
A General Lock-Free Algorithm for
Parallel State Space Construction

Rodrigo T. Saad and Silvano Dal Zilio and Bernard Berthomieu
CNRS; LAAS; 7 ave. Colonel Roche, F-31077 Toulouse, France

Université de Toulouse; UPS, INSA, INP, ISAE; LAAS; F-31077 Toulouse, France
{rsaad, dalzilio, bernard}@laas.fr

Abstract—Verification via model-checking is a very demanding
activity in terms of computational resources. While there are
still gains to be expected from algorithmic improvements, it
is necessary to take advantage of the advances in computer
hardware to tackle bigger models. Recent improvements in this
area take the form of multiprocessor and multicore architectures
with access to large memory space.

We address the problem of generating the state space of finite-
state transition systems; often a preliminary step for model-
checking. We propose a novel algorithm for enumerative state
space construction targeted at shared memory systems. Our
approach relies on the use of two data structures: a shared Bloom
filter to coordinate the state space exploration distributed among
several processors and local dictionaries to store the states. The
goal is to limit synchronization overheads and to increase the
locality of memory access without having to make constant use
of locks to ensure data integrity.

Bloom filters have already been applied for the probabilistic
verification of systems; they are compact data structures used
to encode sets, but in a way that false positives are possible,
while false negatives are not. We circumvent this limitation and
propose an original multiphase algorithm to perform exhaustive,
deterministic, state space generations. We assess the performance
of our algorithm on different benchmarks and compare our
results with the solution proposed by Inggs and Barringer.

I. INTRODUCTION

Verification via model-checking is a very demanding activ-
ity in terms of computational resources. While there are still
gains to be expected from algorithmic methods, it is necessary
to take advantage of the advances in computer hardware
to tackle bigger models. Obviously, the use of a parallel
architecture is helpful to cut the time needed to check a model
because it divides the computation over several processing
units instead of one. Another motive, important as well, is the
possibility to access a large amount of fast-access memory.

We address the problem of generating the state space of
finite-state transition systems, often a preliminary step for
model-checking. We propose a novel algorithm for enumer-
ative state space construction targeted at shared memory sys-
tems, that are multiprocessor architectures where the memory
space can be accessed by all processors. The basic idea behind
such algorithms is pretty simple: take a state that has not been
explored (a fresh state); compute its successors and check if
they have already been found before; iterate. A key point
is to use an efficient data structure for storing the set of

This work has been supported by the French AESE project Topcased and
by region Midi-Pyrénées

generated states and for testing membership in this set. With
a shared memory architecture, the state space is distributed
among all processors and additional efforts are required to
ensure data integrity. This is generally obtained through the
use of low-level concurrency control mechanism such as locks
and barriers.

Our approach is based on two data structures: a lock-free,
shared Bloom filter to coordinate the data distribution; and
local dictionaries – we use AVL trees in our implementation
– to explicitly store the data. We take advantage of the fast
response time and space efficiency of Bloom filter in order
to limit undesired synchronizations and increase the locality
of memory access. The use of a Bloom filter avoids requiring
a critical section when writing on local state spaces without
sacrificing data integrity. The benefits of this design is better
scalability on the number of processors and less contention on
memory access. Bloom filters have already been applied for
the probabilistic verification of systems; they are compact data
structures used to encode sets, but in a way that false positive
are possible, while false negative are not. We circumvent this
limitation and propose an original multiphase algorithm to
perform exhaustive, deterministic, state space generations. In
the first phase (exploration), the algorithm is guided by the
Bloom filter until we run out of states to explore. During this
phase, states found by a processor are stored locally in two
AVL trees: one for states that, according to the Bloom filter,
have already been generated by another processor; the other for
fresh states. Since the Bloom filter may, in rare cases, falsely
report that a state has already been visited (what is called a
false positive), we need to give a special treatments to these
collision states. This is done in the consecutive phase (collision
resolution) that takes care of collisions among possible false
positive. The algorithm concludes with a termination detection
phase when there are no more states to explore and no
collisions.

The rest of this paper is organized as follows. In Section
II we review related work and give a brief introduction on
Bloom Filters. Section III gives the details of our algorithms.
In Section IV, we examine experiments performed on a set
of typical benchmarks. We also compare our results with
the solution proposed by Inggs and Barringer [11], which
uses a lockless hash-table to store the states. To give actual
figures regarding our algorithm, we have tested our approach
on a high-end server configured with 8 dual core opteron

processors, equipped with 208GB of RAM memory. For the
experiments detailed in this paper, where we work with an
explicit representation of the state space, this configuration
allows us to work with models generating more than 5.108

states and to obtain absolute speed-ups of factor 10 – using
the 16 cores available on this computer. We conclude with
ideas for future extensions of our work.

