
Mixed Shared-Distributed Hash Tables
Approaches for Parallel State Space Construction ∗

Rodrigo T. Saad, Silvano Dal Zilio and Bernard Berthomieu
CNRS; LAAS; 7 ave. Colonel Roche, F-31077

Toulouse, France
Université de Toulouse; UPS, INSA, INP, ISAE; LAAS; F-31077 Toulouse, France

{rsaad, dalzilio, bernard}@laas.fr

Abstract

We propose an algorithm for parallel state space con-
struction based on an original concurrent data structure,
called a localization table, that aims at better spatial and
temporal balance. Our proposal is close in spirit to algo-
rithms based on distributed hash tables, with the distinction
that states are dynamically assigned to processors; i.e. we
do not rely on an a-priori static partition of the state space.

In our solution, every process keeps a share of the global
state space. Data distribution and coordination between
processes is made through the localization table, that is a
lockless, thread-safe data structure that approximates the
set of states being processed. The localization table is used
to dynamically assign newly discovered states and can be
queried to return the identity of the processor that own a
given state. With this approach, we are able to consolidate
a network of local hash tables into an (abstract) distributed
one without sacrificing memory affinity – data that are “log-
ically connected” and physically close to each others – and
without incurring performance costs associated to the use
of locks to ensure data consistency.

We evaluate the performance of our algorithm on differ-
ent benchmarks and compare these results with other solu-
tions proposed in the literature and with existing verifica-
tion tools.

1 Introduction

Model-checking is a very demanding activity in terms of
computational resources. As a result, the extensive need for
memory and computation power has resulted in the design
of model checking algorithms that target parallel and dis-
tributed machines. Variations between these algorithms are

∗This work was partially supported by the JU Artemisia project CE-
SAR, the AESE project Topcased and the Région Midi-Pyrénées

often explained by differences between the targeted archi-
tectures – shared-memory versus distributed memory, clus-
ters, ... – or differences on the criteria to optimize – achiev-
ing better spatial balance between processes, lowering syn-
chronization costs, etc.

We propose an algorithm for parallel state space con-
struction intended for shared memory, multiprocessor ma-
chines. (We focus here on the exhaustive generation of the
state space of finite-state transition systems, often a prelimi-
nary step for model-checking.) The basic idea behind a state
space construction algorithm is pretty simple: take a state
that has not been explored (a fresh state); compute its suc-
cessors and check if they have already been found before;
iterate until there is no more new state to explore. Hence, a
key point for performance is to use an efficient data struc-
ture for storing the set of generated states and for testing
membership in this set.

In our approach, the goal is to build the state space of
a system concurrently in such a way that: (1) the share of
state space built by each processor is as uniform as possible;
and (2) the processor occupancy is maximal. Our algorithm
builds on previous work [19] and is based on the same sim-
ple design: the global state space is stored in a set of local
containers (e.g. hash tables), each controlled by a different
processor, while only a small part of the shared-memory
is used for coordinating the state space exploration. This is
close in spirit to algorithms based on distributed hash tables,
with the distinction that we choose to dynamically assign
states to processors, that is, we do not rely on an a-priory
static partition of the state space.

Data distribution and coordination between processes is
made through a localization table (LT), that is a lockless,
thread-safe data structure that approximates the set of states
being processed. The localization table is used to dynami-
cally assign newly discovered states and behaves as an as-
sociative array that returns the identity of the processor that
own a given state. With this approach, we are able to con-

solidate a network of local hash tables into an (abstract) dis-
tributed one without sacrificing memory affinity – data that
are ”logically connected” and physically close to each oth-
ers – and without incurring performance costs associated to
the use of locks to ensure data integrity.

The paper is organized as follows. In Section 2 we re-
view the related work. Section 3 details our algorithm and
defines the data structure for localization tables. Before
concluding, we report on experimental results obtained on
a set of typical benchmarks and compare our approach with
solutions already proposed in the literature.

2 Related Work

Model Checking [7] is an automated verification method
used to check whether the model of a system meets a given
specification. This technique relies on the exploration of
the state space of the model. State space construction can
be classified as an irregular parallel problem because state
graphs may be highly irregular, see [8] for a discussion on
this topic. As a consequence, when parallelizing this prob-
lem, special attention should be taken to ensure a good load
balancing among processors.

