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Abstract with finite, static processes. This static fragment, also called the
tree logic(TL) in [7], is essentially a logic on finite edge-labeled
We prove the decidability of the quantifier-free, static fragment of trees. The study of TL is motivated by a connection with type sys-
ambient logic, with composition adjunct and iteration, which corre- tems and query languages for semistructured data [1] exploited by
sponds to a kind of regular expression language for semistructuredCardelli and Ghelli in their language TQL. In their approach, a for-
data. The essence of this result is a surprising connection betweermula of TL may be considered as a simple yes/no query against a
formulas of the ambient logic and counting constraints on (nested) (tree representing a) database [5], where the answer is yes if the tree
vectors of integers. satisfies the formula. With some extensions, a formula may also be
used to extract the subparts of a tree that match a description.
Our proof method is based on a new class of tree automata for un-
ranked, unordered trees, which may result in practical algorithms In this setting, we are interested by two problemsidel-checking
for deciding the satisfiability of a formula. A benefit of our ap- to test whether a given information tree satisfies a formulasaid
proach is to naturally lead to an extension of the logic with recursive isfiability, to test if there exists a tree that satisfies a formula. Given
definitions, which is also decidable. Finally, we identify a simple the parallel between TL and query languages, model-checking ap-
syntactic restriction on formulas that improves the effectiveness of pears similar to computing the result of a query, while satisfiability
our algorithms on large examples. is useful for query optimizations or to check query inclusion (this
problem is also related to subtyping in the implementation of TQL).
Categories and Subject Descriptors: E.1 [Data Structures):

Trees; F.4.1 Mathematical Logic and Formal Language$: The models of the tree logic are terms of the foamid;] | --- |
Mathematical Logic—modal logic F.4.3 Mathematical Logic ap[dp], calledinformation treesobtained by the parallel composi-
and Formal Language$: Formal Languages-elasses defined by  tion of a sequence aflements Elements have a name (labed),
automataH.2.1 [Database Managemerjt Logical Design and a value (they lead to a subtregt)|ntuitively, information trees

are nested multisets of labels and may be compared to XML docu-
General Terms: Algorithms, languages, theory, verification ments, where elements are of the foxard<\a>, except that the

order of elements in a tree is not relevant. The tree logic is equally
Keywords: Ambient, substructural logic, semi-structured data, tree uncluttered and includes primitives for tree compositian B, for

automata, Presburger arithmetic element traversingg|A], and the implication induced by composi-
tion, A>> B, with a simple and intuitive meaningompositionA | B,
1 Introduction is satisfied by treed; | d> whered; satisfiesA andd, satisfiesB;

location, aJA, is satisfied by trees with a single elemeft] where
d satisfiesA; composition adjun¢tAr> B, is satisfied by trees that,
when composed with any tree that satisffegesult in trees that
satisfyB.

We prove the decidability of the static fragment of ambient
logic [9], with composition adjunct and iteration, which corre-
sponds to a kind of regular expression language for tree-like data

structures. The decidability of the model-checking and satisfiability problems

is not trivial. Indeed, the meaning &> B is defined through a
possibly infinite quantification over the set of trees satisfying
Another difficulty arises from indefinite repetition (Kleene star)
which is defined as a form of fixed point on the horizontal structure
of a tree. We prove the decidability of the model-checking and
satisfiability problems for TL, as well as the decidability for the
logic enriched with a limited form of fixed point on the vertical
structure of a tree, akin to path expressions, and show that these
two kinds of recursion are indeed orthogonal.
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The ambient logic is a modal logic proposed to describe the struc-
tural and behavioral properties of mobile ambients [8]. In this pa-
per, we only consider the spatial fragment of the logic and work



project concerned with the study of logical systems for mobile dis- extended to a tree model with both sequential and parallel compo-
tributed systems and a project related to languages for manipulatingsition operators.
semistructured data.

In the context of the first research project [27], our goal is to Outline and Contributions
improve our knowledge on the complexity of the ambient logic.
The choice of ambient logic is pertinent because it gives a general The paper is organized as follows. In Section 2 and 3 we review
language for expressing behaviors of spatially distributed systemsbackground material on information trees, on the Tree Logic (TL)
and because its lack of sensitivity to the details of the underlying and on Presburger arithmetic. In Section 4 we define a new modal
model makes it easily transposable to other settings (such as thdogic for information trees, the Sheaves Logic, which is based on an
T-calculus [6] or almost every calculus with a system of nested alternative representation of multisets as the product of a sequence
locations). For the same reasons, it is also a perfect test bed forof multiplicities with a sequence of elements. Asiitis often the case,
extensions, such as quantification on fresh names [10, 20]. the shift in the data-structure makes it possible to use more elabo-
rate algorithmic methods. At this point, we can already show that
We only consider the static fragment of ambient logic on finite pro- the complexity of the logic results equally from the use of composi-
cesses. Previous works have shown that the model checking prob+ion adjunct as from the combination of composition with negation.
lem is PSPACE for the logic without adjunct [11] and that it is un- More surprisingly, we identify iteration as the “most expensive”
decidable for the logic with name quantification and composition primitive.
adjunct [12]. In [16], the authors show decidability of the satisfia-
bility problem for the logic without adjunct and name quantification In Section 5, we show how to interpret every connector of TL in the
using tree automata and a logic on finite multisets. The result is ex- sheaves logic (SL). As a result, we obtain a compositional encoding
tended to the logic with adjunct in [3]. The method used is adapted of TL in SL. The idea is to prove the decidability of SL instead of di-
from a technique for proving decidability of validity in a spatial rectly studying TL. To this end, we define (Section 6) a new class of
logic for reasoning about heaps [4] and is based on finite test setstree automata specifically designed for manipulating sheaves. This
for t>. Since the size of a test set is not elementary in the size of the class of automata works directly on information trees; it is closed
formula (it is not bounded by any tower of exponentials) it is not by the classical boolean operations and by tree composition; and it
obvious that this approach may lead to a practical algorithm. has a decidable test for emptiness.

