Parallel Model Checking With
Lazy Cycle Detection *

Rodrigo T. Saad, Silvano Dal Zilio and Bernard Berthomieu
{rsaad, dalzilio, bernard}@laas.fr

CNRS, LAAS, 7 avenue du Colonel Roche, F-31400 Toulouse France
Univ de Toulouse, LAAS, F-31400 Toulouse, France

Abstract. We propose new algorithms for parallel, exhaustive model
checking on multiprocessor architectures. Our approach is designed to
emphasize memory efficiency and concurrency and is compatible with
common parallel work-sharing policies, such as work-stealing. Moreover,
our algorithm makes no particular assumptions about the model or the
state class abstractions used during model checking, and therefore it is
not restricted to a specific formalism.

Our main contribution is to propose a concurrent, lockless implemen-
tation of a semantic model checking algorithm for CTL that does not
require to explicitly store the whole transition graph of a model. More
precisely, we advocate the use of a parental graph data structure, such
that we only keep one transition for each state, thus greatly reducing the
space complexity of our approach. We show that, in practice, this leads
to a good trade-off between execution time and memory consumption.
We evaluate the performance of our algorithms on different benchmarks
and compare these results with other parallel algorithms proposed in the
literature and with existing verification tools.

1 Introduction

Model Checking is a valuable formal verification method that can be used to
avoid the presence of logical errors. It has emerged as a promising technique
because it offers a “push button” approach to verify finite system. However, there
is still a large gap between possible (or decidable) and feasible. Indeed, there are
many cases in which it is not possible to perform the verification of a finite
system due to the state explosion problem. That is, the number of states that
should be inspected can grow exponentially larger in function of the complexity
of the system. The state explosion problem is one of the main challenges faced
by model checking researchers.

In this work, the idea is to take benefit of recent advances on the hardware
side to improve enumerative model checking techniques face the state explosion
problem. Indeed, we now have access to computers with larger shared memory

* This work was partially supported by the JU Artemisia project CESAR, the AESE
project Topcased and the Région Midi-Pyrénées

space and the multi-core architectures that makes feasible the verification of
larger models, in a reasonable amount of time.

We describe and analyze a new parallel model checking approach for shared
memory architecture that is “compatible” with the parallel state space genera-
tion techniques we presented in [15]. By compatible, we mean that we base our
approach on the same set of hypotheses; actually, we should say the same absence
of restrictions. We assume that we are in the least favorable case, where we have
no restrictions on the models that can be analyzed, and the algorithm should
play nicely with traditional work-sharing techniques, such as work-stealing or
stack-slicing.

We decided to define our own parallel algorithm for model-checking instead of
trying to parallelize existing, state-of-the-art, sequential algorithms. We can give
a simple, theoretical justification to support our choice. In the sequential case,
many efficient model-checking algorithms rely on the computation of Strongly
Connected Components (SCC) or, at least, rely on following a specific order
when exploring the state space graph—generally a Depth-First Search (DFS) or
breadth-first search order. This is the case, for example, in most of the automata-
theoretic approaches for model-checking Linear Temporal Logics (LTL). These
algorithms rely on efficient methods to detect the presence of cycles in a graph,
such as Tarjan’s algorithm [16] or “nested-DFS” [6]. While this class of sequential
algorithms are very efficient—their complexity is linear on the size of the state
graph—they do not lend themselves to parallelization [13].

We can give a second justification, these algorithms are appreciated because
they are able to find an error before the complete construction of the state space.
However, the parallel implementation of these so called on-the-fly algorithms
fails to deliver the same efficiency for the case when the formula is valid, i.e. the
system respects the property.

Based on these observations, we decided to develop a new algorithm for
parallel model checking oriented to the case when the formula is valid, trading the
extra computing power for a better memory efficiency. We follow an alternative
approach that we call semantic model-checking. This is the approach initially
proposed by Clarke and Emerson [5] for Computation Tree Logics (CTL) model-
checking. In its simplest form, a semantic algorithm works by labeling each state
of the system with the “sub-formulas” of the initial specification that are true
for this given state. Labels are computed iteratively until we reach a fix-point,
that is until we cannot add new labels.

Our approach is quite simple. The algorithm is based on two separate steps:
(1) a forward, constrained exploration of the state graph—where we start label-
ing each state with local information—followed by (2) a backward traversal—
where we propagate information towards the root of the state graph—to check
if the resulting graph has an infinite path.

We propose two versions of our algorithm that differ by the way we store the
state graph in memory. In the first version, we assume that, for every reachable
state, we have a constant time access to the list of all its ”parents”. Basically,
it means that we store the reverse graph (RG) structure of the state space. In

the second version, we assume that we have access to only one of the parents,
meaning that we may have to recompute some transitions dynamically. We say
that the second version is based on a reverse parental graph (RPG).

The advantage of this second version is to save memory space. The gain in
memory space can be very important; something we have experienced in our
experiments. Indeed, if we use the symbol S to denote the number of states
(vertices) in the graph, the size of the data structure for our first algorithm is
of the order of O(S?), in the worst case, while it is of the order of O(S) for the
second version.

This work is organized as follows. Section 2 presents the related work and the
contributions of this work. After the definition of basic results on graph theory
in Section 3, we describe our parallel algorithms using pseudo-code in Section 4.
Before concluding in Section 7, we give a set of experimental results in Section
5 and a benchmark comparison with the tool Divine in Section 6.

2 Related Work

The formal verification of behavioral properties stumbles into algorithms for
cycle detection. The efficiency of these algorithms are mandatory for the overall
performance. This problem has been addressed by the sequential model checkers
through the use of the well known Tarjan [16] and Nested-DFS [6] algorithms.
The sequential automata-theoretic approaches based on these algorithms are
able to deliver efficient on-the-fly solutions both in terms of time and space.
However, the same can not be said for the solutions proposed for parallel shared
memory machines.

