
Region Analysis and a �-Calculus with Groups

Silvano Dal Zilio and Andrew D. Gordon

Microsoft Research

To appear in the Proceedings of MFCS 2000: the 25th International Symposium

on Mathematical Foundations of Computer Science, August 28{September 1, 2000,

Bratislava, Slovak Republic, to be published by Springer in the series Lecture

Notes in Computer Science.
c

2000 Springer.

Abstract. We show that the typed region calculus of Tofte and Talpin

can be encoded in a typed �-calculus equipped with name groups and

a novel e�ect analysis. In the region calculus, each boxed value has a

statically determined region in which it is stored. Regions are allocated

and de-allocated according to a stack discipline, thus improving memory

management. The idea of name groups arose in the typed ambient cal-

culus of Cardelli, Ghelli, and Gordon. There, and in our �-calculus, each

name has a statically determined group to which it belongs. Groups allow

for type-checking of certain mobility properties, as well as e�ect analy-

ses. Our encoding makes precise the intuitive correspondence between

regions and groups. We propose a new formulation of the type preser-

vation property of the region calculus, which avoids Tofte and Talpin's

rather elaborate co-inductive formulation. We prove the encoding pre-

serves the static and dynamic semantics of the region calculus. Our proof

of the correctness of region de-allocation shows it to be a speci�c instance

of a general garbage collection principle for the �-calculus with e�ects.

1 Motivation

This paper reports a new proof of correctness of region-based memory manage-

ment [26], based on a new garbage collection principle for the �-calculus.

Tofte and Talpin's region calculus is a compiler intermediate language that,

remarkably, supports an implementation of Standard ML that has no garbage

collector, the ML Kit compiler [4]. The basic idea of the region calculus is to

partition heap memory into a stack of regions. Each boxed value (that is, a

heap-allocated value such as a closure or a cons cell) is annotated with the par-

ticular region into which it is stored. The construct letregion � in b manages

the allocation and de-allocation of regions. It means: \Allocate a fresh, empty

region, denoted by the region variable �; evaluate the expression b; de-allocate

�." A type and e�ect system for the region calculus guarantees the safety of

de-allocating the defunct region as the last step of letregion . The allocation and

de-allocation of regions obeys a stack discipline determined by the nesting of

the letregion constructs. A region inference algorithm compiles ML to the region

calculus by computing suitable region annotations for boxed values, and insert-

ing letregion constructs as necessary. In practice, space leaks, where a particular

region grows without bound, are a problem. Still, they can practically always

be detected by pro�ling and eliminated by simple modi�cations. The ML Kit

e�ciently executes an impressive range of benchmarks without a garbage col-

lector and without space leaks. Region-based memory management facilitates

2 S. Dal Zilio and A.D. Gordon

interoperability with languages like C that have no garbage collector and helps

enable realtime applications of functional programming.

Tofte and Talpin's semantics of the region calculus is a structural operational

semantics. A map from region names to their contents represents the heap. A

fresh region name is invented on each evaluation of letregion . This semantics

supports a co-inductive proof of type safety, including the safety of de-allocating

the defunct region at the end of each letregion. The proof is complex and sur-

prisingly subtle, in part because active regions may contain dangling pointers

that refer to de-allocated regions.

The region calculus is a strikingly simple example of a language with type

generativity. A language has type generativity when type equivalence is by name

(that is, when types with di�erent names but the same structure are not equiva-

lent), and when type names can be generated at run-time. A prominent example

is the core of Standard ML [17], whose datatype construct e�ectively generates

a fresh algebraic type each time it is evaluated. (The ML module system also

admits type generativity, but at link-time rather than run-time.) The region

calculus has type generativity because the type of a boxed value includes the

name of the region where it lives, and region names are dynamically generated

by letregion . The semantics of Standard ML accounts operationally for type gen-

erativity by inventing a fresh type name on each elaboration of datatype . Various

researchers have sought more abstract accounts of type generativity [13, 21].

This paper describes a new semantics for a form of the region calculus, ob-

tained by translation to a typed �-calculus equipped with a novel e�ect system.

The �-calculus [15] is a rather parsimonious formalism for describing the essen-

tial semantics of concurrent systems. It serves as a foundation for describing

a variety of imperative, functional, and object-oriented programming features

[22, 25, 28], for the design of concurrent programming languages [9, 20], and for

the study of security protocols [1], as well as other applications. The only data

in the �-calculus are atomic names. Names can model a wide variety of iden-

ti�ers: communication channels, machine addresses, pointers, object references,

cryptographic keys, and so on. A new-name construct (�x)P generates names

dynamically in the standard �-calculus. It means: \Invent a fresh name, denoted

by x; run process P ." One might hope to model region names with �-calculus

names but unfortunately typings would not be preserved: a region name may

occur in a region-calculus type, but in standard typed �-calculi [19], names may

not occur in types.

We solve the problem of modelling region names by de�ning a typed �-

calculus equipped with name groups and a new-group construct [5]. The idea

is that each �-calculus name belongs to a group, G. The type of a name now

includes its group. A new-group construct (�G)P generates groups dynamically.

It means: \Invent a fresh group, denoted by G; run process P ." The basic ideas

of the new semantics are that region names are groups, that pointers into a

region � are names of group �, and that given a continuation channel k the

continuation-passing semantics of letregion � in b is simply the process (��)[[b]]k

where [[b]]k is the semantics of expression b. The semantics of other expressions

Region analysis and a �-calculus with groups 3

is much as in earlier �-calculus semantics of �-calculi [22]. Parallelism allows

us to explain a whole functional computation as an assembly of individual pro-

cesses that represent components such as closures, continuations, and function

invocations.

This new semantics for regions makes two main contributions.

{ First, we give a new proof of the correctness of memory management in

the region calculus. We begin by extending a standard encoding with the

equation [[letregion � in b]]k = (��)[[b]]k. Then the rather subtle correctness

property of de-allocation of defunct regions turns out to be a simple instance

of a new abstract principle expressed in the �-calculus. Hence, an advantage

of our �-calculus proof is that it is conceptually simpler than a direct proof.

{ Second, the semantics provides a more abstract, equational account of type

generativity in the region calculus than the standard operational semantics.

The speci�c technical results of the paper are:

{ A simple proof of type soundness of the region calculus (Theorem 1).

{ A new semantics of the region calculus in terms of the �-calculus with groups.

The translation preserves types and e�ects (Theorem 2) and operational

behaviour (Theorem 3).

{ A new garbage collection principle for the �-calculus (Theorem 4) whose

corollary (Theorem 5) justi�es de-allocation of defunct regions in the region

calculus.

We organise the rest of the paper as follows. Section 2 introduces the region

calculus. Section 3 describes the �-calculus with groups and e�ects. Section 4

gives our new �-calculus semantics for regions. Section 5 concludes. Omitted

proofs may be found in a long version of this paper [8].