In this paper, we prove the decidability of the tree logic with ad- Before concluding, we exploit the inherent recursiveness of au-
junct, iteration and a restricted form of recursion along the paths of tomata and augment the (sheaves and tree) logics with a limited
a tree. Our proof method is based on a surprising relation betweenform of recursive definitions. This extension is expressive enough
TL and arithmetical constraints on vectors of integers (expressedto include path expressions. A limitation of our method is that
as formulas of Presburger arithmetic). To obtain our decidability trees must be processed bottom-up, which may be very inefficient
results, we show the equivalence between TL and a new logic onin the case of large trees. To avoid this problem, we identify a
nested multisets of labels, tlsbeaves logicthat directly includes simple syntactical restriction, borrowed from a constraint found in
Presburger arithmetic formulas. In our approach, the sheaves logicXML Schema [30], that allows for the use of a top-down version of
appears more amenable to automatic processing and plays the rolsheaves automata.
of a target (assembly) language in which we compile formulas of
the tree logic. The connection between Presburger arithmetic and multiset logics
was already used in previous work by the authors [16, 17]. In this
The second research project is related to languages for manipulatingpaper, we clear up the relevance of this approach in the case of TL
semistructured data. As remarked by Cardelli and Ghelli [7], the and extend our results to a fragment of the ambient logic with com-
tree logic is analogous to a regular expression language for tree-likeposition adjunctp>, and Kleene star. It is also the first time that we
data structures and is therefore a perfect basis for typing languagesonsider an extension of the logic with mutual recursive definitions.
manipulating semistructured data. We can draw a parallel with the Another contribution of this work is to propose an approach more
use of regular tree expressions in the language XDuce [21], wheredirected towards practical algorithms, for instance through the defi-
a logic similar to TL, albeit on an ordered model, is used to type nition of basegsee Section 4 and Appendix A), with a study of the
extended pattern matching operations over XML documents. algorithmic complexity of our methods and the definition of possi-
ble simplifying restrictions.
The algorithmic methods used in the implementation of XDuce are
based on regular tree automata [14]. Unfortunately, regular tree Omitted proofs may be found in a long version of this paper [18].
automata are not well-suited for unranked or unordered trees. For
example, regular tree languages are generally not closed under asso- ) ]
ciativity or associativity-commutativity (AC) of function symbols. 2  Information Trees and the Tree Logic
In this paper, we use a simple extension of regular tree automata that
works on information trees. This class of automata, calleshves Our model for semi-structured data is borrowed from [7]. Informa-
automata is expressive enough to accept the set of trees matchedtion trees [7] provide a compact syntax for defining nested multisets
by an ambient logic formula. of labels borrowed from the ambient calculus [8]. They correspond
to the static fragment of the ambient calculus, without primitives for
The definition of sheaves automata may be generalized to an alge-mobility, communication and name scoping — but the same frag-
bra with an arbitrary number of free function symbols and with any ment may be found in almost every mobile process calculus with
number of associative and AC operators [24]. For example, an ex- systems of nested locations. The resulting model is very close to
tended version of sheaves automata has been used by the authothie XML document model, with the difference that the order of the
to prove decidability results on a fragment of XML schema [17]. fields (subtrees) in an information tree is irrelevant. More formally,
Therefore, the logics and the results given in this paper may be tree composition is an associative and commutative operator.



The following table summarizes the syntax of information trees.
Given a setA\ of element labels, we define the s&tof elements
and the sef 7 of information trees.

Elements and Information Trees
I

element

element labeled (with a € A), containingd
information tree

empty information tree

element

composition
L 1

(v}

Trees with an equivalent structure are identified. This is ex-
pressed by means of structural congruencethe smallest rela-
tion on I'7 x I'T that is a congruence and such tdgto = d, and
d|d'=d'|dandd|(d"|d”)=(d|d’) | d”. This relation coincides
with structural congruence for the finite, static fragment of the am-
bient calculus. In the remainder of this paper, we work with terms
modulo structural equivalence. Hence, we view information trees
as nested multisets of elements. Thprocess is often omitted in
the contexg0], yieldinga[].

Example 1.The following information tree may be interpreted as a
valid entry for the bibliographical reference [8]:

article[title[Mobile Ambients[]] | authorCardelli[]]
| authoriGordon[]] | year1998]]]] .

To reason about the spatial and temporal properties of mobile am-

bients, Cardelli and Gordon have introducedriedal logic of am-
bients[9]. The static fragment of the ambient logic, which only
refers to the spatial distribution of locations, appears particularly
well-suited to describe the structure of information trees. In this

paper, we study the static fragment of ambient logic, also called the

Tree Logic, TL. A distinctive feature of the logic considered here,
compared to [3], is that we enrich the syntax with an operator for
indefinite repetitionA*, which captures a simple class of recursive

formulas. With this operator, TL appears as a kind of regular ex-
pression language, albeit on an unordered data model.

Tree Logic Formulas
I

AB:= formula
T true
-A negation
AvVB disjunction
0 empty tree
alAl location @€ A)
AlB composition
ArB composition adjunct
A* iteration

The denotation of a formula is a set[A] of information trees. As
usual, we say that a tree satisfies a formula, dendtedA, if and
only if d € [A].

To simplify the presentation, we extend the composition operator
to sets of treess | S" =qer {(d | d')|(d,d’) € 5 x.5"}. With this
definition, it is easy to show that the structgé” ,U,0,|,{0}) is a
semi-ring, where & is the powerset of T (modulo=). Sticking
to the multiplicative interpretation of composition, we use the nota-
tion $" for the compositiors | -- - | $ (ntimes),s° for the singleton
{0}, and$* for the setl > S". Finally, if n = (ng,...,np) is a

sequence of integers, asd= (Sy,...,Sp) is a sequence of sets of
elements, we writa. Sfor the setS}* | ... | §)". The latter notation
will sometimes be referred to assaeaved compositio@nd is at
the core of the new logic presented in this paper.

ISatisfaction |
[T] = I7

[-A] = IT\[A]

[AVB] = [AJu[B]

(0] = 0}

[alAl] = ald]|d e [A]}

[A[B] = [All[B]

[A>B] = {d|vd'c[A].(d|d)e[B]}

(AT = [AF

The satisfaction rules for the propositional fragment are conven-
tional. The formulad only matches (trees structurally equivalent
to) O, the locationa[A] matched if d = a[d'] with d’ |= A, and the
compositionA; | A matched if d = dp | dp with d; = A for all
ie{12}.

Example 2. The following formula of TL matches “valid” biblio-
graphical entries, like the term given in Example 1:

article[title[ T] | authorf T]
| ~((title[T] v (year T] | year(T])) [ T)] .

This formula specifies that a valid bibliographical entry must con-
tain exactlyone field labeleditle, at leastone field labelecuthor,
andat mostone field labeled/ear, possibly alongside some other
(unspecified) fields. These constraints could be expressed more di-
rectly using sheaved composition, by saying that a valid entry must
be in one of the sets:

(N, Na, Ny, o) . ([ititle[ T]]), [author{ T]}, [year T]], S) ,

whererny, na, Ny, No are integer variables such that = 1) and(na >
1) and(ny < 1) and(no > 0), andS; is the set of elements of the
form x[d] with x ¢ {title, author, year}.

One of the main contributions of this paper is to show that any
quantifier-free TL-formula can be expressed in the same way, that
is, as the product of integers vectors (definable in Presburger arith-
metics) by sequences of element formulas.

In the next section, we recall the background on Presburger arith-
metic and semilinear sets that we need in order to define the Sheaves
Logic (SL) formally, and then to prove its equivalence with the
quantifier-free fragment of TL.

3 Background

This section collects the necessary background on Presburger arith-
metic and its connection with semilinear sets. Presburger arithmetic
is the first-order theory of equality over the gro(p, +) of natu-

ral numbers with addition. Presburger formulas (also called con-
straints) are described in the following table, whBteN, ... range

over integer variables amd, n, ... range over integer constants.

