
A Functional Scenario for Bytecode
Verification of Resource Bounds?

Roberto M. Amadio, Solange Coupet-Grimal,
Silvano Dal Zilio and Line Jakubiec

Laboratoire d’Informatique Fondamentale de Marseille (LIF),
CNRS and Université de Provence.

Abstract. We consider a scenario where (functional) programs in pre-compiled
form are exchanged among untrusted parties. Our contribution is a system of
annotations for the code that can be verified at load time so as to ensure bounds
on the time and space resources required for its execution, as well as to guarantee
the usual integrity properties.
Specifically, we define a simple stack machine for a first-order functional lan-
guage and show how to perform type, size, and termination verifications at the
level of the bytecode of the machine. In particular, we show that a combination
of size verification based on quasi-interpretations and of termination verification
based on lexicographic path orders leads to an explicit bound on the space re-
quired for the execution.

1 Introduction

Research on mobile code has been a hot topic since the late 90’s with many propos-
als building on the JAVA platform. Application scenarios include, for instance, pro-
grammable switches, network games, and applications for smart cards. A prevailing
conclusion is that security issues are one of the fundamental problems that still have to
be solved before mobile code can become a well-established and well-accepted tech-
nology. Initial proposals have focused on the integrity properties of the execution envi-
ronment such as the absence of memory faults. In this paper, we consider an additional
property of interest to guarantee the safety of a mobile code, that is, ensuring bounds
on the (computational) resources needed for the execution of the code.

The interest of carrying on such analyses at bytecode level are now well under-
stood [15,16]. First, mobile code is shipped around in pre-compiled (orbytecode) form
and needs to be analysed as such. Second, compilation is an error prone process and
therefore it seems safer to perform static analyses at the level of the bytecode rather
than at source level. In particular, we can reduce the size of the trusted code base and
shift from the reliance on the correctness of the whole compilation chain to only the
trust on the analyser.

Approach. The problem of bounding the usage made by programs of their resources
has already attracted considerable attention. Automatic extraction of resource bounds

? This work was partly supported by ACI Sécurité Informatique, project CRISS.

J. Marcinkowski and A. Tarlecki (Eds.): CSL 2004, LNCS 3210, pp. 265–279, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

266 R. M. Amadio, S. Dal Zilio et al.

has mainly focused on (first-order) functional languages starting from Cobham’s char-
acterisation [7] of polynomial time functions by bounded recursion on notation. Fol-
lowing work, seee.g., [4,8,9,11], has developed various inference techniques that allow
for efficient analyses while capturing a sufficiently large range of practical algorithms.

We consider a rather standard first-order functional programming language with in-
ductive types, pattern matching, and call-by value, that can be regarded as a fragment of
variousML dialects. The language is also quite close to term rewriting systems (TRS)
with constructor symbols. The language comes with three main varieties of static anal-
yses: (i) a standard type analysis, (ii) an analysis of the size of the computed values
based on the notion ofquasi-interpretation, and (iii) an analysis that ensures termina-
tion; among the many available techniques we select here recursive path orderings.

The last two analyses, and in particular their combination, are instrumental to the
prediction of the space and time required for the execution of a program as a function of
the size of the input data. For instance, it is known [5] that a program admitting a poly-
nomially bound quasi-interpretation and terminating by lexicographic path-ordering
runs in polynomial space. This and other results can be regarded as generalisations
and variations over Cobham’s characterisation.

Contribution. The synthesis of termination orderings is a classical topic in term rewrit-
ing (see for instance [6]). The synthesis of quasi-interpretations — a concept introduced
by Marionet al. [13] — is connected to the synthesis of polynomial interpretations for
termination but it is generally easier because inequalities do not need to be strict and
small degree polynomials are often enough [2]. We will not address synthesis issues
in this paper. We suppose that the bytecode comes with annotations such as types and
polynomial interpretations of function symbols and orders on function symbols.

We define a simple stack machine for a first-order functional language and show
how to perform type, size, and termination verifications at the level of the bytecode of
the machine. These verifications rely on certifiable annotations of the bytecode — we
follow here the classical viewpoint that a program may originate from a malicious party
and does not necessarily result from the compilation of a well-formed program.

Our main goal is to determine how these annotations have to beformulated and
verifiedin order to entail size bounds and termination atbytecodelevel, i.e., at the level
of an assembler-like code produced by a compiler and executable on a simple stack
machine. We carry on this program up to the point where it is possible to verify that a
given bytecode will run in polynomial space thus providing a translation of the result
mentioned above at byte code level. Beyond proving that a program “is in PSPACE”
we extract a polynomial that bounds the size needed to run a program: given a function
(identifier) f of arity n in a verified program, we obtain a polynomialq(x1, . . . , xn)
such that for all valuesv1, . . . , vn of the appropriate types, the size needed for the
evaluation of the callf(v1, . . . , vn) is bounded byq(|v1|, . . . , |vn|), where|v| is the
size of the valuev.

A secondary goal of our work is of a pedagogical nature: present a minimal —
the virtual machine includes only6 instructions — but still relevant scenario in which
problems connected to bytecode verification can be effectively discussed.

Our approach to resource bound certification follows distinctive design decisions.
First, we allow the space needed for the execution of a program to vary depending on

A Functional Scenario for Bytecode Verification of Resource Bounds 267

the size of its arguments. This is in contrast to most approaches that try to enforce
a constant space bound. While this latter goal is reasonable for applications targeting
embedded devices, we believe that it is not always relevant in the context of mobile
code. Second, our method is applicable to a large class of algorithms and do not im-
pose specific syntactical restrictions on programs. For example, we depart from works
based on a linear usage of variables [8]. Given the specificities of our method, we may
often ensure bounds on resources where other methods fail, but we may also give very
rough estimate of the space needed,e.g.in cases where another method would have de-
tected that memory operations may be achieved in-place. Hence, it may be interesting
to couple our analysis with other methods for ensuring resource bounds.