2 A �-Calculus with Regions

To focus on the encoding of letregion with the new-group construct, we work with

a simpli�ed version of the region calculus of Tofte and Talpin [26]. Our calculus

omits the recursive functions, type polymorphism, and region polymorphism

present in Tofte and Talpin's calculus. The long version of this paper includes an

extension of our results to a region calculus with recursive functions, �nite lists,

and region polymorphism. To encode these features, we need to extend our �-

calculus with recursive types and group polymorphism. Tofte and Talpin explain

that type polymorphism is not essential for their results. Still, we conjecture that

our framework could easily accommodate type polymorphism.

2.1 Syntax

Our region calculus is a typed call-by-value �-calculus equipped with a letregion

construct and an annotation on each function to indicate its storage region. We

4 S. Dal Zilio and A.D. Gordon

assume an in�nite set of names, ranged over by p, q, x, y, z. For the sake of

simplicity, names represent both program variables and memory pointers, and

a subset of the names L = f`

1

; : : : ; `

n

g represents literals. The following table

de�nes the syntax of �-calculus expressions, a or b, as well as an auxiliary notion

of boxed value, u or v.

Expressions and Values:

x; y; p; q; f; g name: variable, pointer, literal

� region variable

a; b ::= expression

x name

v at � allocation of v at �

x(y) application

let x = a in b sequencing

letregion � in b region allocation, de-allocation

u; v ::= boxed value

�(x:A)b function

We shall explain the type A later. In both let x = a in b and �(x:A)b,

the name x is bound with scope b. Let fn(a) be the set of names that occur

free in the expression a. We identify expressions and values up to consistent

renaming of bound names. We write Pfx yg for the outcome of renaming all

free occurrences of x in P to the name y. Our syntax is in a reduced form,

where an application x(y) is of a name to a name. We can regard a conventional

application b(a) as an abbreviation for let f = b in let x = a in f(x), where

f 6= x and f is not free in a.

We explain the intended meaning of the syntax by example. The following

expression,

ex

1

�

= letregion �

0

in

let f = �(x:Lit)x at �

0

in

let g = �(y:Lit)f(y) at � in g(5)

means: \Allocate a fresh, empty region, and bind it to �

0

; allocate �(x:Lit)x

in region �

0

, and bind the pointer to f ; allocate �(y:Lit)f(y) in region � (an

already existing region), and bind the pointer to g; call the function at g with

literal argument 5; �nally, de-allocate �

0

." The function call amounts to calling

�(y:Lit)f(y) with argument 5. So we call �(x:Lit)x with argument 5, which

immediately returns 5. Hence, the �nal outcome is the answer 5, and a heap

containing a region � with g pointing to �(y:Lit)f(y). The intermediate region

�

0

has gone. Any subsequent invocations of the function �(y:Lit)f(y) would go

wrong, since the target of f has been de-allocated. The type and e�ect system

of Section 2.3 guarantees there are no subsequent allocations or invocations on

region �

0

, such as invoking �(y:Lit)f(y).

Region analysis and a �-calculus with groups 5

2.2 Dynamic Semantics

Like Tofte and Talpin, we formalize the intuitive semantics via a conventional

structural operational semantics. A heap, h, is a map from region names to re-

gions, and a region, r, is a map from pointers (names) to boxed values (function

closures). In Tofte and Talpin's semantics, defunct regions are erased from the

heap when they are de-allocated. In our semantics, the heap consists of both

live regions and defunct regions. Our semantics maintains a set S containing the

region names for the live regions. This is the main di�erence between the two

semantics. Side-conditions on the evaluation rules guarantee that only the live

regions in S are accessed during evaluation. Retaining the defunct regions sim-

pli�es the proof of subject reduction. Semmelroth and Sabry [23] adopt a similar

technique for the same reason in their semantics of monadic encapsulation.

Regions, Heaps, and Stacks:

r ::= (p

i

7! v

i

)

i21::n

region, p

i

distinct

h ::= (�

i

7! r

i

)

i21::n

heap, �

i

distinct

S ::= f�

1

; : : : ; �

n

g stack of live regions

A region r is a �nite map of the form p

1

7! v

1

; : : : ; p

n

7! v

n

, where the p

i

are

distinct, which we usually denote by (p

i

7! v

i

)

i21::n

. An application, r(p), of the

map r to p denotes v

i

, if p is p

i

for some i 2 1::n. Otherwise, the application is

unde�ned. The domain, dom(r), of the map r is the set fp

1

; : : : ; p

n

g. We write

? for the empty map. If r = (p

i

7! v

i

)

i21::n

, we de�ne the notation r � p to be

p

i

7! v

i

i2(1::n)�fjg

if p = p

j

for some j 2 1::n, and otherwise to be simply r.

Then we de�ne the notation r + (p 7! v) to mean (r � p); p 7! v.

We use �nite maps to represent regions, but also heaps, and various other

structures. The notational conventions de�ned above for regions apply also to

other �nite maps, such as heaps. Additionally, we de�ne dom

2

(h) to be the set

of all pointers de�ned in h, that is,

S

�2dom(h)

dom(h(�)).

The evaluation relation, S � (a; h) + (p; h

0

), may be read: in an initial heap

h, with live regions S, the expression a evaluates to the name p (a pointer or

literal), leaving an updated heap h

0

, with the same live regions S.

Judgments:

S � (a; h) + (p; h

0

) evaluation

Evaluation Rules:

(Eval Var)

S � (p; h) + (p; h)

(Eval Alloc)

� 2 S p =2 dom

2

(h)

S � (v at �; h) + (p; h+ (� 7! (h(�) + (p 7! v))))

(Eval Appl)

� 2 S h(�)(p) = �(x:A)b S � (bfx qg; h) + (p

0

; h

0

)

S � (p(q); h) + (p

0

; h

0

)

6 S. Dal Zilio and A.D. Gordon

(Eval Let)

S � (a; h) + (p

0

; h

0

) S � (bfx p

0

g; h

0

) + (p

00

; h

00

)

S � (let x = a in b; h) + (p

00

; h

00

)

(Eval Letregion)

� =2 dom(h) S [f�g � (a; h+ � 7! ?) + (p

0

; h

0

)

S � (letregion � in a; h) + (p

0

; h

0

)

Recall the example expression ex

1

from the previous section. Consider an

initial heap h = � 7! ? and a region stack S = f�g, together representing a heap

with a single region � that is live but empty. We can derive S � (ex

1

; h) + (5; h

0

)

where h

0

= � 7! (g 7! �(y:Lit)f(y)); �

0

7! (f 7! �(x:Lit)x). Since � 2 S but

�

0

=2 S, � is live but �

0

is defunct.