It is known since the 1980’s that “finding a cycle in a graph is an inherently
sequential problem” [13], more precisely, that it is related to problems that are
P-space complete (see problem A.2.18 in [7]). This gives strong evidence that
trying to parallelize this class of automata-theoretic, sequential, algorithms is not
the right way to go, at least if we expect a significant speedup. (and assuming
we use a polynomial number of processors).

The search for an efficient parallel on-the-fly algorithm is one of the most
activity research branch in parallel model checking. The researchers who have
accepted this challenge have chosen to fallow the Automata-Theoretic approach
for LTL model checking. The difficulty in to reuse the sequential cycle detection
algorithms (Tarjan or Nested-DFS) in order to determine whether an accepting
state is part of a cycle. Two works stand out, which one implemented in the
context of a tool. We have Divine with the owcty + map algorithm [1] and
LTSmin with the mc-ndfs algorithm [10]. They differ basically by the algorithm
used to detect cycles.

The owcty + map is the state of the art algorithm for parallel LTL model
checking; it was presented by Barnat et al. by combining the owcty and map
algorithms. The alliance of these two techniques resulted in “a parallel on-the-
fly linear algorithm for LTL model checking of weak LTL properties”. (Weak
LTL properties are those expressible by an automata that has no cycle with

both accepting and no-accepting states on its path.) However, the algorithm
complexity may be quadratic if the LTL property does not meet this requirement.

More recently, the distributed algorithm swarm [8] had been extended for
multi-core architectures in [10] and named multi-core nested DFS (mc-ndfs).
They proposed a multi-core version with the distinction that the storage state
space is shared among all workers in conjunction with some synchronization
mechanisms for the nested search. Even if in the worst-case each processor might
still traverse the whole graph , i.e. unable to scale in the worst case, this work goes
one step further to propose an on-the-fly algorithm because the time complexity
is still linear in the size of the graph.

In contrast with the number of solutions proposed for parallel LTL model
checking, just two were specifically conceived for parallel CTL model checking.
We have [9] that supports CTL* and [12] that supports p-calculus (subsumes
CTL).

2.1 Contribution

Our algorithms follow the classical semantic approach proposed by Clark et al.
in [4], with the distinction that we only support a subset of CTL formulas. We
follow an approach based on labeling states, similar to the one used in [2] and
[3] for game automaton on distributed memory machines. We chose a semantic
approach because we believe that it is more appropriate for a parallel algorithm
with dynamic work-load strategies.

We define a new algorithm, that we call MCLCD for Model Checking Algo-
rithm with Lazy Cycle Detection. We propose it in two versions: a first version
based on a reverse traversal of the state graph, called RG, where we need to
explicitly store the transitions of the system; and a second version, RPG, where
we only need to store a spanning subgraph. The RG version has a linear time and
space complexity, in O(|S| + |R]), while the RPG version has a time complexity
in O(|S] - (|R| — |S])) and a space complexity in O(]S|).

Our main contribution, from the algorithmic viewpoint, is the definition of
an algorithm based on the reverse parental graph (RPG). To the best of our
knowledge, this approach is totally new. Indeed, most model-checking algorithms
for CTL avoid to store the transition relation explicitly. But these approaches
always rely on some assumptions about the models, for instance that it is possible
to compute the “reverse” transition relation efficiently. (This is the case, for
example, when model-checking Timed Petri Nets [11] using State Class Graphs.)
We do not make this assumption in our case (this assumption is not valid, for
example, with models that mix real-time constraints and data variables). We still
define a version of our algorithm based on the reverse transition graph because
it is useful to prove the soundness of our method and for studying the theoretical
complexity.

We build our algorithms over the parallel state space explorer we presented in
[15]. It is based on a mixed design that enables the use of distributed hash tables
as a single shared concurrent has map. Roughly speaking, the global state space
is stored in a set of local hash tables, each controlled by a different processor,

while only a small part of the shared-memory is used for coordinating the state
space exploration.

Finally, we make use of the work-stealing strategy to share work among the
processors for both the state space construction phase and the property valida-
tion (cycle detection) phase. Related works [10,9] use dynamic workload policies
for the parallel state space construction only, they do not employ any kind of
work-load approach during cycle detection: Inggs et al. perform (independent)
local cycle detection procedures whenever a node was revisited; and Laarman et
al. propose an on-the-fly algorithm where each process performs its own nested
search and shares information only to avoid the repetition of nested searches.

3 Some Graph Theoretical Properties

In this section we present a summary of the definitions and theorems we use
in our algorithm. A complete study, together with their respective proofs, is
presented in [14].

Our model-checking algorithm is based on an iterative exploration of the
state space graph. To this end, we need to define some properties of Directed
Acyclic Graphs (DAG).

Definition 1. A finite Directed Graph G(V, E) is an ordered pair (V,E) com-
prising a finite set V of vertices and a finite set E of edges, (v;,v;), such that
v; and vj are in V for all edges. A finite Directed Acyclic Graph (DAG) is a
finite directed graph G(V, E) with no cycles, that is there is no way to find a
sequence of edges vy - . .. -vpt1 such that (v;,v;41) € E for all index i in 0..n and
Vo = Un+1-

We prove in [14] that, in a finite DAG, there is always at least one vertex
that has no children (what we call a leaf) and one vertex without parents (what
we call a root). In the following, we say that a leaf has out-degree zero and that
a root has in-degree zero.

Lemma 1. In a finite DAG G(V, E) there exists at least one vertex in V with
in-degree zero and at least one verter in V with out-degree zero.

We give another property related to leaves in a DAG. Our algorithm mostly
relies on the following observation: a finite graph is acyclic if, whenever we re-
cursively remove all the leaves, we eventually ends up with an empty graph.
By recursively removing the leaves, we mean removing a leaf from the graph—
together with all its incoming edges—and starting over with the remaining graph.
The procedure stops when no more nodes can be removed.

