
A Logic You Can Count On

Silvano Dal Zilio, Denis Lugiez and Charles Meyssonnier
LIF, Laboratoire d’Informatique Fondamentale de Marseille

CNRS and Université de Provence

Abstract

We prove the decidability of the quantifier-free, static fragment of
ambient logic, with composition adjunct and iteration, which corre-
sponds to a kind of regular expression language for semistructured
data. The essence of this result is a surprising connection between
formulas of the ambient logic and counting constraints on (nested)
vectors of integers.

Our proof method is based on a new class of tree automata for un-
ranked, unordered trees, which may result in practical algorithms
for deciding the satisfiability of a formula. A benefit of our ap-
proach is to naturally lead to an extension of the logic with recursive
definitions, which is also decidable. Finally, we identify a simple
syntactic restriction on formulas that improves the effectiveness of
our algorithms on large examples.

Categories and Subject Descriptors: E.1 [Data Structures]:
Trees; F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic—modal logic; F.4.3 [Mathematical Logic
and Formal Languages]: Formal Languages—classes defined by
automata; H.2.1 [Database Management]: Logical Design

General Terms:Algorithms, languages, theory, verification

Keywords: Ambient, substructural logic, semi-structured data, tree
automata, Presburger arithmetic

1 Introduction

We prove the decidability of the static fragment of ambient
logic [9], with composition adjunct and iteration, which corre-
sponds to a kind of regular expression language for tree-like data
structures.

The ambient logic is a modal logic proposed to describe the struc-
tural and behavioral properties of mobile ambients [8]. In this pa-
per, we only consider the spatial fragment of the logic and work

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’04, January 14–16, 2004, Venice, Italy.
Copyright 2004 ACM 1-58113-729-X/04/0001 ...$5.00

with finite, static processes. This static fragment, also called the
tree logic (TL) in [7], is essentially a logic on finite edge-labeled
trees. The study of TL is motivated by a connection with type sys-
tems and query languages for semistructured data [1] exploited by
Cardelli and Ghelli in their language TQL. In their approach, a for-
mula of TL may be considered as a simple yes/no query against a
(tree representing a) database [5], where the answer is yes if the tree
satisfies the formula. With some extensions, a formula may also be
used to extract the subparts of a tree that match a description.

In this setting, we are interested by two problems:model-checking,
to test whether a given information tree satisfies a formula; andsat-
isfiability, to test if there exists a tree that satisfies a formula. Given
the parallel between TL and query languages, model-checking ap-
pears similar to computing the result of a query, while satisfiability
is useful for query optimizations or to check query inclusion (this
problem is also related to subtyping in the implementation of TQL).

The models of the tree logic are terms of the forma1[d1] | · · · |
ap[dp], calledinformation trees, obtained by the parallel composi-
tion of a sequence ofelements. Elements have a name (label),a,
and a value (they lead to a subtree),d. Intuitively, information trees
are nested multisets of labels and may be compared to XML docu-
ments, where elements are of the form<a>d<\a>, except that the
order of elements in a tree is not relevant. The tree logic is equally
uncluttered and includes primitives for tree composition,A | B, for
element traversing,a[A], and the implication induced by composi-
tion,A�B, with a simple and intuitive meaning:composition, A |B,
is satisfied by treesd1 | d2 whered1 satisfiesA andd2 satisfiesB;
location, a[A], is satisfied by trees with a single elementa[d] where
d satisfiesA; composition adjunct, A�B, is satisfied by trees that,
when composed with any tree that satisfiesA, result in trees that
satisfyB.

The decidability of the model-checking and satisfiability problems
is not trivial. Indeed, the meaning ofA� B is defined through a
possibly infinite quantification over the set of trees satisfyingA.
Another difficulty arises from indefinite repetition (Kleene star)A∗,
which is defined as a form of fixed point on the horizontal structure
of a tree. We prove the decidability of the model-checking and
satisfiability problems for TL, as well as the decidability for the
logic enriched with a limited form of fixed point on the vertical
structure of a tree, akin to path expressions, and show that these
two kinds of recursion are indeed orthogonal.

Motivation and Related Work

Our motivations for this work stand at the intersection of two
long-term research projects in which the authors are involved: a

project concerned with the study of logical systems for mobile dis-
tributed systems and a project related to languages for manipulating
semistructured data.

In the context of the first research project [27], our goal is to
improve our knowledge on the complexity of the ambient logic.
The choice of ambient logic is pertinent because it gives a general
language for expressing behaviors of spatially distributed systems
and because its lack of sensitivity to the details of the underlying
model makes it easily transposable to other settings (such as the
π-calculus [6] or almost every calculus with a system of nested
locations). For the same reasons, it is also a perfect test bed for
extensions, such as quantification on fresh names [10, 20].

We only consider the static fragment of ambient logic on finite pro-
cesses. Previous works have shown that the model checking prob-
lem is PSPACE for the logic without adjunct [11] and that it is un-
decidable for the logic with name quantification and composition
adjunct [12]. In [16], the authors show decidability of the satisfia-
bility problem for the logic without adjunct and name quantification
using tree automata and a logic on finite multisets. The result is ex-
tended to the logic with adjunct in [3]. The method used is adapted
from a technique for proving decidability of validity in a spatial
logic for reasoning about heaps [4] and is based on finite test sets
for �. Since the size of a test set is not elementary in the size of the
formula (it is not bounded by any tower of exponentials) it is not
obvious that this approach may lead to a practical algorithm.

In this paper, we prove the decidability of the tree logic with ad-
junct, iteration and a restricted form of recursion along the paths of
a tree. Our proof method is based on a surprising relation between
TL and arithmetical constraints on vectors of integers (expressed
as formulas of Presburger arithmetic). To obtain our decidability
results, we show the equivalence between TL and a new logic on
nested multisets of labels, thesheaves logic, that directly includes
Presburger arithmetic formulas. In our approach, the sheaves logic
appears more amenable to automatic processing and plays the role
of a target (assembly) language in which we compile formulas of
the tree logic.

The second research project is related to languages for manipulating
semistructured data. As remarked by Cardelli and Ghelli [7], the
tree logic is analogous to a regular expression language for tree-like
data structures and is therefore a perfect basis for typing languages
manipulating semistructured data. We can draw a parallel with the
use of regular tree expressions in the language XDuce [21], where
a logic similar to TL, albeit on an ordered model, is used to type
extended pattern matching operations over XML documents.

The algorithmic methods used in the implementation of XDuce are
based on regular tree automata [14]. Unfortunately, regular tree
automata are not well-suited for unranked or unordered trees. For
example, regular tree languages are generally not closed under asso-
ciativity or associativity-commutativity (AC) of function symbols.
In this paper, we use a simple extension of regular tree automata that
works on information trees. This class of automata, calledsheaves
automata, is expressive enough to accept the set of trees matched
by an ambient logic formula.

The definition of sheaves automata may be generalized to an alge-
bra with an arbitrary number of free function symbols and with any
number of associative and AC operators [24]. For example, an ex-
tended version of sheaves automata has been used by the authors
to prove decidability results on a fragment of XML schema [17].
Therefore, the logics and the results given in this paper may be

extended to a tree model with both sequential and parallel compo-
sition operators.

Outline and Contributions

The paper is organized as follows. In Section 2 and 3 we review
background material on information trees, on the Tree Logic (TL)
and on Presburger arithmetic. In Section 4 we define a new modal
logic for information trees, the Sheaves Logic, which is based on an
alternative representation of multisets as the product of a sequence
of multiplicities with a sequence of elements. As it is often the case,
the shift in the data-structure makes it possible to use more elabo-
rate algorithmic methods. At this point, we can already show that
the complexity of the logic results equally from the use of composi-
tion adjunct as from the combination of composition with negation.
More surprisingly, we identify iteration as the “most expensive”
primitive.

In Section 5, we show how to interpret every connector of TL in the
sheaves logic (SL). As a result, we obtain a compositional encoding
of TL in SL. The idea is to prove the decidability of SL instead of di-
rectly studying TL. To this end, we define (Section 6) a new class of
tree automata specifically designed for manipulating sheaves. This
class of automata works directly on information trees; it is closed
by the classical boolean operations and by tree composition; and it
has a decidable test for emptiness.

Before concluding, we exploit the inherent recursiveness of au-
tomata and augment the (sheaves and tree) logics with a limited
form of recursive definitions. This extension is expressive enough
to include path expressions. A limitation of our method is that
trees must be processed bottom-up, which may be very inefficient
in the case of large trees. To avoid this problem, we identify a
simple syntactical restriction, borrowed from a constraint found in
XML Schema [30], that allows for the use of a top-down version of
sheaves automata.