Presburger Constraints
I

Exp:= Integer expression
n positive integer constant
N positive integer variable



Expy + EXp, addition
Qy,... = Presburger arithmetic formulas
(Exp, = Exp) test for equality
- negation
ovVyY disjunction
IN.@ existential quantification

Presburger constraints may be used to define a substantial class
(decidable) properties over positive integers, like for example “the
value ofM is strictly greater than the value Nf, using the formula
IX.(M =N+X+1); or “M is an odd number3X.(M = X+ X +

1). In this paper, we use Presburger formulas to express arithmetical
constraints over multiplicities of multisets of elements.

Throughout the text we use the vector notatian,for tuples of
integers, ands| for the size (number of elements) 8f We de-
note (N) a Presburger formula whose free variables are all in
N = (Ng,...,Np) and we use the notatiof= @(ny,...,np) when
@{N1—n1}... {Np—np} is satisfied.

The denotatiorf@(N)]] of a Presburger formul@(N) is the set of
integer vectors such that= @(n). Presburger arithmetic is an in-
teresting example in computational complexity theory because it is
one of the few problem that provably need more than polynomial
run time [19]: every algorithm which decides the truth of a Pres-
burger constraing, that is test whethelfg] = 0, has a runtime of

at least 2727 (cn)) for some constant, wheren is the length of

@. (The expressioa” b stands for the exponentiati@i.) There is
also a known triply exponential upper-bound in the worst case [26],
that is for an unbounded alternation of quantifiers: the complex-
ity of checking the satisfiability of a formul@is in time at most
2°(27(27(pn))). The problem is NP-complete for the existential
fragment of Presburger arithmetic.

3.1 Semilinear Sets

Decidability of Presburger arithmetic may be proved using a con-
nection withsemilinear setsf natural numbers. Ainear setof N",
L(b,P), is a set of vectors generated by linear combination of the
periodsP = {py,...,px} (with pj € N" for all i € 1..p), with the
baseb € N™:

L(b,P) =def{b+ z Aipi \Al,...,AKEN}.
iel k

A semilinear sets a finite union of linear sets. Semilinear sets

are closed under set operations and are exactly the models of Pres

burger arithmetic formulas, that is, the set of integer vectors satis-
fying a formula@(Ny,...,Np) is a semilinear set aNP and con-
versely. An important result is that semilinear sets are also closed
under the following typical operators of regular word languages:
L+M =gef {x+y|xeL,ye M}, L" =getL+...+L (ntimes), and

L™ =def Unzo L".

PropPoOsITION3.1 (FROM[16]). For any two semilinear sets
L,M of NP, the sets l4- M, L* (k € N) and L* are also semilinear
sets ofNP,

Presburger constraints and semilinear setefieetivelyequivalent,
that is, given a Presburger constramit is possible to compute the
bases and periods of a semilinear set represefftfigand con-
versely [15]. To build a semilinear set corresponding to a given
Presburger constraint, it is enough to perform quantifier elimina-
tion on the constraint, a possibly expensive procedure.

3.2 Sum, lteration and Derived Connectors

Using the relation between semilinear sets and Presburger formulas,
we can lift sum and iteration to the level of the logic. We also make
use of the usual derived connectivesnjunctionA, implication

—, anduniversal quantificatiory. The essence of our equivalence
result (Section 5) is a connection between sum and tree composi-
jon. The sum of two formulagp(N) + P(N), is a formula such that

¢+l = @] + [W]-

AssumeN, N1 andN; are disjoint sequences of variables.
(@+W)(N) =def IN1,N2.(N =Nz +N2) A@N1) AW(N2)

As in the ambient logic, we may define the adjunct and the dual
operators for sum. We use the same notation as in TL for the
adjunct, o>, such thate+ g + & if and only if o+ @ > § and

we denote|| the DeMorgan dual of sum, defined by the relation
|| W =gef ~(—0@+ —W). (The entailment relationp - Y, means
that [@] C [W].) The following definition makes clear the corre-
spondence betweenand the linear implication connector of linear
logic, which was already mentioned in [9].

AssumeM, N, N1, N, are disjoint sequences of variables.

(x> W) (N) =gef VM. O(M) — W(N+M)
(@ W)(N) =def YN1,N2. (N = N1+ N2) — @(N1) vV (N2)

The following property states the soundness of these encodings and
relates> with a subtraction operation over the powersel8f

PropPoOsSITION 3.2. Assumepandy are two Presburger formulas
with the same free variables, then for every set of integer vectors,
S, we have:

It is also possible to derive a formula for iteratiopi,, such that
[¢*] = [¢]*, that is,}= @*(n) if and only if n is the sum of a finite
number of vectors satisfying (we take the empty sum to stand for
the null vector0 = (0,...,0)). Unlike the previous cases, the defi-
nition of ¢* is quite complex. One may find a possible construction
in [16, Section 3], which requires to compute the basis and periods
0of the linear sets associated wiphThe size of the formulg" may

be exponentially bigger than the size@f

Assumeq is a formula such thafq@] = Uijcy  L(bi,R), with

R ={pi1--Pis}:
> (pibi +1;N.,in,j))

@ (N) =der ;A j.(N=
A Nt (Vi Nj #0) — 1 #0)

In the ambient logic, computing the denotation/f> B requires

a universal quantification ovglA] and it is therefore a costly op-
eration. This complexity issue does not appear as clearly in the
definition of subtraction. Given that an uncontrolled alternation of
+ and|| produces Presburger formulas with an unbounded alterna-
tion of quantifiers, the use af is not more problematic than the



combination of compositior{) and negation. More surprisingly,  The syntax of SL does not restrict the set of support vectors that
when considering operators derived from TL, it appears that the may be used in a formula. Nonetheless, some supports have bet-

complexity is dominated by iteration. ter properties than others. For example, a support vector may be
generating that is, Unene n - [E]] = I7, or its element formulas
4 The Sheaves Logic may have disjoint interpretations. In the latter case, we say that the

element formulas arknearly independentThis property is inter-

The Sheaves Logic (SL) is a new modal logic for information trees €Sting since, in this case, it can be proved that the decomposition of
that directly encompasses Presburger constraints. The logic, sum tree is always unique, that is, [E] nm. [E] # 0 if and only if
marized below, is built upon a very limited set of modalities and " = M. Drawing a parallel with linear algebra, we define a notion
does not even directly embed propositional logic. Nonetheless, we 0f “900d” support vectors, that we caddbses which are maximal

show in the next section how we can derive all the modalities of TL. Seduences of linearly independent element formulas. We fulfill the
canonical property of linear algebra: every information tree admits

SL-Formulas a unique decomposition following a given basis.

I 1

an= Label expression DEFINITION 4.1 (BAsIS). A vector (Ey,...,Ep) is a basis if
a,...,an finite subset of\ and only if i# j implies [E] N [E;j] = 0 for all i,j € 1..p and
at complement ofx Uie1.pllEi]l = E. A basisE is proper if and only if every support

E:= Element formula vector appearing in a subformula &fis also a basis.
alAl element with label i

A= Counting formula The simplest example of (proper) basis is the singleton se-
T true quence AnyE. Another simple example is the sequeieger],
IN.@(N).E sheaves composition (with| = |E|) | ...,ap[T],Z1[T]), whereZ = {ay, ...,ap} is a finite subset oA.