Several approaches have been proposed, since the early
1990s, for parallel and distributed state space exploration.
These solutions adopt, in their vast majority, a common
paradigm that could be labeled as “homogeneous” paral-
lelism – a Single Program Multiple Data (SPMD) program-
ming style – such that each processor performs the same
steps concurrently. Most of these solutions, to mention a
few [1, 17, 6, 9, 20], were intended for distributed com-
puters and rely on slicing functions – that is functions that
statically assign a state to a processor – and basically only
differ by the nature of these functions. The choice of slicing
functions has a major influence on the load balance and data
locality of the algorithms.

A smaller number of solutions target shared memory ma-
chines [10, 11, 12, 13, 1]. Like in our case, some of these so-
lutions are based on the use of hash tables to store the states.
An example is the version of DiVinE [2] for multicore ma-
chines, that is based on a static partitioning scheme where
each process owns a private hash table. Another example is
the parallel version of Spin [11, 10] which uses the stack-
slicing strategy to share work in combination with a shared
hash table protected by a fine-grained locking scheme. This
work has been recently extended with a lockless shared
hash table based on atomic primitives [13] (CAS – Com-
pare & Swap). Additionally, we mention the work of Inggs
et al. [12], which proposes a parallel algorithm based on a
work stealing scheduling paradigm to provide dynamic load
balancing. In their case, the data structure used to store the
states is an “unsafe” shared hash table.

In the context of this work, we propose an extension of

an algorithm that we defined in [19], which is based on
two data structures: a lock-free, shared Bloom filter [4] to
coordinate the data distribution; and local data containers to
explicitly store the data (for instance, our initial implemen-
tation was based on AVL trees). The Bloom filter is used to
represent, in a very compact way, the set of states that have
already been found and to efficiently test whether a given
state has already been found. Due to the probabilistic nature
of the Bloom Filter, the algorithm is based on multiple
iterations in order to perform an exhaustive exploration. In
a first phase, the algorithm is guided by the Bloom filter
until no new states can be found. During this phase, states
found by a processor are stored locally in two dictionaries:
one for states that, according to the Bloom filter, have also
been found by another processor; the other for fresh states.
Since the Bloom filter may, at times, falsely report that
a state has already been visited, we need to handle these
collision states in a second phase of the algorithm. The
computation stops when there are no more states to explore
and no more collisions.

Our Contributions: The algorithm proposed in this pa-
per improves on our previous design and replaces the Bloom
Filter by a dedicated data structure, the localization table.
Unlike Bloom Filters, this data structure can be used to find
the processor that owns a given data item – a state in our
case – and not only if the object was already found. This
simple addition significantly enhance the performance of
our previous algorithm and also simplifies its logic. Indeed,
it is now possible to solve possible collisions on-the-fly and
to get rid of the collision resolution phase.

Our contributions are twofold. First, in the formal verifi-
cation domain, we define a new algorithm for parallel state
space construction. Our algorithm is able to exploit par-
allelism in all possible cases and, unlike algorithms based
on slicing functions or heuristic rules, is compatible with
dynamic load-balancing techniques. Second, in the paral-
lel computing domain, the combination of local hash tables
with a localization table provides an interesting implemen-
tation for concurrent hash maps that may be useful in other
situations.

Our preliminary results are very promising. We observe
performances close to those obtained using an algorithm
based on lockless hash tables (that may be unsafe) and that
outperforms an implementation based on the concurrent,
unordered map provided in the Intel Threading Building
Blocks [18], an industrial strength lockless hash table.

3 Description of the Algorithm

Our algorithm follows a “homogeneous” parallelization
approach, where all processors execute the same program
simultaneously and each processor handles its own local

view of the state space. Coordination between the proces-
sors is based on a Localization Table (LT for short), that is
used to allocate newly discovered states to processors.

The LT is used to test whether a state has already been
found and, if so, to keep track of the location – the proces-
sor id – where the state is held. The work performed by
each processor is pretty simple: generate a state using the
model of the system, say s, and check in the LT where it
could have potentially been assigned. If s is a newly dis-
covered state, it will be assigned to the processor who gen-
erated it. Otherwise, the LT will return the location where
the state s is assigned, say LT(s). This approach has the ad-
vantage to isolate the local hash tables; each processor has
exclusive write access to its local table, whereas concurrent
read accesses are unrestricted. As a result, we consolidate a
network of distributed hash tables into a single, concurrent
data structure. Another advantage is that we can easily re-
size local hash tables, as needed, without blocking the entire
exploration.