Actually, we use a slightly stronger property and rely on the fact that it is
enough to stop removing leaves when all the vertices have in-degree zero (the
graph has only root nodes). This property is expressed by Theorem 1.

Theorem 1. A finite directed graph G(V,E) is a DAG if and only if, by re-
cursively removing the leaves, we finally end up with a graph that only has root
nodes.

The complete proof for Theorem 1 is presented in [14]. To conclude this
section, we show some properties of Parental Graphs, that is a spanning subgraph
such that all the nodes, except the root(s), have an in-degree of one.

Definition 2. We say that a directed graph, PG(V,, Ep), is a parental graph
of G(V,E) if: (1) PG is a subgraph of G that has the same vertex set (that is
Vp =V and E, C E) and (2) for every vertex v € V, if v is not the root in G
then v has an in-degree of one in PG.

To obtain a parental graph PG, from a directed graph G, it is enough to
keep only one edge coming in for every vertex in G and delete the others. Also,
if G is acyclic, then all its parental graphs are acyclic.

The following theorem states an important connection between a graph and
its parental graphs: if PG is a parental graph of (the finite directed graph) G,
then the set of leaves of PG subsumes the leaves of G. Indeed, a leaf of G
is necessarily a leaf of PG, but the opposite may be false. Thus, we can also
conclude that G has necessarily some cycles if we fail to find an out-degree zero
vertex in PG that is also in G.

In our algorithm, we use the leaves of a parental graph PG as a set of
candidates—an approximation—for finding the leaves of G, saving us from test-
ing all the nodes in the graph.

Theorem 2. Let G be a finite directed graph and PG be a parental graph of G.
If the graph G is acyclic then PG has at least one leaf that is also a leaf in G.

Proof. Let G be a finite directed graph and PG be a parental graph of G. By
Lemma 1, since G is acyclic, there is at least one leaf in G; Moreover, since PG
is a subgraph of G, a vertex of out-degree zero in G must also have out-degree

zero in PG (a parental graph has less edges). Therefore the leaf in G is also one
of the leaf of PG.

In this work, we will essentially work with reverse graphs and reverse parental
graphs.

Definition 3. The reverse graph of a directed graph G(V, E) is the graph G=1(V, E~1)
such that the edge (u,v) is in G if and only if the edge (v,u) is in G~1. A reverse
parental graph of G is a parental graph of G~1.

4 A Model Checking Algorithm with Lazy Cycle
Detection

Our parallel algorithms for model checking, named MCLCD (for Model Check-
ing With Lazy Circle Detection), is based on two separate steps: (1) a forward
exploration of the state graph (in collaboration with the state space construc-
tion), where we label each state with some “local” information; followed by (2)
a backward traversal—and label propagation phase—to check if the resulting
graph is a DAG.

In the second step, we do not explicitly look for cycles (like in a “nested-DFS”
approach for example). We rather follow a “lazy approach” in order to avoid all
the inherent complexities related to the parallel detection of cycles. The second
step can be easily implemented in parallel, each processing unit updating the
labels of its own states.

A first optimization is to constraint the state space exploration in order to
generate only the portion of the state graph that is important to prove or dis-
prove the specification. This approach is quite similar to techniques for on-the-fly
model-checking because, for some class of formulas, we can sometimes disprove
the specification before generating the complete state space. For example, in the
case of reachability formulas, such as the invariant formula AO(¢), we will of
course stop exploring as soon as we find a state satisfying the predicate —¢.

The backward traversal is performed only for safety and liveness formulas;
it is not necessary for reachability formulas. We define these different classes of
formulas in Figure 1 and list, for each formula, whether they involve a back-
ward step. Concerning the set of supported formulas, our specification language
includes formulas for expressing basic reachability, safety and liveness formulas
and can be expressed as a subset of CTL formulas, with the distinction that we
follow a local, instead of global, model checking semantic.

Formula | Interpretation |Forward|Backward|Classification
E(WUe)| FE (YpUd) X Reachability
A@Uue)| AU x x Liveness

EO(¢) | E (TrueU ¢) X Reachability
AQ(¢) | A (TrueU ¢) X X Liveness
EO(¢) —AO(—¢) x X Safety
AD(¢) —EO(—¢) X Safety
P [AD(—p V AOP) x X Liveness
AOAO(@)| true~ ¢ X X Liveness

Fig. 1. List of Supported Formulas.

From the interpretation of formulas listed in figure 1, we see that it is enough
to provide a model-checking procedure for only three formulas: (reachability)
E (¢ U ¢), (liveness) A (1) U ¢), and (leadsto) ¢ ~ ¢. We describe our model-
checking procedure for each of these three cases.

4.1 Notations

We assume that we perform model-checking on a Kripke System KS(S, R, so).
We will use, interchangeably, the notation K S for the Kripke structure (S, R, s¢)
and G for the directed graph G(S, R), also called the state graph.

The expression |S| is used to denote the cardinality of S (and therefore
the number of reachable states), while |R| is the number of transitions. Inside
asymptotic notations (big O notations) we will simple use the symbols S and R
when we really means |S| and |R].

We assume that every state s € S is labeled with a value, denoted suc(s), that
record the out-degree of s in K S. The value of suc(s) is set during the forward

exploration phase. Initially, suc(s) is the cardinality of the set of successors of
s in K S, that is suc(s) = [{s'|s R s'}|. We decrement this label during the
backward traversal of the state graph; when the value of suc(s) reaches zero,
we say that s is cleared from the state graph. In our pseudo-code, we use the
expression suc(s).dec() to decrement the value of the label suc for the state s in
K S, and the expression suc(s).set(i) to set the label of s to some integer value
i.

When we deal with the reverse parental graph version of our algorithm,
we assume that we implicitly work with one particular parental graph of KS,
denoted PKS. In this case, we assume that every state s € S is also labeled
with a value, denoted sons(s), that record the out-degree of s in K.S. We also
label each state s € S with a state, denoted father(s), that is the predecessor of
s in PKS. (The label father(s) makes sense only if s is not sg, the initial state
of KS.)

