A Functional Scenario for Bytecode
Verification of Resource Bound3s

Roberto M. Amadio, Solange Coupet-Grimal,
Silvano Dal Zilio and Line Jakubiec

Laboratoire d’Informatique Fondamentale de Marseille (LIF),
CNRS and Université de Provence.

Abstract. We consider a scenario where (functional) programs in pre-compiled
form are exchanged among untrusted parties. Our contribution is a system of
annotations for the code that can be verified at load time so as to ensure bounds
on the time and space resources required for its execution, as well as to guarantee
the usual integrity properties.

Specifically, we define a simple stack machine for a first-order functional lan-
guage and show how to perform type, size, and termination verifications at the
level of the bytecode of the machine. In particular, we show that a combination
of size verification based on quasi-interpretations and of termination verification
based on lexicographic path orders leads to an explicit bound on the space re-
quired for the execution.

1 Introduction

Research on mobile code has been a hot topic since the late 90’s with many propos-
als building on the Ava platform. Application scenarios include, for instance, pro-
grammable switches, network games, and applications for smart cards. A prevailing
conclusion is that security issues are one of the fundamental problems that still have to
be solved before mobile code can become a well-established and well-accepted tech-
nology. Initial proposals have focused on the integrity properties of the execution envi-
ronment such as the absence of memory faults. In this paper, we consider an additional
property of interest to guarantee the safety of a mobile code, that is, ensuring bounds
on the (computational) resources needed for the execution of the code.

The interest of carrying on such analyses at bytecode level are now well under-
stood [15,16]. First, mobile code is shipped around in pre-compilebyi@codgform
and needs to be analysed as such. Second, compilation is an error prone process and
therefore it seems safer to perform static analyses at the level of the bytecode rather
than at source level. In particular, we can reduce the size of the trusted code base and
shift from the reliance on the correctness of the whole compilation chain to only the
trust on the analyser.

Approach. The problem of bounding the usage made by programs of their resources
has already attracted considerable attention. Automatic extraction of resource bounds

* This work was partly supported by ACI Sécurité Informatique, project CRISS.

J. Marcinkowski and A. Tarlecki (Eds.): CSL 2004, LNCS 3210, pp. 265-279, 2004.
(© Springer-Verlag Berlin Heidelberg 2004

266 R. M. Amadio, S. Dal Zilio et al.

has mainly focused on (first-order) functional languages starting from Cobham’s char-
acterisation [7] of polynomial time functions by bounded recursion on notation. Fol-
lowing work, seee.qg, [4,8,9,11], has developed various inference techniques that allow
for efficient analyses while capturing a sufficiently large range of practical algorithms.

We consider a rather standard first-order functional programming language with in-
ductive types, pattern matching, and call-by value, that can be regarded as a fragment of
variousmL dialects. The language is also quite close to term rewriting systems (TRS)
with constructor symbols. The language comes with three main varieties of static anal-
yses: (i) a standard type analysis, (ii) an analysis of the size of the computed values
based on the notion afuasi-interpretationand (iii) an analysis that ensures termina-
tion; among the many available techniques we select here recursive path orderings.

The last two analyses, and in particular their combination, are instrumental to the
prediction of the space and time required for the execution of a program as a function of
the size of the input data. For instance, it is known [5] that a program admitting a poly-
nomially bound quasi-interpretation and terminating by lexicographic path-ordering
runs in polynomial space. This and other results can be regarded as generalisations
and variations over Cobham'’s characterisation.

Contribution. The synthesis of termination orderings is a classical topic in term rewrit-
ing (see for instance [6]). The synthesis of quasi-interpretations — a concept introduced
by Marionet al.[13] — is connected to the synthesis of polynomial interpretations for
termination but it is generally easier because inequalities do not need to be strict and
small degree polynomials are often enough [2]. We will not address synthesis issues
in this paper. We suppose that the bytecode comes with annotations such as types and
polynomial interpretations of function symbols and orders on function symbols.

We define a simple stack machine for a first-order functional language and show
how to perform type, size, and termination verifications at the level of the bytecode of
the machine. These verifications rely on certifiable annotations of the bytecode — we
follow here the classical viewpoint that a program may originate from a malicious party
and does not necessarily result from the compilation of a well-formed program.

Our main goal is to determine how these annotations have forbaulated and
verifiedin order to entail size bounds and terminatiobgtecoddevel,i.e., at the level
of an assembler-like code produced by a compiler and executable on a simple stack
machine. We carry on this program up to the point where it is possible to verify that a
given bytecode will run in polynomial space thus providing a translation of the result
mentioned above at byte code level. Beyond proving that a program “is in PSPACE”
we extract a polynomial that bounds the size needed to run a program: given a function

(identifier) f of arity n in a verified program, we obtain a polynomigk, ..., z,)
such that for all values,, ..., v, of the appropriate types, the size needed for the
evaluation of the callf(v1,...,v,) is bounded byy(|v1|, ..., |v.]), where|v]| is the

size of the value.

A secondary goal of our work is of a pedagogical nature: present a minimal —
the virtual machine includes onlyinstructions — but still relevant scenario in which
problems connected to bytecode verification can be effectively discussed.