We describe more precisely how the LT is implemented
in Section 3.1. An advantage of our design is to be thread-
safe: operations on a LT are simple and can be implemented
using atomic actions. Another advantage is the small foot-
print of the LT . To summarize, our goal is to combine the
advantages of distributed and shared hash tables for parallel
state space construction in a single algorithm.

In the remainder of the text, we use N to denote the num-
ber of processors and 1..N for the natural interval between
1 and N . We define the localization table in Sect. 3.1. The
work-sharing techniques used in our algorithm is discussed
in Sect. 3.2 while Sect. 3.3 gives some pseudo-code and fur-
ther explanations about the algorithm.

3.1 Localization Table

Storing the relation (s, LT(s)) – associating each state, s,
with the processor that owns it – in a single table would re-
quire a very large amount of memory. Actually, it would de-
feat the need to store the state themselves. Instead, the idea
is to use a notion of a key associated to a state and to store
the association between keys and processors. In our imple-
mentation, keys are computed using hash-functions and we
will use a scheme based on multiple keys.

A localization table is essentially a “table” that asso-
ciates a processor id – a value in 1..N – to every key in the
table. A straightforward implementation is to use an integer
vector for the underlying table.

We can implement the table using a vector V of size n
and, for computing the key of a state, an independent hash
function, h, with image in 1..n. In this case, we can check
if a state s has already been found by looking into the lo-
cal table of processor V [h(s)]. While this implementation
is simple, its disadvantage is that it is not possible to en-

sure a fine dynamic distribution of the states if h is not uni-
form. Indeed, if processor id1 finds a new state, s, such that
V [h(s)] = id2, then we need to transfer s between the two
processors. A solution is to increase the size of the vector
– but this has a direct impact on the memory consumption
– or to use better hashing functions – but this has an impact
on the performances.

We propose another implementation of the localization
table that improves upon the choice of a vector. Inspired
from our previous experience with a Bloom Filter (BF), the
idea is to use a finite family of hashing functions h1, . . . , hk.
To test if a state s is in the LT , we search if the key h1(s)
is in LT . If it is not, we know that the state is fresh. If
LT(h1(s)) = id1 then we check if s is in the local table of
processor id1. If LT(h1(s)) 6= id1, we continue searching
with the key h2(s) and so forth.

This is only a rough description of how the LT works.
Next, we define more formally the operation of our data
structure. In particular, we explain how to deal with states
that are not in the processors LT(h1(s)), . . . , LT(hk(s)),
that we call collision states. By convention, our algorithm
will route a collision state to the last processor found, that
is LT(hk(s)).

A Localization Table, L, is defined by two parameters:
its size n; and a family of k independent hashing functions
h1, . . . , hk with image in 1..m , where we choose m such
that n � m (see the discussion about the ratio n/m in
Sect. 4.2).

A localization table L of size n is an array of size n con-
taining pairs of the form (p, d), where p is a processor id
(p ∈ 1..N) and d is a key (d ∈ 1..m). To look for values
inside of L, we use a fixed surjective function map, from
1..m to 1..n. Hence, to check the value associated to the
key hi(s), we look in the array L at index map(hi(s)).

Initially, an empty LT is an array initialized with the
value (0, 0). Assume that the processor id attempts to in-
sert a state s into L. The function takes as input a state and
a processor id and returns a pair made of: a status, to de-
termine if the element is new (or old); and the identifier of
the processor who owns the state. The insertion operation is
performed by looking successively at the elements with in-
dex map(hi(s)) in L for all i ∈ 1..k. There is four possible
cases at each step:

• if L[map(hi(s))] = (0, 0) then we know for sure that
the state is fresh (it has never been added before). We
can stop our iteration and write the pair (id , hi(s)) in
L. This can be done using an atomic compare and
swap operation;

• if L[map(hi(s))] = (id ′, d) and d 6= hi(s) then we
cannot decide if the state s has been found and we con-
tinue to the next iteration, with the key function hi+1;