Initially, the value of sons(s) is equal to zero. The value of this label will be
incremented during the forward exploration of K S, when we build PK S (that is,
we select the transitions from K.S that will be stored in PKS). This operation is
denoted sons(s).inc() in our pseudo-code. We will decrement the value of sons(s)
during the backward traversal phase.

4.2 Model-checking Reachability properties — E (¢ U ¢)

To check the formula E (v U ¢), we basically search for states satisfying the
predicate ¢ in the state graph. More precisely, we stop exploring a path whenever
we find a state such that (1) ¢ holds or (2) =¢) A =¢ holds. In the first case, we
can stop the exploration and return that the property is true. Otherwise, we stop
the exploration on this path because the property does not hold. The exploration
continues over the set of unexplored paths until (1) or (2) holds. The property
is false if (1) never holds.

The function is the same for the two versions of our algorithm; based on the
reverse graph or the reverse parental graph data structure.

4.3 Model-Checking Liveness Properties — A (¢ U ¢)

To check the formula A (¢¥ U ¢), we basically search for states satisfying the
predicate ¢ in the state graph. Like for reachability properties, we stop exploring
a path whenever we find a state such that (1) ¢ holds or (2) =1 A =¢ holds.

If we find an occurrence of case (2), we now at once that the property is false.
In the other case, we start a second phase, after the forward exploration is over,
in order to detect cycles. We call this second phase the clearing phase, because
it consists in recursively removing the leaves node from the graph. This process
ends either when we finally reach the initial state (which mean the property is
true), or when no states with zero out-degree can be found (in which case we
know that there is a cycle). The validity of this process is a direct corollary of
Theorem 1.

=

QOO U WN -

function BOOL check_a (% : pred, ¢ : pred, so : state)
Stack A <+ new Stack(0) ;
// Start with the forward exploration
if forward_check_-a(y , ¢, so, A) then
// If all forward constraints are respected, start the backward phase
return backward_check_a(so, A)
else
// We found a problem during the forward exploration
return FALSE
endif

Listing 1.1. Algorithm for the formula A (¢ U ¢)

We give the pseudo-code for checking the formula A (¥)U¢) in Listing 1.1. The
inputs are the atomic properties ¥ and ¢ and the initial state sg. The algorithm
uses a stack, A, to collect the states where ¢ holds during the forward explo-
ration phase. The algorithm also uses two auxiliary functions, forward_check_a
and backward_check_a, that are defined later. The implementation of these two
functions depend on the version of the algorithm that we use. We start by study-
ing the case where we use the Reverse Graph data structure and then the Reverse
Parental Graph.

Algorithm for the reverse graph version — RG

We give the pseudo-code for the function forward_check_a in Listing 1.2. The last
parameter of this function, A, is a stack that is used to collect the “leave nodes”
of the state graph; the state where ¢ holds. These states will be the starting
points in our backward traversal of the graph.

During the forward exploration phase, we label each state s with a value that
is the number of successors of s in the initial state graph (the Kripke structure).
During the backward traversal phase of the algorithm, we will decrement this
value each time we remove a successor of s. Intuitively, a state can be removed as
soon as it is tagged with zero. We never actually remove a state from the graph.
Instead, when a processor change the label of a state s to 0!, we also decrement
the labels of all the parent of s in the graph. Hence the choice of storing the
reverse of the transition function in the data structure.

Listing 1.2 gives the pseudo-code for the function backward_check_a, that
implements the clearing phase. We start by clearing all the states in A which
are, by construction, states s such that suc(s) is zero. When a state is cleared,
we decrement the label of all its parents (suc(s’).dec()) and check which ones
can be cleared (suc(s’) == 0). The algorithm stops if the initial state, sg, can
be cleared or if there are no more state to update.

Algorithm for the reverse parental graph version — RPG

The forward exploration function, forward_check_a, for the parental graph ver-
sion is similar to the one presented for the reverse graph (see Listing 1.2). The

! We assume that the decrementing operations are done in parallel.

difference, in this case, is that we only have access to the reverse parental graph
data structure. As a consequence, we can only access one of the parents of a state
in constant time (what we call the father of the state). In our implementation,
we choose has father for a state s’, the first state, say s, that leads to s’ in the
exploration. From line 15 of Listing 1.2, the RPG version of forward_check_a
executes two additional statements. It takes into account the father reference
s for each state s’ (father(s’).set(s)) and increments the number of sons of
s (sons(s).inc()). These information help the backward traversal to track non
cleared leaves.

For the clearing phase, we rely on the parental graph structure to “propagate”
the cleared states toward the root of the state graph. We give the pseudo-code
for the backward traversal phase in Listing 1.3. The algorithm iterates between
two behaviors, clearing and collecting. The clearing behavior is similar to the
pseudo-code for the RG algorithm (see Listing 1.2), with the difference that we
decrement only the father of a state and not all the predecessors. When there
is no more labels to decrement—and if the initial root is not yet cleared—the
algorithm starts looking for states that can be cleared. For this, we test all the
states s such that sons(s) == 0; that is, such that all the sons of s have been
cleared. In this case, to check if s can be cleared, we have to recompute all its
successors in K.S (because this information is not stored in the RPG) and check
whether they have been cleared also (if their suc label is zero).

The advantage of this strategy is that we do not have to consider all the states
in the graph, just a subset of it. Indeed, we know from Theorem 2 that this subset
is enough to test the presence of a cycle. At the opposite, the drawback of this
approach is that we may try to clear the same vertex several times, which may
be time consuming.

4.4 Model-Checking the Leadsto Property — ¢ ~~ ¢

To check the formula 1) ~~ ¢, we need to prove that
there is no cycle that can be reached from a state
where v holds, without first reaching a state where ¢
holds. Indeed, otherwise, we can find an infinite path
where ¢ never holds after an occurrence of ¢. Figure 2
gives an example of graph for which the formula is
valid.

