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Abstract. We settle the complexity bounds of the model checking problem for
the replication-free ambient calculus with public names against the ambient logic
without parallel adjunct. We show that the problem is PSPACE-complete. For
the complexity upper-bound, we devise a new representation of processes that
remains of polynomial size during process execution; this allows us to keep the
model checking procedure in polynomial space. Moreover, we prove PSPACE-
hardness of the problem for several quite simple fragments of the calculus and
the logic; this suggests that there are no interesting fragments with polynomial-
time model checking algorithms.

1 Introduction

The ambient calculus [1,2,3] is a formalism for describing the mobility of both soft-
ware and hardware. An ambient is a named cluster of running processes and nested
sub-ambients. Each computation state has a spatial structure, the tree induced by the
nesting of ambients. Mobility is abstractly represented by re-arrangement of this tree:
an ambient may move inside or outside other ambients.
The ambient logic [4] is a modal logic designed to specify properties of distributed
and mobile computations programmed in the ambient calculus. As well as standard
temporal modalities for describing the evolution of ambient processes, the logic in-
cludes novel spatial modalities for describing the tree structure of ambient processes.
Serendipitously, these spatial modalities can also usefully describe the tree structure of
semistructured databases [5]. Other work on the ambient logic includes a study of the
process equivalence induced by the satisfaction relation [9] and a study of the logic
extended with constructs for describing private names [6].
Themodel checkingproblem is to decide whether a given object (in our case, an ambi-
ent process) satisfies (that is, is a model of) a given formula. Cardelli and Gordon [4]
show decidability of the model checking problem for a finite-state fragment of the am-
bient calculus against the fragment of the ambient logic without their parallel adjunct
modality. This finite-state ambient calculus omits the constructs for unbounded repli-
cation and dynamic name generation of the full calculus. Cardelli and Gordon give no
complexity analysis for their algorithm. Still, given the various possible applications of
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the logic, it is of interest to analyse the complexity of model checking mobile ambients.
In fact, a naive analysis of the algorithm of Cardelli and Gordon gives only a doubly
exponential bound on its use of time and space. A more sophisticated analysis based
on results in this paper shows that their algorithm works in single-exponential time on
single-exponential space.

In this paper we settle the complexity bounds of the model checking problem for the
finite-state ambient calculus (that is, the full calculus apart from replication and name
generation) against the logic without parallel adjunct. Our main result (embodied in
Theorems 3.1 and 4.1) is that the problem is PSPACE-complete. Hence, this situates
model checking the ambient logic in the same complexity class as model checking
concurrent programs against CTL and CTL∗ [8].

As we discuss in Sect. 2, there are two reasons that the algorithm in [4] uses exponential
space. One of them is that a process may grow exponentially during its execution; the
other is that there may be exponentially many processes reachable from a given one.
In Sect. 3, we present a new model checking algorithm that avoids these problems
as follows. We avoid the first problem by devising a new representation of processes
using a form of closure. The main feature of this representation is that substitutions
that occur when communications take place within an ambient are not applied directly,
but are kept explicit. These explicit substitutions prevent the representation blowing up
exponentially in the size of the original process. The idea of using closures comes from
DAG representations used in unification for avoiding exponential blow-up. A sequential
substitution that we use here can be seen as a DAG representation of the substitution.
To avoid the second problem, we first devise a non-deterministic algorithm for testing
reachability that does not have to store all the reachable processes, but instead tests it
on-the-fly, and then remove nondeterminism using Savitch’s theorem [10]. Hence we
prove Theorem 3.1, that the model checking problem is solvable in PSPACE.

We show this upper bound to be tight in Sect. 4; Theorem 4.1 asserts that the model
checking problem is PSPACE-hard. Actually, we give PSPACE-hardness results for
various fragments of the logic and of the calculus. For instance, by Theorem 4.2, even
for a calculus of purely mobile ambients (that is, a calculus without communication
or the capability to dissolve ambients) and the logic without quantifiers, the problem
is PSPACE-hard. Moreover, by Theorem 4.3, for a calculus of purely communicative
ambients (that is, a calculus without the capabilities to move or to dissolve ambients)
and the logic without quantifiers, the problem is also PSPACE-hard. Often in the study
of model checking fixing the model or the formula makes the problem easier. Here this
is not the case. Even if we fix the process to be the constant0, the model checking
problem remains PSPACE-hard. Although we do not prove PSPACE-hardness for fixed
arbitrary formulas, our result is not much weaker: Theorem 4.4 asserts that for any
level of the polynomial-time hierarchy we can find a fixed formula such that the model
checking problem is hard for that level.

A more complete presentation of the calculus and the logics, together with examples
and omitted proofs, may be found in an extended version of this paper [7].
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2 Review of the Ambient Calculus and Logic

We present a finite-state ambient calculus (that is, the full calculus [1] apart from repli-
cation and name generation) and the ambient logic without parallel adjunct. This is
the same calculus and logic for which Cardelli and Gordon present a model checking
algorithm [4].

2.1 The Ambient Calculus with Public Names

The following table describes the expressions and processes of our calculus.