Our approach to resource bound certification follows distinctive design decisions.
First, we allow the space needed for the execution of a program to vary depending on

A Functional Scenario for Bytecode Verification of Resource Bounds 267

the size of its arguments. This is in contrast to most approaches that try to enforce
a constant space bound. While this latter goal is reasonable for applications targeting
embedded devices, we believe that it is not always relevant in the context of mobile
code. Second, our method is applicable to a large class of algorithms and do not im-
pose specific syntactical restrictions on programs. For example, we depart from works
based on a linear usage of variables [8]. Given the specificities of our method, we may
often ensure bounds on resources where other methods fail, but we may also give very
rough estimate of the space needed,in cases where another method would have de-
tected that memory operations may be achieved in-place. Hence, it may be interesting
to couple our analysis with other methods for ensuring resource bounds.

Paper organisation. The paper is organised as follows. Section 2 sketches a first-order
functional language with simple types and call-by-value evaluation and recalls some
basic facts about quasi-interpretations and termination. Section 3 describes a simple
virtual machine comprising a minimal set @finstructions that suffice to compile the
language described in the previous section. In Section 4, we define a type verification
that guarantees that all values on the stack will be well typed. This verification assumes
that constructors and function symbols in the bytecode are annotated with their type. In
the following sections, we also assume that they are annotated with suitable functions
to bound the size of the values on the stack (Section 6) and with an order to guaran-
tee termination (Section 7). The size and termination verifications depend on a shape
verification which is described in Section 5.

The presentation of each verification follows a common pattern: (i) definition of
constraints on the bytecode and (ii) definition of a predicate which is invariant under
machine reduction. The essential technical difficulty is in the structuring of the con-
straints and the invariants, the proofs are then routine inductive arguments. Additional
technical details and omitted proofs can be found in a long version of this extended
abstract [3].

2 A Functional Language

We consider a simple, typed, first-order functional language, with inductive types and
pattern-matching. A program is composed of a list of mutually recursive type definitions
followed by a list of mutually recursive first-order function definitions relying on pattern
matching. Expressions and values in the language are built from a finite number of
constructors, ranged over bycy, ... We usef, f/, ... to range over function identifiers
andz, z’, ... for variables, and distinguish the following three syntactic categories:

viu=c(v,...,v) (values)
pu==z | c(p,...,p) (patterns)
ex==z | cle,....e) | fle,...,e) (expressions)

A function is defined by a sequence of pattern-matchihgsof the formf (p, . . .,
pn) = e, Wheree is an expression. We follow the usual hypothesis that the patterns
p1,-..,Dn are linear and do not superposee s an expression thehar(e) is the set
of variables occurring in it. Theizeof an expressiofe| is defined a$ if e is a constant
or avariable and + Y;c1.,|e;| if eis of the formc(ey, ..., e,) or f(eq, ..., ep).

268 R. M. Amadio, S. Dal Zilio et al.

Types. We uset, t1, . . . to range over type identifiers. A type definition associates with
each identifier the sequence of the types of its constructors, of thecfofm - - - x ¢,,.

For instance, we can define the tyfagord of binary words and the typeat of natural
numbers in unary format:

bword = nil | 0 of bword | 1of bword nat =z | sof nat

In the following, we consider that constructors are declared with their functional
type(t1,...,t,) — t. Similar types can be either assigned or inferred for the function
symbols. We use the notatigh: (¢1,...,t¢,) — t to refer to the type of andar(f)
for the arity of f. We use similar notations for constructors. The typing rules for the
language are standard and are omitted — all the results given in this paper could be
easily extended to a system with parametric polymorphism.

Evaluation. The following two rules define the standard call-by-value evaluation rela-
tion, whereo is a substitution from variables to values. In order to define the rule se-
lected in the evaluation of a function call, we rely on the functio#.ch which returns

the unique substitution (if any) defined on the variables in the patterns and matching the
patterns against the vector of values. In particular, the conditietch((p1, ..., pn),
(v1,...,vy)) = o imposes that(p;) = v; forall i € 1..n.

fp1,...;pn) =>erule e; v, jEl.n

match((p1,...,pn), (V1,...,0n)) =0 o(e) Jv
clety .., en) P c(vr, ... vn) : f(el,..l.,en)UU

e; | v; j€l.n

Example 1.The functionadd of type (nat, nat) — nat, defined by the following two
rules, computes the sum of two natural numbers.

add(z,y) =y add(s(z),y) = add(x,s(y))

Quasi-interpretations. Given a program, aassignmeny associates with constructors
c,... and function symbolg, . . ., functionsg., ¢, . . . over the non-negative reaks"
such that: (i) ifc is a constant theq. is the constarto, (ii) if ¢ is a constructor with arity
n > 1theng. is the function iR*)"* — R* such thay.(z1,...,z,) = d+Xic1. ni,
for somed > 1, and (iii) if f is a function (identifier) with arity: theng; : (RT)" —
R* is monotonic and for all € 1..n we havegs(z1,...,z,) > x;. An assignmeny
is extended to all expressions as follows:= =, qc(c,.....e) = 4c(eys- - -5 e,), @Nd
f(er,...en) = Qf(Qela) QEn)-

Thus for every expression we have a function expressiap with variables in
Var(e). An assignment is quasi-interpretationif for every rule f (p1,...,pn) = ein
the program, the inequality;(,, ..,y > ¢ holds overR™.