2.3 Static Semantics

The static semantics of the region calculus is a simple type and e�ect system [10,

24, 27]. The central typing judgment of the static semantics is:

E ` a :

f�

1

;:::;�

n

g

A

which means that in a typing environment E, the expression a may yield a result

of type A, while allocating and invoking boxed values stored in regions �

1

, . . . ,

�

n

. The set of regions f�

1

; : : : ; �

n

g is the e�ect of the expression, a bound on

the interactions between the expression and the store. For simplicity, we have

dropped the distinction between allocations, put(�), and invocations, get(�), in

Tofte and Talpin's e�ects. This is an inessential simpli�cation; the distinction

could easily be added to our work.

An expression type, A, is either Lit , a type of literal constants, or (A

e

! B) at

�, the type of a function stored in region �. The e�ect e is the latent e�ect: the

e�ect unleashed by calling the function. An environment E has entries for the

regions and names currently in scope.

E�ects, Types, and Environments:

e ::= f�

1

; : : : ; �

n

g e�ect

A;B ::= type of expressions

Lit type of literals

(A

e

! B) at � type of functions stored in �

E ::= environment

? empty environment

E; � entry for a region �

E; x:A entry for a name x

Let fr(A) be the set of region variables occurring in the type A. We de�ne

the domain, dom(E), of an environment, E, by the equations dom(?) = ?,

dom(E; �) = dom(E) [f�g, and dom(E; x:A) = dom(E) [fxg.

Region analysis and a �-calculus with groups 7

The following tables present our type and e�ect system as a collection of

typing judgments de�ned by a set of rules. Tofte and Talpin present their type

and e�ect system in terms of constructing a region-annotated expression from

an unannotated expression. Instead, our main judgment simply expresses the

type and e�ect of a single region-annotated expression. Otherwise, our system

is essentially the same as Tofte and Talpin's.

Type and E�ect Judgments:

E ` � good environment

E ` A good type

E ` a :

e

A good expression, with type A and e�ect e

Type and E�ect Rules:

(Env ?)

? ` �

(Env x) (recall L is the set of literals)

E ` A x =2 dom(E) [L

E; x:A ` �

(Env �)

E ` � � =2 dom(E)

E; � ` �

(Type Lit)

E ` �

E ` Lit

(Type !)

E ` A � [feg � dom(E) E ` B

E ` (A

e

! B) at �

(Exp x)

E; x:A;E

0

` �

E; x:A;E

0

` x :

?

A

(Exp `)

E ` � ` 2 L

E ` ` :

?

Lit

(Exp Appl)

E ` x :

?

(B

e

! A) at � E ` y :

?

B

E ` x(y) :

f�g[e

A

(Exp Let)

E ` a :

e

A E; x:A ` b :

e

0

B

E ` let x = a in b :

e[e

0

B

(Exp Letregion)

E; � ` a :

e

A � =2 fr (A)

E ` letregion � in a :

e�f�g

A

(Exp Fun)

E; x:A ` b :

e

B e � e

0

f�g [e

0

� dom(E)

E ` �(x:A)b at � :

f�g

(A

e

0

! B) at �

The rules for good environments are standard; they assure that all the names

and region variables in the environment are distinct, and that the type of each

name is good. All the regions in a good type must be declared. The type of a

good expression is checked much as in the simply typed �-calculus. The e�ect

of a good expression is the union of all the regions in which it allocates or from

which it invokes a closure. In the rule (Exp Letregion), the condition � =2 fr(A)

ensures that no function with a latent e�ect on the region � may be returned.

Calling such a function would be unsafe since � is de-allocated once the letregion

terminates. In the rule (Exp Fun), the e�ect e of the body of a function must

be contained in the latent e�ect e

0

of the function. For the sake of simplicity we

have no rule of e�ect subsumption, but it would be sound to add it: if E ` a :

e

A

8 S. Dal Zilio and A.D. Gordon

and e

0

� dom(E) then E ` a :

e[e

0

A. In the presence of e�ect subsumption we

could simplify (Exp Fun) by taking e = e

0

.

Recall the expression ex

1

from Section 2.1. We can derive the following:

�; �

0

` (�(x:Lit)x) at �

0

:

f�

0

g

(Lit

?

! Lit) at �

0

�; �

0

; f :(Lit

?

! Lit) at �

0

` (�(x:Lit)f(x)) at � :

f�g

(Lit

f�

0

g

! Lit) at �

�; �

0

; f :(Lit

?

! Lit) at �

0

; g:(Lit

f�

0

g

! Lit) at � ` g(5) :

f�;�

0

g

Lit

Hence, we can derive � ` ex

1

:

f�g

Lit .

For an example of a type error, suppose we replace the application g(5) in

ex

1

simply with the identi�er g. Then we cannot type-check the letregion �

0

construct, because �

0

is free in the type of its body. This is just as well, because

otherwise we could invoke a function in a defunct region.

For an example of how a dangling pointer may be passed around harmlessly,

but not invoked, consider the following. Let F abbreviate the type (Lit

?

! Lit) at

�

0

. Let ex

2

be the following expression:

ex

2

�

= letregion �

0

in

let f = �(x:Lit)x at �

0

in

let g = �(f :F)5 at � in

let j = �(z:Lit)g(f) at � in j

We have � ` ex

2

:

f�g

(Lit

f�g

! Lit) at �. If S = f�g and h = � 7! ?,

then S � (b; h) + (j; h

0

) where the �nal heap h

0

is � 7! (g 7! �(f :F)5; j 7!

�(z:Lit)g(f)); �

0

7! (f 7! �(x:Lit)x). In the �nal heap, there is a pointer f from

the live region � to the defunct region �

0

. Whenever j is invoked, this pointer

will be passed to g, harmlessly, since g will not invoke it.

2.4 Relating the Static and Dynamic Semantics

To relate the static and dynamic semantics, we need to de�ne when a con�gu-

ration is well-typed. First, we need notions of region and heap typings. A region

typing R tracks the types of boxed values in the region. A heap typing H tracks

the region typings of all the regions in a heap. The environment env(H) lists all

the regions in H , followed by types for all the pointers in those regions.

Region and Heap Typings:

R ::= (p

i

:A

i

)

i21::n

region typing

H ::= (�

i

7! R

i

)

i21::n

heap typing

ptr(H)

�

= R

1

; : : : ; R

n

if H = (�

i

7! R

i

)

i21::n

env(H)

�

= dom(H); ptr(H)

The next tables describe the judgments and rules de�ning well-typed regions,

heaps, and con�gurations. The main judgment H j= S � (a; h) : A means that a

con�guration S �(a; h) is well-typed: the heap h conforms toH and the expression

a returns a result of type A, and its e�ect is within the live regions S.