Expressions and Processes:

M, N ::= expressions P, Q, R ::= processes
n name 0 inactivity
in M can enterM P | Q composition
out M can exitM M [P ] ambient
open M can openM M.P action
ε null (n).P input
M.M ′ path 〈M〉 output

A namen is said to beboundin a processP if it occurs within an input prefix(n). A
name is said to befree in a processP if there is an occurrence ofn outside the scope of
any input(n). We writebn(P ) andfn(P ) for respectively the set of bound names and
the set of free names inP . We say two processes areα-equivalent if they are identical
apart from the choice of bound names. We writeM{n←N} andP{n←N} for the
outcomes of capture-avoiding substitutions of the expressionN for the namen in the
expressionM and the processP , respectively.
The semantics of the calculus is given by the relationsP ≡ Q and P → Q. The
reductionrelation,P → Q, defines the evolution of processes over time. Thestructural
congruencerelation,P ≡ Q, is an auxiliary relation used in the definition of reduction.
When we define the satisfaction relation of the modal logic in the next section, we use
an auxiliary relation, thesublocationrelation,P ↓ Q, which holds whenQ is the whole
interior of a top-level ambient inP . We write→∗ and↓∗ for the reflexive and transitive
closure of→ and↓, respectively.

Structural CongruenceP ≡ Q:

P , Q areα-equivalent⇒ P ≡ Q (Str Refl)
Q ≡ P ⇒ P ≡ Q (Str Symm)
P ≡ Q, Q ≡ R⇒ P ≡ R (Str Trans)

P ≡ Q⇒ P | R ≡ Q | R (Str Par) P ≡ Q⇒M [P ] ≡M [Q] (Str Amb)
P ≡ Q⇒M.P ≡M.Q (Str Action) P ≡ Q⇒ (n).P ≡ (n).Q (Str Input)

P | Q ≡ Q | P (Str Par Comm) (P | Q) | R ≡ P | (Q | R) (Str Par Assoc)
P | 0 ≡ P (Str Zero Par)
ε.P ≡ P (Str ε) (M.M ′).P ≡M.M ′.P (Str .)
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ReductionP → Q and SublocationP ↓ Q:

n[in m.P | Q] | m[R]→ m[n[P | Q] | R] (Red In)
m[n[out m.P | Q] | R]→ n[P | Q] | m[R] (Red Out)
open n.P | n[Q]→ P | Q (Red Open)
〈M〉 | (n).P → P{n←M} (Red I/O)

P → Q⇒ P | R→ Q | R (Red Par)
P → Q⇒ n[P ]→ n[Q] (Red Amb)
P ′ ≡ P, P → Q, Q ≡ Q′ ⇒ P ′ → Q′ (Red≡)

P ≡ n[Q] | P ′ ⇒ P ↓ Q (Loc)

The following example shows that the size of reachable processes may be exponential,
and that there may be a reduction path of exponential length. The algorithm given in [4]
may use exponential space to check properties of this example.
Consider the family of processes(Pk)k≥0, recursively defined by the equationsP0 =
(n).(p[n] | q[0]) andPk+1 = (nk+1).(〈nk+1.nk+1〉 | Pk). Intuitively, the process
Pk+1 inputs a capability, calls itnk+1, doubles it, and outputs the result to the process
Pk. We have the following, whereM1 = M andMk+1 = M.Mk.

〈in q.out q〉 | P0 →1 p[in q.out q] | q[0]
〈in q.out q〉 | P1 →2 p[(in q.out q)2] | q[0]
〈in q.out q〉 | Pk →k+1 p[(in q.out q)2

k

] | q[0]

Since(in q.out q)2
k

is a sequence of2k copies ofin q.out q, the process〈in q.out q〉 |
Pk reduces in(k + 1) + 2k+1 steps top[0] | q[0].
This example points out two facts. First, using a simple representation of processes
(such as the one proposed in [4]), it may be that the size of a process considered during
model checking grows exponentially bigger than the size of the initial process. Second,
during the model checking procedure, there may be an exponential number of reachable
processes to consider. Therefore, a direct implementation of the algorithm proposed in
[4] may use space exponential in the size of the input process. In this paper, using a new
representation of processes, we show that the model checking problemP |= A can be
solved using only polynomial space in the sizes ofP andA, in spite of this example.

2.2 The Logic (for Public Names)

We describe the formulas and satisfaction relation of the logic.

Logical Formulas:

η a namen or a variablex
A,B ::= formula
T true ¬A negation
A ∨ B disjunction ∃x.A existential quantification
0 void A | B composition match
η[A] ambient match A@η location adjunct
✧A somewhere modality ♦A sometime modality
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We assume that names and variables belong to two disjoint vocabularies. We write
A{x←m} for the outcome of substituting each free occurrence of the variablex in the
formulaA with the namem. We say a formulaA is closed if and only if it has no free
variables (though it may contain free names).
Intuitively, we interpret closed formulas as follows. The formulasT, ¬A, andA ∨ B
embed propositional logic. The formulas0, η[A], andA | B are spatial modalities. A
process satisfies0 if it is structurally congruent to the empty process. It satisfiesn[A] if
it is structurally congruent to an ambientn[P ] whereP satisfiesA. A processP satis-
fiesA | B if it can be decomposed into two subprocesses,P ≡ Q | R, whereQ satisfies
A, andR satisfiesB. The formula∃x.A is an existential quantification over names. The
formulas♦A (sometime) and✧A (somewhere) quantify over time and space, respec-
tively. A process satisfies♦A if it has a temporal successor, that is, a process into which
it evolves, that satisfiesA. A process satisfies✧A if it has a spatial successor, that is,
a sublocation, that satisfiesA. Finally, a processP satisfies the formulaA@n if the
ambientn[P ] satisfiesA.
The satisfaction relationP |= A provides the semantics of our logic

SatisfactionP |= A (for A Closed):

P |= T P |= ¬A ∆
= ¬(P |= A)

P |= A ∨ B ∆
= P |= A ∨ P |= B P |= 0

∆
= P ≡ 0

P |= n[A]
∆
= ∃P ′.P |= n[P ′] ∧ P ′ |= A

P |= A | B ∆
= ∃P ′, P ′′.P ≡ P ′ | P ′′ ∧ P ′ |= A ∧ P ′′ |= B

P |= ∃x.A ∆
= ∃m.P |= A{x←m} P |= ♦A ∆

= ∃P ′.P →∗ P ′ ∧ P ′ |= A
P |= ✧A ∆

= ∃P ′.P ↓∗ P ′ ∧ P ′ |= A P |= A@n
∆
= n[P ] |= A

We use�A (everytime modality),❏A (everywhere modality) and∀x.A (universal
quantification) as abbreviations for¬(♦¬A), ¬(✧¬A) and¬(∃x.¬A), respectively.