Paper organisation. The paper is organised as follows. Section 2 sketches a first-order
functional language with simple types and call-by-value evaluation and recalls some
basic facts about quasi-interpretations and termination. Section 3 describes a simple
virtual machine comprising a minimal set of6 instructions that suffice to compile the
language described in the previous section. In Section 4, we define a type verification
that guarantees that all values on the stack will be well typed. This verification assumes
that constructors and function symbols in the bytecode are annotated with their type. In
the following sections, we also assume that they are annotated with suitable functions
to bound the size of the values on the stack (Section 6) and with an order to guaran-
tee termination (Section 7). The size and termination verifications depend on a shape
verification which is described in Section 5.

The presentation of each verification follows a common pattern: (i) definition of
constraints on the bytecode and (ii) definition of a predicate which is invariant under
machine reduction. The essential technical difficulty is in the structuring of the con-
straints and the invariants, the proofs are then routine inductive arguments. Additional
technical details and omitted proofs can be found in a long version of this extended
abstract [3].

2 A Functional Language

We consider a simple, typed, first-order functional language, with inductive types and
pattern-matching. A program is composed of a list of mutually recursive type definitions
followed by a list of mutually recursive first-order function definitions relying on pattern
matching. Expressions and values in the language are built from a finite number of
constructors, ranged over byc, c1, . . . We usef, f ′, . . . to range over function identifiers
andx, x′, . . . for variables, and distinguish the following three syntactic categories:

v ::= c(v, . . . , v) (values)
p ::= x c(p, . . . , p) (patterns)
e ::= x c(e, . . . , e) f(e, . . . , e) (expressions)

A function is defined by a sequence of pattern-matchingrulesof the formf(p1, . . . ,
pn) ⇒ e, wheree is an expression. We follow the usual hypothesis that the patterns
p1, . . . , pn are linear and do not superpose. Ife is an expression thenVar(e) is the set
of variables occurring in it. Thesizeof an expression|e| is defined as0 if e is a constant
or a variable and1 + Σi∈1..n|ei| if e is of the formc(e1, . . . , en) or f(e1, . . . , en).

268 R. M. Amadio, S. Dal Zilio et al.

Types. We uset, t1, . . . to range over type identifiers. A type definition associates with
each identifier the sequence of the types of its constructors, of the formcof t1 ∗ · · · ∗ tn.
For instance, we can define the typebword of binary words and the typenat of natural
numbers in unary format:

bword = nil 0 of bword 1 of bword nat = z s of nat

In the following, we consider that constructors are declared with their functional
type(t1, . . . , tn) → t. Similar types can be either assigned or inferred for the function
symbols. We use the notationf : (t1, . . . , tn) → t to refer to the type off andar(f)
for the arity off . We use similar notations for constructors. The typing rules for the
language are standard and are omitted — all the results given in this paper could be
easily extended to a system with parametric polymorphism.

Evaluation. The following two rules define the standard call-by-value evaluation rela-
tion, whereσ is a substitution from variables to values. In order to define the rule se-
lected in the evaluation of a function call, we rely on the functionmatch which returns
the unique substitution (if any) defined on the variables in the patterns and matching the
patterns against the vector of values. In particular, the conditionmatch((p1, . . . , pn),
(v1, . . . , vn)) = σ imposes thatσ(pi) = vi for all i ∈ 1..n.

ej ⇓ vj j ∈ 1..n

c(e1, . . . , en) ⇓ c(v1, . . . , vn)

f(p1, . . . , pn) ⇒ e rule ej ⇓ vj j ∈ 1..n
match((p1, . . . , pn), (v1, . . . , vn)) = σ σ(e) ⇓ v

f(e1, . . . , en) ⇓ v

Example 1.The functionadd of type(nat , nat) → nat , defined by the following two
rules, computes the sum of two natural numbers.

add(z, y) ⇒ y add(s(x), y) ⇒ add(x, s(y))

Quasi-interpretations. Given a program, anassignmentq associates with constructors
c, . . . and function symbolsf, . . ., functionsqc, qf , . . . over the non-negative realsR+

such that: (i) ifc is a constant thenqc is the constant1 0, (ii) if c is a constructor with arity
n > 1 thenqc is the function in(R+)n → R+ such thatqc(x1, . . . , xn) = d+Σi∈1..nxi,
for somed > 1, and (iii) if f is a function (identifier) with arityn thenqf : (R+)n →
R+ is monotonic and for alli ∈ 1..n we haveqf (x1, . . . , xn) > xi. An assignmentq
is extended to all expressions as follows:qx = x, qc(e1,...,en) = qc(qe1 , . . . , qen

), and
qf(e1,...,en) = qf (qe1 , . . . , qen

).
Thus for every expressione we have a function expressionqe with variables in

Var(e). An assignment is aquasi-interpretationif for every rulef(p1, . . . , pn) ⇒ e in
the program, the inequalityqf(p1,...,pn) > qe holds overR+.