II. RELATED WORK

There is already a large body of work addressing the prob-
lem of parallelizing and distributing state space construction.
Several solutions have been proposed that are each tailored to
a particular type of parallel and distributed architecture. The
vast majority of these solutions adopt a common approach, that
could be labeled as “homogeneous” parallelism, which follows
a Single Program Multiple Data (SPMD) programming style,
such that each processor performs the same steps concurrently.
To the best of our knowledge, the only work not following this
approach is [6], using SIMD model. A drawback of the SPMD
model, which is commonly used to accomplish coarse-grained
parallelism, is that data and computations should be explicitly
assigned to each processor. It is therefore necessary to set up
an efficient load-balancing mechanism to improve the speedup
of the implementation.

A. Slicing Functions and the Work Stealing Paradigm
A common approach to assign work and data is to partition

the state space into several chunks, one for each processor
available, through a slicing function. This scheme is more gen-
erally applied on distributed memory systems, where solutions
mostly differ by the nature of the slicing function, i.e. static
or dynamic.

Several of the mechanisms proposed for distributed archi-
tectures [1, 7, 9, 10, 14, 15] rely on slicing functions and
differ basically by the nature of this function in order to
provide both locality and balance. Balance can be measured as
spatial or temporal balance: spatial balance means that each
processor will receive an equal amount of states; temporal
balance means that each processor will be busy most of the
time. Locality measures the fact that states which are “related”
during the computation should be assigned to nearby processes
(typically, the successors of a state should be handled by the
same processor). Locality is desired to reduce communication
overheads.

In contrast with distributed memory systems, shared mem-
ory systems abstract away from the need to explicitly pass
messages between processors. As a consequence, mechanisms
proposed for these systems do not require a slicing function to
assign states to processors, since they can be all shared. How-
ever, for ensuring data consistency, shared memory systems
incur synchronization overheads on operations that perform
concurrent access to the memory. Consequently, solutions
developed for shared memory systems often rely on a pool
of “local memory”, assigned to each processor, along with
customized synchronization mechanisms to guarantee a con-
sistent access to a shared data structure that stores the bulk

Figure 1. Illustration of some operations on a Bloom filter.

of the state space. In this context, to achieve high degree of
parallelism, the goal is to keep to a minimum the part of
global data that is locked for mutual exclusion. Allmaier et
al. [1] were among the first to implement a parallel state space
construction algorithm for shared memory systems. In their
design, states are stored in a concurrent balanced-tree. Data
consistency is solved by using locks together with a “splitting-
in-advance” scheme to reduce the contention. In [11], the
authors propose a parallel algorithm for state exploration based
on a work stealing scheduling paradigm to provide dynamic
load balancing without a blocking phase. The idea is that
underemployed processors attempt to “steal” work from other
processors. The data structure – the dictionary – used to store
already visited states is a global hash-table. Unlike [1], access
to the dictionary is not protected by locks, hence it is not
possible to ensure data integrity. (See [2] for a discussion on
using shared hash-tables for model-checking.)

B. Bloom Filter in Model Checking Applications
Explicit (or enumerative) model checking suffers from the

well known state explosion problem. This problem has direct
implication on the choice of the data structure to store the
state space since the amount of memory required depends
on the number of reachable states. When the state space is
too large, it may be interesting to store states in a proba-
bilistic data structure in order to spare memory space. In this
context, probabilistic means that testing the data structure for
membership returns the “correct result” with some (hopefully
high) probability. Obviously, the drawback of this approach
is that it is not possible to have full confidence on the
outcome of model checking, since the actual state space
may not be completely explored. Nonetheless, a “probabilistic
verification result” may still be helpful to find errors in a model
and some model-checking tools provide this facility. Usually,
probabilistic model checkers use one of two data structures,
compacted hash and Bloom Filter. Choosing the right data
structure depends on a priori knowledge on the state space [8]:
when the state space size is known, the best choice is the
compact hash, otherwise a Bloom filter may result in a better
coverage of the state space.