3 A Model Checking Algorithm

We show that the model checking problem can be decided in polynomial space by
devising a new representation of processes (Sect. 3.1) that remains polynomial in the
size of the initial process (Sect. 3.2). In Sect. 3.3 we present a new model checking
algorithm based on this representation.
Since the reduction relation is defined up toα-equivalence, we may assume for the
purposes of computing reachable processes that the free and bound names of every
ambient process are distinct, and moreover that the bound names are pairwise distinct.

3.1 A Polynomial-Space Representation

We give in this section a new representation for ambient processes based onnormal
closures. (It is different from thenormal formof processes introduced in [4].) We also
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present basic operations on closures and prove that closures indeed simulate the pro-
cesses they represent.

Annotated Processes, Substitutions, Closures:

P̃ ::=
∏

i∈I πi annotated process, multiset of primes,I finite indexing set
π ::= prime

M [P̃ ] ambient M(o).P̃ action, with offseto ≥ 0

(x).P̃ input 〈M〉 output
σ ::= {n1←M1} · · · {nk←Mk} sequential substitution,k ≥ 0

〈P̃ ; σ〉 closure

In a sequential substitution{n1←M1} · · · {nk←Mk}, the expressionMi bound toni

lies in the scope of the bindings for the remaining namesni+1, . . . ,nk. We denote by
ι the empty sequence of substitutions and treat it as the identity substitution. For an
annotated process̃P , we define free and bound names in the same way as for ambient
processes. Letnames(σ) be the set of all names occurring inσ.
We define a partial mappingU from closures to the set of ambient processes. Intuitively,
it unfolds a closure to the process it represents by applying the substitution and cutting
off the prefix defined by the offset. Roughly speaking, the expressionU(P̃ , σ) is defined
if the offsets within the annotated process do not exceed the length of the expression
they are associated with. The unfoldingU(P̃ , σ) is defined as follows.

The Unfolding U(P̃ , σ) of a Closure〈P̃ ; σ〉:

U(
∏

i∈I πi, σ) =

{
U(π1, σ) | . . . | U(πn, σ) if I = {1, . . . , n} 6= ∅
0 otherwise

U(M [P̃ ], σ) = Mσ[U(P̃ , σ)]

U(M(o).P̃ , σ) =


No+1. · · · .Nl.U(P̃ , σ) if Mσ = N1. · · · .Nl, o < l andNi

being either a name or of the form
cap N with cap ∈ {in, out , open}

undefined otherwise

U((x).P̃ , σ) = (x).U(P̃ , σ) U(〈M〉, σ) = 〈Mσ〉

We are only interested in a particular kind of closure, which we refer to asnormal.
Let a closure〈P̃ ;σ〉 be normal if each of the following conditions hold: (1)U(P̃ , σ) is
defined; (2) the bound names ofP̃ are pairwise distinct and such thatbn(P̃ )∩(fn(P̃ )∪
names(σ)) = ∅; (3) every offset occurring in the scope of an input inP̃ is zero.
The next proposition says that our representation of ambient processes with normal
closures preserves their basic properties. We write{} and++ for the empty multiset
and the multiset union operation, respectively.

Proposition 3.1 (Structural Congruences).Let P̃ =
∏

i∈I πi and〈P̃ ;σ〉 be a normal
closure. Then

(1) U(P̃ , σ) ≡ 0 iff I = ∅.
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(2) U(P̃ , σ) ≡ M [Q] iff ∃M ′, Q̃ : I is a singleton{i}, πi = M ′[Q̃], M ′σ = M , and
U(Q̃, σ) ≡ Q.

(3) U(P̃ , σ) ≡ P ′ | P ′′ iff ∃J,K : J ∪K = I, J ∩K = ∅, P ′ ≡ U(
∏

j∈J πj , σ),
andP ′′ ≡ U(

∏
k∈K πk, σ).

(4) U(P̃ , σ) ≡ 〈M〉 iff ∃M ′ : I is a singleton{i}, πi = 〈M ′〉 andM ′σ = M .
(5) U(P̃ , σ) ≡ (x).Q iff ∃Q̃ : I is a singleton{i}, πi = (x).Q̃ andU(Q̃, σ) ≡ Q.