Example 2.With reference to Example 1, consider the assignmentqs(x) = 1 + x and
qadd(x, y) = x+ y. Since by definitionqz = 0, we note thatqv = |v| for all valuesv of
typenat . Moreover, it is easy to check thatq is a quasi-interpretation as the inequalities
qadd(0, y) > y andqadd(1 + x, y) > qadd(x, 1 + y) hold. ut

1 We can choose any positive real constant forqc, but this choice simplifies some of our proofs.

A Functional Scenario for Bytecode Verification of Resource Bounds 269

Quasi-interpretations are designed so as to provide a bound on the size of the com-
puted values as a function of the size of the input data. An interesting space for the
synthesis of quasi-interpretations is the collection of max-plus polynomials [2], that is,
functions equivalent to an expression of the formmaxi∈I(Σj∈1..nai,jxj + ai), with
ai,j ∈ N andai ∈ Q+, whereN are the natural numbers andQ+ are the non-negative
rationals. In this case, checking whether an assignment is a quasi-interpretation can be
reduced to checking the satisfiability of a Presburger formula, and is therefore a decid-
able problem.

3 The Virtual Machine

We define a simple stack machine and a related set of bytecode instructions for the
compilation and the evaluation of programs. We adopt the usual notation on words:ε
is the empty sequence,x · x′ is the concatenation of two sequencesx, x′. We may also
omit the concatenation operation· by simply writingxx′. Moreover, ifx is a sequence
then|x| is its length andx[i] its ith element counting from1. We denote withy a vector
(y1, . . . , yn) of elements. Then,yi stands for the elementyi and|y| is the numbern of
elements in the vector. In the following, we will often manipulatevectors of sequences
and use the notationyi[k] to denote thekth element in theith sequence of vectory.

We suppose given a program with a set ofconstructor namesand a disjoint set of
function names. A function identifierf will also denote the sequence of instructions of
the associated code. Thenf [i] stands for theith instruction in the (compiled) code off
and|f | for the number of instructions.

The virtual machine is built around a few components: (1) anassociation listbe-
tween function identifiers and function codes; (2) aconfigurationM , which is a se-
quence offramesrepresenting the memory of the machine; (3) abytecode interpreter
modelled as a reduction relation on configurations. In turn, aframeis a triple(f, pc, `)
composed of a function identifier, the value of the program counter (a natural number
in 1..|f |), and astack. A stack is a sequence of values that serves both to store the
parameters and the values computed during the execution. We work with a minimal
set of instructions whose effect on the configuration is described in Table 1 and write
M → M ′ if M reduces toM ′ by applying exactly one of the transformations.

The reductionM → M ′ is deterministic. The empty sequence of framesε is a
special state which cannot be accessed during a computation not raising an error,i.e.,
not executing the instructionstop. A “good” execution starts with a configuration of
the form(f, 1, v1 · · · vn), containing only one frame that corresponds to the evaluation
of the expressionf(v1, . . . , vn). The execution ends with a configuration of the form
(f, pc, ` · v0) where1 6 pc 6 |f | andf [pc] = return n (the integern is the arity
of f). In this case the result of the evaluation isv0. By extension, we say that the
configurationM is a resultv0, denotedM ↓ v0, if there exists a sequence` such that
M ≡ (f, pc, ` · v0) with 1 6 pc 6 |f | andf [pc] = return n. All the other cases of
blocked configuration, such thatM 6→ , are considered as runtime errors.

The language described in section 2 admits a direct compilation in our functional
bytecode. Every function is compiled into a segment of instructions and linear pattern
matching is compiled into a nesting ofbranch instructions. Finally, variables are re-
placed by offsets from the base of the stack frame.

270 R. M. Amadio, S. Dal Zilio et al.

f [pc] = load i
pc < |f | `[i] = v

M · (f, pc, `) → M · (f, pc + 1, ` · v)

f [pc] = build c n
pc < |f | ` = `′ · v1 · · · vn

M · (f, pc, `) → M · (f, pc + 1, `′ · c(v1, . . . , vn))

f [pc] = branch c j
pc < |f | ` = `′ · c(v1, . . . , vn)

M · (f, pc, `) → M · (f, pc + 1, `′ · v1 · · · vn)

f [pc] = branch c j
1 6 j 6 |f | ` = `′ · d(. . .) c 6= d

M · (f, pc, `) → M · (f, j, `)

f [pc] = call g n pc < |f | ` = `′ · v1 · · · vn

M · (f, pc, `) → M · (f, pc, `) · (g, 1, v1 · · · vn)

f [pc] = stop

M · (f, pc, `) → ε

f [pc] = return n ` = `0 · v0 `′ = `′′ · v1 · · · vn

M · (g, pc′, `′) · (f, pc, `) → M · (g, pc′ + 1, `′′ · v0)

Table 1.Bytecode Interpreter:M → M ′

Clearly, a realistic implementation should at least include a mechanism to exe-
cute efficiently tail recursive calls (when acall instruction is immediately followed
by return) and a mechanism to share common sub-values in a configuration. For in-
stance, using a stack of pointers to values allocated on a heap, it is possible to dispense
with the copy performed by aload instructions. Our approach to size verification of
the stack could be adapted to these possible enhancements of the virtual machine.

Preliminary Verifications. We define a minimal set of (syntactical) conditions on the
shape of the code so as to avoid the simplest form of errors,e.g., to guarantee that the
program counter stays within the intended bounds.

A new frame may only originate from acall instruction, that is, for every pair
of contiguous frames,· · · (f, pc, `) (g, pc′, `′) · · · , the instructionf [pc] must be of the
form call g n and the stack̀ must end withn values, sayv1 · · · vn, which are the
parameters used in the call forg. We use the notationarg(M, j) to refer to the vector
of arguments with which thejth frame inM has been called: if1 < j 6 m andM ≡
(f1, i1, `1) · · · (fm, im, `m), we havearg(M, j) = (v1, . . . , vk) wherear(fj) = k and
`j−1 = ` ·v1 · · · vk. (An alternative presentation of the reduction rules could be to carry
these parameters explicitly as extra annotations on each frame.) By convention, we use
arg(M, 1) for the sequence of values used to initialise the execution of the machine.