Region analysis and a �-calculus with groups 9

Region, Heap, and Con�guration Judgments:

E ` r at � : R in E, region r, named �, has type R

H j= � the heap typing H is good

H j= h in H , the heap h is good

H j= S � (a; h) : A in H , con�guration S � (a; h) returns A

Region, Heap, and Con�guration Rules:

(Region Good)

E ` v

i

at � :

f�g

A

i

8i 2 1::n

E ` (p

i

7! v

i

)

i21::n

at � : (p

i

:A

i

)

i21::n

(Heap Typing Good)

env(H) ` �

H j= �

(Heap Good) (where dom(H) = dom(h))

env(H) ` h(�) at � : H(�) 8� 2 dom(H)

H j= h

(Con�g Good) (where S � dom(H))

env(H) ` a :

e

A e [fr(A) � S H j= h

H j= S � (a; h) : A

These predicates roughly correspond to the co-inductively de�ned consistency

predicate of Tofte and Talpin. The retention of defunct regions in our semantics

allows a simple inductive de�nition of these predicates, and a routine inductive

proof of the subject reduction theorem stated below.

We now present a subject reduction result relating the static and dynamic

semantics. Let H � H

0

if and only if the pointers de�ned by H and H

0

are

disjoint, that is, dom

2

(H) \ dom

2

(H

0

) = ?. Assuming that H � H

0

, we write

H+H

0

for the heap consisting of all the regions in either H or H

0

; if � is in both

heaps, (H +H

0

)(�) is the concatenation of the two regions H(�) and H(�

0

).

Theorem 1. If H j= S � (a; h) : A and S � (a; h) + (p

0

; h

0

) there is H

0

such that

H � H

0

and H +H

0

j= S � (p

0

; h

0

) : A.

Intuitively, the theorem asserts that evaluation of a well-typed con�guration

S �(a; h) leads to another well-typed con�guration S �(p

0

; h

0

), where H

0

represents

types for the new pointers and regions in h

0

.

The following proposition shows that well-typed con�gurations avoid the

run-time errors of allocation or invocation of a closure in a defunct region.

Proposition 1.

(1) If H j= S � (v at �; h) : A then � 2 S.

(2) If H j= S � (p(q); h) : A then there are � and v such that � 2 S, h(�)(p) = v,

and v is a function of the form �(x:B)b with env(H); x:B ` b :

e

A.

Combining Theorem 1 and Proposition 1 we may conclude that such run-

time errors never arise in any intermediate con�guration reachable from an ini-

tial well-typed con�guration. Implicitly, this amounts to asserting the safety of

10 S. Dal Zilio and A.D. Gordon

region-based memory management, that defunct regions make no di�erence to

the behaviour of a well-typed con�guration. Our �-calculus semantics of regions

makes this explicit: we show equationally that direct deletion of defunct regions

makes no di�erence to the semantics of a con�guration.

3 A �-Calculus with Groups

In this section, we de�ne a typed �-calculus with groups. In the next, we explain

a semantics of our region calculus in this �-calculus. Exactly as in the ambient

calculus with groups [5], each name x has a type that includes its group G, and

groups may be generated dynamically by a new-group construct, (�G)P . So as to

model the type and e�ect system of the region calculus, we equip our �-calculus

with a novel group-based e�ect system. In other work [6], not concerned with

the region calculus, we consider a simpler version of this �-calculus, with groups

but without an e�ect system, and show that new-group helps keep names secret,

in a certain formal sense.

3.1 Syntax

The following table gives the syntax of processes, P . The syntax depends on a

set of atomic names, x, y, z, p, q, and a set of groups, G, H . For convenience,

we assume that the sets of names and groups are identical to the sets of names

and region names, respectively, of the region calculus. We impose a standard

constraint [9, 14], usually known as locality, that received names may be used

for output but not for input. This constraint is actually unnecessary for any of

the results of this paper, but is needed for proofs of additional results in the

long version [8]. Except for the addition of type annotations and the new-group

construct, and the locality constraint, the following syntax and semantics are

the same as for the polyadic, choice-free, asynchronous �-calculus [15].

Expressions and Processes:

x; y; p; q name: variable, channel

P;Q;R ::= process

x(y

1

:T

1

; : : : ; y

n

:T

n

):P input (no y

i

2 inp(P))

xhy

1

; : : : ; y

n

i output

(�G)P new-group: group restriction

(�x:T)P new-name: name restriction

P j Q composition

!P replication

0 inactivity

The set inp(P) contains each name x such that an input process x(y

1

:T

1

; : : : ;

y

n

:T

n

):P

0

occurs as a subprocess of P , with x not bound. We explain the types

T below. In a process x(y

1

:T

1

; : : : ; y

n

:T

n

):P , the names y

1

, . . . , y

n

are bound;

Region analysis and a �-calculus with groups 11

their scope is P . In a group restriction (�G)P , the group G is bound; its scope

is P . In a name restriction (�x:T)P , the name x is bound; its scope is P . We

identify processes up to the consistent renaming of bound groups and names. We

let fn(P) and fg(P) be the sets of free names and free groups, respectively, of a

process P . We write Pfx yg for the outcome of a capture-avoiding substitution

of the name y for each free occurrence of the name x in the process P .

Next, we explain the semantics of the calculus informally, by example. We

omit type annotations and groups; we shall explain these later.

A process represents a particular state in a �-calculus computation. A state

may reduce to a successor when two subprocesses interact by exchanging a tuple

of names on a shared communication channel, itself identi�ed by a name. For

example, consider the following process:

f(x; k

0

):k

0

hxi j g(y; k

0

):fhy; k

0

i j gh5; ki

This is the parallel composition (denoted by the j operator) of two input

processes g(y; k

0

):fhy; k

0

i and f(x; k

0

):k

0

hxi, and an output process gh5; ki. The

whole process performs two reductions. The �rst is to exchange the tuple h5; ki

on the channel g. The names 5 and k are bound to the input names y and k,

leaving f(x; k

0

):k

0

hxi j fh5; ki as the next state. This state itself may reduce to

the �nal state kh5i via an exchange of h5; ki on the channel f .

The process above illustrates how functions may be encoded as processes.

Speci�cally, it is a simple encoding of the example ex

1

from Section 2.1. The

input processes correspond to �-abstractions at addresses f and g; the output

processes correspond to function applications; the name k is a continuation for

the whole expression. The reductions described above represent the semantics

of the expression: a short internal computation returning the result 5 on the

continuation k.

The following is a more accurate encoding:

(�f)(�g)(

f 7!�(x)x

z }| {

!f(x; k

0

):k

0

hxi j

g 7!�(y)f(y)

z }| {

!g(y; k

0

):fhy; k

0

i j

g(5)

z }| {

gh5; ki)

A replication !P is like an in�nite parallel array of replicas of P ; we replicate

the inputs above so that they may be invoked arbitrarily often. A name restric-

tion (�x)P invents a fresh name x with scope P ; we restrict the addresses f

and g above to indicate that they are dynamically generated, rather than being

global constants.

The other �-calculus constructs are group restriction and inactivity. Group

restriction (�G)P invents a fresh group G with scope P ; it is the analogue of

name restriction for groups. Finally, the 0 process represents inactivity.