Next, we present how the reduction and sublocation transitions can be defined on clo-
sures. Due to this particular representation and the fact that some part of the ambi-
ent process is contained in the sequential substitution, some auxiliary subroutines are
needed.
One can see in the definition ofU that only expressionsM in the annotated process
are affected by the sequential substitution. For the sublocation transition, it is important
to extract the name represented by the expressionM under the substitutionσ. So, one
of those subroutines,nam(M,σ), consists in recovering from an expressionM the
name it effectively represents within the substitutionσ and is inductively defined over
sequential substitution as follows: for the empty substitution,nam(n, ι) = n and for an
non-empty one,

nam(n, {m←M}σ) =
{

nam(M,σ) if n = m
nam(n, σ) otherwise

The reduction transition for a closure〈P̃ ;σ〉 requires some other auxiliary subroutines.
Intuitively, the outcome of applying the substitutionσ to an expressionM contained
within P̃ is a finite sequence of either capabilities of the formin M ′, out M ′, open M ′,
or names not bound by the substitution. We need a subroutine to compute the length of
the sequence, and to do so in polynomial space, even though the length may be expo-
nential in the size of the closure. Therefore, the subroutinelen(M,σ) cannot explicitly
applyσ to M . It is defined by the equations:

len(ε, σ) = 0
len(cap N,σ) = 1 if cap ∈ {in, out , open}
len(n, ι) = 1

len(n, {m←N}σ) =
{

len(N,σ) if n = m
len(n, σ) otherwise

len(M.N, σ) = len(M,σ) + len(N,σ)

Now, from the definition of the reduction on ambient processes, one can see that the
reduction consumes one capability: once the reduction is done, the involved capability
disappears from the resulting process. This is slightly different for the representation
we have proposed: a sequence of capabilities can be partially contained in a sequential
substitutionσ. This substitution remains fixed during the execution of capabilities and
the offset attached to this sequence plays the role of a program counter. Therefore,
to perform a reduction step one has to extract the first capability to execute from a
sequence of capabilities,M , a substitution,σ, and an offset,o. This is computed by
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fst(M,o, σ) defined by:

fst(M.N, o, σ) =
{

fst(M,o, σ) if len(M,σ) > o
fst(N, o− len(M,σ), σ) otherwise

fst(cap N, 0, σ) = cap (nam(N,σ)) for cap ∈ {in, out , open}

fst(n, o, {m←M}σ) =
{

fst(M,o, σ) if n = m
fst(n, o, σ) otherwise

The last subroutine introduced here,split(M(o).P̃ , σ), computes a pair from a prime,
M(o).P̃ , and a sequential substitution,σ. The first component of this result is the first
capability of〈{M(o).P̃};σ〉 (the one in head position). The second component is the
remaining annotated process once this first capability has been executed.

split(M(o).P̃ , σ) =
{

(fst(M,o, σ), {M(o + 1).P̃}) if len(M,σ) > o + 1
(fst(M,o, σ), P̃ ) otherwise

Notice thatnam(M,σ) is undefined ifM is of the formε, N.N ′, in N , out N , or
open N . Therefore, the expressionnam(M,σ) is either undefined or is evaluated to
a name. Moreover, we can compute the name returned bynam(M,σ), or whether it
is undefined, in linear time. The number returned bylen(M,σ) can be computed in
polynomial space. We can compute the capability returned byfst(M,o, σ) and the pair
returned bysplit(M(o).P̃ , σ), or whether they are undefined, in polynomial space.
The following relations on closures,〈P̃ ;σ〉 → 〈P̃ ′;σ′〉 and〈P̃ ;σ〉 ↓ 〈P̃ ′;σ〉, simulate
the reduction and the sublocation relations on processes defined in Sect. 2.1.

Transitions and Sublocations of Closures:

(Trans In)
split(π, σ) = (in m, P̃ ) nam(M, σ) = m nam(N, σ) = n

〈{N [{π} ++ Q̃], M [R̃]}; σ〉 → 〈{M [{N [P̃ ++ Q̃]} ++ R̃]}; σ〉

(Trans Out)
split(π, σ) = (out m, P̃ ) nam(M, σ) = m nam(N, σ) = n

〈{M [{N [{π} ++ Q̃]} ++ R̃]}; σ〉 → 〈{N [P̃ ++ Q̃], M [R̃]}; σ〉

(Trans Open)
split(π, σ) = (open n, P̃ ) nam(M, σ) = n

〈π, {M [Q̃]}; σ〉 → 〈P̃ ++ Q̃; σ〉

(Trans I/O)

〈{(x).P̃ , 〈M〉}; σ〉 → 〈P̃ ; {x←M}σ〉

(Trans Par)
〈P̃ ; σ〉 → 〈P̃ ′; σ′〉

〈P̃ ++ Q̃; σ〉 → 〈P̃ ′ ++ Q̃; σ′〉

(Trans Amb)
〈P̃ ; σ〉 → 〈P̃ ′; σ′〉 nam(M, σ) = n

〈{M [P̃ ]}; σ〉 → 〈{M [P̃ ′]}; σ′〉

(Loc)
nam(M, σ) = m

〈Q̃ ++ {M [P̃ ]}; σ〉 ↓ 〈P̃ ; σ〉

The condition for (Loc) ensures simply that the expressionM together withσ is a
name. For two normal closures〈P ;σ〉, 〈P ′;σ′〉, deciding whether〈P ;σ〉 ↓ 〈P ′;σ′〉
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can be achieved in polynomial space. There is no rule corresponding to (Red≡) since
we always keep closures in normal form. The two rules (Trans Par) and (Trans Amb)
correspond to the congruence rules (Red Par) and (Red Amb) for reduction.
In the same way as for ambient processes, we define the relations→∗ and↓∗ (on clo-
sures) as the reflexive and transitive closures of→ and↓, respectively.

Proposition 3.2. If 〈P̃ ;σ〉 is normal and〈P̃ ;σ〉 ↓∗ 〈P̃ ′;σ〉 then〈P̃ ′;σ〉 is normal. If
〈P̃ ;σ〉 is normal and〈P̃ ;σ〉 →∗ 〈Q̃;σ〉 then〈Q̃;σ〉 is normal.

The next propositions says that the representation of processes as closures preserves
sublocations and reductions.