The connection between Presburger arithmetic and multiset logics
was already used in previous work by the authors [16, 17]. In this
paper, we clear up the relevance of this approach in the case of TL
and extend our results to a fragment of the ambient logic with com-
position adjunct,�, and Kleene star. It is also the first time that we
consider an extension of the logic with mutual recursive definitions.
Another contribution of this work is to propose an approach more
directed towards practical algorithms, for instance through the defi-
nition of bases(see Section 4 and Appendix A), with a study of the
algorithmic complexity of our methods and the definition of possi-
ble simplifying restrictions.

Omitted proofs may be found in a long version of this paper [18].

2 Information Trees and the Tree Logic

Our model for semi-structured data is borrowed from [7]. Informa-
tion trees [7] provide a compact syntax for defining nested multisets
of labels borrowed from the ambient calculus [8]. They correspond
to the static fragment of the ambient calculus, without primitives for
mobility, communication and name scoping – but the same frag-
ment may be found in almost every mobile process calculus with
systems of nested locations. The resulting model is very close to
the XML document model, with the difference that the order of the
fields (subtrees) in an information tree is irrelevant. More formally,
tree composition is an associative and commutative operator.

The following table summarizes the syntax of information trees.
Given a setΛ of element labels, we define the setE of elements
and the setI T of information trees.

Elements and Information Trees

e ::= element
a[d] element labeleda (with a∈ Λ), containingd

d ::= information tree
0 empty information tree
e element
d | d′ composition

Trees with an equivalent structure are identified. This is ex-
pressed by means of astructural congruence, the smallest rela-
tion onI T × I T that is a congruence and such thatd | 0≡ d, and
d | d′ ≡ d′ | d andd | (d′ | d′′)≡ (d | d′) | d′′. This relation coincides
with structural congruence for the finite, static fragment of the am-
bient calculus. In the remainder of this paper, we work with terms
modulo structural equivalence. Hence, we view information trees
as nested multisets of elements. The0 process is often omitted in
the contexta[0], yieldinga[].

Example 1.The following information tree may be interpreted as a
valid entry for the bibliographical reference [8]:

article[title[Mobile Ambients[]] | author[Cardelli[]]
| author[Gordon[]] | year[1998[]]] .

To reason about the spatial and temporal properties of mobile am-
bients, Cardelli and Gordon have introduced themodal logic of am-
bients [9]. The static fragment of the ambient logic, which only
refers to the spatial distribution of locations, appears particularly
well-suited to describe the structure of information trees. In this
paper, we study the static fragment of ambient logic, also called the
Tree Logic, TL. A distinctive feature of the logic considered here,
compared to [3], is that we enrich the syntax with an operator for
indefinite repetition,A∗, which captures a simple class of recursive
formulas. With this operator, TL appears as a kind of regular ex-
pression language, albeit on an unordered data model.

Tree Logic Formulas

A,B ::= formula
> true
¬A negation
A∨B disjunction
0 empty tree
a[A] location (a∈ Λ)
A | B composition
A�B composition adjunct
A∗ iteration

The denotation of a formulaA is a set[[A]] of information trees. As
usual, we say that a tree satisfies a formula, denotedd |= A, if and
only if d ∈ [[A]].

To simplify the presentation, we extend the composition operator
to sets of trees,S | S ′ =def

{
(d | d′) (d,d′) ∈ S ×S ′

}
. With this

definition, it is easy to show that the structure(2I T ,∪, /0, |,{0}) is a
semi-ring, where 2I T is the powerset ofI T (modulo≡). Sticking
to the multiplicative interpretation of composition, we use the nota-
tion Sn for the compositionS | · · · | S (n times),S0 for the singleton
{0}, andS∗ for the set

⋃
n>0 Sn. Finally, if n = (n1, . . . ,np) is a

sequence of integers, andS= (S1, . . . ,Sp) is a sequence of sets of
elements, we writen �S for the setSn1

1 | . . . | Snp
p . The latter notation

will sometimes be referred to as asheaved composition, and is at
the core of the new logic presented in this paper.

Satisfaction

[[>]] = I T
[[¬A]] = I T \ [[A]]
[[A∨B]] = [[A]]∪ [[B]]
[[0]] =

{
0
}

[[a[A]]] =
{

a[d] d ∈ [[A]]
}

[[A | B]] = [[A]] | [[B]]
[[A�B]] =

{
d ∀d′ ∈ [[A]] . (d | d′) ∈ [[B]]

}
[[A∗]] = [[A]]∗

The satisfaction rules for the propositional fragment are conven-
tional. The formula0 only matches (trees structurally equivalent
to) 0, the locationa[A] matchesd if d ≡ a[d′] with d′ |= A, and the
compositionA1 | A2 matchesd if d ≡ d1 | d2 with di |= Ai for all
i ∈ {1,2}.

Example 2.The following formula of TL matches “valid” biblio-
graphical entries, like the term given in Example 1:

article[title[>] | author[>]
| ¬((title[>]∨ (year[>] | year[>])) | >)] .

This formula specifies that a valid bibliographical entry must con-
tain exactlyone field labeledtitle, at leastone field labeledauthor,
andat mostone field labeledyear, possibly alongside some other
(unspecified) fields. These constraints could be expressed more di-
rectly using sheaved composition, by saying that a valid entry must
be in one of the sets:

(nt ,na,ny,no) � ([[title[>]]], [[author[>]]], [[year[>]]],So) ,

wherent ,na,ny,no are integer variables such that(nt = 1) and(na >
1) and(ny 6 1) and(no > 0), andSo is the set of elements of the
form x[d] with x /∈ {title,author,year}.

One of the main contributions of this paper is to show that any
quantifier-free TL-formula can be expressed in the same way, that
is, as the product of integers vectors (definable in Presburger arith-
metics) by sequences of element formulas.

In the next section, we recall the background on Presburger arith-
metic and semilinear sets that we need in order to define the Sheaves
Logic (SL) formally, and then to prove its equivalence with the
quantifier-free fragment of TL.

3 Background

This section collects the necessary background on Presburger arith-
metic and its connection with semilinear sets. Presburger arithmetic
is the first-order theory of equality over the group(N,+) of natu-
ral numbers with addition. Presburger formulas (also called con-
straints) are described in the following table, whereM,N, . . . range
over integer variables andm,n, . . . range over integer constants.

Presburger Constraints

Exp::= Integer expression
n positive integer constant
N positive integer variable

Exp1 +Exp2 addition
φ,ψ, . . . ::= Presburger arithmetic formulas

(Exp1 = Exp2) test for equality
¬φ negation
φ∨ψ disjunction
∃N.φ existential quantification

Presburger constraints may be used to define a substantial class of
(decidable) properties over positive integers, like for example “the
value ofM is strictly greater than the value ofN”, using the formula
∃X.(M = N+X +1); or “M is an odd number”,∃X.(M = X +X +
1). In this paper, we use Presburger formulas to express arithmetical
constraints over multiplicities of multisets of elements.

Throughout the text we use the vector notation,n, for tuples of
integers, and|S| for the size (number of elements) ofS. We de-
note φ(N) a Presburger formula whose free variables are all in
N = (N1, . . . ,Np) and we use the notation|= φ(n1, . . . ,np) when
φ{N1�n1} . . . {Np�np} is satisfied.

The denotation[[φ(N)]] of a Presburger formulaφ(N) is the set of
integer vectorsn such that|= φ(n). Presburger arithmetic is an in-
teresting example in computational complexity theory because it is
one of the few problem that provably need more than polynomial
run time [19]: every algorithm which decides the truth of a Pres-
burger constraintφ, that is test whether[[φ]] = /0, has a runtime of
at least 2 (̂2ˆ(cn)) for some constantc, wheren is the length of
φ. (The expressiona ˆ b stands for the exponentiationab.) There is
also a known triply exponential upper-bound in the worst case [26],
that is for an unbounded alternation of quantifiers: the complex-
ity of checking the satisfiability of a formulaφ is in time at most
2 ˆ(2ˆ(2ˆ(pn))). The problem is NP-complete for the existential
fragment of Presburger arithmetic.

3.1 Semilinear Sets

Decidability of Presburger arithmetic may be proved using a con-
nection withsemilinear setsof natural numbers. Alinear setof Nn,
L(b,P), is a set of vectors generated by linear combination of the
periodsP = {p1, . . . ,pk} (with pi ∈ Nn for all i ∈ 1..p), with the
baseb ∈ Nn:

L(b,P) =def
{

b+ ∑
i∈1..k

λipi λ1, . . . ,λk ∈ N
}

.

