if we extend this model with rules that may react to the
absence of a molecule (intuitively, the opposite of a catalysing rule).

Theorem 5. The reachability problem is undecidable for PB systems extended
with communication or transformation rules that may react to the absence of a
molecule.

Likewise, boundedness and reachability are undecidable problems for Trans-
fer and Reset Petri nets [3], two extensions of Petri nets with special arcs that
may transfer or reset the full content of some place. (On the other hand, the
coverability problem is decidable.) This last result shed light on the potential
complexity of extensions of PB-systems with mobile or volatile membranes.



8 Conclusions and further discussions

This paper offers a compositional encoding of PB and PBE systems into Petri
nets. We may relate this encoding to a compilation process, where PB systems
take the part of the high-level programs (in which to model biological reactions)
and Petri nets amount to the target assembly language (in which to apply opti-
mizations and decision procedures). Most particularly, this encoding allows us to
transfer several decidability results from Petri nets to PB/PBE systems and may
be used as a safeguard when looking for (decidable) extensions to this model.

We foresee several domains in which this newly established connection be-
tween Petri nets and PB systems may be fruitful. For example, in the creation
of tools for reasoning on PB systems, since many logics and associated model-
checking tools have been developed for Petri nets, or in the study of stochastic
or timed versions of PB systems [5,15]. Another example is the study of the
controller synthesis problem, an important current issue in Petri nets theory:
given a system IV, the problem is to build a controlling system, E, such that
the composition of N with E satisfies some specific property — for instance it
has a cyclic behavior. In the context of PBE system, an extension of PB sys-
tems [1] defined in Section 4, the synthesis problem can be directly connected
to the problem of finding a suitable environment which “drives” some specific
behavior.

More profoundly, our work on the relation between PB systems and Petri
net calls for a deeper study of the appropriate notion(s) of periodicity. It is clear
that, from a biological point of view, periodicity plays a fundamental role in the
dynamical behavior of systems. Our point is that it may be more subtle than
it seems to precisely express the kind of periodicity needed in order to express
real biological properties. Definitions based on a single computation sequence
(see Section 3) seems too weak when applied to a non-deterministic process.
Cyclicity (see Proposition 4) may be another possible alternative.
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