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Abstract. The design of complex safety critical systems raises new tech-
nical challenges for the industry. As systems become more complex—and
include more and more interacting functions—it becomes harder to evalu-
ate the safety implications of local failures and their possible propagation
through a whole system. That is all the more true when we add time to
the problem, that is when we consider the impact of computation times
and delays on the propagation of failures.

We describe an approach that extends models developed for Safety Anal-
ysis with timing information and provide tools to reason on the correct-
ness of temporal safety conditions. Our approach is based on an extension
of the AltaRica language where we can associate timing constraints with
events and relies on a translation into a realtime model-checking toolset.
We illustrate our method with an example that is representative of safety
architectures found in critical systems.

1 Introduction

The increasing complexity of interactions between functions in modern indus-
trial systems poses new technical challenges. In fact, developing complex systems
often raise integration problems during the product final testing and verification
phase. Besides, correcting these issues often generates a heavy rework and is a
well-known cause for cost overruns and project delays. Therefore, finding solu-
tions that contribute to anticipate and resolve integration problems as early as
possible in the design process has become a prior concern for the industry.

New modelling techniques, such as MBSE or MBSA, propose to master the
combinatorial complexity at early concept phases by using abstract high level
representations of a system. These views constitute a promising ground to im-
plement early validation techniques of the architectures. But, in order to be
profitable and implemented by the industry, those validation techniques must
remain lightweight and well integrated in the system design process. That is
to say, the modelling workload must be limited, and the analysis results (even
preliminary) must be available at the same time than designers evaluate the
possible architecture choices.



In this paper, we describe an approach that allows us to extend models de-
veloped for safety analysis in order to reason about the correctness of temporal
conditions. We intend to offer the capability to study a new range of system
requirements that can be of main interest for functions such as failure detec-
tion, isolation and recovery. We advocate that timing properties are critical
when assessing the safety of embedded and real-time systems. Indeed, temporal
aspects—like network delays or computation times—can be the cause of missed
failure detections or undesired reactions to (delayed) failure propagation. It is
therefore necessary to be able to analyse the temporal properties of a model in
order to build systems that will operate as intended in a real-world environment.

We define a model-based process to check simultaneously safety and temporal
conditions on systems. Our approach is based on an extension of the AltaRica
language [1] where timing constraints can be associated with events. This exten-
sion can then be translated into the intermediate language Fiacre [7], a formal
specification language that can be used to represent both the behavioural and
timing aspects of systems. This Fiacre model can be analysed with the realtime
model-checker Tina [6]. The results of model-checking shed light on the dysfunc-
tional behaviour of the original model, including how the cascading effects due
to failure propagation delay reveal transitory failure modes.

Our contribution is as follows. We define a lightweight extension of AltaRica,
meaning that timing constraints are declared separately from the behaviour of a
system. Therefore it is easy to reuse a prior safety model and to define its tem-
poral behaviour afterwards. We illustrate our method with an example inspired
by safety architectures found in avionic systems. This example illustrate the
impact of time when reasoning about failure propagation. We use this example
to show that taking into accounts timing constraints—in particular propagation
delays—can help finding new failure modes that cannot be detected in the un-
timed model currently in use. In the process, we define two safety properties: loss
detection; and its temporal version, loss detection convergence, meaning that a
system applies an appropriate and timely response to the occurrence of a fault
before the failure is propagated and produces unwanted system behaviours. We
show that these two properties, which are of interest in a much broader context,
can be reduced to effective model-checking problems.

The paper is organised as follows. We start by defining the AltaRica language
and the time model in Sect. 2. In Sect. 3, we introduce the Fiacre language by
taking as example the encoding of an AltaRica node. This example gives an
overview of how to encode AltaRica in Fiacre. We discuss the problem associ-
ated with time failure propagation in Sect. 4. Finally, before concluding with a
discussion on related works, we give some experimental results in Sect. 5.