This observation underlines the link between
checking the formula 1 ~» ¢—Ilocally, for the initial
state—and checking the validity of A<$(¢p)—globally,
at every state where 1) holds. As a consequence, we can
use an approach similar to the one used for liveness Fig.2. Leadsto a ~ b
properties in the previous section. The main difference where a is ¢ and b is ¢.
is that, instead of clearing the initial state, we have to
clear all the states where ¢ holds.

We skip the presentation of RG and RPG pseudo-code because they are
similar to the ones presented for the formula A (¢ U ¢). The main difference is

© 00O Uk WN -

© 000Uk WN -

function BOOL forward_check_a(y : pred, ¢ : pred, so : state, A : Stack)
Set S « new Set(sg) ;
Stack W <« new Stack(so) ;
while (W is not empty) do
s < W.pop ();
if (s F¢) then
suc(s).set (0) ; // we clear state s from KS
A.push(s)
elsif (s F) then // we tag s with its number of successors
suc(s).set (number of successors of s in KS) ;
if (suc(s) = 0) // check if s is not a dead state
return FALSE
forall s’ successor of s in KS do // and continue the exploration
if (s’ ¢ S) then
S « S U {s’} ; // s is a new state
W. push(s’)
else return FALSE
return TRUE

function BOOL backward_check_a(sp : state, A : Stack)
while (A is not empty) do
s < A.pop() ;

if (s = so) then // the property is true if
return TRUE // we reach the initial state
forall s’ parent of s in KS do // otherwise we check if the
suc(s’).dec() ; // predecessors of s can be cleared
if (suc(s’) = 0) then
A.push(s’)

return FALSE

Listing 1.2. Forward and backward exploration for A (¥ U ¢) with Reverse Graph

function BOOL backward_check_a(y : pred, ¢ : pred, so : state, A : Stack)
over < FALSE
while (not over)
while (A is not empty) do

//Clearing

s « A.pop() ;

if (s = so) then // the property is true if
return TRUE // we reach the initial state

s’ <« father(s) ; // otherwise we check if
sons (s ’).dec() ; // the father of s can be cleared
suc(s’).dec() ;
if (suc(s’) = 0) then
A.push(s’)
//Collecting: if we have no more states to clear in A we try to find
// candidates among the states with no children in PKS
forall s such that sons(s) = 0 and suc(s) # 0 in KS do
if test(s) then
suc(s).set (0) ;
A.push(s)
if (A is empty) then
over <+ TRUE //No good candidate was found, end backward search
return FALSE

function BOOL test (s : state)
forall s’ successor of s in KS do
if suc(s’) # 0 then
return FALSE // at least one successor is not cleared
return TRUE

Listing 1.3. Backward exploration for A (1) U ¢) with Reverse Parent Graph

in the termination condition: the function returns true if all the states where v
holds are labeled as cleared.

4.5 Correctness and Complexity

The correctness proof (Termination, Completeness and Soundness) and the com-
plexity study of our algorithm is presented in details in [14]. We skip its presen-
tation here due to the lack of space. Below, we show the worst-case complexity
of our algorithm in the sequential case. We more specifically present the case of
the liveness formula A (1) U ¢). The results for this case can be generalized to
our whole logic. (Recall that, inside asymptotic notations, we use the symbols S
and R when we really means |S| and |R|.)

Complexity: The worst-case time complexity of the algorithm is in the order
of O(S + R) for the RG version and in the order of O(S - (R — S)) for the
RPG version.

Since the number of transitions in a graph G(S, R) is bounded by |S|?, we
obtain a complexity in the order of O(S?) for the RG version and of O(S?) for
the RPG version.

In conclusion, we want to emphasize that the RG version of the algorithm
has a time complexity that is a factor of |S| better than the RPG version. At
the same time, the space complexity is better for the RPG version than for the
RG version by the same factor: the space complexity is in O(S) for the RPG
version and in O(S?) (or O(S + R)) for the RG version.

4.6 Parallel Implementation of our Algorithm

While we presented our algorithm, we have not specifically fixed the abstract
computational model that is used to interpret the semantics of our pseudo-code.
We can easily adapt the same code to a Parallel RAM model, following the
Single Program Multiple Data (SPMD) programming style that we adopted for
our algorithms presented in a previous work [15].

In a SPMD context, all processing units will execute the same functions, as
defined in Sect. 4. Following this approach, the forward exploration phase and the
cycle detection (backward traversal) phase can both be easily parallelized. Then,
for the model-checking function themselves—for instance the function check_a—
we only need to synchronize the termination of the forward exploration with the
start of the backward label propagation. At each point, a processing unit can
terminate the model-checking process if he can prove (or disprove) the validity
of the formula before the end of the exploration phase.

We consider a shared memory architecture where all processing units will
share the state space (using the mixed approach that we presented in [15])
and where the working stacks are partially distributed (such as the stacks W, A
and P used in our pseudo-code). For most of our pseudo-code, it is enough to
rely on atomic compare and swap primitives to protect from parallel data races

and other synchronization issues; typically, compare-and-swap primitives will be
used when we need to test the value of a label or when we need to update the
label of a state (for instance with expressions like sons(s).dec()). Together with
the compare-and-swap primitive, we use our combination of distributed, local
hash tables with a concurrent localization table to store and manage the state
space.

For the RG version of the algorithm, we can ensure the consistency of our
algorithm by protecting all the operations that manipulate a state label. (We
made sure, in our pseudo-code, that every operation only affect one state at a
time.)

The parallel version of RPG is a bit more complicated. This problem is re-
lated to the behavior collection, that needs to check all the successors of a given
state to see if they are cleared. First, this operation is not atomic and it is not
practical to put it inside a critical section (it would require a mutex for every
state). If two processors collects the same state, then the father of this state will
be decremented two times (later) at the clearing procedure. Second, the collec-
tion operation must be performed after all processors have finished the clearing
operation, otherwise, Theorem 2 can not be applied to our algorithm. For in-
stance, if the processors are allowed to perform asynchronously both clearing
and collection operations, then a state may be forgotten to be collected because
one of its successors has not been cleared yet.