Proposition 3.3 (Sublocation Equivalences).Assume〈P̃ ;σ〉 is a normal closure. If
〈P̃ ;σ〉 ↓ 〈Q̃;σ〉 thenU(P̃ , σ) ↓ U(Q̃, σ). If U(P̃ , σ) ↓ Q then there exists̃Q such that
〈P̃ ;σ〉 ↓ 〈Q̃;σ〉 andU(Q̃, σ) ≡ Q.

Proposition 3.4 (Reduction Equivalences). Assume〈P̃ ;σ〉 is a normal closure. If
〈P̃ ;σ〉 → 〈P̃ ′;σ′〉 thenU(P̃ , σ) → U(P̃ ′, σ′). If U(P̃ , σ) → P ′ then there exists
〈P̃ ′;σ′〉 such that〈P̃ ;σ〉 → 〈P̃ ′;σ′〉 andU(P̃ ′, σ′) ≡ P ′.

Propositions 3.1–3.4 are enough to prove that normal closures indeed simulate the pro-
cesses they represent.

3.2 Size of the Representation

We show that closures indeed give a polynomial representation of processes. To do this,
we have to bound the size of offsets that occur in closures.
For a given object (a closure or a process)O, by |O| we mean the length of its string
representation and by‖O‖ the number of nodes in its tree representation. We assume
that an offset is represented in a single node in the tree representation.

Lemma 3.1. Suppose that〈P̃ ;σ〉 → 〈P̃ ′;σ′〉. Then‖〈P̃ ′;σ′〉‖ ≤ ‖〈P̃ ;σ〉‖.

Proof. A simple case analysis on the derivation of〈P̃ ;σ〉 → 〈P̃ ′;σ′〉. ut

Proposition 3.5. Assume〈P̃ ;σ〉 is normal and〈P̃ ;σ〉 → 〈P̃ ′;σ′〉. Then all offsets used
in P̃ andP̃ ′ can be represented by the same number of bits, polynomial in|〈P̃ ;σ〉| and,
with such a representation,|〈P̃ ′;σ′〉| ≤ |〈P̃ ;σ〉|.

Proof. A simple induction on the length of the substitutionσ′ proves that the offsets in
P̃ ′ are bounded by the value‖〈P̃ ′;σ′〉‖‖〈P̃ ′;σ′〉‖. By Lemma 3.1, they are also bounded
by ‖〈P̃ ;σ〉‖‖〈P̃ ;σ〉‖ and then all offsets used iñP and P̃ ′ are bounded by this value,
which can be represented on‖〈P̃ ;σ〉‖ · (blog(‖〈P̃ ;σ〉‖)c+ 1) bits. With this represen-
tation of offsets, incrementing an offset does not increase the size of its string repre-
sentation. Thus no transitions can increase the length of the string representations of
closures. ut
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The following proposition is a key fact in the proof that our model checking algorithm
and also the algorithm in [4] terminate in exponential time. It implies that the compu-
tation tree of a given process might be very deep and very narrow (as in our example
in Sect. 2) or not so deep and wider; in any case the number of nodes in the tree re-
mains exponentially bounded. A naive argument (without using closures) gives only a
doubly exponential bound on the number of reachable processes: one can prove that the
computation tree of a given process is at most exponentially deep (as our example in
Sect. 2 shows, this bound is tight) and that the number of successors for every node is at
most polynomial. For example, the closure〈{n[in n(0).P̃0], . . . , n[in n(0).P̃k]};σ〉 has
at mostk2 different successors. These two facts do not give, however, the exponential
bound on the number of nodes in the tree, which is given by the following proposition.

Proposition 3.6. Let〈P̃ ;σ〉 be a normal closure. Then there exist at most exponentially
many〈P̃ ′;σ′〉 such that〈P̃ ;σ〉 →∗ 〈P̃ ′;σ′〉.

Proof. This is a direct consequence of Proposition 3.5 and the observation that there
are only exponentially many strings of polynomial length. ut

Proposition 3.7. The reachability problem for normal closures is decidable in PSPACE.

Proof. Take any instance〈P̃ ;σ〉, 〈P̃ ′;σ′〉 of the reachability problem. To decide whether
〈P̃ ;σ〉 →∗ 〈P̃ ′;σ′〉, we first define a nondeterministic algorithm that starting from
〈P̃ ;σ〉 guesses an immediate successor of the current closure until it reaches〈P̃ ′;σ′〉 or
there are no further successors. By Proposition 3.5 the algorithm requires only polyno-
mial space (we have to store only the current closure and its one immediate successor);
Proposition 3.6 implies termination. Finally, using the general statement of Savitch’s
theorem [10] (NPSPACE(S(n)) ⊆ PSPACE(S(n)2)), this non-deterministic algorithm
can be turned into a deterministic one. ut

3.3 A New Algorithm

We propose a new algorithm,Check(P̃ , σ,A), to check whether the ambient process
simulated by〈P̃ ;σ〉 satisfies the closed formulaA. For each ambient process,P , we
only consider the closure,F(P ), obtained using thefolding function defined as follows.
We prove (Proposition 3.9), thatP |= A if and only if Check(F(P ), ι,A) returns the
Boolean valueT.