• if L[map(hi(s))] = (id ′, hi(s)) then we answer that
s is in the local table of processor id ′ with high confi-
dence. With this approach, states with the same hash
value are not handled at the LT level. In our algo-
rithm, these collisions will be spotted when the pro-
cessor tries to recover the state from the local table of
id ′. In order to keep the consistency of the LT and to
prevent states from being stored more than once, we
choose to assign s to the processor id ′ and this is han-
dled like a collision state;

• if we cannot decide after checking the values of
L[map(hi(s))] for i ∈ 1..k, we also say that s is a
collision state and we choose to assign s to the proces-
sor id ′ such that L[map(hk(s))] = (id ′, d).

The operation for checking whether a state s is already
in the LT is very similar to the insertion function. We
test successively if there is an index i ∈ 1..k such that
L[map(hi(s))] = (id i, hi(s)), stopping if one of the po-
sition in L is empty. If this is the case, we know that s is
not in the LT . If we find no match after k attempts, then we
consider that s is a collision state that belongs to idk.

In Figure 1 we illustrate the insertion and test operation
for three data items: x, y, and z; performed in this order
by the processors P1, P2 and P3. The figure display a LT
of size n = 4 with two independent hash functions h1 and
h2. We assume that k = 2 and that m = 31. The insertion
of x requires only one operation since the slot at position
map(h1(x)) is initially empty. As a result the slot is asso-
ciated to processor P1 for elements with key 17. Element y
is inserted at the second attempt, since the slot in position
map(h1(y)) is already filled and that h1(y) 6= d1. Finally,
element z cannot be properly inserted – it is a collision –
and it is assigned to processor P2.

Figure 1. Insertion in a Localization Table.

3.2 Work-Sharing Techniques

Our algorithm relies on two different work-sharing tech-
niques to balance the work load between processors. We use
these mechanisms alternately during the exploration phase

depending on the processor occupancy. First, we use an ac-
tive technique very similar to the work-stealing paradigm
of [12]. This mechanism uses two stacks: a private stack
that holds all states that should be worked upon; and a
shared stack for states that can be borrowed by idle proces-
sors. This shared stack is protected by a lock to take care of
concurrent access. The second technique can be described
as passive and has the benefit to avoid useless synchroniza-
tion and contention caused by the active technique. In the
passive mode, an idle processor waits for a wake-up signal
from another processor willing to give away some work in-
stead of polling other shared stacks. The shift between the
passive and active modes is governed by two parameters:

• the private minimum workload, which defines the min-
imal charge of work that should be kept private. The
processor will share work only if the charge in its pri-
vate stack is larger than this value;

• the share workload, which defines the ratio of work
that should be added in the shared stack if the load in
the private stack is larger than the private minimum
workload.

Our implementation of the work-stealing paradigm is in-
teresting in its own right since it differs from [12] by its use
of unbounded shared stacks and the use of a “share work-
load” parameter. The description of this extension is also
interesting since it shows that common optimizations and
load-balancing techniques are not precluded by our algo-
rithm, which is not the case with algorithms based on static
slicing functions.

3.3 Algorithm

To conclude this section, we give a high-level view of
our algorithm that can be described by the pseudo-code of
Listing 1. The diagram of Fig. 2 describes the shared and
local data structures used in the algorithm. Each processor
manages a “private work” stack of unexplored states and
a local hash table to store the states assigned to him. The
shared values are: the Localization Table; one bitvector of
size N to store the state of the processors (idle or busy),
used to detect termination; N stacks – one for each proces-
sor – for the work sharing technique described in Sect. 3.2;
and finally N collision stacks used to route collisions states
to their correct processors.