Example 2.With reference to Example 1, consider the assignmgnt) = 1 + « and
Gudd(z,y) = x +y. Since by definition, = 0, we note that,, = |v| for all valuesv of
typenat. Moreover, it is easy to check thais a quasi-interpretation as the inequalities
Qadd(0,y) =y andqeqa(1 + z,vy) = qeda(z, 1+ y) hold. O

1 We can choose any positive real constantggibut this choice simplifies some of our proofs.

A Functional Scenario for Bytecode Verification of Resource Bounds 269

Quasi-interpretations are designed so as to provide a bound on the size of the com-
puted values as a function of the size of the input data. An interesting space for the
synthesis of quasi-interpretations is the collection of max-plus polynomials [2], that is,
functions equivalent to an expression of the fatiax;c;(Xje1..n0i 2 + a;), with
a;; € Nanda; € Qt, whereN are the natural numbers afif” are the non-negative
rationals. In this case, checking whether an assignment is a quasi-interpretation can be
reduced to checking the satisfiability of a Presburger formula, and is therefore a decid-
able problem.

3 The Virtual Machine

We define a simple stack machine and a related set of bytecode instructions for the
compilation and the evaluation of programs. We adopt the usual notation on words:

is the empty sequence, 2’ is the concatenation of two sequenees’. We may also

omit the concatenation operatioby simply writingz 2’. Moreover, ifz is a sequence
then|z| is its length and:[i] its i element counting fror. We denote withy a vector
(y1,--.,yn) Of elements. Thery, stands for the elemept and|y| is the number of
elements in the vector. In the following, we will often manipulagetors of sequences

and use the notatiog; k] to denote thé" element in the sequence of vectay.

We suppose given a program with a setohstructor nameand a disjoint set of
function namesA function identifierf will also denote the sequence of instructions of
the associated code. Th¢fi] stands for thé*” instruction in the (compiled) code g¢f
and| f| for the number of instructions.

The virtual machine is built around a few components: (1jpasociation listbe-
tween function identifiers and function codes; (2¢anfiguration/, which is a se-
quence offramesrepresenting the memory of the machine; (3)ysecode interpreter
modelled as a reduction relation on configurations. In tuframeis a triple(f, pc, £)
composed of a function identifier, the value of the program counter (a natural number
in 1..|f]), and astack A stackis a sequence of values that serves both to store the
parameters and the values computed during the execution. We work with a minimal
set of instructions whose effect on the configuration is described in Table 1 and write
M — M’ if M reduces taV/’ by applying exactly one of the transformations.

The reductionM — M’ is deterministic. The empty sequence of franags a
special state which cannot be accessed during a computation not raising anegrror,
not executing the instructiostop. A “good” execution starts with a configuration of
the form(f,1,v; - - - v,,), containing only one frame that corresponds to the evaluation
of the expressiorf (vy,...,v,). The execution ends with a configuration of the form
(f,pc, - vy) wherel < pe < |f| and f[pc] = return n (the integem is the arity
of f). In this case the result of the evaluatiomis By extension, we say that the
configuration)M is a resultvy, denotedM | vy, if there exists a sequenéesuch that
M = (f,pc, £ - vo) with 1 < pe < |f| and f[pc] = return n. All the other cases of
blocked configuration, such thaf -4 , are considered as runtime errors.

The language described in section 2 admits a direct compilation in our functional
bytecode. Every function is compiled into a segment of instructions and linear pattern
matching is compiled into a nesting bfanch instructions. Finally, variables are re-
placed by offsets from the base of the stack frame.

270 R. M. Amadio, S. Dal Zilio et al.

flpc] = load i f[pc] = buildcn
pe <|f] il =v pe < |f| =0 vy vy
M- (f,pc,l) — M- (f,pc+1,¢-v) M- (f,pc,€) — M- (f,pc+ 1,0 -c(v,...,v5))

flpc] = branchc j flpc] = branchc j
pe<|f| £=40-c(vi,...,vn) 1<j<|f] £=¢-d(...) c#d
M'(fvpag)_)M'(fzpc'i_lvel'vl""un) M(f,pc,é)HM(f,j,K)
flpc] = callgn pe < |f] =0 vy v, flpc] = stop
M—(f,pc,f)HM‘(f,pc,f)-(g,l,v1~~vn) M’(f7p67£)*)€
flpc] = returnn £ =4y -vo 0 =0" v v,

M - (g,pc’, 0') - (f,pc,€) — M - (g, pc’ +1,£" - o)

Table 1.Bytecode Interpretedd] — M’

Clearly, a realistic implementation should at least include a mechanism to exe-
cute efficiently tail recursive calls (whenall instruction is immediately followed
by return) and a mechanism to share common sub-values in a configuration. For in-
stance, using a stack of pointers to values allocated on a heap, it is possible to dispense
with the copy performed by aoad instructions. Our approach to size verification of
the stack could be adapted to these possible enhancements of the virtual machine.