A Bloom filter is a space-efficient data structure for en-
coding set membership that is very popular in database and
network applications. General theoretical results on Bloom

filters are given in [4], while [8] focus more on their use for
probabilistic verification. Bloom filters support two operations:
insertion of an element in the set and test that an element is
in the set. A filter B of size n is implemented as a vector of
n bits and is associated with a series of k independent hash
function (hi)i∈1..k with image in the interval 1..n. An empty
set is represented by a vector with all bits set to 0. Insertion of
the element x in B is performed by setting the bits hi(x) of
the vector to 1 for all i in 1..k. Reciprocally, to query whether
an element y is in B, we test that the bits (hi(y))i∈1..k are
all set to 1 in the vector. If it is not the case, then we are
sure that y is not in the set encoded by B. If all these bits
are set to 1, then we only have a probabilistic result: in the
case where y is actually not in the set, we say we have a
false positive. The probability of false positive is a function
of the size, n, number of hash functions, k, and number of
elements inserted so far. Hence the parameters n and k should
be carefully chosen in an implementation. Figure 1 illustrates
insertion and query operations on a Bloom filter with size
n = 16 and k = 3. Starting from an empty set (above), we
show the result after the insertion of two elements, x and y.
Element z is an example of false positive.

C. This Work
Our contribution is an algorithm that relies on a novel way

to distribute the state space. Our algorithm dynamically assign
states to processors, in the same way we dynamically assign
work to processors using a work-stealing strategy. This differs
from hash partitions based solutions [1, 7, 9, 10, 14, 15], where
states are assigned statically.

States are stored in local dictionaries, while a shared Bloom
filter is used to avoid the need for locks. In a local dictionary,
only the processor that owns the dictionary can write on it
(but concurrent read access are allowed). Hence, compared
to the work in [11], based on a lockless hash-table, we
can guarantee data integrity and, in particular, that no state
will be lost due to concurrent writes. Another benefit of
local dictionaries is to take the most advantage of memory
affinity and to improve spatial balance. Our algorithm is quite
general and can be easily adapted to accept different kind of
data structures for local dictionaries – we have, for example,
already experimented both AVL trees and hash-tables.

III. DESCRIPTION OF THE PARALLEL ALGORITHM

Our algorithm elaborates on the work-stealing paradigm and
the “homogeneous” parallelization approach introduced in the
previous section. Work is distributed homogeneously between
processors and each processor handles its own local view of
the state space.

Coordination between the processors is based on a lock-
less shared Bloom filter used to test whether a state has
(potentially) already been visited by some of the processors.
All states are stored locally in two AVL trees; more details
about these data structures are given in Section III-A. In
Section III-B, we discuss the work-sharing techniques used in
our algorithm. Indeed, the processors may share work in two

manners, either a passive or an active way. The active way
is the work-stealing paradigm we already mentioned, that is
triggered when a processor runs out of work. We add a passive
way of sharing, that is when a given processor explicitly wakes
up a sleeping processor in order to share some work. We use
these two techniques alternately according to the amount of
work in the system. To conclude the section, we discuss the
three phases of our algorithm.

In the remainder of the text, we assume that there are N
processors and that each processor is given a unique id, which
is an integer in the interval 0..N − 1.

A. Shared and Local Data
Our objective is to design a solution adapted to typical

shared memory architectures. This means that, in addition to
the common difficulties related to shared memory architecture
(ensuring data consistency; reducing contention on shared data
access; . . .), we should also consider the case of Non-Uniform
Memory Access architectures (NUMA), where the latency
and bandwidth characteristics of memory accesses depend on
the processor or memory region being accessed. To improve
locality, states generated by a processor are stored in one of
two possible local AVL trees, the state tree or the collision tree.
This corresponds to one of the two following cases. Assume
that processor i generates a new state s. If a query on the
Bloom filter answers that s has not been visited before, the
processor may continue generating new states from s. In this
case we add s to the state tree of processor i. If the query is
positive – state s may have been visited before – we add s to
the collision tree. States in the collision tree will undergo a
special treatment to take into account possible false positives.

Each processor also manages two stacks of unexplored
states for work-sharing: a local stack for storing its private
work and a shared stack for sharing work with idle processors.
Access to the shared stack are protected by locks to prevent
different processors from requesting the same work. Finally,
a shared vector is used to store the current state of processors
(either idle or busy) in order to detect termination. Figure
2 illustrates the shared and local data structures used in the
algorithm.

Figure 2. Shared and Private Data Model Scheme.