The state space exploration proceeds until no new states
can be added to the LT and all stacks are empty. Given
a state s, a processor, say my id, will check the LT to
test whether s is new and, otherwise, what is the owner of
s. This information is returned by a call to the function
test or insert(s, my id). During the exploration, states that
are labeled as new by the LT are stored in the local table of

Figure 2. Shared and Private Data.

whi le (one p r o c e s s s t i l l busy)
whi le (Proc [my id] . p r i v a t e s t a c k n o t empty)

do s ← remove s t a t e
from Proc [my id] . p r i v a t e s t a c k ;

i f s n o t t a g g e d as c o l l i s i o n
then (s t a t u s , i d) ← LT . t e s t o r i n s e r t (s , my id) ;
e l s e (s t a t u s , i d) ← (new , my id) ; / / Collision state
e n d i f
i f s t a t u s = o l d
then i f s n o t in Proc [i d] . l o c a l t a b l e

then t a g s as c o l l i s i o n ;
add s to Proc [i d] . c o l l i s i o n s t a c k ;

e n d i f
e l s e

add s to Proc [my id] . l o c a l t a b l e ;
g e n e r a t e t h e s u c c e s s o r s from s
and p u t some

in Proc [my id] . p r i v a t e s t a c k ;
. . .

e n d i f
endwhi le
t r a n s f e r work from Proc [my id] . c o l l i s i o n s t a c k

and Proc [my id] . s h a r e d w o r k s t a c k
to Proc [my id] . p r i v a t e s t a c k ;

. . .
endwhi le

Listing 1. Algorithm pseudo-code

the processor. On the opposite, if the LT returns an owner
id, then the process performs a look-up operation over the
local table of processor id to check if the state is really there.
If the state is not found, we can tag it as a collision state and
add it to the collision stack of processor id. Collision states
are specifically tagged since they bypass the LT member-
ship test and are directly inserted in a local table. When the
private work stack is empty, work is transferred from shared
work and collision stacks; if they are also empty, the proces-
sor may “steal” work from others (as described in Sect. 3.2).
The LT is implemented using an atomic compare and swap
primitive, while locks are only used to protect the access
to the other shared data structures – the shared work and
collision stacks – which are not resource contention points.

Finally, termination can be easily detected by testing the
vector recording the states of processors; the algorithm may
safely finish if there is no more state to explore, that is if the
stacks of all the processors are empty and if all the proces-
sors are idle.

4 Experiments

We implemented our algorithm using the C language
with Pthreads [5] for concurrency and we developed a li-
brary for the Localization Table with support for concurrent
insertions. The Experimental results presented here are ob-
tained using a Sun Fire x4600 M2 Server, configured with
8 dual core opteron processors and 208GB of RAM mem-
ory, running the Solaris 10 operating system. This machine
is classified as Non-Uniform Memory Access (NUMA) be-
cause the shared memory is physically divided among the
processors.

For the benchmark, we used models taken from two
sources. We have three classical examples: Dining Philoso-
phers (PH); Flexible Manufacturing System (FMS); and
Kanban – taken from [14] – together with 5 Puzzles mod-
els: Peg-Solitaire (Peg); Sokoban; Hanoi; Sam Lloyd’s puz-
zle (Fifteen); and 2D Toads and Frogs puzzle (Frog) – taken
from the BEEM database [16]. All these examples are based
on finite state systems modelled using Petri Nets [15]. This
means that, in these cases, a state is a marking, that is a
tuple of integers. Our algorithm may be adapted to other
formalisms, for instance including data, time, etc.

With our computer setup, we are able to tackle examples
with approximately 10 billions of states, but we selected
models with less than 500 millions of states in order to com-
plete our experiments in reasonable time. (A complete run
of our benchmark takes more than a week to finish.)

We study the performance of our implementation on dif-
ferent aspects. While speedup is the obvious criteria, we
also study the memory footprint of our approach and the
physical distribution of states among processors.

4.1 Speedup and Physical Distribution

In Fig. 3 we give the observed speedup of our algo-
rithm on a set of examples. We give the absolute speedup,
measured as the ratio between the execution time using
N processors (TN) and the time of an optimized, sequen-
tial version. Our implementation delivers some promising
speedups. The results also show different behaviors accord-
ing to the model. For instance, our efficiency1 may vary
between 90% (Hanoi model) and 51% (Kanban model),
whereas the system occupancy rate2 is consistently over
95%. Clearly, the algorithm depends on the “degree of con-
currency” of the model – it is not necessary to use lots of
processors for a model with few concurrent actions – but
this is an inherent limitation with parallel state space con-
struction [8], which is an irregular problem.

1Efficiency is computed as the ratio between speedup, TN , and the
number N of processors.

2The occupancy rate measures the utilization of the machine CPUs

Figure 3. Speedup analysis.