3.2 Dynamic Semantics

We formalize the semantics of our �-calculus using standard techniques. A re-

duction relation, P ! Q, means that P evolves in one step to Q. It is de�ned

12 S. Dal Zilio and A.D. Gordon

in terms of an auxiliary structural congruence relation, P � Q, that identi�es

processes we never wish to tell apart.

Structural Congruence: P � Q

P � P (Struct Re
)

Q � P) P � Q (Struct Symm)

P � Q;Q � R) P � R (Struct Trans)

P � Q) x(y

1

:T

1

; : : : ; y

n

:T

n

):P � x(y

1

:T

1

; : : : ; y

n

:T

n

):Q (Struct Input)

P � Q) (�G)P � (�G)Q (Struct GRes)

P � Q) (�x:T)P � (�x:T)Q (Struct Res)

P � Q) P j R � Q j R (Struct Par)

P � Q) !P � !Q (Struct Repl)

P j 0 � P (Struct Par Zero)

P j Q � Q j P (Struct Par Comm)

(P j Q) j R � P j (Q j R) (Struct Par Assoc)

!P � P j !P (Struct Repl Par)

x

1

6= x

2

) (�x

1

:T

1

)(�x

2

:T

2

)P � (�x

2

:T

2

)(�x

1

:T

1

)P (Struct Res Res)

x =2 fn(P)) (�x:T)(P j Q) � P j (�x:T)Q (Struct Res Par)

(�G

1

)(�G

2

)P � (�G

2

)(�G

1

)P (Struct GRes GRes)

G =2 fg(T)) (�G)(�x:T)P � (�x:T)(�G)P (Struct GRes Res)

G =2 fg(P)) (�G)(P j Q) � P j (�G)Q (Struct GRes Par)

Reduction: P ! Q

xhy

1

; : : : ; y

n

i j x(z

1

:T

1

; : : : ; z

n

:T

n

):P ! Pfz

1

 y

1

g � � � fz

n

 y

n

g (Red Interact)

P ! Q) P j R! Q j R (Red Par)

P ! Q) (�G)P ! (�G)Q (Red GRes)

P ! Q) (�x:T)P ! (�x:T)Q (Red Res)

P

0

� P; P ! Q;Q � Q

0

) P

0

! Q

0

(Red �)

Groups help to type-check names statically but have no dynamic behaviour;

groups are not themselves values. The following proposition demonstrates this

precisely; it asserts that the reduction behaviour of a typed process is equivalent

to the reduction behaviour of the untyped process obtained by erasing all type

and group annotations.

Erasing type annotations and group restrictions:

erase((�G)P)

�

= erase(P)

erase((�x:T)P)

�

= (�x)erase(P)

erase(0)

�

= 0

erase(P j Q)

�

= erase(P) j erase(Q)

erase(!P)

�

= !erase(P)

Region analysis and a �-calculus with groups 13

erase(x(y

1

:T

1

; : : : ; y

n

:T

n

):P)

�

= x(y

1

; : : : ; y

n

):erase(P)

erase(xhy

1

; : : : ; y

n

i)

�

= xhy

1

; : : : ; y

n

i

Proposition 2 (Erasure). For all typed processes P and Q, if P ! Q then

erase(P)! erase(Q) and if erase(P)! R then there is a typed process Q such

that P ! Q and R � erase(Q).

3.3 Static Semantics

The main judgment E ` P : fG

1

; : : : ; G

n

g of the e�ect system for the �-calculus

means that the process P uses names according to their types and that all its

external reads and writes are on channels in groups G

1

; : : : ; G

n

. A channel type

takes the form G[T

1

; : : : ; T

n

]nH. This stipulates that the name is in group G and

that it is a channel for the exchange of n-tuples of names with types T

1

, . . . , T

n

.

The set of group names H is the hidden e�ect of the channel. In the common

case when H = ?, we abbreviate the type to G[T

1

; : : : ; T

n

].

As examples of groups, in our encoding of the region calculus we have groups

Lit and K for literals and continuations, respectively, and each region � is a

group. Names of type Lit [] are in group Lit and exchange empty tuples, and

names of type K[Lit []] are in group K and exchange names of type Lit []. In our

running example, we have 5 : Lit [] and k : K[Lit []]. A pointer to a function in a

region � is a name in group �. In our example, we could have f : �

0

[Lit [];K[Lit []]]

and g : �[Lit [];K[Lit []]].

Given these typings for names, we have g(y; k

0

):fhy; k

0

i : f�; �

0

g because the

reads and writes of the process are on the channels g and f whose groups are �

and �

0

. Similarly, we have f(x; k

0

):k

0

hxi : f�

0

;Kg and gh5; ki : f�g. The compo-

sition of these three processes has e�ect f�; �

0

;Kg, the union of the individual

e�ects.

The idea motivating hidden e�ects is that an input process listening on a

channel may represent a passive resource (for example, a function) that is only

invoked if there is an output on the channel. The hidden e�ect of a channel is

an e�ect that is masked in an input process, but incurred by an output process.

In the context of our example, our formal translation makes the following type

assignments: f : �

0

[Lit [];K[Lit []]]nfKg and g : �[Lit [];K[Lit []]]nfK; �

0

g. We then

have f(x; k

0

):k

0

hxi : f�

0

g, g(y; k

0

):fhy; k

0

i : f�g, and gh5; ki : f�; �

0

;Kg. The

hidden e�ects are transferred from the function bodies to the process gh5; ki

that invokes the functions. This transfer is essential in the proof of our main

garbage collection result, Theorem 5.

The e�ect of a replicated or name-restricted process is the same as the

original process. For example, abbreviating the types for f and g, we have:

(�f :�

0

)(�g:�)(!f(x; k

0

):k

0

hxi j !g(y; k

0

):fhy; k

0

i j gh5; ki) : f�; �

0

;Kg.

On the other hand, the e�ect of a group-restriction (�G)P is the same as that

of P , except that G is deleted. This is because there can be no names free in P

of group G; any names of group G in P must be internally introduced by name-

restrictions. Therefore, (�G)P has no external reads or writes on G channels.

For example, (��

0

)(�f)(�g)(!f(x; k

0

):k

0

hxi j !g(y; k

0

):fhy; k

0

i j gh5; ki) : f�;Kg.

14 S. Dal Zilio and A.D. Gordon

The following tables describe the syntax of types and environments, the

judgments and the rules de�ning our e�ect system. Let fg(G[T

1

; : : : ; T

n

]nH)

�

=

fGg [fg(T

1

) [� � � [fg(T

n

) [H.

Syntax of Types and Environments, Typing Judgments:

G;H ::= fG

1

; : : : ; G

k

g �nite set of name groups

T ::= G[T

1

; : : : ; T

n

]nH type of channel in group G with hidden e�ect H

E ::= ? j E;G j E; x:T environment

E ` � good environment

E ` T good channel type T

E ` x : T good name x of channel type T

E ` P : H good process P with e�ect H

Typing Rules:

(Env ?)