B. Work-Sharing Techniques
Our algorithm relies on two different work-sharing tech-

niques to balance the working load between processors. We
use these mechanisms alternately during the exploration phase
in accordance with the processor occupancy. First, we use an

active technique very similar to the work-stealing paradigm
of [11]. This mechanism uses two stacks: a private stack that
holds all states that should be worked upon; a shared stack
for states that can be borrowed by idle processors. The shared
stack is protected by a lock to take care of concurrent access.
The second technique can be described as passive and has the
benefit to avoid useless synchronization and contention caused
by the active technique. In the passive mode, an idle processor
waits for a wake-up signal from another processor willing to
give away some work instead of polling other shared stacks.
The shift between the passive and active modes is governed
by two parameters:

• the private minimum workload (pr work load), which
defines the minimal charge of work that should be kept
private. The processor will share work only if the charge
in its private stack is larger than pr work load;

• the share workload (sh work load), which defines the
ratio of work that should be added in the shared stack if
the load in the private stack is larger than pr work load.

Our implementation of the work-stealing paradigm differs
from [11] by its use of unbounded shared stacks and the
sh work load parameter.

C. Different Phases of the Algorithm
As mentioned before, our solution makes use of a shared

Bloom filter to test whether a state may have already been dis-
covered before. To overcome the problem with false positives,
our algorithm iterates between an exploration phase and a
collision resolution phase before concluding with a termination
detection phase.

The exploration phase takes great advantage of the strong
points of a multiprocessor architecture because the shared
space is small and all work is done locally. On the opposite,
the collision resolution phase put a lot of stress on the
architecture: each processor has to compare the elements in
its collision tree with the state tree of all the other processors.
As a consequence, the goal is to favor the exploration phase
and to reduce the number of iterations. Figure 3 shows the
characteristic timeline of phase alternations that we are aiming
at. Since iterations are directly related to the probability of
false positive, it is important to correctly dimension the Bloom
filter. In our experiments, we typically observe fewer than 3
iterations.

Figure 3. Timeline of states alternation.

In the remaining of this section, we define each phase of
our algorithm using pseudo-code. Variable SS indicates the
current phase of the algorithm. The data structures used in

the algorithm are composed of shared and local elements.
Shared variables are: (1) the Bloom Filter BF, used to test
whether a state had already been discovered or not; (2) the
bitvector V, that stores the state of the processor (0 for idle
and 1 for busy); and (3) the shared stacks Shared Stack[0], . . . ,
Shared Stack[N-1]. Processor-local variables are the private
stack, private stack, of unexplored states and the two local
AVL: state tree, to store states discovered by this processor;
and collision tree, to store potential false positives.

1) Exploration: We give the pseudo-code related to the
exploration phase below. The exploration phase proceeds until
no new states can be added to the Bloom Filter BF. During the
exploration, all states appointed by BF as already discovered
are stored locally in the collision tree. On the opposite, all
newly discovered states are stored locally in the state tree.
Although concurrent accesses to BF may seldom result in extra
work (state duplication), this is negligible compared to the gain
in performance due to the use of a lock-free data structure.
Computation switches to the collision resolution phase when
all processors are idle and there is at least one non-empty local
collision tree. After a complete iteration, unresolved collisions
(false positive) are specially tagged as a means to bypass the
BF membership test at this phase. We give more details on
unresolved collisions in the description of the next phase.

while SS == Exploration and at least
one process is busy do

while private_stack is not empty do
s := pop(private_stack) ;
if s is not in BF or s is marked with a

special tag then
search_and_insert s into state_tree ;
let s1,..,sj,...,sn = successors(s) where
j = shared_work_load x n
if size(private_stack)

> private_work_load then
// Share a percentage of new work
if some processor is sleeping
then wake him up endif ;
// Protected action by locks
insert s1,...,sj in my shared_stack ;
insert sj+1,...,sn in my private_stack

else
insert s1,...,sn in my private_stack

endif
endlet

else if s is not in state_tree
then search_and_insert s

into collision_tree endif
endif

endwhile
// private stack empty
if my shared stack is not empty then
transfer work from my shared stack

to private_stack
else
look for a non empty shared_stack

to transfer work ;
if all shared_stacks empty

and at least one processor busy
then enter into sleep mode

endif
endif

endwhile
// Everybody is idle
// Protected action by locks
SS := Collision Resolution ;
wake up all processors and

enter Collision Resolution phase

2) Collision Resolution: The search for collisions (the same
state generated in two distinct processors) is done concurrently
by each processor through the comparison of its collision tree
with the state tree of every other processors. This operation
can be implemented efficiently. Indeed, since all these data
structures are sorted (we use AVL trees for storing states),
collisions can be efficiently resolved by comparing trees as
ordered lists starting by the leftmost state of each tree. The
advantage of this approach is that if a colliding state s is
smaller than a given state of a state tree, no more states
of this state tree need to be compared with s. During the
collision resolution, a state found in the state tree of another
processor, say Pi, can be safely deleted from collision tree: it
is a ”real” collision and it is currently processed by Pi. If the
state does not appear in the state tree of another processor then
the state is the result of a false positive in the Bloom filter.
As a consequence, it will be directly inserted into the private
stack of the processor to be expanded during the following
exploration phase. We will also mark this state with a special
tag to avoid testing him against the Bloom filter a second time.
For this reason, if more than one processor find the same false
positive, it will result in duplicated states in state space.