Concerning the use of memory, we can measure the qual-
ity of the distribution of the state space using the mean stan-
dard deviation (σ) of the number of states among the pro-
cessors. In our experiments, we observe that the value of σ
is quite small and that it stays stable when we change the
number of processors (see Fig. 8). For instance, we have
σ ≈ 1.5% for the Hanoi model and σ ≈ 7% for Kanban.
The difference between values of σ can be explained by the
difference in the “degree of concurrency”. It may also be
affected by the processor’s performance, that is, a processor
that handles “simpler states”, or smaller work units, may
dynamically assign more states than others. Finally, our ex-
periments are also affected by the Non-Uniform Memory
Access (NUMA) architecture of our machine, where the la-
tency and bandwidth characteristics of memory actions de-
pend on the processor or memory region being accessed.

4.2 Localization Table Configuration and Memory
Footprint

The LT data structure is configured using two parame-
ters: its dimension (n) and the number of hash-functions
keys (k). The values of these parameters have an impact on
the performance. If the dimension is to small, the LT will
get quickly saturated and the number of collisions will in-
crease. Ideally, a LT of size n is sufficient for a space of n
states. However, hash functions are not perfect (uniform),
which affects our structure just like with standard hash ta-
ble. In our experiments, we observe that LT behaves well
for load factors (ratio between the number of states in the
LT and its dimension) lower than 0.7.

In Fig. 4, we display the ratio (in percentage) between
the number of collisions and the size of the state space, on
the Kanban model (≈ 4.108), for three different values of
the load factor and for different values of k. This Fig. also
depicts the absolute number of collisions for each experi-
ment. For instance, we have approximately 58.105 colli-

sions (ratio of 1.5%) when LT is set with n = 230 ≈ 109

(load factor of 0.36) and k 5 8.

Figure 4. Collisions vs LT load factor.

Figure 5. Performance vs LT load factor.

Likewise, in Fig. 5 we show the impact of different load
factors (choice of the size of the LT) on the execution time
of the algorithm for a fixed model. Once again, we observed
that our LT gives better results when the load factor is in
average smaller than 0.7.

For the speedup results given in this Section, we have ad-
justed the dimension of the LT to obtain load factors smaller
than 0.5 for every models and we have chosen to limit our-
selves to at most four hash-functions keys (k ≤ 4). We
decided to fix these settings beforehand in order to not ar-
tificially improve our results and also to show the memory
efficiency of our solution. To illustrate this point, we may
observe that in the experiments of Fig. 5, the size of the LT
is of 1GB (that is approximately one billions data items) for
a load factor of 0.36, which is the only significant memory
overhead used by our solution.

4.3 Comparison With Other Tools and Other Algo-
rithms

We conclude this section with a comparison with other
algorithms. We developed our own implementation of some
classical parallel algorithms based on the use of hash tables.
In Fig. 6, we briefly describe the different implementations
used for this comparison. We decided to skip a comparison
with our previous work [19] because our current results are
at least twice as good.

Name Description
LT Distributed Table instrumented

with our Localization Table
Vector Vector of integers like structure: Localization

Table with only one key
Static States are distributed using

a static slicing function
Lockless Lockless shared hash table as

the shared space
TBB Unordered hash map as the shared space,

from Intel-Threading Building Blocks library

Figure 6. Algorithms selected.

Figure 7 shows the average (absolute) speedups, over all
models, for the different implementations. The Lockless
implementation has the best performance but it is an un-
safe solution, since states may be skipped [3]. All the
other implementations are safe. We include the results for
Lockless since it provides a good reference for perfor-
mance. Our algorithm (LT) performs better than all the
other implementations for all models. As we mentioned
earlier, the difference in performance between Vector and
LT is mainly due to the non-uniformity of hash functions.
This different is significant especially for Sokoban and Kan-
ban models (see Kanban analysis at Fig 5). Concerning
Static, an explanation for the better performances is that
we exchange less states between processors: in some ex-
periments with Static, we can observe that up to 96% of
the states have not been found by their owner. The gain in
performance compared to TBB (based on an lockless, non-
lossy hash table found in the Intel-TBB [18]) may be ex-
plained by the adequacy of our data structure to our targeted
application (state space generation). Indeed, in this appli-
cation, we have many more reads than writes (state spaces
have more transitions than states). The LT has several bene-
fits in this case: (1) it delivers a low complexity mechanism
to grant exclusive write access for the local hash-table; (2)
the structure is cache-friendly since data are stored in-place
(avoiding pointers); and (3) the use of local hash tables im-
proves memory affinity, which is important for NUMA ma-
chines.