We say that a functionf iswell-formedif the sequence of code off terminates either
with thestop or with thereturn instruction. Moreover, for every indexi ∈ 1..|f |, we
ask that: (1) iff [i] = load k thenk > 1 and (2) iff [i] = branch c j then1 6 j 6 |f |.
We assume that every function in the code is well-formed; the result of the compilation
of functional programs clearly meets these well-formedness conditions. We say that a
configurationM ≡ (f1, i1, `1) · · · (fm, im, `m) is well-formedif for all j ∈ 1..m we
have (1) the program counterij is in 1..|fj |; (2) the expressionarg(M, j) is defined;
and (3) for allj ∈ 1..m− 1 we havefj [ij] = call fj+1 nj+1 — type verification will
ensure, among other properties, thatnj is the arity of the functionfj . Well-formedness
is preserved during execution (and the configurationε is well-formed).

Proposition 1. If M is a well-formed configuration andM → M ′ then the configura-
tion M ′ is also well-formed.

A Functional Scenario for Bytecode Verification of Resource Bounds 271

casef [i] of
load k : i < |T |, T i[k] = t andT i+1 = T i · t
build c n : let c : (t1, . . . , tn) → t0 in ∃T. i < |T |, T i = T · t1 · · · tn andT i+1 = T · t0
call g n : let g : (t1, . . . , tn) → t0 in ∃T. i < |T |, T i = T · t1 · · · tn andT i+1 = T · t0
return n : let f : (t1, . . . , tn) → t0 in ∃T. T i = T · t0
stop : true

branch c j : let c : (t1, . . . , tn) → t0 in
∃T. i < |T |, T i = T · t0, T i+1 = T · t1 · · · tn andT j = T i

Table 2.Well-Typed Instructions:wt i(f, T)

4 Type Verification

In this section, we define a simple type verification to ensure the well-formedness and
well-typedness of the machine configurations during execution. This verification is very
similar to the so calledbytecode verificationin the JAVA platform, seee.g. [1], and
can be directly used as the basis of an algorithm for validating the bytecode before its
execution by the interpreter. (A major difference is that we do not have to consider
subroutines, access modifiers or object initialisation in our language.)

Type verification associates with every instruction (every step in the evaluation of a
function code) an abstraction of the stack. In our case, an abstract stack is a sequence
of types, ortype stack, T = t1 · · · tn, that should exactly match the types of the values
present in the stack at the time of the execution. Accordingly, anabstract executionfor
a functionf is a sequenceT of type stacks such that|T | = |f |.

To express that an abstract executionT is coherent with the instructions inf , we
define the notion ofwell-typed instructionbased on the auxiliary relationwt i(f,T),
given below. Informally, we show that ifwt i(f,T) andT i = t1 · · · tk then for every
valid evaluation off , the stack of values at the time of the execution off [i] is ` =
v1 · · · vk wherevj is a value of typetj for everyj ∈ 1..k. The definition of the relation
wt i(f,T), where|f | = |T |, is by case analysis on the instructionf [i].

We define a well-typed function as a sequence of well-typed instructions. To verify
a whole program, we simply need to verify every function separately.

Definition 1 (Well-Typed Function). A sequenceT is a valid abstract executionfor
the functionf with signature(t1, . . . , tn) → t0, denotedwt(f,T), if and only ifT 1 =
t1 · · · tn andwt i(f,T) for everyi ∈ 1..|f |.

We define theflow graphof function f as the directed graph({1, . . . , |f |}, Ef)
such that for alli ∈ 1..|f | − 1, the edge(i, i + 1) is in Ef if f [i] is aload, build, or
call instruction and the edges(i, i + 1) and(i, j) are inEf if f [i] is the instruction
branch c j. If every node in the flow graph({1, . . . , |f |}, Ef) is reachable from the
node1 then there is at most one abstract execution,T , such thatwt(f,T). Moreover,T
can be effectively computed as the fixpoint of a function iterating the conditions given
in Table 2, for example using Kildall’s algorithm [10].

Example 3.We continue with our running example and display the type of each in-
struction in the (compiled) code ofadd . We also show the flow graph associated with
the function that exhibits the two possible “execution paths” in the code ofadd .

272 R. M. Amadio, S. Dal Zilio et al.

1 : nat nat : load 1 1•
2 : nat nat nat : branch s 7 2•
3 : nat nat nat : load 2 3•
4 : nat nat nat nat : build s 1 4•
5 : nat nat nat nat : call add 2 5•
6 : nat nat nat : return 2 6•
7 : nat nat nat : load 2 7•
8 : nat nat nat nat : return 2 8•

In the following, we assume that every node in the flow graph is accessible. IfT
is “the” abstract execution off , we say thatf is a function (code) of typeT . Next,
we prove that the execution of verified programs never fails. As expected, we start by
proving that type information is preserved during evaluation. This relies on the notions
of well-typed frames and configurations. For instance, we say that a stack has typeT ,
denoted̀ : T , if T = t1 · · · tn and` = v1 · · · vn, wherevi is of typeti for all i ∈ 1..n.

c : (t1, . . . , tn) → t vi : ti i ∈ 1..n

c(v1, . . . , vn) : t

vi : ti i ∈ 1..n

v1 · · · vn : t1 · · · tn

wt(f,T) ` : T i

wt(f, i, `)

M ≡ (f1, i1, `1) . . . (fm, im, `m) well-formed
wt(fj , ij , `j) j ∈ 1..m

wt(M)

Proposition 2 (Type Invariant). Let M be a configuration. Ifwt(M) andM → M ′

thenwt(M ′).