2 Model-Based Safety Analysis with AltaRica

Failure propagation models are defined by safety engineers and are usually ob-
tained through manual assessment of the safety of the system. This is a compli-
cated task since failures can depend on more than one element of the system;



be the result of the interaction between many faults; be the consequence of the
missed detection of another fault (e.g. a fault inside an element tasked with de-
tecting faults); etc. To cope with the complexity of the systems and the scenarios
that need to be analysed, several model-based approaches have been proposed
such as AltaRica, Figaro, etc. each with their associated tooling.

AltaRica is a high level modelling language dedicated to Safety Analysis. It
has been defined to ease the modelling and analysis of failure propagation in
systems. The goal is to identify the possible failure modes of the system and, for
each mode, the chain of events that lead to an unwanted situation.

In AltaRica, a system is expressed in terms of variables constrained by for-
mulas and transitions. Several versions of the language have been defined (see for
instance [1,15]). In this work, we use the AltaRica 2.0 Dataflow language which
is a fragment of other versions and which is sufficient to analyse the behaviour
of computer based systems. (The approach discussed here could be applied on
other AltaRica dialects.) The models used in this work have been edited and
analysed using Cecilia OCAS, a graphical interactive simulator developed by
Dassault Aviation [8].

An AltaRica model is made of interconnected nodes. A node can be essentially
viewed as a mode automaton [2] extended with guards and actions on data
variables. A node comprises three parts: a declaration of variables and events,
the definition of transitions, and the definition of assertions. We illustrate these
concepts with the example of a simple node called Function. We give the code
(textual definition) of Function in Listing 1.1 and a schematic representation in
Fig. 1. The node Function has one input, I, and one output, O.

domain FState = {NOMINAL, LOST, ERROR} ;
domain FailureType = {Err, Loss, Ok} ;

node Function
flow I : FailureType : in ; O : FailureType : out ;
state S : FState ;
event fail loss, fail err ;
init S := NOMINAL ;
trans S != LOST ` fail loss→ S := LOST ;

S = NOMINAL ` fail err → S := ERROR ;
assert O = case { S = NOMINAL : I, S = LOST : Loss, else Err } ;

edon

Listing 1.1. Example of AltaRica code for the node Function.

Nodes can have an internal state stored in a set of state variables, declared in
a heading called state. In its nominal state (when S = NOMINAL), the Function
node acts as a perfect relay: it copies on its output the value provided by its
input (we have O = I); this is expressed in the assert block. On the opposite, its
output is set to Loss or Err when S equals LOST or ERROR, respectively. The assert
directive is used to express constraints on the values of the input and output
variables of a node, also called flow variables, establishing a link between the
node and its environment, i.e. the other interconnected nodes. It distinguishes
between input (in) and output (out) variables. An assertion defines a rule to
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Fig. 1. Graphical representation of node Function (left) and its associated failure mode
automaton (right).

update the value of output flows according to the state of the component and
the value of input flows.

The state variables of a node can only change when an event is triggered.
The code of Function declares two events: fail err, that changes the state
from NOMINAL to ERROR, and fail loss, that can transition from any state to
LOST. This behaviour is the one displayed on the mode automaton of Fig. 1.
Transitions are listed in the trans block of the node. Each transition has an
(event) name and a definition of the form g `evt→ e, where the guard g is a
Boolean condition that can refer to state and flow variables. The event evt can
be triggered when the guard is satisfied. In this case we apply the effect, e, that
is an expression that modifies the values of state variables.

Events are useful to model the occurrence of failures or the reaction to con-
ditions on the flow variables. We can assign a law of probability on the oc-
currence of the failure using the heading extern. For instance we could assert
that event fail loss follows an exponential distribution with the declaration:
extern law (<event fail loss>)="exp 1e−4"; In the next section, we propose
a way to enrich this syntax to express timing constraints on events instead of
probability distributions. At the moment, it is not possible to use stochastic
events in addition to time events.

In the general case, an AltaRica model is composed of several interconnected
node instances, following a component-based approach. Global assertions relate
the input flows of a component to the output flows of other components. For the
sake of brevity, we do not describe component synchronisation here and we refer
the reader to [16] for further details. More importantly, a hierarchical AltaRica
model can always be “flattened”, i.e. represented by a single node containing all
the variables, events, assertions, and transitions from the composite system. We
use this property in our interpretation of AltaRica in Fiacre.