A semilinear setis a finite union of linear sets. Semilinear sets
are closed under set operations and are exactly the models of Pres-
burger arithmetic formulas, that is, the set of integer vectors satis-
fying a formulaφ(N1, . . . ,Np) is a semilinear set ofNp and con-
versely. An important result is that semilinear sets are also closed
under the following typical operators of regular word languages:
L+M =def {x+y x∈ L,y∈M}, Ln =def L+ . . .+L (n times), and
L∗ =def

⋃
n≥0Ln.

PROPOSITION3.1 (FROM [16]). For any two semilinear sets
L,M of Np, the sets L+ M, Lk (k ∈ N) and L∗ are also semilinear
sets ofNp.

Presburger constraints and semilinear sets areeffectivelyequivalent,
that is, given a Presburger constraintφ, it is possible to compute the
bases and periods of a semilinear set representing[[φ]], and con-
versely [15]. To build a semilinear set corresponding to a given
Presburger constraint, it is enough to perform quantifier elimina-
tion on the constraint, a possibly expensive procedure.

3.2 Sum, Iteration and Derived Connectors

Using the relation between semilinear sets and Presburger formulas,
we can lift sum and iteration to the level of the logic. We also make
use of the usual derived connectives,conjunction∧, implication
→, anduniversal quantification∀. The essence of our equivalence
result (Section 5) is a connection between sum and tree composi-
tion. The sum of two formulas,φ(N)+ψ(N), is a formula such that
[[φ+ψ]] = [[φ]]+ [[ψ]].

AssumeN,N1 andN2 are disjoint sequences of variables.

(φ+ψ)(N) =def ∃N1,N2.(N = N1 +N2)∧φ(N1)∧ψ(N2)

As in the ambient logic, we may define the adjunct and the dual
operators for sum. We use the same notation as in TL for the
adjunct, �, such thatφ + ψ ` ξ if and only if φ ` ψ � ξ and
we denote‖ the DeMorgan dual of sum, defined by the relation
φ‖ψ =def ¬(¬φ +¬ψ). (The entailment relation,φ ` ψ, means
that [[φ]] ⊆ [[ψ]].) The following definition makes clear the corre-
spondence between� and the linear implication connector of linear
logic, which was already mentioned in [9].

AssumeM ,N,N1,N2 are disjoint sequences of variables.

(φ�ψ)(N) =def ∀M .φ(M)→ ψ(N+M)

(φ‖ψ)(N) =def ∀N1,N2.(N = N1 +N2)→ φ(N1)∨ψ(N2)

The following property states the soundness of these encodings and
relates� with a subtraction operation over the powerset ofNp.

PROPOSITION 3.2. Assumeφ andψ are two Presburger formulas
with the same free variables, then for every set of integer vectors,
S , we have:

S ⊆ [[φ+ψ]] ⇔ S ⊆ [[φ]]+ [[ψ]],
S ⊆ [[φ�ψ]] ⇔ S +[[φ]]⊆ [[ψ]] .

It is also possible to derive a formula for iteration,φ∗, such that
[[φ∗]] = [[φ]]∗, that is,|= φ∗(n) if and only if n is the sum of a finite
number of vectors satisfyingφ (we take the empty sum to stand for
the null vector,0 = (0, . . . ,0)). Unlike the previous cases, the defi-
nition of φ∗ is quite complex. One may find a possible construction
in [16, Section 3], which requires to compute the basis and periods
of the linear sets associated withφ. The size of the formulaφ∗ may
be exponentially bigger than the size ofφ.

Assumeφ is a formula such that[[φ]] =
⋃

i∈1..l L(bi ,Pi), with
Pi =

{
pi,1, . . . ,pi,l i

}
:

φ∗(N) =def ∃µi ,λi, j .
(
N = ∑

i6l

(
µibi + ∑

j6l i

λi, jpi, j
))

∧
∧

i6l
((∨

j6l i λi, j 6= 0
)
→ µi 6= 0

)
In the ambient logic, computing the denotation ofA� B requires
a universal quantification over[[A]] and it is therefore a costly op-
eration. This complexity issue does not appear as clearly in the
definition of subtraction. Given that an uncontrolled alternation of
+ and‖ produces Presburger formulas with an unbounded alterna-
tion of quantifiers, the use of� is not more problematic than the

combination of composition (+) and negation. More surprisingly,
when considering operators derived from TL, it appears that the
complexity is dominated by iteration.

4 The Sheaves Logic

The Sheaves Logic (SL) is a new modal logic for information trees
that directly encompasses Presburger constraints. The logic, sum-
marized below, is built upon a very limited set of modalities and
does not even directly embed propositional logic. Nonetheless, we
show in the next section how we can derive all the modalities of TL.

SL-Formulas

α ::= Label expression
a1, . . . ,an finite subset ofΛ
α⊥ complement ofα

E ::= Element formula
α[A] element with label inα

A ::= Counting formula
> true
∃N�φ(N) �E sheaves composition (with|N|= |E|)

We use uppercase lettersA,B, . . . to denote formulas of SL, but this
should not cause any ambiguity with TL. We refer to the sequence,
E, of element formulas appearing in a sheaves composition,A, as
thesupport vectorof A. Informally, an element formulaα[A] in a
support vector matches groups of elements of the forma[d], with
a∈ α. A composition,∃N�φ �E, is a quantification over the number
of elements in each of these groups, constrained by the Presburger
formulaφ. The last formula,>, does not constrain its model in any
way.

The meaning of SL-formulas is defined by means of a satisfaction
relation. To simplify the presentation, we extend sheaves composi-
tion to sequences of sets, where(n1, . . . ,np) � (S1, . . . ,Sp) stands for
the setSn1

1 | · · · | Snp
p .

Satisfaction

[[a1, . . . ,an]] = {a1, . . . ,an}
[[α⊥]] = Λ\ [[α]]

[[α[A]]] =
{

a[d] a∈ [[α]]∧d ∈ [[A]]
}

[[(E1, . . . ,Ep)]] = ([[E1]], . . . , [[Ep]])

[[>]] = I T
[[∃N�φ(N) �E]] =

⋃
n∈[[φ]] n � [[E]]

Label expressions represent finite and co-finite sets of elements. An
interesting example of label expression is/0⊥, that matches every
possible label. We use the notation AnyE for the element formula
/0⊥[>], matching every element inE .

The semantic definition of sheaves composition is probably easier
to understand in terms of the associated satisfaction relation. As-
sumeE is the support(E1, . . . ,Ep) andn = (n1, . . . ,np). An infor-
mation tree is in the setn � [[E]] if and only if it may be decomposed
into the product ofn1 elements satisfyingE1, . . . , andnp elements
satisfyingEp.

d ∈ n � [[E]] ⇔
{

d≡ ∏i∈1..p(ei
1 | · · · | e

i
ni
)

ei
j |= Ei for all i ∈ 1..p, j ∈ 1..ni

Thend satisfies∃N� φ � E if and only if there exists a sequence of
multiplicities,n, such that|= φ(n) andd ∈ n � [[E]].

The syntax of SL does not restrict the set of support vectors that
may be used in a formula. Nonetheless, some supports have bet-
ter properties than others. For example, a support vector may be
generating, that is,

⋃
n∈Np n � [[E]] = I T , or its element formulas

may have disjoint interpretations. In the latter case, we say that the
element formulas arelinearly independent. This property is inter-
esting since, in this case, it can be proved that the decomposition of
a tree is always unique, that is,n � [[E]]∩m � [[E]] 6= /0 if and only if
n = m. Drawing a parallel with linear algebra, we define a notion
of “good” support vectors, that we callbases, which are maximal
sequences of linearly independent element formulas. We fulfill the
canonical property of linear algebra: every information tree admits
a unique decomposition following a given basis.

DEFINITION 4.1 (BASIS). A vector (E1, . . . ,Ep) is a basis if
and only if i 6= j implies [[Ei]]∩ [[E j]] = /0 for all i , j ∈ 1..p and⋃

i∈1..p[[Ei]] = E . A basisE is proper if and only if every support
vector appearing in a subformula ofE is also a basis.

The simplest example of (proper) basis is the singleton se-
quence AnyE. Another simple example is the sequence(a1[>],
. . . ,ap[>],Σ⊥[>]), whereΣ = {a1, . . . ,ap} is a finite subset ofΛ.

5 Encoding TL in SL

In this section, we define derived formulas for every operator of TL.
As a result, we obtain a compositional encoding from TL to SL that
preserves the interpretation of formulas.

5.1 Derived Operators

Let A be the composition∃N�φ �E. If the counting constraint is only
satisfied by the null vector thenA only matches0. Likewise, if φ is
a tautology andE is generating thenA matches every tree inI T .
Finally, we can easily encode the location formula,α[A], using as
support vector the (size 1) sequenceα[A].