Concerning the memory distribution, we display the av-
erage mean-standard deviation for all implementations in
Fig. 8. The results show that the best distribution, by far,
is from the Static version. We can observe that all other
implementations have similar distributions. (The anoma-
lous values for N = 16 can be explained by the fact that,
in this case, we use all the processors of our computer.) In
the context of this work, we use no heuristics to ensure an
uniform partition of states, so the quality of the distribution
depends on the model “degree of concurrency” and the per-
formance of processors.

We have also compared our implementation with “state
of the art” verification tools that provide a parallel imple-

Figure 7. Average Speedup.

Figure 8. Average Mean-Standard Deviation.

mentation. We looked both at the Spin and DiVinE tools.
We give some performance results but it is difficult to make
a fair comparison. For one thing, it has proved difficult
to port available implementations on the configuration used
for our experiment. For instance, our benchmark with Di-
VinE and Spin are based on Linux instead of Solaris, which
means that we take advantage of more efficient libraries. On
the other hand, a major discrepancy lies in the fact that we
compare an algorithm with a tool. For instance, we do not
make use of any “general optimizations” techniques, such
as local caches, data-alignment optimizations, etc. Also,
while Spin work with compiled models, we currently use
interpreted models. DiVinE accepts both models but we
use for this comparison their interpreted variant. After these
words of caution on the significance of the comparison, we
give some results obtained on the Sokoban model. Using
the parallel version of Spin on our benchmarks, we observe
a maximum speedup of 3.6 using 8 cores (73s). Nonethe-
less, the sequential performance of Spin (264s) is about 3
times better than our prototype implementation of LT. In
our experiments, LT is marginally faster than Parallel Spin
when both are running on 12 cores and is faster using the
16 available cores. The computation for Spin is of 81.2s for
12 cores and 82.3 for 16 cores, while we generate the state
space in 80s with 12 cores and 64s with 16 cores using
LT. Concerning DiVinE – whose sequential performance is
about 40% better than our prototype implementation – LT
matches the performance of DiVinE when both are using 10
cores and outperforms it of about 20% using 16 cores. More

precisely, the running time for DiVinE is of 96.5s with 10
cores – while LT time is of 96s – and 84.9s with 16 cores. It
is possible to connect this result with the comparison given
in Fig. 7. Indeed, DiVinE is based on a static slicing func-
tion to distribute the states – as in the Static implementa-
tion of Fig. 6 – and the difference of performance between
LT and Static is of about 30% on 10 cores and of almost
70% for 16 cores. These preliminary results against two of
the most popular parallel model-checker are very encourag-
ing since we have a prototype implementation of LT.

5 Conclusion

We define a new parallel state space construction algo-
rithm targeted at shared memory machines. The main in-
novation lies in a new data structure, named Localization
Table, that is used to coordinate a network of local hash ta-
ble in order to obtain an efficient concurrent hash map. This
new structure replaces the Bloom Filter that was used in one
of our previous work [19]. The LT is used to dynamically
assign newly generated states and behaves as an associative
array that returns the identity of the processor that owns a
given state.

A first implementation of our algorithm shows promis-
ing results as we observed speedups consistently better than
with other parallel algorithms. For instance, our exper-
imental results show that efficiency varies between 90%
and 50%, depending on the “degree of concurrency” of the
model. In addition, our memory footprint is almost negli-
gible when compared to the total memory used for storing
the state space. For example, in the worst case (the Kan-
ban model, with 25GB) we consume less than 4% of the
memory for the LT and the different stacks used by our
algorithm. That is approximately 1GB of memory. The
same benchmark also shows that our implementation fares
well when compared with related tools. Indeed, our experi-
ments show that our solution performed very well against
an industrial strength lockless hash table, the concurrent
hash map implementation provided in the Intel-TBB. This
may be explained by the fact that we provide a concur-
rent data structure for encoding sets that is optimized for
the case where deletions are very rare and the same item
may be inserted several times, whereas the Intel-TBB pro-
vide a general implementation. This is a very encouraging
since we obtained these results with minimal optimizations
(i.e. without resorting to global caches, data-alignment op-
timizations, etc.), so there is still room for improvements.
Altogether, our solution fullfilled our goal of having both
the best temporal and spatial balance as possible.