Adding Timing Constraints to Events. There already is a limited mecha-
nism for declaring timing constraints in AltaRica. It relies on the use of external
law associated with a Dirac distribution. An event with Dirac(0) law denotes
an instantaneous transition, that should be triggered with the highest priority.
Likewise, an event with Dirac(d) (where d is a positive constant) models a tran-
sition that should be triggered with a delay of d units of time. In practice, Dirac
laws are rather a way to encode priorities between events than an actual mean



node Pre
flow I : FailureType : in; O: FailureType : out;
state Stored, Delayed : FailureType, S : BType;
event pre read, pre wait;
init Stored := Ok, Delayed := Ok, S := Empty;
trans

(Stored != I) & (S = Empty) ` pre read→ Stored := I, S = Full;
(S = Full) ` pre wait→ Delayed := Stored, S = Empty;

assert O = Delayed;
extern law (pre read) = "[0,0]"; law (pre wait) = "[a,b]";

edon

Listing 1.2. Example of Time AltaRica code: the basic delay.

to express duration. Moreover, while Dirac laws are used during simulation, they
are not taken into account by the other analysis tools. Finally, the use of Dirac
laws is not expressive enough to capture non-deterministic transitions that can
occur within time intervals of the form [a, b], where a 6= b. These constraints are
useful to reason about failure propagation delays with different best and worst
case traversal time. For this reason, we propose to extend event properties with
temporal laws of the form: extern law (evt) = "[a,b]"; It is also possible to use
open and/or unbounded time intervals, such as ]a,∞[.

With such a declaration, the transition g `evt→ e can be triggered only if
the guard g is satisfied for a duration (or waiting time) δ, with δ ∈ [a, b]. A main
difference with the original semantics of AltaRica is that the timing constraint
of an event is not reinitialised unless its guard is set to false. Moreover, our
semantics naturally entails a notion of urgency, meaning that it is not possible
to miss a deadline: when δ equals b, then either evt is triggered or another
transition should (instantaneously) change the value of the guard g to false.

We can illustrate the use of temporal laws with the following example of
a new node, Pre; see Listing. 1.2. This node encodes a buffer that delays the
propagation of its input. When the input changes, event pre read has to be
triggered instantaneously. Then, only after a duration δ ∈ [a, b], the value stored
by Pre (in the state variable Stored) is propagated to its output.

3 A Definition of Fiacre Using Examples

Fiacre [7] is a high-level, formal specification language designed to represent
both the behavioural and timing aspects of reactive systems. Fiacre programs
are stratified in two main notions: processes, which are well-suited for modelling
structured activities (like for example simple state machines), and components,
which describes a system as a composition of processes. In the following, we base
our presentation of Fiacre on code examples used in our interpretation of Time
AltaRica. We give a simple example of Fiacre specification in Listing 1.3. This
code defines a process, Function, that simulates the behaviour of the AltaRica
node given in Listing 1.1.

Fiacre is a strongly typed language, meaning that type annotations are ex-
ploited in order to avoid unchecked run-time errors. Our example defines two



type FState is union NOMINAL | LOST | ERROR end
type FailureType is union Err | Loss | Ok end
type Flows is record I:FailureType, O:FailureType end

function update(S : FState, env : Flows) : Flows is
var f : Flows := {I=env.I, O=env.O}
begin

f.O := (S = NOMINAL ? f.I : (S = LOST ? Loss : Err));
return f

end

process Function(&S : FState, &env : Flows) is
states s0
from s0 select

on (S != LOST); S := LOST; env := update(S, env); loop
[] on (S = WORKING); S := ERROR; env := update(S, env); loop
end

Listing 1.3. Example of Fiacre code: type, functions and processes

enumeration types, FState and FailureType, that are the equivalent of the
namesake AltaRica domains. We also define a record type, Flows, that models
the environment of the node Function, that is an association from flow variables
to values. Fiacre provides more complex data types, such as arrays, tagged union
or FIFO queues. Fiacre also supports native functions that provide a simple way
to compute on values. In our example, function update is used to compute the
state of the environment after an event is triggered; that is to model the effect
of assertions in AltaRica. It uses two ternary (conditional) operators to mimic
the case-expression found in the assert heading of Listing 1.1.