We note that as a side result of the type verification, we obtain, for every instruction,
the size of the stack at the time of its execution. The soundness of the type verification
follows from a progress property.

Proposition 3 (Progress).AssumeM is a well-typed configuration. Then eitherM ≡
ε, or M is a result,M ↓ v0, or M reduces,∃M ′ (M → M ′).

5 Shape Analysis

We define a shape analysis on the bytecode which appears to be original. Instead of
computing the type of the values in the stack, we prove that we can also obtain partial
information on their shape such as the identity of their top-most constructor. This ver-
ification is used in the following size and termination verifications (Sections 6 and 7).
We suppose that the code of every functionf in the program passes the type verifica-
tion of Section 4 and thatwt(f,T) holds. We denote withh a vector of numbers such
thathi is the height of the stack for instructioni, that ishi = |T i| for all i ∈ 1..|f |.
Furthermore, for every instruction indexi and positionk ∈ 1..hi in the corresponding
stack we assume a fresh variablexi,k ranging over expressions, that is terms built from
variables, constructors and function symbols.

A Functional Scenario for Bytecode Verification of Resource Bounds 273

casef [i] of
load k : σi+1 = σi andEi+1 = Ei ·Ei[k]

build c n : σi+1 = σi, Ei = E · e1 · · · en andEi+1 = E · c(e1, . . . , en)

call g n : σi+1 = σi, Ei = E · e1 · · · en andEi+1 = E · g(e1, . . . , en)

branch c j : let Ei = E · p in
if p is a variablex then

let σ′ = [c(xi+1,hi , . . . , xi+1,hi+1)/x] in
σj = σi, Ej = Ei, σi+1 = σ′ ◦ σi andEi+1 = σ′(E) · xi+1,hi · · ·xi+1,hi+1

else ifp = c(e1, . . . , en) thenσi+1 = σi andEi+1 = E · e1 · · · en

else ifp = d(. . .) with d 6= c thenσj = σi andEj = Ei

(wherehi+1 = hi + ar(c)− 1 andhj = hi)

Table 3.Shape Constraints at Instructioni: wshi(f, σ, E)

We show that under some restrictions on the form of the code, we can solve certain
shape constraints and associate with every reachable instruction a substitution,σi, and
to every position of the related stack an expression,ei,j (if f is well-typed and every
node in its flow graph is reachable then the solution is unique). We can compare the
shape analysis with the type verification of Section 4: we compute for each instruction
a sequence of expressions,E = e1 · · · en, instead of a sequence of typesT = t1 · · · tn.
The restrictions on the code are the following:

(1) the flow graph of the function is a tree rooted at instruction1 whose leaves corre-
spond to the instructionsreturn or stop;

(2) everybranch instruction is preceded only byload or branch instructions.

These conditions are satisfied by the bytecode obtained from the compilation of func-
tional programs and entail that in every path from the root we cross a sequence of
branch andload instructions, then a sequence ofload, build, andcall instructions,
and finally either astop or return instruction.

The shape constraints are displayed below. We note that applying abranch c j
instruction to a stack whose head value is of the shaped(. . .) with d 6= c produces no
effect which is fine since then the following instruction is not reachable (since the flow
graph is a tree, we havej 6= i+1). Hence the shape analysis may also be used to locate
dead code. The definition of the relationwshi(f,σ,E), where|f | = |σ| = |E|, is by
case analysis on the instructionf [i]. There are no constraints onσ andE if f [i] is a
return or stop instruction.

The soundness of shape verification is obtained through the definition of a new pred-
icate on configurations,wsh, which improves on the “well-typed” predicate introduced
in the previous section.

Definition 2 (Well-Shaped Function).A pair (σ,E) is a valid shape for the function
f of type(t1, . . . , tn) → t0, denotedwsh(f,σ,E), if σ1 is the identity substitution,id ,
E1 = x1,1 · · ·x1,ar(f), andwshi(f,σ,E) for all i ∈ 1..|f |.

Assume we have a well-formed configurationM containing the frame(f, i, `) in
jth position and thatarg(M, j) = (u1, . . . , uk) are the parameters used to initialise this

274 R. M. Amadio, S. Dal Zilio et al.

frame. The substitutionσi relates the valuesu1, . . . , uk to the values occurring iǹ.
More precisely,σi(x1,l) is a pattern with variables in(xi,j)j∈1..hi and there is at most
one matching substitutionρ such thatρ ◦ σi(x1,l) = ul for all l ∈ 1..k. On the other
hand, the expressionsei,j describe the values occurring in`. If ei,j is a pattern, that is,
if it does not contain a function symbol (which is always the case if the instructionf [i]
occurs before the first function call in the execution path), then`[j] = ρ(ei,j).

For example, if we consider the shape constraints computed for the functionadd
below, we have that for every frame(add , i, `) originating from the parameters(u1 u2),
if i = 5 (at the point of the recursive call) thenu1 is of the forms(u3) and` is the stack
(s(u3) u2 u3 s(u2)).