We solve the parallel issues for RPG through the synchronization of all pro-
cessors before both clearing and collection operations. The synchronization en-
sures that no states will be forgotten to be collected. Then, we take advantage of
our distributed local hash tables to avoid the concurrent access problem. Each
processor is restricted to perform the collection operation over the states stored
in its own table.

To conclude with the parallel version of our algorithm, we use a work-stealing
strategy (see [15]) to balance the work-load between the different phases of our
algorithm. During the exploration phase, we use the same strategy than in our
algorithm for parallel state space construction, where each processor holds two
stacks for unexplored states (one private stack and one shared stack). For the
backward traversal, we use the same idea of two stacks for the accepted vertices
(the stack called A in our pseudo-code); whenever a thread has no more vertex
to clear, it tries to “steal” non-cleared vertices from other processors.

5 Experimental Results

In this section we present a summary of the experimental results we obtained
with our prototype implementation of MCLCD. The complete set of experiments
is presented in [14]. We have implemented three versions of our model-checking
algorithm as part of our prototype model checker MERCURY ([14]). They are built
on top of our previous algorithm for parallel state space exploration (see [15]).
Experimental results presented in this section were obtained on a Sun Fire x4600
M2 Server, configured with 8 dual core opteron processors and 208 GB of RAM
memory, running the Solaris 10 operating system.

For this benchmark, we use a set of 8 classical models— Token Ring protocol
(TK), Peg-Solitaire (Peg), etc— with a mix of valid and invalid properties. We
experimented with all the formulas: reachability (E<¢), safety (AO¢ and EOg),
liveness (AC¢) and leadsto (¢ ~» ¢). (See [14] for a complete description of the
models and formula used in this benchmark.)

5.1 Speedup Analysis

In this section, we study the relative speedup and the execution time for our
algorithms. In addition, we also give the separate speedup obtained in each
phase of the algorithm—during the exploration (forward) and cycle detection
(backward) phases—in order to better analyze the advantages of our approach.

Speedup analysis for model TK2Z using PARENTAL algorithm Exec. Time for model TK22 using PARENTAL
12
exploration 6000 = —e—
cycle detections NI — ~ q ALl —%—
0 el speedup . - B 5000y Ll —%—
3
o B £ 4000
3 =
g6 3 § 3000
& . N o
4 5 2000
3
i : b,
2 N 2 1000
IN|
2 4 6 8 1012 14 16 2 4 6 8 1012 14 16 2 4 6 8 1012 14 16 0
2 4 & 8 10 12 14 16
= Nussber F Processars E0 Number of Processors
Speedup analysis for model SOLITAIRE using PARENTAL algorithm Exec. Time For model SOLITAIRE using PARENTA
12
exploration s 10000 =
10 | cycle detections mmmm L. 9000 \
total speedup EEEE § so0o
R g 7000
= P 8000
4
o6 5 5000
@ o 4000
4r g 3000
» X 2000
t &
1000
H 4 6 8 10 12 14 15 °
2 4 6 8 10 12 14 16
A<
Number of Brocessors Number of Processors
a) Speedup b) Execution Time

Fig. 3. Speedup and execution time analysis for Token Ring and Solitaire models.

Execution Time for model TK22 Execution Time for model SOLITAIRE
700 1400 "
exploration s
600 1200 cycle detections s
2 500
2 % 1000
F 400 2
<
s £ 800
§ 300 S
2 S L
5 200 § 600
100 4 400
0
%, Oy 2 %, Gy % Zo oy 200 |-
S, o 0 S, 9 0 ®, %, o
8, N NN NN
K3 %/%04 S %, @o,, K3 O’w"/@‘?o,, 0
Al => =]

exploration mm—
cycle detections m—

Fig. 4. Comparison with a Standard Algorithm.

Figure 3 presents a speedup analysis for the RPG (parental) version of our
algorithms. We present only two models— Token Ring (TK) and Solitaire game
with 33 pegs —because they are enough to summarize the results we obtained in
our complete benchmark. These models have different execution profiles which
impacts significantly on the overall performance. The main difference is the time
expended on the backward traversal phase, i.e. the cycle detection phase.

Figure 4 gives a series of bar charts where we put in evidence the time
required for each phase of the algorithm (exploration and cycle detection). In
addition, we compare our approach (RG and RPG) with a “standard” algorithm
for model-checking CTL using 16 processors on our test machine. For this stan-
dard algorithm, we can simply use the same code than for the RG version, but
compute the predecessor relation instead of relying on the reverse graph. Since
we do not need to store the transition relation, we call this new version of our
algorithm NO_GRAPH.

We have observed two main categories of behaviors in this analysis. We have
examples of complete backward traversal and examples of negligible backward
traversal.

Negligible backward traversal We put in this category the examples where
the time spent in the backward exploration phase is negligible compared to
the overall execution time (see Token Ring model in Figures 3 and 4). This
is the case, for instance, if the specification is false and the cycle detection
phase terminates early. In this category of experiments, there is no signifi-
cant differences between RG and RPG. This is mainly because the gain in
performance during the forward exploration phase outweighs the extra work
performed during the cycle detection phase.

Complete backward traversal. We put in this category the examples where
the cycle detection phase needs to run through all the state space ((see
Solitaire model in Figures 3 and 4)). We observed a significant difference in
performance between the RG and RPG versions in this case. The extra work
performed by the RPG version becomes the dominant factor, up to a point
where it accounts for nearly all the execution time.

A real advantage of the RPG version is to impose no restrictions on the
models that are checked. The NO_GRAPH algorithm rely on the fact that the
transition relation needs not be stored. Very often, this optimization is based on
the fact that it is possible to compute the reverse transition relation. But this is
not always practical, or even possible.