A Fiacre process is defined by a set of parameters and control states, each
associated with a set of complex transitions (introduced by the keyword from).
Our example defines a process with two shared variables—symbol & denotes vari-
ables passed by reference—that can be updated concurrently by other processes.
In our case, variable S models the (unique) state variable of node Function.

Complex transitions are expressions that declares how variables are updated
and which transitions may fire. They are built from constructs available in im-
perative programming languages (assignments, conditionals, sequential composi-
tion, . . . ), non-deterministic constructs (such as external choice, with the select
operator), communication on ports, and jump to a state (with the to or loop
operators). In Listing 1.3, the select statement defines two possible transitions,
separated by the symbol [], that loop back to s0. Each transition maps exactly
to one of the AltaRica events, fail loss and fail err, that we want to trans-
late. Transitions are triggered non-deterministically and their effects are atomic
(they have an “all or nothing” semantics). A transition can also be guarded by
a Boolean condition, using the operator on or another conditional construct.

It is possible to associate a time constraint to a transition using the operator
wait. Actually, the ability to express directly timing constraints in programs is a
distinguishing feature of Fiacre. We illustrate this mechanism in the code below,
that corresponds to the interpretation of the node Pre of Listing 1.2. Basically,



a transition constrained by a (time) interval I can be triggered after a time δ,
with δ ∈ I, only if its guard stayed continuously valid during this time. It is this
behaviour that inspired our choice of semantics for the temporal law.

A Fiacre component defines a parallel composition of components and/or
processes using statements of the form par P0 ‖ · · · ‖ Pn end. It can also be used
to restrict the visibility of variables and ports and to define priorities between
communication events. We give an example of Fiacre component in Listing 1.4.

A possible issue with the implementation of Pre is that at most one failure
mode can be delayed at a time. Indeed, if the input I of Pre changes while the
state is Full, then the updated value is not taken into account until after event
pre wait triggers. It is not possible to implement a version that can delay an un-
bounded number of events in a bounded time as it would require an unbounded
amount of memory to store the intermediate values. More fundamentally, this
would give rise to undecidable verification problems (see e.g. [11]). To fix this
issue, we can define a family of operators, Pre k, that can delay up-to k simul-
taneous different inputs. Our implementation relies on a component that uses
three process instances: one instance of front, that reads messages from the
input (variable I), and two instances of delay, that act as buffers for the values
that need to be delayed. Process front uses the local ports go1 and go2 to dis-
patch values to the buffers. Component Pre 2 is enough to model the use case
defined in Sect. 4. Indeed, any element in the system may propagate at most
two different status, one from Ok to Err and then from Err to Loss.

process Pre(&Stored, &Delayed : FailureType, S : BType, &env : Flows) is
states s0
from s0 select

on (Stored != env.I and S = Empty); wait [0,0]; Stored := env.I; . . .
[] on (S = Full); wait [1,2]; Delayed := Stored; S := Empty; . . .
end

process delay[go : in FailureType](&O : FailureType) is
states sEmpty, sFull
var delayed : FailureType := Ok
from sEmpty go?delayed; to sFull
from sFull wait [1,2]; O := delayed; to sEmpty

process front[p,q : out FailureType](&I : FailureType) is
states s
var stored : FailureType := Ok
from s on (I != stored); stored := I; select p!I [] q!I end; loop

component Pre 2(&I, &O: FailureType) is
port go1, go2 : FailureType in [0,0]
priority go1 > go2
par ∗ in front[go1,go2](&I) ‖ delay[go1](&O) ‖ delay[go2](&O) end

Listing 1.4. An upgraded version of the delay operator Pre, with wait statement,
components and synchronisation on ports.



4 Example of a Failure Detection and Isolation System

We study the example of a safety critical function that illustrates standard fail-
ure propagation problems. We use this example to show the adverse effects of
temporal failure propagation even in the presence of Failure Detection and Iso-
lation (FDI) capabilities. This example is inspired by the avionic functions that
provide parameters for Primary Flight Display (PFD), which is located in the
aircraft cockpit. The system of interest is the computer that acquires sensors
measurements and computes the aircraft calibrated airspeed (CAS) parameter.
Airspeed is crucial for pilots: it is taken into account to adjust aircraft engines
thrust and it plays a main role in the prevention of over speed and stall.