Preliminary Verifications. We define a minimal set of (syntactical) conditions on the
shape of the code so as to avoid the simplest form of ereogsto guarantee that the
program counter stays within the intended bounds.
A new frame may only originate from @all instruction, that is, for every pair
of contiguous frames,: - (f, pc, £) (g, pc’, ') - - -, the instructionf[pc] must be of the
form call g n and the stack must end withn values, saw; - - - v,, which are the
parameters used in the call for We use the notationrg (M, j) to refer to the vector
of arguments with which thg¢* frame inM has been called: if < j < mandM =
(f1,91,41) - - (fms¥m, €m), We havearg(M, j) = (v1,...,vx) Wherear(f;) = k and
l;_1 = L-v1 - - v (An alternative presentation of the reduction rules could be to carry
these parameters explicitly as extra annotations on each frame.) By convention, we use
arg(M, 1) for the sequence of values used to initialise the execution of the machine.
We say that a functioffi is well-formedif the sequence of code gfterminates either
with the stop or with thereturn instruction. Moreover, for every indexe 1..|f|, we
ask that: (1) iff[i] = load k thenk > 1 and (2) if f[i] = branch c j thenl < j < |f].
We assume that every function in the code is well-formed; the result of the compilation
of functional programs clearly meets these well-formedness conditions. We say that a
configurationM = (f1,i1,41) -+ (fm,im, bm) is well-formedif for all j € 1..m we
have (1) the program countéy is in 1..| f;]; (2) the expressiomrg(}, j) is defined,;
and (3) for allj € 1..m — 1 we havef;[i;] = call f;41 n;11 — type verification will
ensure, among other properties, thais the arity of the functiory;. Well-formedness
is preserved during execution (and the configuratiawell-formed).

Proposition 1. If M is a well-formed configuration andif — M’ then the configura-
tion M’ is also well-formed.

A Functional Scenario for Bytecode Verification of Resource Bounds 271

casef|i] of
load k i< |T), Tilk]=tandT;y1 =T - t
buildcn :letc: (t1,...,tn) 2 toiNIAT. i <|T|,Ti=T t1---tp,andT;11 =T -to
callgn :letg: (ti,...,tn) 2 toiNIT.i < |T|,T; =T -t1- -tnandT;11 =T - to
returnn letf: (t1,...,tn) =t IiNIT.T; =T -t
stop : true

branchcj : letc: (t1,...,tn) — toin
AT i <|T|,Ti =T to, Tix1 =T -t1---t, andT; =T;

Table 2. Well-Typed Instructionswt; (f, T)
4 Type Verification

In this section, we define a simple type verification to ensure the well-formedness and
well-typedness of the machine configurations during execution. This verification is very
similar to the so calledbytecode verificationn the -hva platform, seee.g.[1], and

can be directly used as the basis of an algorithm for validating the bytecode before its
execution by the interpreter. (A major difference is that we do not have to consider
subroutines, access modifiers or object initialisation in our language.)

Type verification associates with every instruction (every step in the evaluation of a
function code) an abstraction of the stack. In our case, an abstract stack is a sequence
of types, ortype stackT = ¢, - - - t,,, that should exactly match the types of the values
present in the stack at the time of the execution. Accordinglglestract executiofor
a functionf is a sequenc® of type stacks such thgl'| = | f].

To express that an abstract executiBris coherent with the instructions if, we
define the notion ofvell-typed instructiorbased on the auxiliary relationt,(f, T,
given below. Informally, we show that ibt;(f,T) andT; = ¢, - - - t;, then for every
valid evaluation off, the stack of values at the time of the executionfpf is ¢ =
vy - - - v, Wherev; is a value of type; for every;j € 1..k. The definition of the relation
wt;(f,T), where|f| = |T|, is by case analysis on the instructiff].

We define a well-typed function as a sequence of well-typed instructions. To verify
a whole program, we simply need to verify every function separately.

Definition 1 (Well-Typed Function). A sequencd’ is a valid abstract executiofor
the functionf with signature(ty, ..., t,) — to, denotedwt(f,T'), if and only ifT'; =
t1---t, andwt;(f, T) for everyi € 1..|f].

We define theflow graphof function f as the directed grapf{1,...,|f|}, Ey)
such that for ali € 1..|f| — 1, the edg€(i, i + 1) is in Ey if f[i] is aload, build, or
call instruction and the edgds, i + 1) and (s, j) are inEy if f[i] is the instruction
branch c j. If every node in the flow grapf{1,...,|f|}, Ey) is reachable from the
nodel then there is at most one abstract executBrsuch thatwt(f, T'). Moreover,T'
can be effectively computed as the fixpoint of a function iterating the conditions given
in Table 2, for example using Kildall's algorithm [10].

Example 3.We continue with our running example and display the type of each in-
struction in the (compiled) code afld. We also show the flow graph associated with
the function that exhibits the two possible “execution paths” in the code&f

272 R. M. Amadio, S. Dal Zilio et al.

1 : nat nat : load 1 !

2 : nat nat nat : branchs?7 2

3 : nat nat nat : load 2 3

4 : nat nat nat nat : buildsl 4

5 : nat nat nat nat : call add 2 5

6 : nat nat nat . return 2 6

7 : nat nat nat : load 2 7
8

: nat nat nat nat : return 2

In the following, we assume that every node in the flow graph is accessitde. If
is “the” abstract execution of, we say thatf is a function (code) of typd'. Next,
we prove that the execution of verified programs never fails. As expected, we start by
proving that type information is preserved during evaluation. This relies on the notions
of well-typed frames and configurations. For instance, we say that a stack hdk,type
denoted : T, if T'=t, ---t, andl = vy - - - v, Wherew; is of typet; forall i € 1..n.

c:(ty,. .. ty) >t

(%
c(vl,...,vn

it 1€1.n v; :t; 1€1.n
ot

)

Ul...vn:tl...tn
. M = (f1,41,01) .. (fm,im, bm) well-formed
wt('ﬂ T) - £: TZ wt(fj,ij,éj) j cl.m
wt(fa Z g) wt(M)

Proposition 2 (Type Invariant). Let M be a configuration. lfwt(M) and M — M’
thenwt(M").