We use uppercase letteksB, ... to denote formulas of SL, butthis g5 Encoding TLin SL
should not cause any ambiguity with TL. We refer to the sequence,

E, of element formulas appearing in a sheaves composifioas In this section, we define derived formulas for every operator of TL.
the support vectoof A. Informally, an element formula[A] in a As a result, we obtain a compositional encoding from TL to SL that
support vector matches groups of elements of the fajah with preserves the interpretation of formulas.

a< a. A composition3N. @. E, is a quantification over the number
of elements in each of these groups, constrained by the Presburger
formula@. The last formula]T, does not constrain its modelinany 5.1 Derived Operators
way.

Let A be the compositioAN. @. E. If the counting constraint is only
The meaning of SL-formulas is defined by means of a satisfaction satisfied by the null vector thehonly matche®. Likewise, if @is
relation. To simplify the presentation, we extend sheaves composi-a tautology ancE is generating thed matches every tree ifi7T.

tion to sequences of sets, whérg, ..., np).(Sy,...,Sp) stands for  Finally, we can easily encode the location formutéd], using as

the setS!* | -+ | §;". support vector the (size 1) sequerndd.

Satisfaction

I 1

[ag,...,an] = Aa,...,an} 0 =dqef  3IN.(N=0).AnyE

o] = A\[a] True  =gef  IN.(N>0).AnyE

[a[A] = {ald|ac [a]rd < [A]} AN e AN-(N=1).olA

[(Ez;...,Ep)] = ([Edl,....[Ep])

[T] = IT The next proposition states that our encoding is faithful to the mean-
[3N.@(N).E] = Uneg n-[E] ing of these operators in TL.

Label expressions represent finite and co-finite sets of elements. AnPROPOSITION 5.1. The following three equations hold:
interesting example of label expressiordis, that matches every

possible label. We use the notation AnyE for the element formula [ = {0},
0-[T], matching every element i5. [a[A]] = f{ald]lacande[A]},
o o _ [Trug] = [T] = IT.

The semantic definition of sheaves composition is probably easier
to understand in terms of the associated satisfaction relation. As-
sumekE is the supportEy,...,Ep) andn = (ng,...,np). An infor- We can as easily transfer the “positive” composition operators of TL
mation tree is in the set. [E] if and only if it may be decomposed  (disjunction, parallel composition and iteration) to SL if we assume
into the product ofiy elements satisfying;, ..., andnp elements that the formulas use the same support.
satisfyingEp.

den.[E] < { gi_ lel-efldﬁgﬁllli‘e 1| éni? . AssumeA = IN. @a-E andB = IN. ¢g . E.

ials ~P e LN AVB  =gef  IN.(@aV@s).E

Thend satisfiesIN. @. E if and only if there exists a sequence of AlB =det  IN.(@a+¢).E
multiplicities, n, such that= ¢(n) andd e n. [[E]. A =def  IN.(@3)-E




The soundness of these encodings is based on the algebraic propedefined on a common proper basis, such ] = [B;] for all

ties of the semi-ring2’7 U, 0,|,{0}), like distributivity of parallel
composition over set union, for the encoding of disjunction, and the
exponentiation ruleS™ | §2 = St for the encoding of compo-
sition.

PrROPOSITION 5.2. Assume A= IN.@a.E and B=3N.@g.E then
the following equations hold:

[AvB] = [AJU[B],
[AlB] = [AJI[BI],
[A] (A" -

Encoding “negative” operators is not as simple. In particular, the
complement of a compositiod, = IN. @. E, is not necessarily the
formulaA- = 3N. (—¢) . E, obtained by complementing the count-

ing constraint. Possible sources of problems are non-generating

support vector. A simple example illustrates this case. Aet
be the compositiorsN. (N = 0).a[T], with model {0}. Then
AL =3N.(N # 0).a[T] matches trees with only elements labeled
a at top-level, but does not match the tegé| b[].

iel.n.

PROOF See Proposition A.3 in Appendix A.[]

5.2 Equivalence Result

The main theorem of this section is obtained by assembling our
different results.

THEOREM 5.1. For any TL-formula A, there is a SL-formula B
defined over a proper basis such tffaf] = [B].

PROOF By induction on the syntax oA. We use Proposi-
tions 5.1, 5.2 and 5.3 to translate every operator and, at each step,
we use Proposition 5.4 to ensure that we work with formulas de-
fined on a common proper basis[]

It is also possible to prove an inclusion in the other direction. (For
the sake of brevity, we do not give the details of the reverse encod-
ing here, but a complete proof may be found in [18].)

THEOREM 5.2. For any SL-formula A, there is a TL-formula B

In the case of sheaves formulas built from a common basis, we canstch thaf[A] = [B].

interpret negation and composition adjunct in a direct manner.

AssumeA = IN. @a. E andB = 3IN. @5 . E whereE is a basis.

-A =det  IN.(=@a).E
ANB =def IN. (gaA@B).E
A>B =def IN. (ga>@B).E

Iteration is essential in the proof that TL contains SL: without iter-
ation, SL is strictly more expressive than TL. Conversely, we have
omitted existential quantification over namgg.A, in the syntax of

TL. Our approach does not easily extend to the logic with quantifier.
(Since the ambient logic with universal quantifier and composition
adjunct is undecidable [12], there is not much hope!) Nonetheless,
we can encode a weaker form of quantification using label expres-
sions. For instance, we may encode the formixa]A], with x not

The soundness of these encodings directly relies on the canonicaPCcUming inA, using the element formutex” [A]. Label expressions

property of bases, that is, i is a basis then for every trekthere
is a unique vector of multiplicities), such thad € n. [E]. In the
case of negation, for example, we obtdig [[3N. ¢. E] if and only
if =@(n), as needed.

ProPOSITION 5.3. Assume A= IN.@a.E and B=3N.@s. E,
with E a basis, then:

[=A] = IT\[Al,
[AnB] = [AIN[BI,
[A>B]] {d[vd" € [A].(d[d) € [B]} .

Given the encoding of negation, it is possible to define a new en-
coding of location built over a basis.

AssumeA = IN. @a . E whereE is a basis.

O[A] =def 3N1,N2,N3. (N; =1)A(N2 =Nz =0)
. (G[AL G[—‘AL GL[TD

Next, we prove our main result that for every formula of TL, there
exists an equivalent formula in SL. To overcome a small technical
difficulty with the encodings of the derived operators, nhamely that

we should work with formulas defined on a common basis, we show
that we can always operate on formulas defined on a common basis.

PROPOSITION5.4 (SUPPORTREFINEMENT). Given a sequen-
ce of formulagAy,...,An), where Ais defined over a proper basis
for alli € 1..n, we can build a sequence of formuld, .. .,By),

may also encode a limited form of fresh quantification [10, 20],
Nx.A, with the intuitive meaning thah is true for almost every
namex, except a finite number. The idea is to replace every occur-
rences ofx by a', wherea is a set of labels containing the free
names ofA.

5.3 Examples

To illustrate our results, we use our approach to prove the validity
of simple statements in TL.