0 =def ∃N� (N = 0) �AnyE
True =def ∃N� (N > 0) �AnyE
α[A] =def ∃N� (N = 1) �α[A]

The next proposition states that our encoding is faithful to the mean-
ing of these operators in TL.

PROPOSITION 5.1. The following three equations hold:

[[0]] = {0},
[[α[A]]] = {a[d] a∈ α∧d ∈ [[A]]},
[[True]] = [[>]] = I T .

We can as easily transfer the “positive” composition operators of TL
(disjunction, parallel composition and iteration) to SL if we assume
that the formulas use the same support.

AssumeA = ∃N�φA �E andB = ∃N�φB �E.

A∨B =def ∃N� (φA∨φB) �E
A | B =def ∃N� (φA +φB) �E
A∗ =def ∃N� (φ∗A) �E

The soundness of these encodings is based on the algebraic proper-
ties of the semi-ring(2I T ,∪, /0, |,{0}), like distributivity of parallel
composition over set union, for the encoding of disjunction, and the
exponentiation rule,Sn1 | Sn2 = Sn1+n2, for the encoding of compo-
sition.

PROPOSITION 5.2. Assume A= ∃N�φA �E and B= ∃N�φB �E then
the following equations hold:

[[A∨B]] = [[A]]∪ [[B]],
[[A | B]] = [[A]] | [[B]],

[[A∗]] = [[A]]∗ .

Encoding “negative” operators is not as simple. In particular, the
complement of a composition,A = ∃N�φ �E, is not necessarily the
formulaA⊥ = ∃N� (¬φ) �E, obtained by complementing the count-
ing constraint. Possible sources of problems are non-generating
support vector. A simple example illustrates this case. LetA
be the composition∃N � (N = 0) � a[>], with model

{
0
}

. Then
A⊥ = ∃N� (N 6= 0) �a[>] matches trees with only elements labeled
a at top-level, but does not match the treea[] | b[].

In the case of sheaves formulas built from a common basis, we can
interpret negation and composition adjunct in a direct manner.

AssumeA = ∃N�φA �E andB = ∃N�φB �E whereE is a basis.

¬A =def ∃N� (¬φA) �E
A∧B =def ∃N� (φA∧φB) �E
A�B =def ∃N� (φA �φB) �E

The soundness of these encodings directly relies on the canonical
property of bases, that is, ifE is a basis then for every treed there
is a unique vector of multiplicities,n, such thatd ∈ n � [[E]]. In the
case of negation, for example, we obtaind ∈ [[∃N�φ �E]] if and only
if |= φ(n), as needed.

PROPOSITION 5.3. Assume A= ∃N� φA � E and B= ∃N� φB � E,
with E a basis, then:

[[¬A]] = I T \ [[A]],
[[A∧B]] = [[A]]∩ [[B]],
[[A�B]] = {d ∀d′ ∈ [[A]],(d | d′) ∈ [[B]]} .

Given the encoding of negation, it is possible to define a new en-
coding of location built over a basis.

AssumeA = ∃N�φA �E whereE is a basis.

α[A] =def ∃N1,N2,N3 � (N1 = 1)∧(N2 = N3 = 0)
� (α[A], α[¬A], α⊥[>])

Next, we prove our main result that for every formula of TL, there
exists an equivalent formula in SL. To overcome a small technical
difficulty with the encodings of the derived operators, namely that
we should work with formulas defined on a common basis, we show
that we can always operate on formulas defined on a common basis.

PROPOSITION5.4 (SUPPORTREFINEMENT). Given a sequen-
ce of formulas(A1, . . . ,An), where Ai is defined over a proper basis
for all i ∈ 1..n, we can build a sequence of formulas(B1, . . . ,Bn),

defined on a common proper basis, such that[[Ai]] = [[Bi]] for all
i ∈ 1..n.

PROOF. See Proposition A.3 in Appendix A.

5.2 Equivalence Result

The main theorem of this section is obtained by assembling our
different results.

THEOREM 5.1. For any TL-formula A, there is a SL-formula B
defined over a proper basis such that[[A]] = [[B]].

PROOF. By induction on the syntax ofA. We use Proposi-
tions 5.1, 5.2 and 5.3 to translate every operator and, at each step,
we use Proposition 5.4 to ensure that we work with formulas de-
fined on a common proper basis.

It is also possible to prove an inclusion in the other direction. (For
the sake of brevity, we do not give the details of the reverse encod-
ing here, but a complete proof may be found in [18].)

THEOREM 5.2. For any SL-formula A, there is a TL-formula B
such that[[A]] = [[B]].

Iteration is essential in the proof that TL contains SL: without iter-
ation, SL is strictly more expressive than TL. Conversely, we have
omitted existential quantification over names,∃x.A, in the syntax of
TL. Our approach does not easily extend to the logic with quantifier.
(Since the ambient logic with universal quantifier and composition
adjunct is undecidable [12], there is not much hope!) Nonetheless,
we can encode a weaker form of quantification using label expres-
sions. For instance, we may encode the formula∃x.x[A], with x not
occurring inA, using the element formula/0⊥[A]. Label expressions
may also encode a limited form of fresh quantification [10, 20],
Nx.A, with the intuitive meaning thatA is true for almost every
namex, except a finite number. The idea is to replace every occur-
rences ofx by α⊥, whereα is a set of labels containing the free
names ofA.

5.3 Examples

To illustrate our results, we use our approach to prove the validity
of simple statements in TL.

Our first equation below states that a single element not labeled with
a is a “single-threaded” tree (a tree with exactly one branch at the
root: ¬0∧¬(¬0 | ¬0)) that is not an element of the forma[d] (the
formula¬a[>]).

a⊥[>] = ¬0∧¬(¬0 | ¬0)∧¬(a[>]) (1)

We consider the basisE = (a[>],a⊥[>]) and only reason on the
counting constraints. We use the variableM for the number of el-
ements matchinga[>] andN for the number of elements matching
a⊥[>]. We have that¬(a[>]) corresponds to¬((M = 1)∧(N = 0)).
Likewise,¬0 corresponds to the formula¬((M = 0)∧(N = 0)) (or
equivalentlyM +N 6= 0) and¬0 | ¬0 corresponds to:

∃M1,N1,M2,N2.(M = M1 +M2)∧(N = N1 +N2)∧
(M1 +N1 6= 0)∧(M2 +N2 6= 0)

which is equivalent toM +N > 2. By combining these three Pres-
burger formulas, we obtain that the right-hand side of (1) corre-
sponds to(M+N = 1)∧¬((M = 1)∧(N = 0)), which is equivalent
to (M = 0)∧(N = 1), as needed.

The second equation states that a composition of elements nameda
may not contain (at top-level) an element not labeled witha.

a[>]∗ = ¬(> | a⊥[>]) (2)

We use the same basis than in the previous example and only con-
centrate on the counting constraints. The left-hand side of (2) trans-
lates to((M = 1)∧(N = 0))∗, that is, to(M > 0)∧(N = 0). For the
right-hand side,> | a⊥[>] corresponds to:

∃(Mi ,Ni)i∈1,2.(M = M1 +M2)∧(N = N1 +N2)∧(N2 > 1)

which is equivalent to(M > 0)∧(N > 1), as needed.

These examples illustrate how we can simply reduce the reason-
ing on TL to pure arithmetical reasoning. Presburger arithmetic is
amenable to automatic theorem proving: there exist several dedi-
cated provers [2, 28] and many available “generic” theorem provers
include a decision procedure for (at least a fragment of) Presburger
arithmetic. Therefore, a possible application of our encoding is to
directly assert, or infer, valid statements in TL.

In order to deal with more general problems, we need a flexible
framework for reasoning on the models of SL-formulas. Using the
classical connection between logic and automata theory, we pro-
pose in the next section a class of tree automata specifically targeted
at the manipulation of sheaves formulas.

6 Sheaves Automata

Information trees are essentially trees modulo an associative-
commutative (AC) theory, it is therefore natural to use tree automata
to reason on them. Nonetheless, regular tree automata [14] are not
satisfactory in the presence of AC operators, such as composition|,
and we need to introduce an extended class of automata tailored to
our need.

A (bottom-up) sheaves automatonA is a triple〈Q,Qfin, R〉 where
Q =

{
q1, . . . ,qp

}
is a finite set of states,Qfin is a set of final states

included inQ, andR is a set of transition rules. Transition rules are
two kinds:

(1) α[q′]→ q
(2) φ(#q1, . . . ,#qp)→ q

Type (1) rules correspond to transition rules in regular tree automata
(we only have unary function symbols,α[.]). A minor difference
is that, in order to work with infinite sets of labels, we use label
expressions instead of simple labels.