We note that as a side result of the type verification, we obtain, for every instruction,
the size of the stack at the time of its execution. The soundness of the type verification
follows from a progress property.

Proposition 3 (Progress)AssumeV/ is a well-typed configuration. Then eith&f =
e, or M is aresult,M | vy, or M reducesgM’ (M — M’).

5 Shape Analysis

We define a shape analysis on the bytecode which appears to be original. Instead of
computing the type of the values in the stack, we prove that we can also obtain partial
information on their shape such as the identity of their top-most constructor. This ver-
ification is used in the following size and termination verifications (Sections 6 and 7).
We suppose that the code of every functjpin the program passes the type verifica-
tion of Section 4 and thatt(f, T') holds. We denote with a vector of numbers such
that h; is the height of the stack for instructianthat ish; = |T;| for all ¢ € 1..|f].
Furthermore, for every instruction indéand positiork € 1..h; in the corresponding

stack we assume a fresh variablg, ranging over expressions, that is terms built from
variables, constructors and function symbols.

A Functional Scenario for Bytecode Verification of Resource Bounds 273

casef|i] of
load k P01 =05 andEiH =F,;- E—L[k’}
buildcn :ai+1:o-i,Ei:E-eln-enandEiH:E-c(el,...,en)

callgn :ou41=0,E;,=FE-e1---epandE;11 =FE -g(e1,...,en)
branchcj :letE; =FE-pin
if p is a variabler then

leto’ = [C(miJthw sy I’i+1,hi+1)/$] in
o; =0, Ej = Ei, Oiy1 = o' o o; andE¢+1 = O'/(E) " Tit1,h; Titl,hyyg
else pr = c(el, ey en) thencn-“ =0; andEiH =F-e1---e,

elseifp =d(...) withd # ctheno; = o; andE; = E;
(whereh; 11 = h; + ar(c) — 1 andh; = h;)

Table 3. Shape Constraints at Instructiagrwsh; (f, o, E)

We show that under some restrictions on the form of the code, we can solve certain
shape constraints and associate with every reachable instruction a substtitiamd
to every position of the related stack an expressigR,(if f is well-typed and every
node in its flow graph is reachable then the solution is unique). We can compare the
shape analysis with the type verification of Section 4: we compute for each instruction
a sequence of expressiots = e; - - - e, instead of a sequence of tydBs=t; - - - t,,.
The restrictions on the code are the following:

(1) the flow graph of the function is a tree rooted at instructiomhose leaves corre-
spond to the instructionssturn or stop;

(2) everybranch instruction is preceded only yad or branch instructions.

These conditions are satisfied by the bytecode obtained from the compilation of func-
tional programs and entail that in every path from the root we cross a sequence of
branch andload instructions, then a sequencelefd, build, andcall instructions,

and finally either atop or return instruction.

The shape constraints are displayed below. We note that applyingrch ¢ j
instruction to a stack whose head value is of the shkiipe) with d # ¢ produces no
effect which is fine since then the following instruction is not reachable (since the flow
graph is a tree, we have# i + 1). Hence the shape analysis may also be used to locate
dead code. The definition of the relatierh;(f, o, E), where|f| = |o| = |E|, is by
case analysis on the instructigifi]. There are no constraints enand E if f[i] is a
return Of stop instruction.

The soundness of shape verification is obtained through the definition of a new pred-
icate on configurationsysh, which improves on the “well-typed” predicate introduced
in the previous section.

Definition 2 (Well-Shaped Function).A pair (o, E) is a valid shape for the function
f oftype(ty,...,t,) — to, denotedwsh(f, o, E), if o1 is the identity substitutiond,
E, = T1,1 " T1,ar(f) andwshi(f, o, E) forall i € 1|f|

Assume we have a well-formed configuratidfi containing the framéf,,¢) in
4" position and thaarg (M, j) = (u1, . ..,u;) are the parameters used to initialise this

274 R. M. Amadio, S. Dal Zilio et al.

frame. The substitutiosr; relates the valuesy, ..., u; to the values occurring if.
More preciselypg;(x1,) is a pattern with variables ifx; ;) je1..n, and there is at most
one matching substitutiop such thatp o o;(z1,;) = w; for all [€ 1..k. On the other
hand, the expressionrs ; describe the values occurringdnlf e; ; is a pattern, that is,
if it does not contain a function symbol (which is always the case if the instrugtidn
occurs before the first function call in the execution path), tgn= p(e; ;).

For example, if we consider the shape constraints computed for the funetibn
below, we have that for every franjedd, i, £) originating from the parametefs;),
if 7 = 5 (at the point of the recursive call) then is of the forms(uz) and/ is the stack
(S(Ug) Ug U3 S(Ug)).

Ei=x11212 : load 1l t o1 =1id
Ey;=xz11 212211 : branchs7 : o2 =1id
E; = S(CC373) 1,2 3,3 : load 2 L 03 = [S(wg 3)/%‘1 1]
E4 = S(ZII373) 1,2 3,3 1,2 : builds1 D04 = [(:I)3 5)/.%1’1]
Es = 5(1'3’3) T1,2 3,3 S(l‘1_’2) :calladd?2 : o5 = [(wg 3)/$1 1]
E¢ =s(x3,3) 1,2 add(zs,3,5(x1,2)) : return2 : o = [s(x3.3)/T1,1]
E;=z11212%11 : load 2 o7 =1id
Eg = T1,1 T1,2 T1,1 T1,2 : return 2 : og =1id

A configurationM is well-shaped if all the frameff, i, ¢) in M are well-shaped.
This condition relies on the parameters used to initialise the frame.