The FoldingF(P ) of a ProcessP :

F(0) = {} F(P | Q) = F(P ) ++ F(Q)
F(M [P ]) = {M [F(P )]} F((n).P ) = {(n).F(P )}
F(〈M〉) = {〈M〉}

F(M.P ) =

{
F(P ) if len(M, ι) = 0
{M(0).F(P )} otherwise

For any processP , the closure〈F(P ); ι〉 is normal andU(F(P ), ι) is structurally con-
gruent toP . Furthermore,F(P ) can be computed in linear time in the size ofP .
For the model checking problem,P |= A, we may assume without loss of generality
that the free names ofA are disjoint from the bound names ofP . We denote byfn(P̃ , σ)
the set(fn(P̃ ) ∪ names(σ)) r dom(σ).
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Computing whether a Process Satisfies a Closed Formula:

Check(P̃ , σ,T) = T

Check(P̃ , σ,¬A) = ¬Check(P̃ , σ,A)

Check(P̃ , σ,A ∨ B) = Check(P̃ , σ,A) ∨ Check(P̃ , σ,B)

Check(
∏

i∈I πi, σ,0) =

{
T if I = ∅
F otherwise

Check(
∏

i∈I πi, σ, n[A]) =

Check(Q̃, σ,A) if I = {i}, πi = M [Q̃],
nam(M, σ) = n

F otherwise
Check(

∏
i∈I πi, σ,A | B) =

∨
J⊆I Check(

∏
j∈J πj , σ,A) ∧ Check(

∏
k∈I−J πk, σ,B)

Check(P̃ , σ,∃x.A) = let {m1, . . . , mk} = fn(P̃ , σ) ∪ fn(A) in
let m0 /∈ {m1, . . . , mk} ∪ bn(P̃ ) ∪ dom(σ) be fresh in∨

i∈0..k Check(P̃ , σ,A{x←mi})
Check(P̃ , σ, ♦A) =

∨
〈P̃ ;σ〉→∗〈P̃ ′;σ′〉 Check(P̃ ′, σ′,A)

Check(P̃ , σ, ✧A) =
∨
〈P̃ ;σ〉↓∗〈P̃ ′;σ〉 Check(P̃ ′, σ,A)

Check(P̃ , σ,A@n) = Check(n[P̃ ], σ,A)

An expressionCheck(P̃ , σ,A) is said to benormal if and only if the closure〈P̃ ;σ〉
is normal,A is a closed formula, andfn(A) ∩ (bn(P̃ ) ∪ dom(σ)) = ∅. Hence, for
the model checking problemP |= A whereA is a closed formula, the expression
Check(F(P ), ι,A) is normal and moreover we have:

Proposition 3.8. The model checking algorithm described above preserves the normal-
ity of Check(P̃ , σ,A).

Proposition 3.9. For all processesP and closed formulasA, we haveP |= A if and
only if Check(F(P ), ι,A) = T.

Proof. By induction on the structure of the ambient formulaA with appeal to Proposi-
tions 3.3 and 3.4 in the cases✧A and♦A, respectively. ut

Theorem 3.1. Model checking the ambient calculus and logic of this paper is decidable
in PSPACE.

Proof. To test for a given processP and formulaAwhetherP |= Awe simply compute
the value ofCheck(F(P ), ι,A). The only problem is to implementCheck in such a
way that it works in polynomial space.
In the case ofT,0, n[A],A@n,¬A, the algorithm can directly check whether the re-
spective conditions hold. In the case ofA ∨ B,A | B,∃x.A,♦A, ✧A, we have to be
more careful about the space used to compute the value of disjunctions. In a loop we
iteratively compute the value of each disjunct, reusing the same space in every iteration.
In the case of♦A the subroutine computing

∨
〈P̃ ;σ〉→∗〈P̃ ′;σ′〉 Check(P̃ ′, σ′,A) could

look as follows.

result ← F
for all 〈P̃ ′;σ′〉 such that〈P̃ ;σ〉 →∗ 〈P̃ ′;σ′〉

if Check(P̃ ′, σ′,A) = T thenresult ← T
return(result)
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By Propositions 3.5 and 3.7, every iteration requires only polynomial space. The cases
of A ∨ B,A | B,∃x.A, ✧A are similar. Thus, the spaceS(k, |P̃ | + |σ|) used by the
algorithm to computeCheck(P̃ , σ,A) for formulasA of depth not exceedingk satisfies
the inequality

S(k + 1, |P̃ |+ |σ|) ≤ S(k, |P̃ |+ c + |σ|) + p(|P̃ |+ |σ|)

for some constantc and some polynomialp (the constantc comes from the fact that in
the case ofA = B@n the size ofn[P̃ ] is greater than the size of̃P ; the polynomialp
estimates the space needed for testing reachability etc). Therefore,S(k, |P̃ | + |σ|) ≤
k · p(|P̃ |+ k · c + |σ|).
Finally, the fact thatF(P ) is polynomial in the size ofP and the statement of Proposi-
tion 3.9 complete the proof. ut

4 Complexity Lower Bounds

Below we present lower bounds on the space complexity of model checking our process
calculus against our modal logic, and also for two significant fragments.
The results given here are based on known results about the complexity of decision
problems for Quantified Boolean Formulas (QBF). The alternation depth of a formula
is the number of alternations between existential and universal quantifiers in its prenex
quantification.
Those known results are: (1) deciding the validity problem for a closed quantified
Boolean formulaϕ is PSPACE-complete; (2) deciding the validity problem for a closed
quantified Boolean formulaϕ of alternation depthk whose outermost quantifier is∃ is
ΣP

k -complete [11], whereΣP
k denotes thek-th level of the polynomial-time hierarchy.

In particular,ΣP
0 = P andΣP

1 = NP .

4.1 The Full Calculus and Logic

We define an encoding of QBF formulas into ambient formulas. (We can assume with-
out loss of generality that these Boolean formulas are in prenex and conjunctive normal
form.) This encoding is then used to prove Theorem 4.1, that the complexity of model
checking the ambient logic is PSPACE-hard.
In our encoding, we assume that the truth valuestt andff used in the definition of QBF
satisfaction [7] are distinct ambient calculus names.
We also use a derived operator for name equality in the ambient logic [4],η = µ,
encoded asη[T]@µ.Then0 |= m = n if and only if the namesm andn are equal.
We encode the∀ and∃ quantifiers over truth values as follows.