Our first equation below states that a single element not labeled with
ais a “single-threaded” tree (a tree with exactly one branch at the
root: =0A —(—0 | —0)) that is not an element of the forajd] (the
formula—-a[T]).

a*[T] =-0A~(-0| -0) A~(a[T]) @

We consider the basiE = (a[T],a-[T]) and only reason on the
counting constraints. We use the variaMefor the number of el-
ements matching[T] andN for the number of elements matching
al[T]. We have that:(a[T]) corresponds te((M = 1) A(N = 0)).
Likewise, -0 corresponds to the formuta((M = 0) A(N = 0)) (or
equivalentlyM + N # 0) and—0 | -0 corresponds to:

IM1, N1, M2, Np.(M = M1 +M2) A(N = N +N2) A
(M1+Np # 0) A(M2 + N2 # 0)

which is equivalent td1 + N > 2. By combining these three Pres-
burger formulas, we obtain that the right-hand side of (1) corre-
sponds tqM + N = 1) A=((M = 1) A(N = 0)), which is equivalent

to (M =0)A(N = 1), as needed.



The second equation states that a composition of elements reamed
may not contain (at top-level) an element not labeled with

@)

We use the same basis than in the previous example and only con
centrate on the counting constraints. The left-hand side of (2) trans-
lates to((M = 1) A(N = 0))*, that is, to(M > 0) A(N = 0). For the
right-hand side | a'[T] corresponds to:

a[T]" =~(T |a"[T])

3(Mi;Niie1,2-(M = M1+ Mz) A(N = Np +Nz) A(Nz > 1)
which is equivalent t¢dM > 0) A(N > 1), as needed.

These examples illustrate how we can simply reduce the reason-
ing on TL to pure arithmetical reasoning. Presburger arithmetic is

amenable to automatic theorem proving: there exist several dedi-
cated provers [2, 28] and many available “generic” theorem provers
include a decision procedure for (at least a fragment of) Presburger
arithmetic. Therefore, a possible application of our encoding is to

directly assert, or infer, valid statements in TL.

In order to deal with more general problems, we need a flexible
framework for reasoning on the models of SL-formulas. Using the

We show in Example 4, after defining the transition relation, that
accepts exactly the set of trees with as maeyasb’s at each node,
like for exampleb[] | a[b[] | a[]].

6.1 Transition Relation

Thetransition relationof an automatord is the transitive closure
of the relation defined by the two following rules. We use the nota-
tion#g(qj, | ... | qj,) for the multiplicities of the states @ in the
multisetqj, | ... ]| qj,.

Transition Relation: —

I

(type 1)

d—d a[d]—geR aca
ad]—q

(type 2)

e—4dj, ... e&h—0, 9—geR

(n#1)  #(gj, [ .- 19j,) € ¢l
el...len—q

To avoid ambiguities, a side-condition in the rule for constrained

classical connection between logic and automata theory, we pro-transitions ensure that it cannot be applied to sequeafdjswith
pose in the next section a class of tree automata specifically targetedx single element. It could be possible to have only one kind of

at the manipulation of sheaves formulas.

6 Sheaves Automata

Information trees are essentially trees modulo an associative-
commutative (AC) theory, it is therefore natural to use tree automata
to reason on them. Nonetheless, regular tree automata [14] are no
satisfactory in the presence of AC operators, such as compokition

and we need to introduce an extended class of automata tailored to

our need.

A (bottom-up) sheaves automatchis a triple (Q, Qfin, R) where
Q= {au,...,qp} is a finite set of stateKy;y is a set of final states
included inQ, andR s a set of transition rules. Transition rules are
two kinds:

(1) ald] —q
2 o*qy, ..., #qp) — ¢

Type (1) rules correspond to transition rules in regular tree automata
(we only have unary function symbolg[.]). A minor difference

is that, in order to work with infinite sets of labels, we use label
expressions instead of simple labels.

Type (2) rules allow to compute on nodes with an unbounded ar-
ity, arising from the composition of two or more information trees.
In type (2) rules,p is a Presburger formula with free variables
#y,...,#qp (one for each state i). Intuitively, #g; is a variable
that will be substituted by the number of occurrences of the gtate
in a transition of the automata. A type (2) rule may fire if we have
a term of the formey | ... | &, such thaig leads to a statgj, € Q
foralli € 1..n, and= @(my,...,m,), wherem is the multiplicity of

gi in the multisew;, | --- | gj,. A particular example of transition is
obtained if= (0, ...,0), in which case the rulg¢ — q may fire for
the null tree.

Example 3.Let 4 be the automaton with stat€¥= {qa, g, ds},
set of final stateQyin = {gs} and the following transition rules:
(#0a = #0p) A(#0s > 0) — Os

algs] —da  blasg —ap

transition rule, but it would needlessly complicate our definitions
and proofs without adding expressivity.

Example 4.Let 4 be the automaton defined in Example 3. Since
the constraint in the type (2) rule ¢t is satisfied by(0,0,0), we
have that0 — gs. Let d be the treea]] | bla[] | b[]], a possible
t’;lccepting run of the automaton is given below:

d — a[0]|blalgs] |b[0]  — algs]|blags| | bO]]
— a[gs] | blajgg] | blas]] —  gal blags] | blas]]
—  Oa | blalog] | do] —  Oa|b[0a | G
5 0a | b[gs] — Oal|Op — 0Os

In transitions 7 and 9 (marked with a t-symbol), we use the only
constrained rule ofd. In each case, the multiset used in the con-
straints isga | gp, Which contains as mangy’s thangy’s (that is,

#Q(qa ‘ qb) = (17 1, 0))

We say that an automatahis deterministidf and only if for every
pair of distinct type (1) rulesa[g) — g1 andB[q] — gz, we have
[a N [[B] = 0 and for every pair of distinct type (2) rulep,— g1
andy — o, we have[@] N[[Y] = 0. A property of deterministic
automata is that for each treethere is at most one statpe Q
such thatd — g. As usual, we say that a trekis acceptedby an
automatonA if there is a final statg € Qs such thad — qg. The
languageZ(4) is the set of trees accepted By

The class of automata considered in this paper is a subset of
a richer (homonym) class of tree automata defined by the au-
thors [16, 17, 24]. In the original version, sheaves automata may
be used on terms built from an arbitrary number of free function
symbols and from any number of associative and AC operators.
Therefore, the definition of sheaves logic may be extended to an ar-
bitrary signature, giving an elegant way to extend our results to an
algebra with sequential composition and (not only unary) function
symbols. When restricted to tree composition, sheaves automata
correspond to a particular instanceroftiltiset automatd13], de-
fined by Colcombet to reason on higher-order versions of Process
Rewrite Systems. More significantly, we can draw a parallel be-
tween sheaves automata ametige automatf25], an extension of



regular tree languages at the basis of RELAX-NG [29], a schema 6.3 Membership and Test for Emptiness
language for XML. Whereas hedge automata operate on an ordered
model of trees and use regular word languages to constrain orderedn this section, we consider the problem of checking if an informa-

bunches (sequences) of elements, we work on an unordered modetfion tree is accepted by a given automaton.

and use semilinear sets to constrain the multiplicities of unordered
bunches (multisets) of elements.