leftmost[0..N] := leftmost states
from state_tree [0..N] ;

not_larger[0..N] := {true,...,true} ;
found := false ;
collision := leftmost state

from collision_tree ;
while collision is not empty do

forall i in 0..N do
if not_larger[i] then

if collision is smaller than
leftmost[i] then

// No more comparisons for this collision
not_larger[i]:=false

elsif collision is larger than
leftmost[i] then

leftmost[i] := next ordered
element from state_tree[i]

else // collision == leftmost[i]
found := true

endif
endif

endfor
if not(found) then

insert collision into private_stack
and mark as a special state

endif
collision := next ordered element

from collision_tree
endwhile
// No more collision to resolve

if private_stack is not empty then
// Protected action by locks
SS := Exploration

endif
if one processor is still busy then

enter into sleep mode
else

wake up every processor ;
if SS == Exploration then

enter Exploration phase
else enter Termination Detection phase endif

endif

3) Termination Detection: This phase is responsible for
checking if the state space construction should end. Termi-
nation detection performs a simple test on the states of the
processor and consumes no resources. Assume we arrive in
the termination detection phase from the exploration phase. We
can finish the construction if the collision tree in all processors
are empty. In the case we arrive in this phase from the collision
resolution phase. Then we can finish the construction if the
private stack of all processors are empty.

IV. EXPERIMENTS

We implemented our algorithm using the C language with
Pthreads [5] for concurrency and the Hoard Library [3] for
parallel memory allocation. We developed our own library for
Bloom filters with support for concurrent insertion. The library
makes use of Bob Jenkins’s hash function [12]. Experimental
results presented in this section were obtained on a Sun
Fire x4600 M2 Server, configured with 8 dual core opteron
processors and 208GB of RAM memory, running the Solaris
10 operating system. We worked with a 512MB Bloom filter
(n = 4.109 bits) and 6 chained hash-functions (k = 6). These
parameters are dimensioned for examples of up to 5.108 states,
with a small rate (≈ 2%) of false positives. In practice, this
means that users do not need to adjust any parameter of the
tool before using it.

The finite state systems chosen for our benchmarks are
classical examples of Petri Nets taken from [13]. Together
with the perennial Dining Philosophers, we also study the
examples of the Flexible Manufacturing System (FMS) and
the Kanban System, where the first one is parameterized by the
number of subnets and the two following ones by the weights
in their initial marking. We give several results detailing the
performance of our implementation. While speedup is the
obvious criteria when dealing with parallel algorithm, we also
study the memory tradeoff of our approach and report on
experiments carried out to choose the dimension of the Bloom
filter.

A. Speedup

Figure 4 gives the observed speedup of our algorithm when
generating the state space for 12 philosophers (PH 12) and
FMS 7 with a different number of processors. We give the
relative speedup, measured as the ratio between the execution
time using N processors (TN) and the time of the same
algorithm on one processor.

Figure 5 depicts the system occupancy rate, throughout
the duration of the state space computation, for the PH 12
model using all the available processors. The occupancy rate
measures the utilization of the machine CPUs. The figure
shows high occupancy rate1 (≈ 92%) for our algorithm, except
for a small interval that corresponds to the transition between
the exploration and the collision resolution phases.

speedup
FMS 7 PH 12

proc. (6.107 states) (3.107 states)
Time (s) Speedup Time (s) Speedup

1 3132 – 2046 –
2 2048 1.52 1414 1.44
4 1075 2.91 744 2.75
6 723 4.33 510 4.01
8 564 5.55 386 5.30
10 460 6.80 312 6.55
12 384 8.15 269 7.60
14 338 9.26 232 8.81
16 313 10 218 9.38

Figure 4. Speedup analysis for PH 12 and FMS 7 models.

Figure 5. Occupancy rate for PH 12 with 16 processors.