Type (2) rules allow to compute on nodes with an unbounded ar-
ity, arising from the composition of two or more information trees.
In type (2) rules,φ is a Presburger formula with free variables
#q1, . . . ,#qp (one for each state inQ). Intuitively, #qi is a variable
that will be substituted by the number of occurrences of the stateqi
in a transition of the automata. A type (2) rule may fire if we have
a term of the forme1 | . . . | en such thatei leads to a stateq j i ∈ Q
for all i ∈ 1..n, and|= φ(m1, . . . ,mn), wheremi is the multiplicity of
qi in the multisetq j1 | · · · | q jn. A particular example of transition is
obtained if|= φ(0, . . . ,0), in which case the ruleφ → q may fire for
the null tree,0.

Example 3.Let A be the automaton with statesQ = {qa,qb,qs},
set of final statesQfin = {qs} and the following transition rules:

a[qs]→ qa b[qs]→ qb (#qa = #qb)∧(#qs > 0)→ qs

We show in Example 4, after defining the transition relation, thatA
accepts exactly the set of trees with as manya’s asb’s at each node,
like for exampleb[] | a[b[] | a[]].

6.1 Transition Relation

The transition relationof an automatonA is the transitive closure
of the relation defined by the two following rules. We use the nota-
tion #Q(q j1 | . . . | q jn) for the multiplicities of the states ofQ in the
multisetq j1 | . . . | q jn.

Transition Relation: →
(type 1)
d→ q′ α[q′]→ q∈ R a∈ α

a[d]→ q

(type 2)
e1 → q j1 . . . en → q jn φ → q∈ R

(n 6= 1) #Q(q j1 | . . . | q jn) ∈ [[φ]]
e1 | . . . | en → q

To avoid ambiguities, a side-condition in the rule for constrained
transitions ensure that it cannot be applied to sequences,a[d], with
a single element. It could be possible to have only one kind of
transition rule, but it would needlessly complicate our definitions
and proofs without adding expressivity.

Example 4.Let A be the automaton defined in Example 3. Since
the constraint in the type (2) rule ofA is satisfied by(0,0,0), we
have that0 → qs. Let d be the treea[] | b[a[] | b[]], a possible
accepting run of the automaton is given below:

d → a[0] | b[a[qs] | b[0]] → a[qs] | b[a[qs] | b[0]]
→ a[qs] | b[a[qs] | b[qs]] → qa | b[a[qs] | b[qs]]
→ qa | b[a[qs] | qb] → qa | b[qa | qb]
†→ qa | b[qs] → qa | qb

†→ qs

In transitions 7 and 9 (marked with a †-symbol), we use the only
constrained rule ofA . In each case, the multiset used in the con-
straints isqa | qb, which contains as manyqa’s thanqb’s (that is,
#Q(qa | qb) = (1,1,0)).

We say that an automatonA is deterministicif and only if for every
pair of distinct type (1) rules,α[q] → q1 andβ[q] → q2, we have
[[α]]∩ [[β]] = /0 and for every pair of distinct type (2) rules,φ → q1
andψ → q2, we have[[φ]]∩ [[ψ]] = /0. A property of deterministic
automata is that for each treed there is at most one stateq ∈ Q
such thatd → q. As usual, we say that a treed is acceptedby an
automatonA if there is a final stateq∈ Qfin such thatd → q. The
languageL(A) is the set of trees accepted byA .

The class of automata considered in this paper is a subset of
a richer (homonym) class of tree automata defined by the au-
thors [16, 17, 24]. In the original version, sheaves automata may
be used on terms built from an arbitrary number of free function
symbols and from any number of associative and AC operators.
Therefore, the definition of sheaves logic may be extended to an ar-
bitrary signature, giving an elegant way to extend our results to an
algebra with sequential composition and (not only unary) function
symbols. When restricted to tree composition, sheaves automata
correspond to a particular instance ofmultiset automata[13], de-
fined by Colcombet to reason on higher-order versions of Process
Rewrite Systems. More significantly, we can draw a parallel be-
tween sheaves automata andhedge automata[25], an extension of

regular tree languages at the basis of RELAX-NG [29], a schema
language for XML. Whereas hedge automata operate on an ordered
model of trees and use regular word languages to constrain ordered
bunches (sequences) of elements, we work on an unordered model
and use semilinear sets to constrain the multiplicities of unordered
bunches (multisets) of elements.

6.2 Closure Properties

Given two Sheaves AutomataA = 〈Q,Qfin,R〉 and A ′ =
〈Q′,Q′

fin,R′〉, we can construct theproduct automaton, A×A ′, that
will prove useful in the definition of the automata for union and in-
tersection. The productA×A ′ is the automatonA× = 〈Q×, /0,R×〉
such thatQ× = Q×Q′ = {(q1,q′1), . . . ,(qp,q′r)} and:

• for every type (1) ruleα[q] → s∈ R andβ[q′] → s′ ∈ R′, if
α∩β 6= /0 then the rule(α∩β)[(q,q′)]→ (s,s′) is in R×,

• for every type (2) ruleφ → q ∈ R andφ′ → q′ ∈ R′, the rule
φ×→ (q,q′) is in R×, whereφ× is the product of the formulas
φ andφ′ obtained as follows. Let#(q,q′) be the variable asso-
ciated to the numbers of occurrences of the state(q,q′), then
φ× is the formula:

φ
(
∑q′∈Q′ #(q1,q′), . . . ,∑q′∈Q′ #(qp,q′)

)
∧ φ′

(
∑q∈Q #(q,q′1), . . . ,∑q∈Q #(q,q′r)

)
The following property states the soundness of this construction.

PROPOSITION 6.1. We have d→ (q,q′) in the automatonA×A ′,
if and only if both d→A q and d→A ′ q′.

Given two automata,A andA ′, it is possible to build an automaton
accepting the languageL(A)∪L(A ′) and an automaton accepting
L(A)∩L(A ′). The intersectionA ∩A ′ and the unionA ∪A ′ may
be obtained from the productA ×A ′ simply by setting the set of
final states to:

Q∩
fin =def

{
(q,q′) q∈Qfin ∧ q∈Q′

fin

}
Q∪

fin =def
{
(q,q′) q∈Qfin ∨ q∈Q′

fin

}
The union automaton may also be obtained using a simpler con-
struction, similar to the one for finite state (word) automata, leading
to an automaton with statesQ∪Q′.

PROPOSITION 6.2. The automatonA∪A ′ acceptsL(A)∪L(A ′)
andA ∩A ′ acceptsL(A)∩L(A ′).

The class of sheaves automata is also closed by complementation.
The construction of the complement of an automaton is similar to
a determinization procedure. (In particular, the complemented au-
tomaton may be exponentially bigger than the original).

PROPOSITION 6.3. Given an automatonA we can build an au-
tomatonA⊥ such thatL(A⊥) = I T \L(A).

The product construction yields an efficient algorithm to test the in-
clusionL(A) ⊆ L(A ′), provided thatA ′ is deterministic. In this
case, we simply need to test the emptiness of the language accepted
by A×A ′ with final statesQfin×(Q′ \Q′

fin). Using our equivalence
and definability results, Th. 5.1 and 6.1, we may relate this problem
to testing whether a formula of TL is a “subtype” of another for-
mula, an important issue in the implementation of the programming
language TQL.

6.3 Membership and Test for Emptiness

In this section, we consider the problem of checking if an informa-
tion tree is accepted by a given automaton.

Assume there is a functionCost such that, for all constraintsφ,
the evaluation ofφ(n1, . . . ,np) can be done in timeO(Cost(p,n))
wheneverni 6 n for all i in 1..p. For quantifier-free Presburger
formula (and ifn is in binary notation) such a function is given
by K.p. log(K.p.n), whereK is the greatest coefficient occurring
in φ. For arbitrary situations, that is, for formulas with unbounded
quantifier alternation, evaluating a formula is as hard as testing its
satisfiability and therefore the complexity is triply exponential.

PROPOSITION 6.4. For an automaton A = 〈Q,Qfin,R〉, the
model-checking problem, d∈ L(A), can be decided in time
O(|d|.|R|.Cost(|Q|, |d|)) for a deterministic automaton. The prob-
lem is NP-complete for a non-deterministic automaton.

We give an algorithm for deciding emptiness based on a standard
marking algorithm for regular tree automata. The marking algo-
rithm computes two sets of states,QM andQE, whereQM corre-
sponds to reachable states andQE corresponds to states reachable
by an element (i.e., through the application of a type (1) rule). The
algorithm returns a positive answer if and only if there is a marked
final state.