For future work, we are investigating a probabilistic ver-
sion of our current exhaustive algorithm. In this context,
the term probabilistic denotes an algorithm that builds an
underapproximation of the global state space, with a very

high probability of building the exact state space (by very
high, we mean a probability of failure less than 10−5).

References

[1] S. Allmaier, S. Dalibor, and D. Kreische. Parallel graph
generation algorithms for shared and distributed memory
machines. In Proc. of the Parallel Computing Conference
PARCO, volume 97. Citeseer.

[2] J. Barnat, L. Brim, and P. Ročkai. Scalable multi-core ltl
model-checking. In Model Checking Software, volume 4595
of LNCS, pages 187–203. Springer, 2007.

[3] J. Barnat and P. Rockai. Shared hash tables in parallel model
checking. 2008. Proc. of the 6th Int. Workshop on Parallel
and Distributed Methods in verifiCation (PDMC 2007).

[4] A. Broder and M. Mitzenmacher. Network applications of
bloom filters: A survey. Internet Mathematics, 1(4), 2004.

[5] D. Butenhof. Programming with POSIX threads. Addison-
Wesley, 1997.

[6] G. Ciardo, J. Gluckman, and D. Nicol. Distributed state
space generation of discrete-state stochastic models. IN-
FORMS J. on Computing, 10(1), 1998.

[7] E. Clarke, O. Grumberg, and D. Peled. Model checking.
Springer, 1999.

[8] J. Ezekiel and G. Lüttgen. Measuring and evaluating paral-
lel state-space exploration algorithms. In Parallel and Dist.
Methods in Verification, volume 198 of ENTCS, 2008.

[9] H. Garavel, R. Mateescu, and I. Smarandache. Parallel State
Space Construction for Model-Checking. In SPIN workshop
on Model checking of software, volume 2057 of LNCS, 2001.

[10] G. Holzmann. A stack-slicing algorithm for multi-core
model checking. Electronic Notes in Theoretical Computer
Science, 198(1):3–16, 2008.

[11] G. Holzmann and D. Bosnacki. The design of a multicore
extension of the SPIN model checker. IEEE Transactions on
Software Engineering, pages 659–674, 2007.

[12] C. P. Inggs and H. Barringer. Effective state exploration for
model checking on a shared memory architecture. In Parallel
and Dist. Model Checking, volume 68(4) of ENTCS, 2002.

[13] A. W. Laarman, J. C. van de Pol, and M. Weber. Boost-
ing multi-core reachability performance with shared hash ta-
bles. In Proc. of the 10th Int. Conf. on Formal Methods in
Computer-Aided Design. IEEE Computer Society, 2010.

[14] A. Miner and G. Ciardo. Efficient reachability set gener-
ation and storage using decision diagrams. In Application
and Theory of Petri Nets, volume 1639 of LNCS. Springer,
1999.

[15] T. Murata. Petri nets: Properties, analysis and applications.
Proceedings of the IEEE, 77(4):541 –580, apr 1989.

[16] R. Pelánek. Beem: benchmarks for explicit model checkers.
In Proc. of the 14th Int. SPIN conference on Model Checking
Software, pages 263–267. Springer-Verlag, 2007.

[17] D. Petcu. Parallel explicit state reachability analysis and
state space construction. In Symposium on Parallel and Dis-
tributed Computing. IEEE, 2003.

[18] J. Reinders. Intel threading building blocks. O’Reilly, 2007.
[19] R. T. Saad, S. D. Zilio, and B. Berthomieu. A general lock-

free algorithm for parallel state space construction. 2010.
Proc. of the 9th Int. W. on Parallel and Distributed Methods
in Verification (PDMC 2010).

[20] U. Stern and D. Dill. Parallelizing the Murφ verifier. In Com-
puter Aided Verification, volume 1254 of LNCS. Springer,
1997.