B. Time-Memory Tradeoff

Figure 6 gives results on the number of collision nodes (see
Section III-A) used on the FMS 7 and PH 12 examples. We
also give the amount of memory required for the collisions
tree. The results show an increase of the memory footprint
when the number of processors increase. The intuition behind
these numbers is quite simple: due to the strong symmetry
of the example, if we add more processors, we increase the
probability of different processors finding the same state, that
is the probability of creating a collision node. As shown with

1The slightly time difference is a consequence of the overhead generated
by the profiling tool.

the experiments, the number of collisions generated by our
algorithm may be 8 times greater than the number of states in
the worst case (16 processors). What is observed is a general
tradeoff between memory space and computation time that
is often found in parallel algorithms. It should be noted that
the use of traditional optimizations, such as partial-order or
symmetry reduction techniques, will reduce the number of
collisions.

FMS 7 PH 12
(6.107 states) (3.107 states)

proc. # collision Ex. Ma # collision Ex. Mb

tree nodes (GB) tree nodes (GB)
2 19.107 3.8 13.107 6.5
4 29.107 5.8 20.107 10
6 32.107 6.4 23.107 11.5
8 34.107 6.8 24.107 12

10 35.107 7.0 25.107 12.5
12 36.107 7.2 25.107 12.5
14 37.107 7.4 26.107 13
16 37.107 7.4 26.107 13

aExtra Memory Estimation = collisions ∗ 20
bExtra Memory Estimation = collisions ∗ 50

Figure 6. Collision analysis for FMS 7.

A parallel algorithm often trades additional memory space
for better execution time. Nevertheless, it is very important to
maintain this additional memory usage at an acceptable level.
In our case, this means limiting the number of collisions. A
straightforward way to deal with this problem is to force the
early start of the collision resolution phase as soon as one of
the processors reaches a given threshold of collisions states.
We can compare this strategy with familiar memory manage-
ment techniques, such as garbage collection. The choice of the
good value for the threshold is a tradeoff between execution
time and memory usage.

Figure 7 gives results, for the PH 12 and FMS 7 examples
using a threshold value of 107 states. We observe for the FMS
7, in the worst case, a drop of performance below 10% with
an average extra memory capped at 3.2 GB. With this strategy,
the maximal extra memory required by our algorithm is given
by the formula N × Th × SS , where N is the number of
processors used; Th is the threshold (107 states in this case);
and SS is the size of the state representation (20 bytes for
FMS 7). The results given in Figure 7 shows a small gain of
performance with 2 and 4 processors. This behavior can be
explained by the use of a NUMA architecture. Indeed, with
few processors, using less memory results in better processor
affinity.

We study the impact of the threshold value on the overall
performance in Figure 8. The figure depicts the relative
variation of performance for different values of the threshold
for the FMS 7 and PH 12 models. For both models, the
experiments show that threshold values above 4.106 lead to
almost no penalty: we observe a drop of performance below
10% using 16 processors. The last column in the table of

speedup
FMS 7 PH 12

proc. (6.107 states) (3.107 states)
Time(s) Speedup Ex.M(GB)a Time(s) Speedup Ex.M(GB)b

2 2072 1.51 0.4 1401 1.46 1.0
4 1085 2.88 0.8 742 2.75 2.0
6 750 4.17 1.2 523 3.91 3.0
8 569 5.50 1.6 389 5.25 4.0

10 467 6.70 2.0 330 6.20 5.0
12 399 7.84 2.4 286 7.15 6.0
14 354 8.84 2.8 236 8.66 7.0
16 327 9.57 3.2 224 9.13 8.0

aExtra Memory Estimation = N ∗ 107 ∗ 20
bExtra Memory Estimation = N ∗ 107 ∗ 50

Figure 7. Speedup analysis for PH 12 and FMS 7 with memory recycling.

Figure 8, labelled “Exp. – Col.”, splits the total execution time
into the time spent in the exploration and collision resolution
phases. The results show an inverse correlation between the
ratio of times spent in these two phases and the overall
performance: we observe that the speedup decreases when this
ratio increases. The intuition behind these numbers is quite
simple; with smaller thresholds, there are not enough “newly
discovered states” during the exploration phase to compensate
for the time spent during the collision phase. As a matter
of fact, we observe good time ratio between exploration and
collision phases in the experiments without memory recycling
(threshold value of ∞). For instance, for both models, a
threshold of 107 gives almost the same profile than using no
memory recycling.