In the case of constrained rules,φ → q, we need to check whether
there is a multiset of marked elements whose mapping satisfiesφ.
This amounts to checking the satisfiability of the Presburger for-
mulaφ(#q1, . . . ,#qp)∧

∧
q/∈QE

#q = 0. When this formula is satisfi-
able, we say that the constraintφ \QE is satisfiable. In particular,
the constraintφ\ /0 is satisfiable if and only if|= φ(0).

Algorithm 1. Test for Emptiness

QE = /0
QM = {q φ → q∈ R∧ |= φ(0)}
repeat

if α[q′]→ q∈ Randq′ ∈QM andα 6= /0
then QM := QM ∪{q} and QE := QE ∪{q}
if φ → q∈ R andφ\QE is satisfiable
then QM := QM ∪{q}

until no new state can be added toQM

if QM contains a final state
then returnnot emptyelse returnempty

PROPOSITION 6.5. A state q is marked by Algorithm 1 if and only
if there exists a tree d such that d→ q.

We may prove prove this claim using a reasoning similar to the
one for regular tree automata. We can also establish a result on the
complexity of this algorithm. LetCostA denote the maximal time
required to decide the satisfiability of the constraints occurring in
type (2) rules ofA .

PROPOSITION 6.6. The problem L(A) ?= /0 is decidable in time
O(|Q|.|R|.CostA).

In the case of regular tree automata, it is possible to find a more
refined algorithm for the emptiness problem, based on the satisfia-
bility of propositional Horn clauses, with only a linear complexity
in the size ofA . Therefore we may hope to improve our complexity
result.

6.4 Results on the Tree Logic

We prove our main property linking sheaves automata and the
sheaves logic and use this result to derive several complexity re-
sults on the fragment of Ambient Logic studied in this paper.

THEOREM 6.1 (DEFINABILITY). For every SL-formula A, we
can build an automatonA accepting the models of A.

PROOF. By structural induction on the definition ofA. In the case
A = > we can simply choose an “all accepting” automaton. For
example, the automaton with unique (final) state,q, and with rules
/0⊥[q]→ q, and(#q > 0)→ q.

The only other case isA = ∃N� φ � E, whereE is a support vector
(α1[A1], . . . ,αp[Ap]). By induction, there is an automatonAi ac-
cepting the models ofAi for all i ∈ 1..p. From an automatonC
accepting the models ofC, we can construct an automatonCα ac-
cepting the set

{
a[d] d ∈ [[C]],a ∈ α

}
: if α = /0, then[[α[C]]] = /0

and we can simply choose forCα any automaton with an empty set
of final states; otherwise, we obtainCα from C by adding a fresh
new stateqs, that will be the only final state ofCα, and by adding
one type (1) ruleα[q] → qs for each final stateq of C . Thus, we
may build an automatonBi accepting the models ofαi [Ai] for all
i ∈ 1..p.

The construction ofA is similar to a determinization process. Let
A be the product automaton of theBi ’s and let{Q1, . . . ,Qm} be the
states ofA . A stateQ of A is of the form(q1, . . . ,qp), with qi
a state ofBi , and may represent terms accepted by several of the
Bi ’s. We use the notationQ ∈ fin(i) to say that theith component
of Q is a final state ofBi . The constrained rules ofA are of the
form ψ(M1, . . . ,Mm) → Q , whereMi stands for the number of oc-
currences of the stateQi in a run. The idea is to extendA with a
fresh new state,qs, that will be its only final state, and to add a new
rule φ∃(M1, . . . ,Mm) → qs, whereφ∃ is satisfied by configurations
Q j1 | · · · | Q jn containing only states in fin(i) (for somei ∈ 1..p).
The formulaφ∃, given below, is obtained by decomposingMi into
a sum of integer variablesXi

j , for j ∈ 1..p, corresponding to final
states ofB j occurring inQi .

∃
(
Xi

j

)
i∈1..m
j∈1..p

·


∧

i∈1..m
(
Mi = ∑ j∈1..p

Qi∈fin(j)
Xi

j

)
∧ φ
(
∑ i∈1..m

Qi∈fin(1)
Xi

1, . . . ,∑ i∈1..m
Qi∈fin(p)

Xi
p
)


The property follows by showing thatd |= A if and only if d ∈
L(A).

A formula A of SL is basically a (syntax) tree where each node is
labeled by a sheaves composition,∃N�φ �E, and has|E| sons. Using
the underlying tree structure of formulas, we can define the height,
h(A), and the degree,d(A), of a formulaA. The construction of the
automaton recognizing a formulaA requires to compute the product
of at mostd(A) automata for each composition inA. Therefore, the
size of the automaton is bounded byT ˆ (d(A) ˆh(A)), whereT is
a constant bounding the size of the automaton recognizing>. The
decidability (and the complexity) of SL follows from Th. 6.1 and
Proposition 6.6. The complexity is doubly exponential in the size
of A (like in Proposition 6.6, we abstract over the complexity of
deciding the satisfiability of the Presburger constraints).

THEOREM 6.2 (SATISFIABILITY). For any formula A of SL, the
satisfiability problem[[A]] = /0 is decidable in time O(T2 ˆ (d(A) ˆ
h(A))).

Combined with our previous results on the embedding of TL in
SL we also obtain decidability properties for the tree logic, as well
as automata-based decision procedures for the model-checking and
subtyping problems. Indeed, from a formulaA of TL we can build
an equivalent SL-formula with the same depth (which is bounded
by |A|) and with degree at most 3ˆ|A|. The value 3 comes from the
size of the basis used in the encoding of location (Section 5.1). We
obtain that the satisfiability problem for TL is in double exponential
time. Once more, we abstract over the complexity of Presburger
formulas.

THEOREM 6.3 (SATISFIABILITY). For any formula A of TL, the
satisfiability problem[[A]] = /0 is decidable in time O(T2ˆ(3ˆ|A|2)).

7 An Efficient Tree Logic

Constrained rules of sheaves automata,φ → q, are used to explore
the horizontal structure of trees. Sheaves automata can as easily
explore vertical structure and be used to match paths of (nested el-
ements) labels. We can simply take advantage of the intrinsic re-
cursive nature of automata, which may contain cyclic dependencies
between states, to compile path expressions.

In this section, we extend the syntax of SL with recursive defini-
tions. For the sake of brevity, we will stay at an informal level
compared to the rest of the paper. Actually, our primary goal is to
prove that path expressions and iteration are indeed two orthogonal
forms of recursion and that our framework can easily be enriched
with path expressions. We also study a simple syntactic restriction
on formulas that improves the effectiveness of our approach.

Recursive Sheaves Logic

X,Y, . . . recursive variables
E ::= element formula

α[X] element with label inα
D ::= recursive definition

X � ∃N�φ(N) �E sheaves composition
A ::= RSL formula
〈D1, . . . ,Dn;X〉

The syntax of formulas is even leaner than in SL and is reminiscent
of tree grammar: location is restricted to variables and a formula
is simply a set of recursive definitions with a distinguished (initial)
variable.

The connection with tree grammar is even clearer in the definition
of the satisfaction relation. A treed matches a formula〈D;X〉, de-
notedD ` d : X, if and only if there is a definition(X � ∃n�φ �E) in
D such thatd ∈ n � [[E]] and|= φ(n), that is,d |= ∃N�φ �E in SL. We
also adjust the rule for element formulas. An elementa[d] matches
α[Y] (in the contextD) if and only if a∈ α andD ` d : Y. For exam-
ple, if AnyD is the recursive definitionX � ∃N� (N > 0) � /0⊥[X] the
formula〈AnyD;X〉matches every tree inI T (it provides a possible
encoding of>).

Granted the relation with tree grammar, it is not necessary to use
tree automata to decide the logic. Indeed, there exist efficient ways
to manipulate grammars that do not (explicitly) require automata-
based techniques. Nonetheless, the compilation from RSL to
sheaves automata is straightforward and provides a good idea of
how sheaves automata combine well with recursion. An interesting
property of the automatonA obtained from a formulaA is that ev-
ery variable ofA corresponds to a single state inA , and the sizes of

A andA are proportional.

THEOREM 7.1 (DEFINABILITY). For every formula A, we can
build an automatonA of size O(|A|) accepting the models of A.

PROOF. AssumeA = 〈D;X〉. For every element formulaα[Y] and
every variableZ occurring inA we set up the statesqα[Y] andqZ. Let
Q be the set of all such states. Then, for every element formulaα[Y]
we set up the type (1) ruleα[qY] → qα[Y] and for every definition
Y� ∃N�φ �E in D, with E = (α1[Y1], . . . ,αp[Yp]), we set up the type
(2) rule: φ(#qα1[Y1], . . . ,#qαp[Yp]) → qY. Let R be the set of all such
rules. The sheaves automaton with statesQ, rulesR and final state
the singleton{qX} accepts the models ofA.