6.2 Closure Properties

Given two Sheaves Automatdd = (Q,Qfn,R) and 2’ =
(Q,Q4,» R), we can construct theroduct automatond x 4', that
will prove useful in the definition of the automata for union and in-
tersection. The producl x 4’ is the automator?™ = (Q*,0,R*)

such thaQ* = Qx Q' = {(a1,d}),- .-, (dp,ar) } and:

o for every type (1) rulen[g) — s€ RandB[¢] — § € R, if
an B # 0then the rulga NP)[(g,q)] — (s,§) isin R,

o for every type (2) rulep— g€ Rand¢ — ¢ € R, the rule
@ — (g,q) isin R*, whereg* is the product of the formulas
@andg obtained as follows. Let(q,q') be the variable asso-
ciated to the numbers of occurrences of the statg'), then
@~ is the formula:

(Tqeq #a1, ),
AN g (quQ#(q7 s YqeQ™(a; q/r))

The following property states the soundness of this construction.

PROPOSITION 6.1. We have d- (q,q') in the automatord x 4’,
if and only if both d— 47 g and d— 4 ¢.

Given two automatag and.2’, it is possible to build an automaton
accepting the language(2) U £(2') and an automaton accepting
L(A)N L(A"). The intersection N .2’ and the union2 U 4’ may
be obtained from the product x 4’ simply by setting the set of
final states to:

al

QEn
inn

The union automaton may also be obtained using a simpler con-

struction, similar to the one for finite state (word) automata, leading

to an automaton with stat€u Q'.

(a.d)lae Qg A ae Qg
(a.d)lae Qs vV ae Qg

=def
=def

PROPOSITION 6.2. The automatorda U4’ acceptsZ(A4)U L(4)
and 42N 4’ accepts£ ()N L(A').

Assume there is a functioBost such that, for all constraints,

the evaluation ofp(ny,...,np) can be done in tim®(Cos{p,n))
whenevem; < n for all i in 1..p. For quantifier-free Presburger
formula (and ifn is in binary notation) such a function is given
by K.p.log(K.p.n), whereK is the greatest coefficient occurring

in @. For arbitrary situations, that is, for formulas with unbounded
quantifier alternation, evaluating a formula is as hard as testing its
satisfiability and therefore the complexity is triply exponential.

PROPOSITION 6.4. For an automaton 4 = (Q,Qsn,R), the
model-checking problem, & £(A4), can be decided in time
O(|d|.|R|.Cos{|Q],|d])) for a deterministic automaton. The prob-
lem is NP-complete for a non-deterministic automaton.

We give an algorithm for deciding emptiness based on a standard
marking algorithm for regular tree automata. The marking algo-
rithm computes two sets of state3y, andQg, whereQy corre-
sponds to reachable states dpgl corresponds to states reachable
by an elementi(e., through the application of a type (1) rule). The
algorithm returns a positive answer if and only if there is a marked
final state.

In the case of constrained ruleg— g, we need to check whether
there is a multiset of marked elements whose mapping satigfies
This amounts to checking the satisfiability of the Presburger for-
mula@(#qy, . .., #dp) A Ageqe #0 = 0. When this formula is satisfi-
able, we say that the constraipt Qg is satisfiable. In particular,
the constraint) 0 is satisfiable if and only if= ¢(0).

Algorithm 1. Test for Emptiness

Qe=0
Qu={qle—qeRAE=@0)}
repeat

if a[q] — g€ Randq € Qu anda # 0
then Qu :=QmuU{q} and Qe := Qe U{q}
if — g€ Randg\ Qg is satisfiable
then Qu :=QuU{q}

until no new state can be addedQg

if Qu contains a final state

| then returnnot emptyelse returnempty |

PrROPOSITION 6.5. A state q is marked by Algorithm 1 if and only

The class of sheaves automata is also closed by complementationif there exists a tree d such that-d q.

The construction of the complement of an automaton is similar to
a determinization procedure. (In particular, the complemented au-
tomaton may be exponentially bigger than the original).

ProPOSITION 6.3. Given an automatord we can build an au-
tomaton4 - such that£(44) = 1T\ £(4).

The product construction yields an efficient algorithm to test the in-
clusion £(A4) C £(A4'), provided that?’ is deterministic. In this

We may prove prove this claim using a reasoning similar to the
one for regular tree automata. We can also establish a result on the
complexity of this algorithm. Le€ost; denote the maximal time
required to decide the satisfiability of the constraints occurring in
type (2) rules of4.

PROPOSITION 6.6. The problem [2) 2 0'is decidable in time
O(Ql.|R|-Costy).

case, we simply need to test the emptiness of the language accepted

by 4 x 4’ with final state€in x (Q"\ Qf,). Using our equivalence
and definability results, Th. 5.1 and 6.1, we may relate this problem
to testing whether a formula of TL is a “subtype” of another for-
mula, an important issue in the implementation of the programming
language TQL.

In the case of regular tree automata, it is possible to find a more
refined algorithm for the emptiness problem, based on the satisfia-
bility of propositional Horn clauses, with only a linear complexity

in the size of4. Therefore we may hope to improve our complexity
result.



6.4 Results on the Tree Logic

We prove our main property linking sheaves automata and the

sheaves logic and use this result to derive several complexity re-

sults on the fragment of Ambient Logic studied in this paper.

THEOREM6.1 (DEFINABILITY). For every SL-formula A, we
can build an automatori accepting the models of A.

PROOF By structural induction on the definition & In the case

A =T we can simply choose an “all accepting” automaton. For
example, the automaton with unique (final) stageand with rules
0']q] — g, and(*q > 0) — q.

The only other case i& = IN. . E, whereE is a support vector
(ag[Aq],...,ap[Ap]). By induction, there is an automato® ac-
cepting the models of; for all i € 1..p. From an automato@
accepting the models &, we can construct an automatgog ac-
cepting the se{a[d] |d € [C],ac a}: if a =0, then[a[C]] =0
and we can simply choose fgg any automaton with an empty set
of final states; otherwise, we obtaiy from C by adding a fresh
new stategys, that will be the only final state afy, and by adding
one type (1) rulen|[q] — gs for each final state of C. Thus, we
may build an automato®; accepting the models af;[Aj] for all
iel.p.

The construction of1 is similar to a determinization process. Let
4 be the product automaton of ti#'s and let{Qy, ..., Qn} be the
states of4. A stateQ of 4 is of the form(qy,...,qp), with g;

a state ofB;, and may represent terms accepted by several of the
B's. We use the notation) < fin(i) to say that thé" component

of Q is a final state off;. The constrained rules of are of the
form Y(Mg,...,Mm) — Q, whereM; stands for the number of oc-
currences of the statg, in a run. The idea is to extend with a
fresh new stategs, that will be its only final state, and to add a new
rule *(M4,...,Mm) — gs, whereq? is satisfied by configurations
Qj, | --- | @Q, containing only states in f{i) (for somei € 1..p).