C. Comparison

We conclude this section on experimental results with a
comparison with previously existing algorithms. It has proved
difficult to port available implementations on the configuration
used for our experiment. As a result, we developed our
own implementation of some algorithms described in the
literature. In this section, we turn our attention to an algorithm
proposed by Inggs and Barringer [11]. We consider a simple
variant based on a lockless shared table to store the states
(in this variant, hash collisions are resolved using a chained
list). The choice of a lockless shared table result in better
performances, since it alleviates most of the synchronizations

speedup
FMS 7 PH 12

Threshold (6.107 states) (3.107 states)
Time(s) Gain Exp. – Col. Time(s) Gain Exp. – Col.

∞ 334 1 .76 – .24 216 1 .87 – .13
1.106 762 .43 .37 – .63 284 .76 .58 – .42
2.106 488 .68 .56 – .44 237 .91 .71 – .29
3.106 384 .86 .64 – .36 242 .89 .72 – .28
4.106 369 .90 .64 – .36 226 .95 .77 – .23
5.106 346 .96 .68 – .32 226 .95 .79 – .21
6.106 370 .90 .68 – .32 222 .97 .80 – .20
7.106 331 1.00 .77 – .23 228 .94 .81 – .19
8.106 332 1.00 .75 – .25 229 .94 .82 – .18
9.106 328 1.01 .73 – .27 219 .98 .87 – .13
10.106 337 .99 .76 – .24 219 .98 .85 – .15

Figure 8. Threshold analysis for PH 12 and FMS 7.

costs. Nonetheless this choice does not ensure data integrity,
unlike with our proposed solution.

Figure 9 gives a comparison between two different imple-
mentations of our algorithm, AVL and Table, and our imple-
mentation of Inggs and Barringer algorithm [11], Lockless.
AVL stands for the straightforward implementation described
in Section III, using AVL Trees as local dictionaries. Table
is the same algorithm where AVL trees have been replaced
by local hash-tables. The AVL implementation proved slower
than the two other solutions. This result is not enough to
dismiss the use of AVL. Indeed, while the high algorithmic
cost associated to this data structure is an handicap, the choice
of AVL has also some benefits. For instance, the use of a sorted
data structure in AVL simplifies the collision resolution phase,
where the state in each local collision tree should be compared
against all the other collision trees; this may make the AVL
solution faster when there are many collisions (hence it could
be superior when the number of processors increase). Finally,
we intend to use our proposed algorithm for the analysis of
timed systems, in which the cost of computing a new state
is much higher than in the examples presented here ; this
will increase considerably the exploration times, by the same
amount in all versions, making their performances very similar
on average.

The results show that our implementations (AVL and Table)
are significantly slower than Lockless. We do not consider this
result as discouraging as the difference in performance can be

traced to our main objective, that is to ensure that no state is
lost during the exploration. Our solutions could be improved in
a number of ways, for example using low-level optimizations,
such as local caches. We used the exact same algorithm than
the one defined in Section III for our experiments, without
any low-level optimizations, in order to precisely study the
impact of each of our choices. In parallel with this work, we
also started to investigate other variants of our algorithm and
to test with optimized implementations. Most particularly, we
are currently testing an asynchronous version of our algorithm
where each processor can asynchronously alternate between
the exploration and collision resolution phases, without block-
ing.

Execution Time (s) with 16 processors
Model AVL Table Lockless

Kanban 9 2547 1319 53538.107 states
FMS 8 2003 953 33024.107 states
PH 13 1306 836 22714.107 states

Legend for the algorithm name abbreviations
AVL Local AVL Trees as dictionaries
Table Local Hash Tables as dictionaries
Lockless Lockless Table for shared storage

Figure 9. Comparison of Different Implementations.

Figure 10. Normalized Execution Time.

V. CONCLUSION

We propose a new algorithm for parallel state space con-
struction on shared memory systems. Our approach takes into
account spatial balance by dynamically assigning states to
processors and managing, as much as possible, states locally.
For this reason, our algorithm is adapted to a non-uniform
memory architecture. This approach complements the work-
stealing strategy – that is also used in our algorithm – that
fosters temporal balance by dynamically assigning work to
processors. Another innovation resides in the use of Bloom
filters – a data structure associated with probabilistic verifica-
tion – to perform a complete exploration of the state space. We

use a Bloom filter for the shared data structure and define a
multiphase algorithm to obtain an “exhaustive”, deterministic
result.