’U)Sh('ﬁo’ E) matCh((o’z(zl 1) o-z(xl ar(f)))) =p
if E,[j]is apattern thelﬂ[} p(EZ[j])
wsh(f,u,1,?)
ME(f172.17£1)"'(fm7im7£m) ’U/t(M)
u; = arg(M, j) wsh(fj,wj,i;,4;) jel.m
wsh(M)
Assume the bytecode of the functigrhas passed the type and shape verifications.
As for type verification, we prove that the shape predicate is invariant under reduction.

Proposition 4. If wsh(M) and M — M’ thenwsh(M").

The shape verification is particularly well-suited to the analysis of code obtained
from the compilation of functional programs, but it may not scale well to optimised
code, like the one obtained by the elimination of tail recursive calls. Nonetheless, we can
easily define the size verification (see Section 6) without relying on the shape analysis
and perform this verification on programs that do not meet the conditions given previ-
ously. Hence, we should not see the shape analysis as a required step of our method but
rather as an elegant way to define simultaneously the core of our size and termination
analyses.

6 Value Size Verification

We assume that we have synthesized suitable quasi-interpretations at the language level
(before compilation) and that these informations are added to the bytecode. Hence, for

A Functional Scenario for Bytecode Verification of Resource Bounds 275

every constructor and function symbolf, the functionsg. : (R*)*" (9 — R* and
qr : (RY)o(f) — R+ are given.

We prove that we can check the validity of the quasi-interpretations at the bytecode
level (and then prevent malicious code containing deceitful size annotations) and that
we may infer a bound on the size of the frames on the stack.

We assume the bytecode passes the shape verification. Thus for every instruction
indexi in the segment of the functiof, the sequence of expressiaRs and the sub-
stitutiono; are determined. We also kndwy, the height of the stack at instructiopas
computed during the type verification.

Definition 3. We say that the size annotations for the functfosre correct if the fol-
lowing condition holds for alt € 1..|f|. AssumeE; = e; - - - ep,, then:

Vj € l..h; qf(qa'i(ﬂll,l)’ ceey qaz(ﬂﬁl,m(f))) Z Qe overR™ (1)

In the case of the (compiled) functionid, for example, the correctness of the
size annotations results from the validity of the inequality;q(1 + x33,21,2) >
Gadd(z3,3,1 4+ x1,2) (from (1) on the expressions obtained for instructin

The complexity of verifying condition (1) depends on the choice of the quasi-
interpretations space. This problem has the same complexity as verifying the correc-
tion of the quasi-interpretation at the level of the functional language, see Section 2.
We also notice that the condition is quite redundant and can be optimised. Next, we
show (Corollary 1) that the size of all the values occurring in a configuration during
the evaluation of an expressigitvy, . . ., v,) are bounded by the quasi-interpretation
of f(v1,...,v,). This follows from the definition of a new predicatez(M) and a
related invariant.

wsh(f,o, E) mmﬁch((oy-(mm)7 e 0il(Z1ar()),U) = p

E;,=ei--en, {=v1---vn, do(e;) Z Gv, j€l.h;
wsz(f,w,1,£)
M = (f1,41,01) - .. (fmyim,fm) wsh(M) u; = arg(M, j)
wsz(fi, wy, 5, 45) Afp(ug) Z Uprr (wprn) jel.m kel.m—1
wsz(M)

Assume the bytecode of the functigrhas passed the type and shape verifications.
As for the type and shape verifications, we prove that the size predicate is invariant
under reduction.

Proposition 5. If wsz(M) andM — M’ thenwsz(M").

Corollary 1. Assume that all the functions in the program are well-sized. If the ex-
pressionf(vy,...,v,) is well-typed and f,1,v1 ---v,) — M - (g,4,¢) then|v| <
Qf(vr,....v,) fOr all the valuesy occurring in/.

Proof. By definition, wsz(f,1,v1 - - - v,). By proposition 5, it follows thatvsz (M -
(9,1,0)). Letu = (uq,...,ux) be the parameters used in the initialization of the top
frame:u = arg(M - (g,4,¢), | M| + 1). Since the configuration is well-sized, we have
wsz(g,u,i,£) and there is a substitutignsuch that: (CLY¢(v,.....v.) = dg(ur,...,un) »

276 R. M. Amadio, S. Dal Zilio et al.

(c2)pooi(zry,;) =u;forall j € 1.k, and (c3)wsh(g, o, E) andE; = e; - - - e, and
Ap(e;) = qe[4) forj € 1..n.

By definition, the size annotations in the bytecode are correct, which means that by
the verification condition (1) we havey (o, (2, ,),....o: (21 1)) = Ge; forall j € 1.n. We

conclude: oy vy = dg(un,...un) by (c1)
= qg(poci(x1,1),-p00: (x1,1)) by (C2)
= p(e;) by (1) and monotonicity
2 Qo by (c3)
> |v| v IS a quasi-interpretation O

We can use corollary 1 to give a rough estimate of the size of the frames occurring
in a configuration. Assume that all the functions in the program are well-sized and
consider a framég, i, /) occurring in a configuration reached from the evaluation of
the expressiorf (vy, ..., vp).