? ` �

(Env x)

E ` T x =2 dom(E)

E; x:T ` �

(Env G)

E ` � G =2 dom(E)

E;G ` �

(Type Chan)

E ` � fGg [H � dom(E) E ` T

1

� � � E ` T

n

E ` G[T

1

; : : : ; T

n

]nH

(Exp x)

E

0

; x:T;E

00

` �

E

0

; x:T;E

00

` x : T

(Proc Input)

E ` x : G[T

1

; : : : ; T

n

]nH E; y

1

:T

1

; : : : ; y

n

:T

n

` P : G

E ` x(y

1

:T

1

; : : : ; y

n

:T

n

):P : fGg [(G�H)

(Proc Output)

E ` x : G[T

1

; : : : ; T

n

]nH E ` y

1

: T

1

� � � E ` y

n

: T

n

E ` xhy

1

; : : : ; y

n

i : fGg [H

(Proc GRes)

E;G ` P : H

E ` (�G)P : H� fGg

(Proc Res)

E; x:T ` P : H

E ` (�x:T)P : H

(Proc Par)

E ` P : G E ` Q : H

E ` P j Q : G [H

(Proc Repl)

E ` P : H

E ` !P : H

(Proc Zero)

E ` �

E ` 0 : ?

(Proc Subsum)

E ` P : G G � H � dom(E)

E ` P : H

The rules for good environments and good channel types ensure that declared

names and groups are distinct, and that all the names and groups occurring in

a type are declared. The rules for good processes ensure that names are used for

input and output according to their types, and compute an e�ect that includes

the groups of all the free names used for input and output.

In the special case when the hidden e�ect H is ?, (Proc Input) and (Proc

Output) specialise to the following:

Region analysis and a �-calculus with groups 15

E ` x : G[T

1

; : : : ; T

n

]n?

E; y

1

:T

1

; : : : ; y

n

:T

n

` P : G

E ` x(y

1

:T

1

; : : : ; y

n

:T

n

):P : fGg [G

E ` x : G[T

1

; : : : ; T

n

]n?

E ` y

1

: T

1

� � � E ` y

n

: T

n

E ` xhy

1

; : : : ; y

n

i : fGg

In this situation, we attribute all the e�ect G of the pre�xed process P to

the input process x(y

1

:T

1

; : : : ; y

n

:T

n

):P . The e�ect G of P is entirely excluded

from the hidden e�ect, since H = ?.

A dual special case is when the e�ect of the pre�xed process P is entirely

included in the hidden e�ect H. In this case, (Proc Input) and (Proc Output)

specialise to the following:

E ` x : G[T

1

; : : : ; T

n

]nH

E; y

1

:T

1

; : : : ; y

n

:T

n

` P : H

E ` x(y

1

:T

1

; : : : ; y

n

:T

n

):P : fGg

E ` x : G[T

1

; : : : ; T

n

]nH

E ` y

1

: T

1

� � � E ` y

n

: T

n

E ` xhy

1

; : : : ; y

n

i : fGg [H

The e�ect of P is not attributed to the input x(y

1

:T

1

; : : : ; y

n

:T

n

):P but in-

stead is transferred to any outputs in the same group as x. If there are no such

outputs, the process P will remain blocked, so it is safe to discard its e�ects.

These two special cases of (Proc Input) and (Proc Output) are in fact su�-

cient for the encoding of the region calculus presented in Section 4; we need the

�rst special case for typing channels representing continuations, and the second

special case for typing channels representing function pointers. For simplicity,

our actual rules (Proc Input) and (Proc Output) combine both special cases; an

alternative would be to have two di�erent kinds of channel types corresponding

to the two special cases.

The rule (Proc GRes) discards G from the e�ect of a new-group process

(�G)P , since, in P , there can be no free names of group G (though there may

be restricted names of group G). The rule (Proc Subsum) is a rule of e�ect

subsumption. We need this rule to model the e�ect subsumption in rule (Exp

Fun) of the region calculus. The other rules for good processes simply compute

the e�ect of a whole process in terms of the e�ects of its parts.

We can prove a standard subject reduction result.

Proposition 3. If E ` P : H and P ! Q then E ` Q : H.

Next, a standard de�nition of the barbs exhibited by a process formalizes the

idea of the external reads and writes through which a process may interact with

its environment. Let a barb, �, be either a name x or a co-name x.

Exhibition of a barb: P # �

x(y

1

:T

1

; : : : ; y

n

:T

n

):P # x xhy

1

; : : : ; y

n

i # x

P # �

(�G)P # �

P # � � =2 fx; xg

(�x:T)P # �

P # �

P j Q # �

P � Q Q # �

P # �

The following asserts the soundness of the e�ect system. The group of any

barb of a process is included in its e�ect.

16 S. Dal Zilio and A.D. Gordon

Proposition 4. If E ` P : H and P # � with � 2 fx; xg then there is a type

G[T

1

; : : : ; T

n

]nG such that E ` x : G[T

1

; : : : ; T

n

]nG and G 2 H.

4 Encoding Regions as Groups

This section interprets the region calculus in terms of our �-calculus. Most of

the ideas of the translation are standard, and have already been illustrated by

example. A function value in the heap is represented by a replicated input pro-

cess, awaiting the argument and a continuation on which to return a result. A

function is invoked by sending it an argument and a continuation. Region names

and letregion � are translated to groups and (��), respectively.

The remaining construct of our region calculus is sequencing: let x = a in b.

Assuming a continuation k, we translate this to (�k

0

)([[a]]k

0

j k

0

(x):[[b]]k). This

process invents a fresh, intermediate continuation k

0

. The process [[a]]k

0

evaluates

a returning a result on k

0

. The process k

0

(x):[[b]]k blocks until the result x is

returned on k

0

, then evaluates b, returning its result on k.

The following tables interpret the types, environments, expressions, regions,

and con�gurations of the region calculus in the �-calculus. In particular, if S �

(a; h) is a con�guration, then [[S �(a; h)]]k is its translation, a process that returns

any eventual result on the continuation k. In typing the translation, we assume

two global groups: a group, K, of continuations and a group, Lit , of literals. The

environment [[?]] declares these groups and also a typing `

i

:Lit for each of the

literals `

1

, . . . , `

n

.

Translating of the region calculus to the �-calculus:

[[A]] type modelling the type A

[[E]] environment modelling environment E

[[a]]k process modelling term a, answer on k

[[p 7! v]] process modelling value v at pointer p

[[r]] process modelling region r

[[S � (a; h)]]k process modelling con�guration S � (a; h)

In the following equations, where necessary to construct type annotations

in the �-calculus, we have added type subscripts to the syntax of the region

calculus. The notation

Q

i2I

P

i

for some �nite indexing set I = fi

1

; : : : ; i

n

g is

short for the composition P

i

1

j � � � j P

i

n

j 0.