Using the definition of the derived operators given in Section 5.1,
we can prove that RSL corresponds to an extension of TL with re-
cursive definitions, where the location operator is limited to recur-
sive variable,a[X]. For example, formula (3), below, is satisfied
by trees with a path(a.b)∗ and (4) is satisfied by trees matchingA
somewhere.〈

X � (a[Y] | >)∨0 , Y� (b[X] | >) ; X
〉

(3)〈
X � (/0⊥[X] | >)∨A ; X

〉
(4)

This restriction does not excessively limit the expressiveness of the
logic. Although the resulting extension of TL is less expressive than
the logic enriched with general least and greatest fixpoints, as found
in [9], it is possible to encode all the path operators used in TQL [7].
Additionally, this simple syntactical restriction precludes the defini-
tion of degenerate recursive formulas, of the formµX.a[X] | a[a[X]],
where variables appear at different depths and match “unbalanced”
set of trees (growing as well in breadth and in depth).

A limitation of our approach is that trees must be processed bottom-
up. This strategy may be inefficient for large information trees
since, in this case, we want to work “on-the-fly”, without com-
pletely loading a tree before processing it. To avoid this problem,
we may impose a simple syntactic restriction on RSL in order to
work with top-down sheaves automata. We take inspiration from a
restriction on (sequential composition in) XML Schema [30, Sec-
tion 3.8.6], known asConsistent Element Declarations.

We say that a support(α1[X1], . . . ,αp[Xp]) hasconsistent element
declarations(CED) if every label uniquely determines a recursive
variable: for alli, j ∈ 1..p, if i 6= j thenXi 6= Xj andαi ∩α j = /0. A
formula〈D;X〉 has CED if every variable is defined (appears at the
left-hand side) exactly once inD and if the support of every defini-
tion in D has CED. (A formula with consistent element declarations
may contain two elementsα[X] andα[Y], with X 6=Y, provided they
do not appear in the same definition.) Once more, this restriction
may be transferred to TL. It corresponds to definitionsX � A such
that, for every pair of subformulasa[X] anda[Y] occurring inA,
we haveX = Y. Formula (3) is an example of a TL-formula with
consistent element declarations.

If we restrict to formulas with consistent element declarations, it
is possible to construct top-down sheaves automata accepting the
same models. Informally, the construction is based on the fact that,
given a definitionX � ∃N� φ � E to match, the label of an element
fully specifies the element formula inE that we should try to satisfy.

8 Conclusion

This paper is concerned with a fragment of ambient logic that may
be seen as a kind of regular expression language over tree-like data

structures. More formally, it is an algebra with two orthogonal com-
position operators:tree composition, | , that is commutative and
follows the horizontal structure of a tree andlocation, a[], that is
akin to sequential compositiona. (of a letter with a word) and fol-
lows the vertical structure of a tree. In contrast to the situation found
with regular tree expressions, there was no equivalent to regular tree
automaton for accepting the languages associated to TL.

Our contribution is a class of tree automata for processing informa-
tion trees and a compilation method that associates to every formula
of TL an automaton accepting the same models.

Our approach reveals a connection between TL and arithmetical
constraints on vectors of integers, expressed as formulas of Pres-
burger arithmetic. A possible line for future work could be to ex-
tend this relation to other examples of substructural logics, like for
example additive fragments of Linear Logic or versions of the logic
of Bunched Implications [4, 22]. It is worth mentioning that some
complexity results on fragments of linear logic have been proven
through reduction to problems on Petri Nets [23] (that is, equiv-
alently, on vector addition systems), which may indicate that this
relation has already been partially unveiled.

Our automata-based approach to the manipulation of formulas in
the ambient logic may be useful in the implementation of query
languages based on an unordered tree model, like TQL [7] for ex-
ample. However, the logic as presented in Section 4, still lacks
in-depth recursion,e.g. the capacity to encode path expressions,
and additional work is needed to formalize the extension with re-
cursive definitions proposed in Section 7. Another line for future
work will be to develop a method for obtaining a sheaves automa-
ton directly from a TL-formula. Currently, the construction of a
sheaves automaton corresponding to a formula of TL requires to
build first an equivalent formula in SL. (In this respect, SL appears
as a kind of assembly language.) A benefit of this simplification is
that it could lead to a more refined study of the complexity of TL,
perhaps enabling us to isolate “simple” classes of queries.

9 Acknowledgments

We would like to thank Philip Wadler for pointing out theConsis-
tent Element Declarationsrestriction on XML Schema.

This work is partially supported by ATIP CNRS “Fondements de
l’Interrogation des Donńees Semi-Structurées” and by IST Global
Computing PROFUNDIS.

10 References

[1] S. Abiteboul, P. Buneman, and D. Suciu.Data on the Web:
From Relations to Semistructured Data and XML. Morgan
Kaufmann, 1999.

[2] B. Boigelot, S. Jodogne, and P. Wolper. On the use of weak
automata for deciding linear arithmetic with integer and real
variables. InInternational Joint Conference on Automated
Reasoning (IJCAR), volume 2083 ofLNCS, pp. 611–625.
Springer, 2001.

[3] C. Calcagno, L. Cardelli, and A. D. Gordon. Deciding validity
in a spatial logic for trees. InACM Workshop on Types in
Language Design and Implementaion, TLDI ’03, pp. 62–73.
ACM Press, 2003.

[4] C. Calcagno, H. Yang, and P. O’Hearn. Computability and
complexity results for a spatial assertion language for data

structures. InFoundations of Software Technology and The-
oretical Computer Science (FST & TCS), volume 2245 of
LNCS. Springer, 2001.

[5] L. Cardelli. Describing semistructured data.SIGMOD
Record, 30(4), 2001. Database Principles Column.

[6] L. Cardelli and L. Caires. A spatial logic for concurrency
(part I). InTheoretical Aspects of Computer Software (TACS),
volume 2215 ofLNCS, pp. 1–37. Springer, 2001.

[7] L. Cardelli and G. Ghelli. A query language based on the
ambient logic. InESOP’01, volume 2028 ofLNCS, pp. 1–22.
Springer, 2001.

[8] L. Cardelli and A. Gordon. Mobile ambients. InFoundations
of Software Science and Computation Structures (FoSSaCS),
volume 1378 ofLNCS, pp. 140–155. Springer, 1998.

[9] L. Cardelli and A. Gordon. Anytime, anywhere: Modal logic
for mobile ambients. InPrinciples of Programming Lan-
guages (POPL). ACM Press, 2000.

[10] L. Cardelli and A. Gordon. Logical properties of name restric-
tion. In Typed Lambda Calculus and Applications (TLCA),
volume 2044 ofLNCS. Springer, 2001.

[11] W. Charatonik, S. Dal Zilio, A. Gordon, S. Mukhopadhyay,
and J.-M. Talbot. Model checking mobile ambients.Theoret-
ical Computer Science, 308(1):277–332, 2003.

[12] W. Charatonik and J.-M. Talbot. The decidability of model
checking mobile ambients. InConference of the European
Association for Computer Science Logic (CSL), volume 2142
of LNCS, pp. 339–354. Springer, 2001.

[13] T. Colcombet. Rewriting in the partial algebra of typed
terms modulo AC. InInternational Workshop on Verifica-
tion of Infinite-State Systems (INFINITY), volume 68 ofElec-
tronic Notes in Theoretical Computer Science. Elsevier Sci-
ence, 2002.

[14] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard,
D. Lugiez, S. Tison, and M. Tommasi. Tree automata
techniques and applications. Available on:http://www.
grappa.univ-lille3.fr/tata, 1997. release October, 1st
2002.

[15] D. Cooper. Theorem-proving in arithmetic without multipli-
cation.Machine Intelligence, 7, 1972.

[16] S. Dal Zilio and D. Lugiez. Multitrees automata, Presburger
constraints and tree logics. Technical Report 08-2002, LIF,
June 2002.

[17] S. Dal Zilio and D. Lugiez. XML schema, tree logic and
sheaves automata. InRewriting Techniques and Applications
(RTA), volume 2706 ofLNCS, pp. 246–263. Springer, 2003.
Appears also as Technical Report 4641, INRIA, Nov. 2002.

[18] S. Dal Zilio, D. Lugiez, and C. Meyssonnier. A logic you can
count on. Technical report, INRIA, 2003. (to appear).

[19] M. Fischer and M.O.Rabin. Super-exponential complexity of
presburger arithmetic. InSIAM-AMS Symposium in Applied
Mathematics, volume 7, pp. 27–41, 1974.