Fig. 2. Functional and physical views of the airspeed computation function.

CAS is not directly measured by a dedicated sensor, but is computed as a
function of two auxiliary pressure measurements, the static pressure (Ps) and
total pressure (Pt); that is CAS = f(Pt,Ps). These two measurements come
from sensors located on the aircraft nose, a pressure probe and a pitot tube.

Our proposed functional view is given in Fig. 2. It consists in two external
input functions I1 and I2 that measure static and total pressure; and three
inner functions of the system, F1 and F2 for sensor measurements acquisition
by the on-board computer and F3 for airspeed computation. For simplification
purposes, the PFD functions have not been modelled.

Next, we propose a first failure propagation view aiming at identifying the
scenarios leading to an erroneous airspeed computation and display to the pilot
(denoted Err). Such failure can only be detected if a failure detector is im-
plemented, for instance by comparing the outputs of different functions. Unde-
tected, it could mislead the pilot and, consequently, lead to an inappropriate
engine thrust setting. We also want to identify the scenarios leading to the loss
of the measure (denoted Loss). In such a case, the pilot can easily assess that
the measure is missing or false and consequently rely upon another measure to
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Fig. 3. A simple example of failure propagation.

control the aircraft (note that such redundancy is not modelled). For example,
airspeed out of bound—indicating that an airliner has crossed the sonic barrier—
is considered to be of kind Loss. It can be understood that scenarios leading to
the loss of the airspeed are less critical than the ones leading erroneous values.

Safety model of the architecture without FDI. We provide an AltaR-
ica model corresponding to the functional view of the CAS function in Fig. 3.
This model, tailored to study failure propagation, is comprised of: two external
functions, I1 and I2, that have no input (so, in their nominal state, the output
is set to Ok); two inner functions, F1 and F2, which are instances of the node
Function described in Sect. 2; and a function, F3, that is the composition of
two basic elements: a multiplexer, F3Mux, representing the dependence of the
output of F3 from its two inputs, and a computing element F3Processing that
represents the computation of the airspeed. F3Processing is also an instance of
node Function.

In case of single failure scenario, F3Mux propagates the failure coming either
from one input or the other. In case of multiple failures, when different failures
propagate, one being Loss and the other being Err,—and without appropriate
FDI—the system outcome is uncertain. Solving this uncertainty would require
a detailed behavioural model of the on-board computer and a model for all the
possible failure modes, which is rarely feasible with a sufficient level of confidence,
except for time-tested technology. Given this uncertainty, it is usual to retain
the state with the most critical effect, that is to say: the output of F3 is Err.

Our goal is to prevent the computation of an erroneous airspeed while one
of F3 input signals is lost. The rationale is that the system should be able to
passivate automatically the airspeed when it detects that one of its input signals
is not reliable. This behaviour can be expressed with the following property:

Safety Property 1 (Loss Detection and Instantaneous Propagation).
A function is loss detection safe if, when in nominal mode, it propagates a Loss
whenever one of its input nodes propagates a Loss.

We can show that our example of Fig. 3 does not meet this property using the
Sequence Generation tool available in Cecilia OCAS. To this end, we compute the
minimal cuts for the target equation ((F1.O.Loss∨F2.O.Loss)∧¬F3.O.Loss),
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Fig. 4. Model of a FDI function with a switch and an alarm.

meaning the scenario where F3 does not propagates Loss when one of F1 or F2
does. Hence function F3 is loss detection safe if and only if the set is empty.

In our example, once we eliminate the cases where F3 is not nominal (that
is when F3Processing is in an error state), we find eight minimal cuts, all of
order 2. In the following section, we correct the behaviour of F3 by considering
a new architecture based on detectors and a switch to isolate the output of F3
when faulty.