∀x ∈ {ff , tt}.A ∆= ∀x.(x = ff ∨ x = tt)⇒ A
∃x ∈ {ff , tt}.A ∆= ∃x.(x = ff ∨ x = tt) ∧ A

Encoding QBF Formulas as Ambient Logic Formulas:

[[v]]
∆
= (v = tt) [[v]]

∆
= (v = ff )
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[[`1 ∨ · · · ∨ `k]]
∆
= [[`1]] ∨ · · · ∨ [[`k]] [[C1 ∧ · · · ∧ Ck]]

∆
= [[C1]] ∧ · · · ∧ [[Ck]]

[[∀v.ϕ]]
∆
= ∀v ∈ {ff , tt}.[[ϕ]] [[∃v.ϕ]]

∆
= ∃v ∈ {ff , tt}.[[ϕ]]

The following properties are proved in the extended version of this paper [7].

Lemma 4.1. Consider a closed quantified boolean formulaϕ and its encoding[[ϕ]] in
the ambient logic. The formulaϕ is valid if and only if the model checking problem
0 |= [[ϕ]] holds.

Theorem 4.1. The complexity of model checking the full logic (including name quan-
tification) is PSPACE-hard.

Proof. Straightforward from Lemma 4.1 since for the fixed ambient process0 solv-
ing the model checking problem0 |= ϕ is PSPACE-hard. So in fact the expression
complexity, that is, the complexity of checking processes against a fixed formula, is
PSPACE-hard. ut

The theorem above holds for any fragment of the logic including boolean connectives,
name quantification, and the location and location adjunct modalities, and for any frag-
ment of the calculus including ambients. This might suggest that the complexity of the
model checking problem comes from the quantification in the logic. It is not the case:
the problem remains as complex even if we remove quantification from the logic and
communication or mobility from the calculus. This suggests there is little chance of
finding interesting fragments of the calculus and the logic that would admit a faster
model checking algorithm.

4.2 Mobile Ambients Without I/O, No Quantifiers

In this section, we study the complexity of the model checking problem for the fragment
of the ambient calculus without I/O and the fragment of the logic without quantification.
For every QBF variable,v, we assume thatv, v′ andv′′ are distinct ambient calculus
names.

Encoding QBF Formulas as Ambient Processes and Formulas:

[[v]] = v[pos[0] | v′[0]] | T
[[v]] = v[neg [0] | v′[0]] | T
[[`1 ∨ · · · ∨ `k]] = [[`1]] ∨ · · · ∨ [[`k]]

[[C1 ∧ · · · ∧ Ck]] = (end [0], [[C1]] ∧ · · · ∧ [[Ck]])

[[∀v.ϕ]] = (v′[in v.n[out v′.out v.P ]], �((n[T] | T)⇒ A)) where(n[P ],A) = [[ϕ]]
[[∃v.ϕ]] = (v′[in v.n[out v′.out v.P ]], ♦((n[T] | T) ∧ A)) where(n[P ],A) = [[ϕ]]

enc(ϕ) = (v1[pos[0]] | v1[neg [0]] | · · · | vn[pos[0]] | vn[neg [0]] | P,A)
where(P,A) = [[ϕ]] andϕ = Q1v1. . . . .Qnvn.C1 ∧ · · · ∧ Ck

where eachQi ∈ {∃,∀}.
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In the encodingenc(ϕ) above, the parallel compositionv1[pos[0]] | . . . | vn[neg [0]]
represents the sequencev1, . . . vn of (uninstantiated) boolean variables andP is a pro-
cess that instantiates them. An instantiated variablevi is represented by a subprocess
vi[pos[0] | v′i[0]] | vi[neg [0]] (if its value is tt) or vi[pos[0]] | vi[neg [0] | v′i[0]] (if
its value isff ). The processP first instantiatesv1 by choosing one of the ambients
v1[pos[0]] or v1[neg [0]] nondeterministically, going inside it, leaving the tokenv′1[0]
inside the chosen ambient and then returning to the top level. It then iteratively instan-
tiates the variablesv2, . . . , vn in the same way. The formulan[T] | T in the context
of the encoding for a quantified variablevi above (wheren is vi+1 or end for i = n)
expresses that instantiation ofvi has finished but instantiation ofn has yet to start; thus
�(n[T] | T . . .) and♦(n[T] | T . . .) express, respectively, universal and existential
quantifications over instantiations ofvi. For more details of the encoding, including ex-
amples and the proof of the lemma below, we refer to the full version of this paper [7].

Lemma 4.2. Assumeϕ is a closed quantified Boolean formula, and that(P,A) =
enc(ϕ). ThenP |= A if and only ifϕ is valid.

Theorem 4.2. The complexity of model checking mobile ambients without I/O against
the quantifier-free logic is PSPACE-hard.

Proof. Straightforward from the PSPACE-completeness of the validity for QBF and
from Lemma 4.2, taking into account that forenc(ϕ) = (P,A), bothP andA are of
polynomial size with respect toϕ. ut

4.3 Immobile Ambients With I/O, No Quantifiers

In this section, we study the complexity of the model checking problem for the fragment
of the ambient calculus without action prefix.
We consider fixed namesend , C, andD. For any QBF variable ambient namev′i, let
Inst(v′i)

∆= v′i[T] | T and Inst+(v′i)
∆= v′i[v

′′
i [T] | T] | T and for the nameend ,

Inst(end) ∆= end [T] | T andInst+(end) ∆= end [end ′[T] | T] | T.