E1 = x1,1 x1,2 : load 1 : σ1 = id
E2 = x1,1 x1,2 x1,1 : branch s 7 : σ2 = id
E3 = s(x3,3) x1,2 x3,3 : load 2 : σ3 = [s(x3.3)/x1,1]
E4 = s(x3,3) x1,2 x3,3 x1,2 : build s 1 : σ4 = [s(x3.3)/x1,1]
E5 = s(x3,3) x1,2 x3,3 s(x1,2) : call add 2 : σ5 = [s(x3.3)/x1,1]
E6 = s(x3,3) x1,2 add(x3,3, s(x1,2)) : return 2 : σ6 = [s(x3.3)/x1,1]
E7 = x1,1 x1,2 x1,1 : load 2 : σ7 = id
E8 = x1,1 x1,2 x1,1 x1,2 : return 2 : σ8 = id

A configurationM is well-shaped if all the frames(f, i, `) in M are well-shaped.
This condition relies on the parameters used to initialise the frame.

wsh(f,σ,E) match
(
(σi(x1,1), . . . ,σi(x1,ar(f))),u

)
= ρ

if Ei[j] is a pattern theǹ[j] = ρ(Ei[j])

wsh(f,u, i, `)

M ≡ (f1, i1, `1) · · · (fm, im, `m) wt(M)
uj = arg(M, j) wsh(fj ,uj , ij , `j) j ∈ 1..m

wsh(M)

Assume the bytecode of the functionf has passed the type and shape verifications.
As for type verification, we prove that the shape predicate is invariant under reduction.

Proposition 4. If wsh(M) andM → M ′ thenwsh(M ′).

The shape verification is particularly well-suited to the analysis of code obtained
from the compilation of functional programs, but it may not scale well to optimised
code, like the one obtained by the elimination of tail recursive calls. Nonetheless, we can
easily define the size verification (see Section 6) without relying on the shape analysis
and perform this verification on programs that do not meet the conditions given previ-
ously. Hence, we should not see the shape analysis as a required step of our method but
rather as an elegant way to define simultaneously the core of our size and termination
analyses.

6 Value Size Verification

We assume that we have synthesized suitable quasi-interpretations at the language level
(before compilation) and that these informations are added to the bytecode. Hence, for

A Functional Scenario for Bytecode Verification of Resource Bounds 275

every constructorc and function symbolf , the functionsqc : (R+)ar(c) → R+ and
qf : (R+)ar(f) → R+ are given.

We prove that we can check the validity of the quasi-interpretations at the bytecode
level (and then prevent malicious code containing deceitful size annotations) and that
we may infer a bound on the size of the frames on the stack.

We assume the bytecode passes the shape verification. Thus for every instruction
index i in the segment of the functionf , the sequence of expressionsEi and the sub-
stitutionσi are determined. We also knowhi, the height of the stack at instructioni, as
computed during the type verification.

Definition 3. We say that the size annotations for the functionf are correct if the fol-
lowing condition holds for alli ∈ 1..|f |. AssumeEi = e1 · · · ehi

, then:

∀j ∈ 1..hi qf (qσi(x1,1), . . . , qσi(x1,ar(f))) > qej
overR+ (1)

In the case of the (compiled) functionadd , for example, the correctness of the
size annotations results from the validity of the inequality:qadd(1 + x3,3, x1,2) >
qadd(x3,3, 1 + x1,2) (from (1) on the expressions obtained for instruction6).

The complexity of verifying condition (1) depends on the choice of the quasi-
interpretations space. This problem has the same complexity as verifying the correc-
tion of the quasi-interpretation at the level of the functional language, see Section 2.
We also notice that the condition is quite redundant and can be optimised. Next, we
show (Corollary 1) that the size of all the values occurring in a configuration during
the evaluation of an expressionf(v1, . . . , vn) are bounded by the quasi-interpretation
of f(v1, . . . , vn). This follows from the definition of a new predicatewsz (M) and a
related invariant.

wsh(f, σ, E) match
(
(σi(x1,1), . . . , σi(x1,ar(f))), u) = ρ

Ei = e1 · · · ehi ` = v1 · · · vhi qρ(ej) > qvj j ∈ 1..hi

wsz (f, u, i, `)

M ≡ (f1, i1, `1) . . . (fm, im, `m) wsh(M) uj = arg(M, j)

wsz (fj , uj , ij , `j) qfk(uk) > qfk+1(uk+1) j ∈ 1..m k ∈ 1..m− 1

wsz (M)

Assume the bytecode of the functionf has passed the type and shape verifications.
As for the type and shape verifications, we prove that the size predicate is invariant
under reduction.

Proposition 5. If wsz (M) andM → M ′ thenwsz (M ′).

Corollary 1. Assume that all the functions in the program are well-sized. If the ex-
pressionf(v1, . . . , vn) is well-typed and(f, 1, v1 · · · vn) ∗→ M · (g, i, `) then |v| 6
qf(v1,...,vn) for all the valuesv occurring in`.

Proof. By definition, wsz (f, 1, v1 · · · vn). By proposition 5, it follows thatwsz (M ·
(g, i, `)). Let u = (u1, . . . , uk) be the parameters used in the initialization of the top
frame:u = arg(M · (g, i, `), |M | + 1). Since the configuration is well-sized, we have
wsz (g,u, i, `) and there is a substitutionρ such that: (c1)qf(v1,...,vn) > qg(u1,...,uk) ,

276 R. M. Amadio, S. Dal Zilio et al.

(c2)ρ ◦ σi(x1,j) = uj for all j ∈ 1..k , and (c3)wsh(g,σ,E) andEi = e1 · · · en and
qρ(ej) > q`[j] for j ∈ 1..n.

By definition, the size annotations in the bytecode are correct, which means that by
the verification condition (1) we have:qg(σi(x1,1),...,σi(x1,k)) > qej

for all j ∈ 1..n. We
conclude: qf(v1,...,vn) > qg(u1,...,uk) by (c1)

= qg(ρ◦σi(x1,1),...,ρ◦σi(x1,k)) by (c2)
> qρ(ej) by (1) and monotonicity
> qv by (c3)
> |v| qv is a quasi-interpretation ut

We can use corollary 1 to give a rough estimate of the size of the frames occurring
in a configuration. Assume that all the functions in the program are well-sized and
consider a frame(g, i, `) occurring in a configuration reached from the evaluation of
the expressionf(v1, . . . , vn).