The formulag?, given below, is obtained by decomposiilg into
a sum of integer variablex!, for j € 1..p, corresponding to final

states ofBj occurring inQ,.

Niez.m(Mi =3 je1p X})
Qefin(j) )
A (P(Z i€l.m X|17 <52 ielm X;J)
Qefin(1) Qefin(p)

The property follows by showing that = A if and only if d €
L(a). O

A formula A of SL is basically a (syntax) tree where each node is
labeled by a sheaves compositiahl. ¢.E, and hasE| sons. Using
the underlying tree structure of formulas, we can define the height,
h(A), and the degreel(A), of a formulaA. The construction of the
automaton recognizing a formuferequires to compute the product
of at mostd(A) automata for each compositionAn Therefore, the
size of the automaton is bounded By (d(A) “h(A)), whereT is

a constant bounding the size of the automaton recognizinghe
decidability (and the complexity) of SL follows from Th. 6.1 and
Proposition 6.6. The complexity is doubly exponential in the size
of A (like in Proposition 6.6, we abstract over the complexity of
deciding the satisfiability of the Presburger constraints).

THEOREM6.2 (SATISFIABILITY ). For any formula A of SL, the
satisfiability problem[A]] = 0 is decidable in time QT2 (d(A)"
h(A))).

Combined with our previous results on the embedding of TL in
SL we also obtain decidability properties for the tree logic, as well
as automata-based decision procedures for the model-checking and
subtyping problems. Indeed, from a formu#iaf TL we can build

an equivalent SL-formula with the same depth (which is bounded
by |A]) and with degree at most B|. The value 3 comes from the
size of the basis used in the encoding of location (Section 5.1). We
obtain that the satisfiability problem for TL is in double exponential
time. Once more, we abstract over the complexity of Presburger
formulas.

THEOREMG6.3  (SATISFIABILITY ). For any formula A of TL, the
satisfiability problenf/A] = 0 is decidable in time Or2"(3%|A2)).

7 An Efficient Tree Logic

Constrained rules of sheaves automata; g, are used to explore

the horizontal structure of trees. Sheaves automata can as easily
explore vertical structure and be used to match paths of (nested el-
ements) labels. We can simply take advantage of the intrinsic re-
cursive nature of automata, which may contain cyclic dependencies
between states, to compile path expressions.

In this section, we extend the syntax of SL with recursive defini-
tions. For the sake of brevity, we will stay at an informal level
compared to the rest of the paper. Actually, our primary goal is to
prove that path expressions and iteration are indeed two orthogonal
forms of recursion and that our framework can easily be enriched
with path expressions. We also study a simple syntactic restriction
on formulas that improves the effectiveness of our approach.

Recursive Sheaves Logic

IX,Y, ... recursive variables
E:= element formula
alX] element with label it
D:= recursive definition
X< 3N.@(N).E sheaves composition
A= RSL formula
(D1,...,Dn; X)

The syntax of formulas is even leaner than in SL and is reminiscent
of tree grammar: location is restricted to variables and a formula
is simply a set of recursive definitions with a distinguished (initial)
variable.

The connection with tree grammar is even clearer in the definition
of the satisfaction relation. A trematches a formuléD; X), de-
notedD - d: X, if and only if there is a definitiofiX « In.@.E) in

D such thatd € n. [E] andl= ¢(n), thatis,d = 3N.@.E in SL. We
also adjust the rule for element formulas. An elerad} matches
afY] (inthe contexD) if and only ifac a andD - d : Y. For exam-
ple, if AnyD is the recursive definitioX < IN. (N > 0).0[X] the
formula(AnyD; X) matches every tree iffZ (it provides a possible
encoding ofT).

Granted the relation with tree grammar, it is not necessary to use
tree automata to decide the logic. Indeed, there exist efficient ways
to manipulate grammars that do not (explicitly) require automata-
based techniques. Nonetheless, the compilation from RSL to
sheaves automata is straightforward and provides a good idea of
how sheaves automata combine well with recursion. An interesting
property of the automatoA obtained from a formuld is that ev-

ery variable ofA corresponds to a single statefdh and the sizes of



A4 andA are proportional.

THEOREM7.1 (DEFINABILITY). For every formula A, we can
build an automatorA of size @|A|) accepting the models of A.

PROOF AssumeA = (D;X). For every element formula[Y] and
every variable& occurring inAwe set up the stateg, ] andqz. Let
Qbe the set of all such states. Then, for every element formilp
we set up the type (1) rule[gy] — dq(y; and for every definition
Y < 3N.@.Ein D, with E = (a1[Y1],...,0p[Yp]), we set up the type
(2) rule: @(*dy, ;) - - -, *0arv,)) — Av- LetRbe the set of all such
rules. The sheaves automaton with st@esulesR and final state
the singleton{qx } accepts the models & []

Using the definition of the derived operators given in Section 5.1,
we can prove that RSL corresponds to an extension of TL with re-
cursive definitions, where the location operator is limited to recur-
sive variable a[X]. For example, formula (3), below, is satisfied
by trees with a patlfa.b)* and (4) is satisfied by trees matchiAg
somewhere.

(X« (aY]| T)VO,Y « (bX]| T);X) (3)
(X (0[X]| T)VA; X) (@)

structures. More formally, it is an algebra with two orthogonal com-
position operatorstree composition_ | _, that is commutative and
follows the horizontal structure of a tree alwtation, a[ ], that is

akin to sequential compositian_ (of a letter with a word) and fol-
lows the vertical structure of a tree. In contrast to the situation found
with regular tree expressions, there was no equivalent to regular tree
automaton for accepting the languages associated to TL.

Our contribution is a class of tree automata for processing informa-
tion trees and a compilation method that associates to every formula
of TL an automaton accepting the same models.

Our approach reveals a connection between TL and arithmetical
constraints on vectors of integers, expressed as formulas of Pres-
burger arithmetic. A possible line for future work could be to ex-
tend this relation to other examples of substructural logics, like for
example additive fragments of Linear Logic or versions of the logic
of Bunched Implications [4, 22]. It is worth mentioning that some
complexity results on fragments of linear logic have been proven
through reduction to problems on Petri Nets [23] (that is, equiv-
alently, on vector addition systems), which may indicate that this
relation has already been partially unveiled.