Encoding QBF Formulas as Ambient Processes and Formulas:

[[v]] = v[]
[[v]] = v[]
[[`1 ∨ . . . ∨ `k]] = D[0] | [[`1]] | . . . | [[`k]]

enc(C1 ∧ . . . ∧ Ck) = (end [C[ [[C1]] ] | . . . | C[ [[Ck]] ]],
❏((D[0] | T)⇒ (tt [0] | T)))

enc(∃v.ϕ) = (v′[〈tt〉 | 〈ff 〉 | (v).(v′′[] | (v).n[P ])],
T | v′[♦( (Inst(n) ∧ ¬Inst+(n)) ∧ A )]) whereenc(ϕ) = (n[P ],A)

enc(∀v.ϕ) = (v′[〈tt〉 | 〈ff 〉 | (v).(v′′[] | (v).n[P ])],
T | v′[�( (Inst(n) ∧ ¬Inst+(n)) ⇒ A )]) whereenc(ϕ) = (n[P ],A)

The idea of the encoding here is quite similar to that from the previous section. A
boolean variablev is represented here by two ambientsv[] and v[], which after the
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instantiation are namedtt [] andff []. We exploit here the nondeterminism of communi-
cation: the variablev reads either the message〈tt〉 or 〈ff 〉; then its dualv has to read
the other one. The namesv′i andv′′i (similar tov′i in the previous section) are used for
distinguishing the moment when the variablevi is already instantiated butvi+1 is not.
Again we refer to the extended version for examples and other details of this encoding.

Lemma 4.3. Assumeϕ is a closed quantified Boolean formula, and that(P,A) =
enc(ϕ). ThenP |= A if and only ifϕ is valid.

Theorem 4.3. The complexity of model checking immobile ambients with I/O against
the quantifier-free logic is PSPACE-hard.

Proof. This follows from the PSPACE-completeness of validity for QBF, from Lemma
4.3 taking into account that forenc(ϕ) = (P,A), bothP andA are of polynomial size
with respect toϕ. ut

We can strengthen this result by slightly modifying our encoding to obtain the following
property.

Theorem 4.4. For every integerk there exists a formulaA∃k such that the program
complexity of model checking processes againstA∃k is ΣP

k -hard.

5 Conclusion

We show in this paper that the model checking problem of the replication-free ambi-
ent calculus with public names against the ambient logic without composition-adjunct
is PSPACE-complete. In order to prove this complexity bound, we have proposed a
new representation for processes, called closures, that prevents the exponential blow-
up of the size of the problem. We use this representation together with a new non-
deterministic algorithm to prove the PSPACE upper bound.
An important property obtained using closures is that there exist at most exponentially
many (up to structural congruence) processes reachable from a given ambient process.
This result is interesting because it seems very difficult to give a precise estimation of
the number of reachable processes without using this new representation. This bound
can be used, for instance, to prove that a model checking algorithm previously proposed
by Cardelli and Gordon [4] works in single-exponential time on single-exponential
space.
Another result given in this paper is an analysis of the complexity of the model check-
ing problem for different interesting subsets of the calculus and the logic. We show that
there is little chance to find polynomial algorithms for interesting subproblems. Indeed,
model checking remains PSPACE-hard even for quite simple fragments of the calculus
(for instance, without communication) and the logic (for instance, without quantifica-
tion on names).
Possible directions for future work include investigations of the model checking prob-
lem for extensions of the logic and the calculus. Recently, Cardelli and Gordon [6] pre-
sented an extended version of the logic that allows reasoning about restricted names; it
seems that there is no difficulty in extending our algorithm to deal with name restriction.



The Complexity of Model Checking Mobile Ambients 167

References

1. L. Cardelli and A.D. Gordon. Mobile ambients.Theoretical Computer Science, 240:177–
213, 2000.

2. L. Cardelli and A.D. Gordon. Types for mobile ambients. InProceedings POPL’99, pages
79–92. ACM, 1999.

3. L. Cardelli and A.D. Gordon. Equational properties of mobile ambients. InProceedings
FoSSaCS’99, volume 1578 ofLecture Notes in Computer Science, pages 212–226. Springer,
1999. An extended version appears as Technical Report MSR–TR–99–11, Microsoft Re-
search, 1999.

4. L. Cardelli and A.D. Gordon. Anytime, anywhere: Modal logics for mobile ambients. In
Proceedings POPL’00, pages 365–377. ACM, 2000.

5. L. Cardelli and G. Ghelli. A query language for semistructured data based on the ambient
logic. To appear in one of the proceedings volumes of ETAPS’01, to accompany an invited
talk. Springer, 2001.

6. L. Cardelli and A.D. Gordon. Logical properties of name restriction. InProceedings
TLCA’01. Springer, 2001. To appear.

7. W. Charatonik, S. Dal Zilio, A.D. Gordon, S. Mukhopadhyay, and J.-M. Talbot. The com-
plexity of model checking mobile ambients. Technical Report MSR–TR–2001–03, Mi-
crosoft Research, 2001.

8. O. Kupferman, M.Y. Vardi, and P. Wolper. An automata-theoretic approach to branching-
time model checking.Journal of the ACM, 47(2):312–360, 2000.

9. D. Sangiorgi. Extensionality and intensionality of the ambient logics. InProceedings
POPL’01. ACM, 2001. To appear.

10. W.J. Savitch. Relationships between nondeterministic and deterministic tape complexities.
Journal of Computer and System Sciences, 4(2):177–192, 1970.

11. L.J. Stockmeyer. The polynomial-time hierarchy.Theoretical Computer Science, 3(1):1–22,
1976.


	The Complexity of Model Checking Mobile Ambients