From the type verification, we obtain a bouhg on the length of the stack (for
the functionadd in our examples we havk,;q = 4). We may define the size of a
frame as the sum of the size of the valued imdded toh, — the quantityh, makes
allowance for the presence of constants stored in the stack and we neglect the space
needed for storing the function identifier and the program counter. Hence the size of the
frame (g, i,¢) is less thah, - (¢f(u,,....0,) + 1). Likewise, if we define the size of a
configuration)M as the sum of the frames occurringiifh, then we can bound the size
of M by the expressioh,, - (¢f(u, ,....u,) + 1) - 1, wherel is the number of frames if/
andh,,, is the maximum of thé,, for all the functionsy in the program.

In the next section, we use information obtained from a termination analysis to
bound the number of frames that may appear in a reachable configuration. As a re-
sult, we obtain a bound on the maximal space needed for the evaluation of the ex-
pressionf(vy,...,v,) (see Corollary 3). Moreover, if we can prove termination by
lexicographic order, then this bound can be expressed as a polynomial expression on
the valueguv|, ..., |vn|.

7 Termination Verification

In this section, we adapt recursive path orderings, a popular technique for checking
termination (seeg.qg, [6]), to prove termination of the evaluation of the virtual machine.
We suppose that the shape verification of the code succeeds. We assume given a pre-
order> 5 on the function symbols so th@t=5 ¢ implies ar(f) = ar(g). Recursive
path ordering conditions forcgé > 5, ¢ wheneverf may callg, andf =x g wheneverf
andg are mutually recursive. The pre-ordes; is extended to the constructor symbols
by assuming that a constructor is always smaller than a function symbol and that two
distinct constructors are incomparable.

We recall that in the recursive path ordering one associatedeswith each symbol
specifying how its arguments have to be compared. It is required tliatif ¢ thenf
andg have the same status. Here we suppose that the status of every function symbol is
lexicographic and that the status of every constructor symbol is the product. We denote
with >; the induced path order. Note that on values-; v’ if and only if v embeds
homomorphically’. Hencep >; v’ implies|v| > [v/].

A Functional Scenario for Bytecode Verification of Resource Bounds 277

The technical development resembles the one for the value size verification. First,
we have to define when the termination annotations given with the bytecode are correct.

Definition 4. We say that the termination annotations for the functfoare correct if
the following condition holds for all € 1..|f|. AssumeE; = e; - - - ep,, then:

Vj € 1..h; floi(@in), .- 0i(@1ar(p)) >0 €5 (2

For the functionadd, the correctness of the termination annotations results primar-
ily from the validity of the relationadd(s(z3,3), x1,2) >; add(zs3,s(x1,2)) (for the
lexicographic path ordering). Next, we introduce a predicate(for terminating) on
well-shaped configuration®/. As expected, the termination predicate is an invariant.

wsh(f,o, E) match((ai(xl,l), e 0l (T1ar())), w) = p
L=y vn, ple;) =1 v j€l.h;
ter(f,w,,£)
M = (f1,91,01) -« (fm,im,fm) wsh(M) w; = arg(M, j)
ter(fi wy,i5,6;) fu(ug) >1 feyr(uryr) jelom kel.m—1
ter(M)

Ei=e - -en.

i

Proposition 6. If ter(M) and M — M’ thenter(M').

Corollary 2. Assume that all the functions in the program have correct termination
information (see Definition 4). Then the execution of a well-typed figirie v, - - - vy,)
terminates.

Proof. We define a well-founded order on well-formed configurations that is compati-
ble with the evaluation of the machine.ilfs the index of an instruction in the code of
[let acc(i) denotes the number of instructions reachable fiamthe flow graphE;.
Since the flow graph is a tree, whenever we increment the counter or jump to another
instruction this value decreases. llét= (T, >;) be the collection of values with the
lexicographic path order. It is well known that this is a well-founded order. Then con-
siderT" x N with the lexicographic order from left to right. Again this is a well-founded
order. Finally, consideM (T x N) the finite multisets overl’ x N with the induced well-
founded order. We associate with a configuratidn= (f1,i1,41) - (fm, im, {m) the
measurg.(M) = {|(frarg(M, 1), acc(iy)—1),..., (fm-1arg(M,m—1), acc(ipm—1)—
1), (fmarg(M,m), acc(in))]}.

Then, by case analysis, we check that all the reduction rules decrease this measure.
This proof is by case analysis on the instructjomi,,|. Assumef,,[i,] = call g n.
An element(f(v),) of the multiset is replaced by the two elemeff$v),: — 1) and
(9(u), acc(1)), wheref(v) >; g(u) (by the invariantter) so that, with respect to the
lexicographic order(f(v),i) > (f(v),i — 1) and(f(v),i) > (g(u), acc(1)). In the
other cases, an elemefi(v),) is either removed or replaced by (v), 7) with i > j,
as needed. a

As observed in [5], termination by lexicographic order combined with a polynomial
bound on the size of the values leads to polynomial space. We derive a similar result
with a similar proof at bytecode level.

278 R. M. Amadio, S. Dal Zilio et al.

Corollary 3. Suppose that the quasi-interpretations are bound by polynomials and that
the value size and termination verifications of the bytecode succeeds. Then there exists
a polynomialg such that every execution starting from a frafyfel, vy - - - v,,) (termi-

nates and) runs in space bound v, |, . .., |vnl).