From the type verification, we obtain a boundhg on the length of the stack̀(for
the functionadd in our examples we havehadd = 4). We may define the size of a
frame as the sum of the size of the values in` added tohg — the quantityhg makes
allowance for the presence of constants stored in the stack and we neglect the space
needed for storing the function identifier and the program counter. Hence the size of the
frame(g, i, `) is less thanhg · (qf(v1,...,vn) + 1). Likewise, if we define the size of a
configurationM as the sum of the frames occurring inM , then we can bound the size
of M by the expressionhm · (qf(v1,...,vn) +1) · l, wherel is the number of frames inM
andhm is the maximum of thehg for all the functionsg in the program.

In the next section, we use information obtained from a termination analysis to
bound the number of frames that may appear in a reachable configuration. As a re-
sult, we obtain a bound on the maximal space needed for the evaluation of the ex-
pressionf(v1, . . . , vn) (see Corollary 3). Moreover, if we can prove termination by
lexicographic order, then this bound can be expressed as a polynomial expression on
the values|v1|, . . . , |vn|.

7 Termination Verification

In this section, we adapt recursive path orderings, a popular technique for checking
termination (see,e.g., [6]), to prove termination of the evaluation of the virtual machine.
We suppose that the shape verification of the code succeeds. We assume given a pre-
order>Σ on the function symbols so thatf =Σ g impliesar(f) = ar(g). Recursive
path ordering conditions forcef >Σ g wheneverf may callg, andf =Σ g wheneverf
andg are mutually recursive. The pre-order>Σ is extended to the constructor symbols
by assuming that a constructor is always smaller than a function symbol and that two
distinct constructors are incomparable.

We recall that in the recursive path ordering one associates astatuswith each symbol
specifying how its arguments have to be compared. It is required that iff =Σ g thenf
andg have the same status. Here we suppose that the status of every function symbol is
lexicographic and that the status of every constructor symbol is the product. We denote
with >l the induced path order. Note that on valuesv >l v′ if and only if v embeds
homomorphicallyv′. Hence,v >l v′ implies|v| > |v′|.

A Functional Scenario for Bytecode Verification of Resource Bounds 277

The technical development resembles the one for the value size verification. First,
we have to define when the termination annotations given with the bytecode are correct.

Definition 4. We say that the termination annotations for the functionf are correct if
the following condition holds for alli ∈ 1..|f |. AssumeEi = e1 · · · ehi , then:

∀j ∈ 1..hi f
(
σi(x1,1), . . . ,σi(x1,ar(f))

)
>l ej (2)

For the functionadd , the correctness of the termination annotations results primar-
ily from the validity of the relationadd(s(x3,3), x1,2) >l add(x3,3, s(x1,2)) (for the
lexicographic path ordering). Next, we introduce a predicateter (for terminating) on
well-shaped configurationsM . As expected, the termination predicate is an invariant.

wsh(f, σ, E) match
(
(σi(x1,1), . . . , σi(x1,ar(f))), u) = ρ

Ei = e1 · · · ehi ` = v1 · · · vhi ρ(ej) >l vj j ∈ 1..hi

ter(f, u, i, `)

M ≡ (f1, i1, `1) . . . (fm, im, `m) wsh(M) uj = arg(M, j)

ter(fj , uj , ij , `j)fk(uk) >l fk+1(uk+1) j ∈ 1..m k ∈ 1..m− 1

ter(M)

Proposition 6. If ter(M) andM → M ′ thenter(M ′).

Corollary 2. Assume that all the functions in the program have correct termination
information (see Definition 4). Then the execution of a well-typed frame(f, 1, v1 · · · vn)
terminates.

Proof. We define a well-founded order on well-formed configurations that is compati-
ble with the evaluation of the machine. Ifi is the index of an instruction in the code of
f , let acc(i) denotes the number of instructions reachable fromi in the flow graphEf .
Since the flow graph is a tree, whenever we increment the counter or jump to another
instruction this value decreases. LetT = (TΣ , >l) be the collection of values with the
lexicographic path order. It is well known that this is a well-founded order. Then con-
siderT ×N with the lexicographic order from left to right. Again this is a well-founded
order. Finally, considerM(T×N) the finite multisets overT×N with the induced well-
founded order. We associate with a configurationM ≡ (f1, i1, `1) · · · (fm, im, `m) the
measureµ(M) = {|(f1arg(M, 1), acc(i1)−1), . . . , (fm−1arg(M,m−1), acc(im−1)−
1), (fmarg(M,m), acc(im))|}.

Then, by case analysis, we check that all the reduction rules decrease this measure.
This proof is by case analysis on the instructionfm[im]. Assumefm[im] = call g n.
An element(f(v), i) of the multiset is replaced by the two elements(f(v), i− 1) and
(g(u), acc(1)), wheref(v) >l g(u) (by the invariantter) so that, with respect to the
lexicographic order:(f(v), i) > (f(v), i − 1) and(f(v), i) > (g(u), acc(1)). In the
other cases, an element(f(v), i) is either removed or replaced by(f(v), j) with i > j,
as needed. ut

As observed in [5], termination by lexicographic order combined with a polynomial
bound on the size of the values leads to polynomial space. We derive a similar result
with a similar proof at bytecode level.