Translation rules:

[[Lit]]

�

= Lit []

[[(A

e

! B) at �]]

�

= �[[[A]];K[[[B]]]]n(e [fKg)

[[?]]

�

= K;Lit ; `

1

:Lit []; : : : ; `

n

:Lit []

[[E; �]]

�

= [[E]]; �

[[E; x:A]]

�

= [[E]]; x:[[A]]

Region analysis and a �-calculus with groups 17

[[x]]k

�

= khxi

[[let x = a

A

in b]]k

�

= (�k

0

:K[[[A]]])([[a]]k

0

j k

0

(x:[[A]]):[[b]]k)

[[p(q)]]k

�

= phq; ki

[[letregion � in a]]k

�

= (��)[[a]]k

[[(v at �)

A

]]k

�

= (�p:[[A]])([[p 7! v]] j khpi)

[[p 7! �(x:A)b

B

]]

�

= !p(x:[[A]]; k:K[[[B]]]):[[b]]k

[[(p

i

7! v

i

)

i21::n

]]

�

=

Q

i21::n

[[p

i

7! v

i

]]

[[(�

i

7! r

i

)

i21::n

]]

�

=

Q

i21::n

[[r

i

]]

[[S � (a; h

H

)]]k

�

= (��

defunct

)(�[[ptr (H)]])([[a]]k j [[h]]) if f�

defunct

g = dom(H)� S

The following theorem asserts that the translation preserves the static se-

mantics of the region calculus.

Theorem 2 (Static Adequacy).

(1) If E ` � then [[E]] ` �.

(2) If E ` A then [[E]] ` [[A]].

(3) If E ` a :

e

A and k =2 dom([[E]]) then [[E]]; k:K[[[A]]] ` [[a]]k : e [fKg.

(4) If H j= h and � 2 dom(H) then [[env(H)]] ` [[h(�)]] : f�g.

(5) If H j= S � (a; h) : A and k =2 [[env(H)]] then [[env (H)]]; k:K[[[A]]] ` [[a]]k j

[[h]] : dom(H) [fKg and also [[?]]; S; k:K[[[A]]] ` [[S � (a; h)]]k : S [fKg.

Next we state that the translation preserves the dynamic semantics. First,

we take our process equivalence to be barbed congruence [16], a standard oper-

ational equivalence for the �-calculus. We use a typed version of (weak) barbed

congruence, as de�ned by Pierce and Sangiorgi [19]; the long version of this pa-

per contains the detailed de�nition. Then, our theorem states that if one region

calculus con�guration evaluates to another, their �-calculus interpretations are

equivalent. In the following, let E ` P mean there is an e�ect G such that

E ` P : G.

Typed process equivalence: E ` P � Q

For all typed processes P and Q, let E ` P � Q mean that

E ` P and E ` Q and that P and Q are barbed congruent.

Theorem 3 (Dynamic Adequacy). If H j= S�(a; h) : A and S�(a; h) + (p

0

; h

0

)

then there is H

0

such that H � H

0

and H + H

0

j= S � (p

0

; h

0

) : A and for all

k =2 dom

2

(H +H

0

) [L, [[?]]; S; k:K[[[A]]] ` [[S � (a; h)]]k � [[S � (p

0

; h

0

)]]k.

Recall the evaluations of the examples ex

1

and ex

2

given previously. From

Theorem 3 we obtain the following equations (in which we abbreviate environ-

ments and types for the sake of clarity):

[[f�g � (ex

1

; h)]]k � (��

0

)(�f :�

0

)(�g:�)([[f 7! �(x)x]] j [[g 7! �(y)f(y)]] j kh5i)

[[f�g � (ex

2

; h)]]k � (��

0

)(�f :�

0

)(�g:�)(�j:�)

([[f 7! �(x)x]] j [[g 7! �(f)5]] j [[j 7! �(z)g(f)]] j khji)

18 S. Dal Zilio and A.D. Gordon

Next, we present a general �-calculus theorem that has as a corollary a

theorem asserting that defunct regions may be deleted without a�ecting the

meaning of a con�guration.

Suppose there are processes P and R such that R has e�ect fGg but G is not

in the e�ect of P . So R only interacts on names in group G, but P never interacts

on names in groupG, and therefore there can be no interaction between P and R.

Moreover, if P and R are the only sources of inputs or outputs in the scope of G,

then R has no external interactions, and therefore makes no di�erence to the be-

haviour of the whole process. The following makes this idea precise equationally.

We state the theorem in terms of the notation (�E)P de�ned by the equations:

(�?)P

�

= P , (�E; x:T)P

�

= (�E)(�x:T)P , and (�E;G)P

�

= (�E)(�G)P . The

proof proceeds by constructing a suitable bisimulation relation.

Theorem 4. If E;G;E

0

` P : H and E;G;E

0

` R : fGg with G =2 H, then

E ` (�G)(�E

0

)(P j R) � (�G)(�E

0

)P .

Now, by applying this theorem, we can delete the defunct region �

0

from our

two examples. We obtain:

(��

0

)(�f :�

0

)(�g:�)([[f 7! �(x)x]] j [[g 7! �(y)f(y)]] j kh5i)

� (��

0

)(�f :�

0

)(�g:�)([[g 7! �(y)f(y)]] j kh5i)

(��

0

)(�f :�

0

)(�g:�)(�j:�)([[f 7! �(x)x]] j [[g 7! �(f)5]] j [[j 7! �(z)g(f)]] j khji)

� (��

0

)(�f :�

0

)(�g:�)(�j:�)([[g 7! �(f)5]] j [[j 7! �(z)g(f)]] j khji)

The �rst equation illustrates the need for hidden e�ects. The hidden e�ect

of g is fK; �

0

g, and so the overall e�ect of the process [[g 7! �(y)f(y)]] j kh5i

is simply f�;Kg. This e�ect does not contain �

0

and so the theorem justi�es

deletion of the process [[f 7! �(x)x]], whose e�ect is f�

0

g. In an e�ect system for

the �-calculus without hidden e�ects, the e�ect of [[g 7! �(y)f(y)]] j kh5i would

include �

0

, and so the theorem would not be applicable.

A standard garbage collection principle in the �-calculus is that if f does

not occur free in P , then (�f)(!f(x; k):R j P) � P . One might hope that this

principle alone would justify de-allocation of defunct regions. But neither of our

example equations is justi�ed by this principle; in both cases, the name f occurs

in the remainder of the process. We need an e�ect system to determine that f

is not actually invoked by the remainder of the process.

The two equations displayed above are instances of our �nal theorem, a corol-

lary of Theorem 4. It asserts that deleting defunct regions makes no di�erence

to the behaviour of a con�guration:

Theorem 5. Suppose H j= S � (a; h) : A and k =2 dom

2

(H)[L. Let f�

defunct

g =

dom(H)� S. Then we can derive the equation [[?]]; S; k:K[[[A]]] ` [[S � (a; h)]]k �

(��

defunct

)(�[[ptr (H)]])([[a]]k j

Q

�2S

[[H(�)]]).