Proof. Note that if f(v) >; g(u) then eitherf >y gor f =5 gandv >; w. In

a sequencdi (vy) >; -+ >; fm(vm), the first case can occur a constant number of
times (the number of equivalence classes of function symbols with respegf)tthus

it is enough to analyse the length of strictly decreasing sequences of tuples of values
(v1,...,vx) lexicographically ordered whefeis the largest arity of a function symbol.

If bis a bound on the size of the values then since on valuesv’ implies |v| > [v/|

we derive that the sequence has length at rifasBinceb is polynomial in the size of

the arguments and the number of values on a frame is bound by a constant (via the stack
height verification), a polynomial bound is easily derived. O

From the type verification we obtain a bouhg on the length of the stacks (for the
function add in our examples we have,, = 4). From the size verification we obtain a
boundg,, = g(u,,...,,) ON the size of every value occurring in a stack (in our example
gm = |v1| + |v2]). Finally, the termination analysis provides a bound on the maximal
number of frames. A crude analysis gives at mgstframes, where is the greatest
arity among the functions occurring during the execution. Hence, the size needed for the
execution of a correct program on the initial configuratighl, v; - - - v,,) is bounded
by the product,,,-(¢.,+1)-¢*,. We may improve this bound using a finer analysis of the
(proof of correctness of the) termination annotations. In the casddffor example,
we remark that the size of the first parameter decreases at every call — there could be
at most|v;| frames in a reachable configuration — and therefore we may derive the
stricter boundt - (|v1| + |va| + 1) - |vy| instead oft - (|v1]| + |va| + 1) - (Jur| + |ve])?

8 Conclusion and Related work

The problem of bounding the size of the memory needed for executing a program has
already attracted considerable attention but few works have addressed this problem at
the level of the bytecode.

Most work in the literature on bytecode verification tends to guarantee the integrity
of the execution environment. Work on resource bounds is carried on in the MRG
project [17]. The main technical differences appear to be as follows: (i) they rely on a
general proof carrying code approach while we are closer to a typed assembly language
approach and (ii) their analyses focus on the size of the heap while we also consider
the size of the stack and the termination of the execution. Another related work is due
to Marion and Moyen [14] who perform a resource analysis of counter machines by
reduction to a certain type of termination in Petri Nets. Their virtual machine is much
more restricted than the one we study here as natural numbers is the only data type and
the stack can only contain return addresses.

We have shown how to perform type, size, and termination verifications at the level
of the bytecode running on a simple stack machine. We believe that the choice of a
simple set of bytecode instructions has a pedagogical value: we can present a minimal

A Functional Scenario for Bytecode Verification of Resource Bounds 279

but still relevant scenario in which problems connected to bytecode verification can
be effectively discussed. We are in the process of formalising our virtual machine and
the related invariants in thed® proof assistant. We are also experimenting with the
automatic synthesis of annotations at the source code level and with their verification
at byte code level. Moreover, we plan to refine the predictions on the space needed for
the execution of a program by referring to an optimised implementation of the virtual
machine.

References

[EnY

. M. Abadi and R. Stata. A type system for Java bytecode subroutin®sotn POPL, 1998.
. R. Amadio. Max-plus quasi-interpretations.Rroc. TLCA Springer LNCS 2701, 2003.
3. R. Amadio, S. Coupet-Grimal, S. Dal Zilio and L. Jakubiec. A functional scenario for byte-
code verification of resource bounds. Research Report LIF 17-2004.
4. S.Bellantoni and S. Cook. A new recursion-theoretic characterization of the poly-time func-
tions. Computational Complexify2:97-110, 1992.
5. G. Bonfante, J.-Y. Marion and J.-Y. Moyen. On termination methods with space bound
certifications. InProc. Perspectives of System Informati8pringer LNCS 2244, 2001.
6. F. Baader and T. Nipkowlerm rewriting and all that Cambridge University Press, 1998.
7. A.Cobham. The intrinsic computational difficulty of functionsPlmc. Logic, Methodology,
and Philosophy of Science North Holland, 1965.
8. M. Hofmann. The strength of non size-increasing computatioRrdc. POPL, 2002.
9. N. JonesComputability and complexity, from a programming perspectWd-Press, 1997.
10. G. Kildall, A unified approach to global program optimizationPihoc. POPL, 1973.
11. D. Leivant. Predicative recurrence and computational complexity i: word recurrence and
poly-time. Feasible mathematics Il, Clote and Remmel (ed&irkhauser, 1994.
12. T. Lindholm and F. YellinThe Java virtual machine specificatioAddison-Wesley, 1999.
13. J.-Y. Marion. Complexité implicite des calculs, de la théorie a la pratiguabilitation a
diriger des recherches, Université de Nancy, 2000.
14. J.-Y. Marion, J.-Y. MoyenTermination and resource analysis of assembly programs by Petri
Nets Technical Report, Université de Nancy, 2003.
15. G. Morriset, D. Walker, K. Crary and N. Glew. From system F to typed assembly language.
In ACM Transactions on Programming Languages and Syst2h(8):528-569, 1999.
16. G. Necula. Proof carrying code. Rroc. POPL, 1997.
17. D. Sannella. Mobile resource guarantee. IST-Global Computing research proposal, U. Ed-
inburgh, 2001 http://www.dcs.ed.ac.uk/home/mrg/

N