278 R. M. Amadio, S. Dal Zilio et al.

Corollary 3. Suppose that the quasi-interpretations are bound by polynomials and that
the value size and termination verifications of the bytecode succeeds. Then there exists
a polynomialq such that every execution starting from a frame(f, 1, v1 · · · vn) (termi-
nates and) runs in space bound byq(|v1|, . . . , |vn|).

Proof. Note that iff(v) >l g(u) then eitherf >Σ g or f =Σ g andv >l u. In
a sequencef1(v1) >l · · · >l fm(vm), the first case can occur a constant number of
times (the number of equivalence classes of function symbols with respect to>Σ) thus
it is enough to analyse the length of strictly decreasing sequences of tuples of values
(v1, . . . , vk) lexicographically ordered wherek is the largest arity of a function symbol.
If b is a bound on the size of the values then since on valuesv >l v′ implies |v| > |v′|
we derive that the sequence has length at mostbk. Sinceb is polynomial in the size of
the arguments and the number of values on a frame is bound by a constant (via the stack
height verification), a polynomial bound is easily derived. ut

From the type verification we obtain a boundhm on the length of the stacks (for the
functionadd in our examples we havehm = 4). From the size verification we obtain a
boundqm = qf(v1,...,vn) on the size of every value occurring in a stack (in our example
qm = |v1| + |v2|). Finally, the termination analysis provides a bound on the maximal
number of frames. A crude analysis gives at mostqk

m frames, wherek is the greatest
arity among the functions occurring during the execution. Hence, the size needed for the
execution of a correct program on the initial configuration(f, 1, v1 · · · vn) is bounded
by the producthm·(qm+1)·qk

m. We may improve this bound using a finer analysis of the
(proof of correctness of the) termination annotations. In the case ofadd , for example,
we remark that the size of the first parameter decreases at every call — there could be
at most|v1| frames in a reachable configuration — and therefore we may derive the
stricter bound4 · (|v1|+ |v2|+ 1) · |v1| instead of4 · (|v1|+ |v2|+ 1) · (|v1|+ |v2|)2.

8 Conclusion and Related work

The problem of bounding the size of the memory needed for executing a program has
already attracted considerable attention but few works have addressed this problem at
the level of the bytecode.

Most work in the literature on bytecode verification tends to guarantee the integrity
of the execution environment. Work on resource bounds is carried on in the MRG
project [17]. The main technical differences appear to be as follows: (i) they rely on a
general proof carrying code approach while we are closer to a typed assembly language
approach and (ii) their analyses focus on the size of the heap while we also consider
the size of the stack and the termination of the execution. Another related work is due
to Marion and Moyen [14] who perform a resource analysis of counter machines by
reduction to a certain type of termination in Petri Nets. Their virtual machine is much
more restricted than the one we study here as natural numbers is the only data type and
the stack can only contain return addresses.

We have shown how to perform type, size, and termination verifications at the level
of the bytecode running on a simple stack machine. We believe that the choice of a
simple set of bytecode instructions has a pedagogical value: we can present a minimal

A Functional Scenario for Bytecode Verification of Resource Bounds 279

but still relevant scenario in which problems connected to bytecode verification can
be effectively discussed. We are in the process of formalising our virtual machine and
the related invariants in the COQ proof assistant. We are also experimenting with the
automatic synthesis of annotations at the source code level and with their verification
at byte code level. Moreover, we plan to refine the predictions on the space needed for
the execution of a program by referring to an optimised implementation of the virtual
machine.

References

1. M. Abadi and R. Stata. A type system for Java bytecode subroutines. InProc. POPL, 1998.
2. R. Amadio. Max-plus quasi-interpretations. InProc. TLCA, Springer LNCS 2701, 2003.
3. R. Amadio, S. Coupet-Grimal, S. Dal Zilio and L. Jakubiec. A functional scenario for byte-

code verification of resource bounds. Research Report LIF 17-2004.
4. S. Bellantoni and S. Cook. A new recursion-theoretic characterization of the poly-time func-

tions. Computational Complexity, 2:97–110, 1992.
5. G. Bonfante, J.-Y. Marion and J.-Y. Moyen. On termination methods with space bound

certifications. InProc. Perspectives of System Informatics, Springer LNCS 2244, 2001.
6. F. Baader and T. Nipkow.Term rewriting and all that. Cambridge University Press, 1998.
7. A. Cobham. The intrinsic computational difficulty of functions. InProc. Logic, Methodology,

and Philosophy of Science II, North Holland, 1965.
8. M. Hofmann. The strength of non size-increasing computation. InProc. POPL, 2002.
9. N. Jones.Computability and complexity, from a programming perspective. MIT-Press, 1997.

10. G. Kildall, A unified approach to global program optimization. InProc. POPL, 1973.
11. D. Leivant. Predicative recurrence and computational complexity i: word recurrence and

poly-time. Feasible mathematics II, Clote and Remmel (eds.), Birkhäuser, 1994.
12. T. Lindholm and F. Yellin.The Java virtual machine specification. Addison-Wesley, 1999.
13. J.-Y. Marion. Complexité implicite des calculs, de la théorie à la pratique. Habilitation à

diriger des recherches, Université de Nancy, 2000.
14. J.-Y. Marion, J.-Y. Moyen.Termination and resource analysis of assembly programs by Petri

Nets. Technical Report, Université de Nancy, 2003.
15. G. Morriset, D. Walker, K. Crary and N. Glew. From system F to typed assembly language.

In ACM Transactions on Programming Languages and Systems, 21(3):528-569, 1999.
16. G. Necula. Proof carrying code. InProc. POPL, 1997.
17. D. Sannella. Mobile resource guarantee. IST-Global Computing research proposal, U. Ed-

inburgh, 2001.http://www.dcs.ed.ac.uk/home/mrg/ .