Safety model of the architecture with FDI. The updated implementation
of F3 (see Fig. 4) uses two perfect detectors, F1Loss and F2Loss, that can
detect a loss failure event on the inputs of the function. The (Boolean) outputs
of these detectors are linked to an OR gate (AtLeastOneLoss) which triggers an
Alarm when at least one of the detectors outputs true. The alarm commands a
Switch; the output of Switch is the same as F3Mux, unless Alarm is activated, in
which case it propagates a Loss failure. The alarm can fail in two modes, either
continuously signaling a Loss or never being activated. The schema in Fig. 4
also includes two delays operators, D1 and D2, that model delay propagation at
the input of the detectors; we will not consider them in the following lines, but
come back to these timing constraints at the end of the section.

The FDI function—with a switch and an alarm—is a stable scheme for fail-
ure propagation: when in nominal mode, it detects all the failures of the system
and it is able to disambiguate the case where its inputs contains both Err and
Loss. Once again, this can be confirmed using the Sequence Generation tool.
If we repeat the same analysis than before—and if we abstract away the de-
lay nodes—we find 56 minimal cuts, all involving a failure of either Alarm or
F3Processing, i.e. a non-nominal mode. This means that, in an untimed model,
our new implementation of F3 satisfies the loss detection property, as desired.
Even so, it is easy to find a timed scenario where the safety property is violated.

Assume now that F1 and F2 propagate respectively the status Loss and Err,
at the same date. In such a case and considering possible latencies, while Err
reaches F3Mux instantaneously, the output of F1 might reach F1Loss at successive
date. This leads to a transient state where the alarm is not activated whereas the
output of F3Mux is set to Err. This brings us back to the same dreaded scenario
than in our initial model.



This example suggests that we need a more powerful method to compute
the set of cuts in the presence of temporal constraints. On the other hand, we
may also advocate that our safety property is too limiting in this context, where
perfect synchronicity of events is rare. Actually, it can be proven that the output
of F3 will eventually converge to a loss detection and isolation mode (assuming
that F3 stays nominal and that its inputs stay stable). To reflect this situa-
tion, we propose an improved safety property that takes into account temporal
properties of the system:

Safety Property 2 (Loss Detection Convergent). A function is loss detec-
tion convergent if (when in nominal mode) there exists a duration ∆ such that
it continuously outputs a Loss after the date δ0 +∆ if at least one of its input
nodes continuously propagates a Loss starting from δ0 onward. The smallest
possible value for ∆ is called the convergence latency of the function.

Hence, if the latency needed to detect the loss failure can be bound, and if the
bound is sufficiently small safety-wise, we can still deem our system as safe.
In the example in Fig. 2, this property can indicate for how long an erroneous
airspeed is shown on the PFD to the pilot, before the failure is isolated.

In the next section, we use our approach to generate a list of “timed cuts” (as
model-checking counterexamples) that would have exposed the aforedescribed
problems. We also use model-checking to compute the convergence latency for
the node F3. In this simple example, we can show that the latency is equal to
the maximal propagation delay at the input of the detectors. The value of the
latency could be much harder to compute in a more sophisticated scenario, where
delays can be chained and/or depends on the internal state of a component.

5 Compilation of AltaRica and Experimental evaluation

We have implemented the transformation outlined in Sect. 3; the result is a
compiler that automatically generates Fiacre code from an AltaRica model. The
compilation process relies on the fact that it is possible to “flatten” a composition
of interconnected nodes into an intermediate representation, called a Guarded
Transition System (GTS) [3]. A GTS is very similar to a (single) AltaRica node
and can therefore be encoded in a similar way. Our tool is built using the code-
base of the model-checker EPOCH [17], which provides the functionalities for
the syntactic analysis and the linking of AltaRica code. After compilation, the
Fiacre code can be checked using Tina [6]. The core of the Tina toolset is an
exploration engine that can be exploited by dedicated model-checking and tran-
sition analyser tools. Tina offers several abstract state space constructions that
preserve specific classes of properties like absence of deadlocks, reachability of
markings, or linear and branching time temporal properties. These state space
abstractions are vital when dealing with timed systems that generally have an
infinite state space (due to the use of a dense time model). In our experiments,
most of the requirements can be reduced to reachability properties, so we can
use on-the-fly model-checking techniques.