To conclude, both RG and RPG can be useful; RPG being the good choice
if we are limited by the memory space. Although RPG may requires a lot more
computations, it can be applied on models that are not tractable with the reverse
graph version. For instance, we performed an experiment with the European Peg-
Solitaire game (37 pegs) with our setup (208 GB of RAM). The state space of
this model has 3.10° states and 3.10'° transitions. Assuming that each transition
would use 8 bytes of memory to store the reverse relation between two given
vertices, we would need at least 240 GB of memory only to store the edges of
this graph. On the opposite, we only need 15GB to store the states and we
can check this example with RPG (with the specification A<> dead) in 19,662,
divided in 3,817s for the exploration phase (less than 20% of the computation
time) and 15,845 for the cycle detection phase.

6 Comparison With Other Tools
We present a comparison of our algorithms with DIVINE [1], which is the state
of the art tool for parallel model checking. More recently, Barnat et al. published

that the conjugated use of owcty and map (see section 2) results in a optimal
on-the-fly algorithm for the verification of weak LTL properties. The result of
this union (map-owcty) is an algorithm that first tries to disproof a formula using
the map strategy until it ends the first iteration, otherwise it proceeds with the
owcty algorithm. Unfortunately, this algorithm is not yet available for use on the
latest distribution. (The results reported here were obtained using the DIVINE
2.5.2 version.) Consequently, for this benchmark, we consider owcty and map
separately. It does not affect our analysis because the union map-owcty tries to
bring together the best from both in one algorithm. Thus, we could consider
that DIVINE holds a better performance whenever one of these two algorithms
has the best result.

This benchmark is based on the set of models presented in [1], we selected
the models which there were available valid and non valid formulas. This choice
was motivated to establish a broader comparison between our approach, which is
“optimized” for valid formulas, and theirs, which are on-the-fly algorithms. Like
we mentioned, RG and RPG are not completely on-the-fly algorithms because
a cycle is detected after the state spaced is constructed, what can delay the
discovery of an invalid path. By contrast, owcty and map are meant to generate
the complete state space when they are not able to disproof the formula, i.e.,
the formula is valid. That means that they are more likely to find invalid paths
faster than our approach.

[()
£ &
= kS
g £
& 5]
=
E €
2 5
> z
£ 3
= =
.% =)
= 2
2. O %, O D, O %o, 2 D O %o, 2 2. O % O
%yl B T, % 0%, % %y 0, %,
© Q © o © S SIROR
Valid (TRUE) Not Valid(FALSE) Valid (TRUE) Not Valid (FALSE)

Fig. 5. Comparison with divine.

Figure 5 summarizes the results obtained in this benchmark; it shows a set
of histograms for the normalized weighted sum of the memory footprint and
the execution time. These measures are first normalized and after weighted by
the number of states of each experiment. We presented this measure in order to
balance the results according to the size of the model. The results are divided
by the type of the formula (Valid or not valid) and the tool (or algorithm) used.
From this figure, owcty /maps stands for the results obtained using the DIVINE
tool and reverse/parental for RG and RPG algorithms implemented on Mercury.
The complete benchmark is presented in the Appendix A.

As expected, owcty and map have a better overall outcome whenever the
formula is not valid (FALSE). By contrast, reverse holds the best execution
time when the formula is valid. This is due to the linear complexity of RG
when compared to the other solutions. Regarding parental, our results show

that it holds the best memory footprint among all results, in average, it uses
2—4 times less memory than map and owcty when the formula is valid. In
addition, regardless of its non-linear time complexity, it showed good results
when compared to map and owcty. For instance, it is able to verify a valid
formula —in average— using 4 times less memory than owcty by a small amount
of extra time (= 60% more).

To conclude, for the set of models and formulas used in this benchmark,
both parental and reverse delivered good results when compared to DIVINE.
For instance, reverse presented a better performance in both time and memory
usage when compared with DIVINE (map and owtcy). Moreover, parental proved
its economical memory profile by using less memory than reverse and DIVINE.

7 Conclusions

In this work, we have described some ongoing work concerning parallel model-
checking algorithms for finite state systems.

We define two versions of a new algorithm, called MCLCD, that supports
specification expressed in a subset of CTL. Our algorithms are based on a stan-
dard, semantic model-checking algorithm for CTL that specifically targets par-
allel, shared memory machines. We defined two versions of the same algorithm:
a Reverse Graph (RG) version, that explicitly stores the transition relation in
memory; and a Reverse Parental Graph (RPG) version, that only requires a
“spanning subtree” of the transition relation.

We use the reverse parental graph structure as a mean to fight the state
explosion problem. In this respect, this approach has a similar impact in space
than algorithmic techniques like sleep sets (used with partial orders methods),
but with the difference that we do not take into account the structure of the
model. Moreover, our approach is effective regardless of the formalism used to
model the system.

Our prototype implementation shows promising results for both the RG and
RPG versions of the algorithm. The choice of a “labeling algorithm” based on the
out-degree number has proved to be a good match for shared memory machines
and a work stealing strategy; for instance, we consistently obtained speedups
close to linear with an average efficiency of 75%. Our experimental results also
showed that the RPG version is able to outperform the RG version for some
categories of models.

For future works, we are studying an improved version of our algorithms that
supports the complete set of CTL formulas without manage several copies of our
labels (sons and suc) in parallel; it could have an adverse effect on the memory
consumption.

References

1. J. Barnat, L. Brim, and P. Rockai. A Time-Optimal On-the-Fly parallel algorithm
for model checking of weak LTL properties. In Formal Methods and Software
Engineering (ICFEM 2009), volume 5885 of LNCS, page 407425. Springer, 2009.

10.

11.

12.

13.

14.

15.

16.

. Alexander Bell and Boudewijn R. Haverkort. Sequential and distributed model

checking of petri nets. International Journal on Software Tools for Technology
Transfer, 7(1):43-60, April 2004.