[20] M. J. Gabbay and A. M. Pitts. A new approach to abstract
syntax involving binders. InSymposium on Logic in Com-
puter Science (LICS), pp. 214–224. IEEE, 1999.

[21] H. Hosoya and B. C. Pierce. Regular expression pattern
matching for XML. InPrinciples of Programming Languages
(POPL), pp. 67–80. ACM Press, 2001.

[22] S. Ishtiaq and P. W. O’Hearn. BI as an assertion language
for mutable data structures. InPrinciples of Programming
Languages (POPL), pp. 14–26. ACM Press, 2001.

[23] M. Kanovich. Horn programming in linear logic is NP-
complete. InSymposium on Logic in Computer Science
(LICS), pp. 200–210. IEEE, 1992.

[24] D. Lugiez. Counting and equality constraints for multitree au-
tomata. InFoundations of Software Science and Computation
Structures (FoSSaCS), volume 2620 ofLNCS, pp. 328–342.
Springer, 2003.

[25] M. Makoto. Extended path expression for XML. InPrinciples
of Database Systems (PODS). ACM Press, 2001.

[26] D. C. Oppen. A 22
2pn

upper bound on the complexity of pres-
burger arithmetic.Journal of Computer and System Sciences,
16:323–332, 1978.

[27] Profundis: Proofs of functionality for mobile distributed sys-
tems.http://www.it.uu.se/profundis/.

[28] W. Pugh. The omega test: a fast and practical integer program-
ming algorithm for dependence analysis.Communications of
the ACM, 35(8):102–114, 1992.

[29] RELAX-NG. http://www.relaxng.org.

[30] W3C Recommendation.XML Schema Part 1: Structures,
2001.

A Support Refinements and Bases

In this section, we prove that it is always possible to work with
formulas defined over a common basis. To this end, we introduce
the notion ofrefinementof a support vector and hint at a method for
building a common basis from different supports.

We say that the supportE refinesF if from any decomposition (of
a tree) overF it is possible to extract a more precise decomposi-
tion over E. We have seen an example of refinement in the en-
coding of location,α[A]. Indeed, we want to say that the basis
(α[A],α[A⊥],α⊥[>]) is more precise than the support(α[A]).

DEFINITION A.1 (REFINEMENT). A refinement from a support
(E1, . . . ,Ep) into a support(F1, . . . ,Fq) is a relationR of 1..p×1..q
such that[[Ei]] =

⋃
(i, j)∈R [[Fj]] for all i ∈ 1..p.

We use the notationF�R E when there exists a refinementR from
E into F and simply say thatF refinesE when the relationR is
obvious from the context. We prove that ifF refinesE then any SL-
formula with supportE can be rewritten into an equivalent formula
with supportF.

PROPOSITION A.1. AssumeE = (E1, . . . ,Ep) and F = (F1, . . . ,
Fq) are two support vectors such thatF�R E, then for every count-
ing constraintφ(N), with |N|= p, we have:

[[∃N�φ(N) �E]] = [[∃M �ϕR (M) �F]] .

whereM = (M1, . . . ,Mq)andϕR (M) is the constraint:

∃
(
Xi

j

)
(i, j)∈R .

(∧
j∈1..q

(
M j = ∑(i, j)∈R Xi

j

)
∧ φ
(
∑(1, j)∈R X1

j , . . . ,∑(p, j)∈R Xp
j

)) .

PROOF. We prove[[∃N� φ � E]] ⊆ [[∃M � ϕR � F]]. The proof for the
other direction is similar. Assumed ∈ [[∃N� φ � E]]. Thend is the

composition ofn1 elements satisfyingE1 (saye1
1, . . . ,e

1
n1

), . . . , and
np elements satisfyingEp (sayep

1, . . . ,ep
np) with |= φ(n).

By definition of F �R E, we have[[Ei]] =
⋃

iR j [[Fj]]. Therefore
every elementei

j in this decomposition should also fall into one of
the components ofF, that is, there exists an indexr i, j in 1..q such
that i R r i, j andei

j ∈ [[Fr i, j]] for all i ∈ 1..p, j ∈ 1..ni . This gives a
new decomposition ofd into the supportF such that the cardinality
of {r i, j = k i ∈ 1..p, j ∈ 1..ni}, saymk, is the number of elements
matchingFk. The relationd∈ [[∃M �ϕR �F]] follows by proving that
ϕR (m1, . . . ,mq) holds.

Let xi
k be the cardinality of the set{r i, j = k j ∈ 1..ni}, that is, the

number of elementsei
j , for j ∈ 1..ni , assigned toFk. Therefore

ni = ∑iR k,k∈1..qxi
k for all i ∈ 1..p, which implies|= φ(∑1R j x1

j , . . . ,

∑pR j xp
j), andmk = ∑iR k,i∈1..pxi

k for all k∈ 1..q, as required.

Given two support vectorsE andF, a corollary of Proposition A.1
is that from every formula∃N� φ � E we can build an equivalent
formula of the form∃(N;M)�ϕ � (E;F), whereϕ(N;M) is the con-
straint φ(N)∧(M = 0). This property follows from the fact that
the support(E;F) clearly refinesE. Hence, we may always work
with formulas using a common support (from formulas with sup-
portE1, . . . ,En, use the supportE1; . . . ;En). This property is useful
when we need to build the disjunction or parallel composition of
arbitrary formulas.

We need a stronger property for the “negative” operators: negation
and composition adjunct.

PROPOSITION A.2. AssumeE and F are two proper bases then
we can build a new basis, sayE×F, that refines bothE andF.

PROOF. By induction on the depth ofE. AssumeE = (E1, . . . ,Ep)
andF = (F1, . . . ,Fq), whereEi = αi [Ai] andFj = β j [B j] for all i ∈
1..p, j ∈ 1..q.

We choose forE× F the support vector with element formulas
Gi, j = (αi ∩β j)[Ai ∧B j], for all i ∈ 1..p, j ∈ 1..q, whereAi ∧B j is
defined as follows.

If Ai => thenAi ∧B j = B j . If B j => thenAi ∧B j = Ai . Otherwise,
the formulasAi andB j are compositions defined over proper bases
of lesser depths. LetCi (resp.D j) be the basis used in the definition

of Ai (resp. Bj). By induction hypothesis there is a proper basis
Ci ×Dj refining Ci andD j . Hence, by Proposition A.1, we may
rewrite Ai andB j into equivalent formulas defined over the basis
Ci ×D j and we can build a formula equivalent toAi ∧B j using the
derived operator defined in Section 5.1.

The proposition follows by proving thatG is a proper basis refining
E andF. We have[[Gi, j]] = [[Ei]]∩ [[Fj]]. Therefore[[Gi, j]]∩ [[Gk,l]] =
([[Ei]]∩ [[Ek]])∩([[Fj]]∩ [[Fl]]) and we have[[Gi, j]]∩ [[Gk,l]] = /0 if and
only if i = k and j = l . Hence, the formulas inG are linearly in-
dependent. Moreover,

⋃
i, j [[Gi, j]] =

⋃
i [[Ei]] = E , that is,G is gen-

erating. Finally, the relationsR and R ′ such thati R (i, j) and
j R ′ (i, j) for all i ∈ 1..p, j ∈ 1..q are refinements fromE andF to
G, as needed.

The support obtained by this operation may be further simplified
by eliminating useless components, namely formulas of the form
/0[A] obtained from the conjunction of elements with disjoint label
expressions.

We show that it is always possible to assume that a set of formulas is
defined over a common proper basis. Consequently, we may extend
the encodings given in Section 5.1 to arbitrary formulas of SL.

PROPOSITIONA.3 (SUPPORTREFINEMENT). Given a

sequence of formulas(A1, . . . ,An), where Ai is defined over a
proper basis for all i∈ 1..n, we can build a sequence of formu-
las (B1, . . . ,Bn), defined on a common proper basis, such that
[[Ai]] = [[Bi]] for all i ∈ 1..n.

PROOF. By Propositions A.1 and A.2 using the product vector
(E1× . . .)×En, where(Ei)i∈1..n are the proper basis used in the
definition of the formulas(Ai)i∈1..n.

We can use a similar technique to prove that, from any supportE,
we may always obtain a proper basis refiningE. The idea is to study
element formulasBI equivalent to

∧
i∈I Ei ∧

∧
i /∈I ¬Ei , whereI is a

subset of 1..p. The proof of this result is slightly more involved than
the proof of Proposition A.2 since, in the general case,¬(α[A]) is
not equivalent to an element formula, but rather to the disjunction
of α⊥[>] andα[¬A]. This stronger property is not needed in the
proof of our main result. Moreover, whereas the product of two
bases may generate a vector of size at most quadratic, the more
sophisticated construction may generate an exponential number of
element formulas.