Our automata-based approach to the manipulation of formulas in

This restriction does not excessively limit the expressiveness of the the ambient logic may be useful in the implementation of query
logic. Althou_gh the r_esultlng extension of TL is Iess_ expressive than languages based on an unordered tree model, like TQL [7] for ex-
the logic enriched with general least and greatest fixpoints, as foundamp|e. However, the logic as presented in Section 4, still lacks
in[9], itis possible to encode all the path operators used in TQL [7]. in-depth recursione.g. the capacity to encode path expressions,
Additionally, this simple syntactical restriction precludes the defini- 5nd additional work is needed to formalize the extension with re-
tion of degenerate recursive formulas, of the faria[X] | ala[X]], cursive definitions proposed in Section 7. Another line for future
where variables appear at different depths and match “unbalanced"\york will be to develop a method for obtaining a sheaves automa-
set of trees (growing as well in breadth and in depth). ton directly from a TL-formula. Currently, the construction of a
o . sheaves automaton corresponding to a formula of TL requires to
A limitation of our approach is that trees must be processed bottom- pyjld first an equivalent formula in SL. (In this respect, SL appears
up. This strategy may be inefficient for large information trees as 4 kind of assembly language.) A benefit of this simplification is
since, in this case, we want to work “on-the-fly”, without com-  that it could lead to a more refined study of the complexity of TL,

pletely loading a tree before processing it. To avoid this problem, perhaps enabling us to isolate “simple” classes of queries.
we may impose a simple syntactic restriction on RSL in order to

work with top-down sheaves automata. We take inspiration from a
restriction on (sequential composition in) XML Schema [30, Sec-
tion 3.8.6], known a£onsistent Element Declarations
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A Support Refinements and Bases

In this section, we prove that it is always possible to work with
formulas defined over a common basis. To this end, we introduce
the notion ofrefinemenbf a support vector and hint at a method for
building a common basis from different supports.

We say that the suppok refinesF if from any decomposition (of

a tree) overF it is possible to extract a more precise decomposi-
tion overE. We have seen an example of refinement in the en-
coding of location,a[A]. Indeed, we want to say that the basis

(a]A],a[At],aL[T]) is more precise than the suppomtA]).

DEFINITION A.1 (REFINEMENT). A refinement from a support
(Eq,...,Ep) into asupportFy,...,Fq) isarelation® of 1..px1..q
such thatf[E;| = U j)ex [Fj foralli € 1..p.

We use the notatioR <4 E when there exists a refinemeRtfrom

E into F and simply say thaF refinesE when the relatiorR_is
obvious from the context. We prove thaHfrefinesE then any SL-
formula with support can be rewritten into an equivalent formula
with supportF.

PROPOSITION A.1. AssumeE = (Ey,...,Ep) and F = (Fy,...,
Fq) are two support vectors such that< 4 E, then for every count-
ing constraintg(N), with |[N| = p, we have:

[3N.@(N).E] = [3M. ¢4 (M) .F] .
whereM = (Mg, ...,Mg)andé 4 (M) is the constraint:

3X) . ppex ( ) :

PrOOF We prove[3N.@.E] C [IM.¢g . F]. The proof for the
other direction is similar. Assumeé € [3IN. . E]. Thend is the

Ajer.q(Mj = 2<li,j>eRX}) ;
NO(Zper X Zpper X))



composition ofn; elements satisfying; (saye},...,e}), ..., and
np elements satisfying, (saye!,...,eR ) with = ¢(n).

By definition of F <4 E, we have[E] = Uiz [[Fjl. Therefore
every elemeneij in this decomposition should also fall into one of
the components df, that is, there exists an indey; in 1..q such
thati R 1 andeij € [Fr,;] forallic1.p,j € l.n. This gives a
new decomposition ad into the supporE such that the cardinality
of {rij =kli € 1.p,j € 1..n;}, saymy, is the number of elements
matchingFy. The relatiord € [3M. ¢ . F] follows by proving that

¢z (My,...,mg) holds.

Let xik be the cardinality of the sdj j = k|j € 1.ni}, that is, the
number of elements’j, for j € 1..n;, assigned tdw. Therefore

n = Ziﬂik,kel..qxi( foralli e 1p which impliesl= @(3 14 j xj17...,
3 pxjX}), andmy = Sigyie1.pX for all k € 1..q, as required. (]

Given two support vector& andF, a corollary of Proposition A.1

is that from every formulaN. @. E we can build an equivalent
formula of the formrd(N;M). . (E;F), wheredp(N; M) is the con-
straint @ N) A(M = 0). This property follows from the fact that
the suppor{E; F) clearly refinesE. Hence, we may always work
with formulas using a common support (from formulas with sup-
portE,, ..., En, use the suppoHy;...;Ep). This property is useful
when we need to build the disjunction or parallel composition of
arbitrary formulas.

of Ay (resp. B). By induction hypothesis there is a proper basis
Ci x Dj refining Cj andDj. Hence, by Proposition A.1, we may
rewrite A; andB; into equivalent formulas defined over the basis
Ci x Dj and we can build a formula equivalentApA Bj using the
derived operator defined in Section 5.1.

The proposition follows by proving th& is a proper basis refining

E andF. We have[G; ;]| = [Ei| N [Fj]. Therefore[G; ;| N [Gy ] =
([ETNED) N ([FINTR]) and we havéGi ;[N [Gy] = 0if and
only if i=kandj =1. Hence, the formulas i® are linearly in-

dependent. Moreovel; j[Gi,j| = Ui[E] = Z, that is,G is gen-
erating. Finally, the relation® and R’ such thati % (i, ) and
iR’ (i,j) foralli € 1.p,j € 1..q are refinements frork andF to
G, as needed. [J

The support obtained by this operation may be further simplified
by eliminating useless components, namely formulas of the form
O[A] obtained from the conjunction of elements with disjoint label
expressions.

We show that it is always possible to assume that a set of formulas is
defined over a common proper basis. Consequently, we may extend
the encodings given in Section 5.1 to arbitrary formulas of SL.
PROPOSITIONA.3 (SUPPORTREFINEMENT). Given a
sequence of formulagAs,...,An), where A is defined over a

proper basis for all i€ 1..n, we can build a sequence of formu-
las (By,...,Bn), defined on a common proper basis, such that

We need a stronger property for the “negative” operators: negation [Ai]] = [Bi] foralli € 1..n.

and composition adjunct.

PROPOSITION A.2. AssumeE and F are two proper bases then
we can build a new basis, s&x F, that refines botlt andF.

PrROOF. By induction on the depth d&. AssumeE = (Eg,...,Ep)
andF = (Fy,...,Fy), whereE; = a;j[Aj] andF; = 3j[Bj] for all i €
l.p,jel.q.

We choose forE x F the support vector with element formulas
Gi,j = (aiNBj)[AABj], forallie 1.p,j € 1.9, whereA; AB;j is
defined as follows.

If Aj =T thenA ABj =Bj. If Bj = T thenA; ABj = Aj. Otherwise,
the formulas?; andB; are compositions defined over proper bases
of lesser depths. L& (resp.Dj) be the basis used in the definition

PrROOF By Propositions A.1 and A.2 using the product vector
(E1 % ...) x En, where(E;j)ic1.n are the proper basis used in the
definition of the formulagAi)ic1.n. O

We can use a similar technique to prove that, from any sugport

we may always obtain a proper basis refinhgrhe idea is to study
element formula®, equivalent toA\¢| Ei A Ajg —Ei, wherel is a
subset of 1 p. The proof of this result is slightly more involved than
the proof of Proposition A.2 since, in the general cas@|A)) is

not equivalent to an element formula, but rather to the disjunction
of al[T] anda[-A]. This stronger property is not needed in the
proof of our main result. Moreover, whereas the product of two
bases may generate a vector of size at most quadratic, the more
sophisticated construction may generate an exponential number of
element formulas.