Benedikt Bollig, Martin Leucker, and Michael Weber. Local parallel model checking
for the Alternation-Free -Calculus. In Dragan Bosnacki and Stefan Leue, editors,
Model Checking Software, volume 2318 of Lecture Notes in Computer Science, pages
501-522. Springer Berlin / Heidelberg, 2002. 10.1007/3-540-46017-9_11.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transactions
on Programming Languages and Systems, 8(2):244-263, April 1986.

Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization
skeletons using branching time temporal logic. In Dexter Kozen, editor, Logics of
Programs, volume 131, pages 52-71. Springer-Verlag, Berlin/Heidelberg, 1982.

C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory-efficient al-
gorithms for the verification of temporal properties. Formal Methods in System
Design, 1(2):275-288, 1992. 10.1007/BF00121128.

Raymond Greenlaw, H. James Hoover, and Walter L. Ruzzo. Limits to Parallel
Computation: P-Completeness Theory. Oxford University Press, USA, 1995.

G. J Holzmann, R. Joshi, and A. Groce. Swarm verification. In Proceedings of
the 2008 23rd IEEE/ACM International Conference on Automated Software Engi-
neering, ASE 08, page 16, Washington, DC, USA, 2008. IEEE Computer Society.
Cornelia P. Inggs and Howard Barringer. CTL* model checking on a shared-
memory architecture. Formal Methods in System Design, 29(2):135-155, July 2006.
A. W. Laarman, R. Langerak, J. C. van de Pol, M. Weber, and A. Wijs. Multi-Core
nested Depth-First search. In T. Bultan and P-A. Hsiung, editors, Proceedings of
the 9th International Symposium on Automated Technology for Verification and
Analysis, ATVA 2011, Tapei, Taiwan, volume online pre-publication of Lecture
Notes in Computer Science, London, July 2011. Springer Verlag.

P. Merlin and D. Farber. Recoverability of communication ProtocolsImplications
of a theoretical study. Communications, IEEE Transactions on, 24(9):1036 — 1043,
September 1976.

Jaco van de Pol and Michael Weber. A Multi-Core solver for parity games. Elec-
tronic Notes in Theoretical Computer Science, 220(2):19 — 34, 2008. Proceedings
of the 7Tth International Workshop on Parallel and Distributed Methods in verifi-
Cation (PDMC 2008).

John H. Reif. Depth-first search is inherently sequential. Information Processing
Letters, 20(5):229 — 234, 1985.

Rodrigo Saad. Parallel Model Checking for Multiprocessor Architecture. PhD the-
sis, L’Institut National des Sciences Appliquées de Toulouse, Toulouse - France,
11/2011 2011.

Rodrigo T. Saad, Silvano Dal Zilio, and Bernard Berthomieu. Mixed Shared-
Distributed hash tables approaches for parallel state space construction. In Inter-
national Symposium on Parallel and Distributed Computing (ISPDC 2011), page
8p., Cluj-Napoca, Romania, July 2011. Rapport LAAS ngre 11460.

Robert Tarjan. Depth-first search and linear graph algorithms. In Switching and
Automata Theory, 1971., 12th Annual Symposium on, pages 114 —121, October
1971.

A Results

In this Appendix, we give the set of models, with their individual results, used
for the comparison between our algorithms and Divine. Concerning this bench-
mark, all the configurations (owcty, map, reverse/RG and parental/RPG) were
performed using all the available resources of our setup. All the experiments
were carried out using 16 cores and with an initial hash table size enough to
store all states. The DIVINE experiments were executed with an addition flag
(-n) to remove the counter-example generation for performance purpose.
Figure 6 depicts the set of models used for this comparison.

Model Formula Results
Anderson (AN) F1:(-cs_0) ==> (cs_0) false
18- 10° states F2:A[1<>(cs_0 or ... or cs_n) true

Fl:(wait_0 and (- ¢s_0)) ==> (cs_0) false

Lampg)rt (LA) F2:(- ¢s_0) ==> (cs_0) false
38- 10 states. F3:A[1<>(cs_0 or ... or cs_n) true
Rether (RE) F1:A[1<>(art_0) true
4-10° states F2:A[1<>(rt_0) false
. Fl:(wait_0 and (- cs_0)) ==> (cs_0) false
Szyrréanskl (SZY) F2:(- ¢cs_0) ==> (cs_0) false
210" states . F3:A[1<>(cs_0 or ... or cs_0) true

Fig. 6. Formulas and Models for our Comparison.

Figure 7 presents the results obtained for each model presented at Figure 6.
This table starts by presenting the results for the anderson model, followed by
the lamport model, the rether model and finally the szymanski model. For each
model we give the execution time (T.) in seconds and the memory peak (M.) (in
Gb).

owcty map reverse parental
T.(s) [M.(Gb)| T.(s) [M.(Gb)] T.(s) [M.(Gb)| T.(s) [M.(Gb)
F1: false| 61.3 3.3 110.2 5.5 28.8 2.8 94.4 1.8
F2: true | 79.5 7.4 110.5 4.8 26.4 2.9 50.4 1.8
F1: false| 1.6 1.1 1.4 1.1 42.4 5.1 74.2 3.3
LA |F2: false| 1.4 1.1 1.7 1.2 47.6 5.6 327.2 3.6
F3: true | 153.6 | 14.1 | 282.8 | 12.1 51.0 5.6 370.4 3.7
F1: true | 12.0 1.8 20.1 1.3 5.0 0.7 12.0 0.6
F2: false| 13.2 1.8 1.2 0.3 3.4 0.7 7.8 0.6
F1: false| 8.5 0.9 7.0 0.5 2.2 0.3 14 0.2
SZY |F2: false| 9.8 0.9 6.6 .5 4.2 0.3 39.6 0.3
F3: true 9.0 0.9 24.7 0.6 3.8 0.3 32.8 0.3

M | Formula

AN

RE

Fig. 7. Table of results.