5 Conclusions

We showed that the static and dynamic semantics of Tofte and Talpin's region

calculus are preserved by a translation into a typed �-calculus. The letregion

Region analysis and a �-calculus with groups 19

construct is modelled by a new-group construct originally introduced into pro-

cess calculi in the setting of the ambient calculus [5]. We showed that the rather

subtle correctness of memory de-allocation in the region calculus is an instance

of Theorem 4, a new garbage collection principle for the �-calculus. The transla-

tion is an example of how the new-group construct accounts for the type gener-

ativity introduced by letregion , just as the standard new-name construct of the

�-calculus accounts for dynamic generation of values.

Banerjee, Heintze, and Riecke [3] give an alternative proof of the soundness

of region-based memory management. Theirs is obtained by interpreting the

region calculus in a polymorphic �-calculus equipped with a new binary type

constructor # that behaves like a union or intersection type. Their techniques

are those of denotational semantics, completely di�erent from the operational

techniques of this paper. The formal connections between the two approaches

are not obvious but would be intriguing to investigate. A possible advantage of

our semantics in the �-calculus is that it could easily be extended to interpret a

region calculus with concurrency, but that remains future work. Another line of

future work is to consider the semantics of other region calculi [2, 7, 11] in terms

of the �-calculus. Finally, various researchers [18, 23] have noted a connection

between the monadic encapsulation of state in Haskell [12] and regions; hence it

would be illuminating to interpret monadic encapsulation in the �-calculus.

Acknowledgements Luca Cardelli participated in the initial discussions that led

to this paper. We had useful conversations with C�edric Fournet, Giorgio Ghelli

and Mads Tofte. Luca Cardelli, Tony Hoare, and Andy Moran commented on a

draft.

References

1. M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi

calculus. Information and Computation, 148:1{70, 1999. An extended version

appears as Research Report 149, Digital Equipment Corporation Systems Research

Center, January 1998.

2. A. Aiken, M. F�ahndrich, and R. Levien. Better static memory management: Im-

proving region-based analysis of higher-order languages. In Proceedings PLDI'95,

pages 174{185, 1995.

3. A. Banerjee, N. Heintze, and J. Riecke. Region analysis and the polymorphic

lambda calculus. In Proceedings LICS'99, 1999.

4. L. Birkedal, M. Tofte, and M. Vejlstrup. From region inference to von Neumann

machines via region representation inference. In Proceedings POPL'96, pages 171{

183. 1996.

5. L. Cardelli, G. Ghelli, and A. D. Gordon. Ambient groups and mobility types.

In Proceedings TCS2000, Lecture Notes in Computer Science. Springer, 2000. To

appear.

6. L. Cardelli, G. Ghelli, and A. D. Gordon. Group creation and secrecy. In Proceed-

ings Concur'00, Lecture Notes in Computer Science. Springer, 2000. To appear.

7. K. Crary, D. Walker, and G. Morrisett. Typed memory management in a calculus

of capabilities. In Proceedings POPL'99, pages 262{275, 1999.

20 S. Dal Zilio and A.D. Gordon

8. S. Dal Zilio and A. D. Gordon. Region analysis and a �-calculus with groups.

Technical Report MSR{TR{2000{57, Microsoft Research, 2000.

9. C. Fournet and G. Gonthier. The re
exive CHAM and the Join-calculus. In

Proceedings POPL'96, pages 372{385, 1996.

10. D. K. Gi�ord and J. M. Lucassen. Integrating functional and imperative program-

ming. In Proceedings L&FP'86, pages 28{38, 1986.

11. J. Hughes and L. Pareto. Recursion and dynamic data-structures in bounded space:

Towards embedded ML programming. In Proceedings ICFP'99, pages 70{81, 1999.

12. J. Launchbury and S. Peyton Jones. State in Haskell. Lisp and Symbolic Compu-

tation, 8(4):293{341, 1995.

13. X. Leroy. A syntactic theory of type generativity and sharing. Journal of Functional

Programming, 6(5):667{698, 1996.

14. M. Merro and D. Sangiorgi. On asynchrony in name-passing calculi. In Proceedings

ICALP'98, volume 1443 of Lecture Notes in Computer Science, pages 856{867.

Springer, 1998.

15. R. Milner. Communicating and Mobile Systems: the �-Calculus. Cambridge Uni-

versity Press, 1999.

16. R. Milner and D. Sangiorgi. Barbed bisimulation. In Proceedings ICALP'92,

volume 623 of Lecture Notes in Computer Science, pages 685{695. Springer, 1992.

17. R. Milner, M. Tofte, R. Harper, and D. MacQueen. The De�nition of Standard

ML (Revised). MIT Press, 1997.

18. E. Moggi and F. Palumbo. Monadic encapsulation of e�ects: a revised approach.

In Proceedings HOOTS99, volume 26 of Electronic Notes in Theoretical Computer

Science, pages 119{136. Elsevier, 1999.

19. B. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes. Mathe-

matical Structures in Computer Science, 6(5):409{454, 1996.

20. B. C. Pierce and D. N. Turner. Pict: A programming language based on the

pi-calculus. Technical Report CSCI 476, Computer Science Department, Indiana

University, 1997. To appear in Proof, Language and Interaction: Essays in Honour

of Robin Milner, G. Plotkin, C. Stirling, and M. Tofte, editors, MIT Press, 2000.

21. C. V. Russo. Standard ML type generativity as existential quanti�cation. Technical

Report ECS{LFCS{96{344, LFCS, University of Edinburgh, 1996.

22. D. Sangiorgi. Interpreting functions as �-calculus processes: a tutorial. Technical

Report 3470, INRIA, 1998. Draft chapter to appear in The pi-calculus: a theory of

mobile processes, D. Sangiorgi and W. Walker, Cambridge University Press, 2000.

23. M. Semmelroth and A. Sabry. Monadic encapsulation in ML. In Proceedings

ICFP'99, pages 8{17, 1999.

24. J.-P. Talpin and P. Jouvelot. Polymorphic type, region and e�ect inference. Journal

of Functional Programming, 2(3):245{271, 1992.

25. C. J. Taylor. Formalising and Reasoning about Fudgets. PhD thesis, University of

Nottingham, 1998. Available as Technical Report NOTTCS{TR{98{4.

26. M. Tofte and J.-P. Talpin. Region-based memory management. Information and

Computation, 132(2):109{176, 1997.

27. P. Wadler. The marriage of e�ects and monads. In Proceedings ICFP'98, pages

63{74, 1998.

28. D. Walker. Objects in the pi-calculus. Information and Computation, 116(2):253{

271, 1995.