In the context of our experiments, we worked more specif-
ically with system described by Petri Nets. Nonetheless, our
algorithm is quite general and could be applied to different
formalisms for describing finite transition systems (or finite
abstractions of infinite-state models): we only require a simple
way to represent states and a function to generate successors.
While we provide an implementation that works with an
explicit representation of states, our algorithm can be applied
alongside traditional optimizations for reducing the state space
size, such as partial-order and state compression techniques.
Our algorithm takes a black-box approach and is orthogonal
to the representation details of the state space.

The experiments conducted with the preliminary implemen-
tation of our algorithm show promising speedups on a set of
typical benchmarks. While the performance of the algorithm
depends on the “geometry” of its input – for instance its
concurrency degree – we have consistently obtained good
results. For example, we routinely observe efficiency values2

over 70% while keeping the extra memory needed with our
algorithm at a constant level.

We consider several directions for future works. First, we
are studying an asynchronous version of our algorithm in
which each processor would asynchronously alternate between
exploration and collision resolution phases without blocking
each other. A further step, that follows the same direction,
is to solve possible collisions on-the-fly. We are already
experimenting with these ideas and we expect to reach perfor-
mances (both in terms of time and memory) close to the one
observed with our implementation of the “unsafe” Lockless
Table algorithm. Another possible direction of work is to
derive, from our current exhaustive algorithm, a probabilis-
tic state space construction algorithm. In this context, the
adjective probabilistic stands for an algorithm that builds an
underapproximation of the global state space, with a very
high probability of building the exact state space – by very
high, we mean a probability of failure less than 10−30. The
idea, basically, is to leave out the collision-resolution phase
and to use an enhanced Bloom Filter data-structure where
only potential false positives are stored. Finally, we plan to
experiment more thoroughly on the effect of combining state
compression techniques with our approach.

REFERENCES

[1] Allmaier, S., Kowarschik, M., Horton, G.: State space
construction and steady-state solution of GSPNs on a
shared-memory multiprocessor. In: Workshop on Petri
Nets and Performance Models (1997)

[2] Barnat, J., Rockai, P.: Shared hash tables in parallel
model checking. Electronic Notes in Theoretical Com-
puter Science 198(1) (2008), proceedings of the 6th Inter-

2Efficiency is computed as the ratio between speedup, TN , and the number
N of processors.

national Workshop on Parallel and Distributed Methods
in Verification (PDMC 2007)

[3] Berger, E., McKinley, K., Blumofe, R., Wilson, P.:
Hoard: A scalable memory allocator for multithreaded
applications. ACM SIGPLAN Notices 35(11) (2000)

[4] Broder, A., Mitzenmacher, M.: Network applications of
bloom filters: A survey. Internet Mathematics 1(4) (2004)

[5] Butenhof, D.: Programming with POSIX threads.
Addison-Wesley (1997)

[6] Caselli, S., Conte, G., Bonardi, F., Fontanesi, M.: Ex-
periences on SIMD massively parallel GSPN analysis.
In: Computer Performance Evaluation Modelling Tech-
niques and Tools. LNCS, vol. 794. Springer (1994)

[7] Ciardo, G., Gluckman, J., Nicol, D.: Distributed state
space generation of discrete-state stochastic models. IN-
FORMS Journal on Computing 10(1) (1998)

[8] Dillinger, P., Manolios, P.: Bloom filters in probabilis-
tic verification. In: Formal Methods in Computer-Aided
Design. LNCS, vol. 3312. Springer (2004)

[9] Flavio Lerda, R.S.: Distributed-memory model checking
with spin. In: Theoretical and Practical Aspects of SPIN
Model Checking. Springer (1999)

[10] Garavel, H., Mateescu, R., Smarandache, I.: Parallel
State Space Construction for Model-Checking. In: SPIN
workshop on Model checking of software. LNCS, vol.
2057 (2001)

[11] Inggs, C.P., Barringer, H.: Effective state exploration
for model checking on a shared memory architecture.
In: Parallel and Distributed Model Checking. Electronic
Notes in Theoretical Computer Science, vol. 68(4) (2002)

[12] Jenkins, B.: Hash Functions. ”Algorithm Alley”. Dr
Dobb’s Journal (1997)

[13] Miner, A., Ciardo, G.: Efficient reachability set genera-
tion and storage using decision diagrams. In: Application
and Theory of Petri Nets. LNCS, vol. 1639. Springer
(1999)

[14] Petcu, D.: Parallel explicit state reachability analysis and
state space construction. In: Symposium on Parallel and
Distributed Computing. IEEE (2003)

[15] Stern, U., Dill, D.: Parallelizing the Murφ verifier. In:
Computer Aided Verification. LNCS, vol. 1254. Springer
(1997)