We interpret a GTS by a Fiacre process whose parameters consist of all its
state and flow variables. Each transition g `evt→ e in the GTS is (bijectively)
encoded by a transition that matches the guard g and updates the variables to
reflect the effect of e plus the assertions. Each transition can be labelled with
time and priorities constraints to take into account the extern declarations of
the node. This translation is straightforward since all the operators available
in AltaRica have a direct equivalent in Fiacre. Hence every state/transition in
the GTS corresponds to a unique state/transition in Fiacre. This means that
the state (reachability) graph of a GTS and its associated Fiacre model are
isomorphic. This is a very strong and useful property for formal verification,
since we can very easily transfer verification artefacts (such as counterexamples)
from one model back to the other.

The close proximity between AltaRica and Fiacre is not really surprising.
First of all, both languages have similar roots in process algebra theory and
share very similar synchronisation mechanisms. More deeply, they share formal
models that are very close: AltaRica semantics is based on the product of “com-
municating automata”, whereas the semantics of Fiacre can be expressed using
(a time extension of) one-safe Petri nets. The main difference is that AltaRica
provide support for defining probabilities on events, whereas Fiacre is targeted
towards the definition of timing aspects. This proximity in both syntax and se-
mantics is an advantage for the validation of our tool, because it means that
our translation should preserve the semantics of AltaRica on models that do
not use extern laws to define probabilities and time. We have used this property
to validate our translation by comparing the behaviours of the models obtained
using Cecilia OCAS simulation tool and their translation. For instance, in the
case of the CAS system of Sect. 4, we can compute the set of cuts correspond-
ing to Safety Property 1 (loss detection) by checking an invariant of the form
((F1.O = Loss) ∨ (F2.O = Loss) ⇒ (F3.O = Loss)). In both cases—with and
without FDI—we are able to compute the exact same set of cuts than Cecilia
OCAS. This is done using the model-checker for modal mu-calculus provided
with Tina, which can list all the counterexamples for a (reachability) formula
as a graph. More importantly, we can use our approach to compute the timed
counterexample described at the end of Sect. 4. All these computations can be
done in less than a second on our test machine.

We have used our toolchain to generate the reachable state space of sev-
eral AltaRica models 1: RUDDER describes a control system for the rudder of
an A340 aircraft [5]; ELEC refers to three simplified electrical generation and
power distribution systems for a hypothetical twin jet aircraft; the HYDRAU
model describes a hydraulic system similar to the one of the A320 aircraft [9].
The results are reported in Table 1. In each case we indicate the time needed
to generate the whole state space (in seconds) and the number of states and
transitions explored. We also give the number of state variables as reported by
Cecilia OCAS. All tests were run on an Intel 2.50GHz CPU with 8GB of RAM

1 All the benchmarks tested in this paper are available at https://w3.onera.fr/

ifa-esa/content/model-checking-temporal-failure-propagation-altarica

https://w3.onera.fr/ifa-esa/content/model-checking-temporal-failure-propagation-altarica
https://w3.onera.fr/ifa-esa/content/model-checking-temporal-failure-propagation-altarica


Table 1. State space size and generation time for several use cases.

Model time (s) # states # trans. # state vars

RUDDER 0.85 3.3 104 2.5 105 15

ELEC 01 0.40 512 2.3 103 9

ELEC 02 0.40 512 2.3 103 9

ELEC 03 101 4.2 106 4.6 107 22

HYDRAU 1800 — — 59

CAS 0.40 729 2.9 103 6

CAS with Pre 46 9.7 105 4.3 106 10

running Linux. In the case of model HYDRAU we stopped the exploration after
30 minutes and more than 9.109 generated states. The state space is large in
this benchmark because it models the physical a-causal propagation of a leak,
so a leak can impact both upward and backward components and trigger a re-
configuration, multiplying the number of reachable states. In all cases, the time
needed to generate the Fiacre code is negligible, in the order of 10 ms.

Our models also include two versions of the complete CAS system (including
the detectors, the alarm and the switch); both with and without the delay func-
tions D1 and D2. The “CAS with Pre” model is our only example that contains
timing constraints. In this case, we give the size of the state class graph gener-
ated by Tina, that is an abstract version of the state space that preserves LTL
properties. We can use Tina to check temporal properties on this example. More
precisely, we can check that F3 has the loss detection convergence property. To
this end, a solution is to add a Time Observer to check the maximal duration
between two events: first, a obs start event is triggered when the output of F1
or F2 changes to Loss; then an obs end event is triggered when the output of F3
changes to Loss. The observer has also a third transition (obs err) that acts as
a timeout and is associated with a time interval I and is enabled concurrently
with obs end. Hence, Time Observer ends up in the state yield by obs err when
the output of F3 deviates from its expected value for more than d units of time,
with d ∈ I. We have used this observer to check that the convergence latency of
the CAS system equals 3, when we assume that the delays are in the time inter-
val [1, 3]. The result is that obs err is fireable for any value of d in the interval
[0, 3], while obs err is not fireable if I =]3,∞[. These two safety properties can
be checked on the system (plus the observer) in less than 0.6 s.

6 Conclusion and Related Work

Our work is concerned with the modelling and analysis of failures propagation in
the presence of time constraints. We concentrate on a particular safety property,
called loss detection convergence, meaning that the system applies an appro-
priate and timely response (e.g. isolation) to the occurrence of a fault before
the failure is propagated and produces unwanted system behaviours. Similar
problems were addressed in [18], where the authors describe a process to model



Failure Detection Isolation and Reconfiguration architecture (for use on-board
satellites) that requires to take into account failure propagation time, failure de-
tection time, and failure recovery time. However, these needs are not matched by
an effective way to check for the safety of the systems. Our approach provides a
solution to model these timing constraints within AltaRica. We also provide an
automatic transformation from Time AltaRica models in one of the input for-
mats of Tina. We show that two interesting problems—computing “timed cuts”
and bounding the convergence latency of a node—can be reduced to a decidable
model-checking problem.

Several works have combined model-checking and AltaRica, the archetypal
example being the MEC tool [14] that was developed at the same time than the
language. More recently, Bozzano et al [12] have defined a transformation from
AltaRica Dataflow to the symbolic model-checker NuSMV. While this tool does
not support complex timing constraints, it offers some support for Dirac laws
(and implicit priorities) by encoding an ad-hoc scheduler. The use of symbolic
model-checking techniques is interesting in the case of models with a strong
combinatorial blow up, like for instance model HYDRAU of Sect. 5. Nonetheless,
even though Tina also includes BDD-based tools, no approaches allow to combine
the advantages of both realtime and symbolic model-checking techniques.

Realtime techniques are central to our approach. We define an extension of
AltaRica where timing constraints can be declared using temporal laws of the
form law (evt) = "[a,b]", with a semantics inspired by Time Petri nets. As
a result, we can apply on AltaRica several state space abstractions techniques
that have been developed for “timed models”, such as the use of DBM and
state classes [6]. In a different way, Cassez et al. [13] have proposed an extension
of AltaRica with explicit “clock variables”, inspired by Timed Automata, where
clocks are real-valued flow variables that can be used inside the guards of events.
Their work is mainly focused on the verification of behavioural properties and
centres on the encoding of urgency and priorities between events, two notions
that are naturally offered in Fiacre. Also, our extension is less invasive. If we
ignore the extern declaration then we obtain valid AltaRica code. More research
is still needed to further the comparison between these two approaches in the
context of safety assessments.

Aside from these works on AltaRica, recent works centred on combining
failure propagation analysis and timing constraints, such as [10]. This work de-
fines an automatic method for synthesising Timed Failure Propagation Graphs
(TFPG), that is an extension of the notion of cut-sets including information on
the date of events. TFPG provide a condensed representation that is easier to
use than sets of timed cuts.Therefore, it would be interesting to use this format
in our case.

For future work, we plan to adapt our translation to a new version of the
AltaRica language—called AltaRica 3.0, or OpenAltaRica [15]—that imposes
less restrictions on the computation of flow variables. We also want to apply
our approach to more complex industrial use cases, involving reconfiguration



time besides failure detection and isolation; or even systems with humans and
reaction time in the loop.
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