
LIF

Laboratoire d’Informatique Fondamentale
de Marseille

Unité Mixte de Recherche 6166
CNRS - Université de Provence - Université de la Méditerranée

Multitrees Automata, Presburger’s Constraints

and Tree Logics

Denis Lugiez, Silvano Dal Zilio

Rapport/Report 08-2002

12 juin 2002

Les rapports du laboratoire sont téléchargeables à l’adresse suivante

Reports are downloadable at the following address

http://www.lif.univ-mrs.fr

1



Multitrees Automata, Presburger’s Constraints
and Tree Logics

Denis Lugiez, Silvano Dal Zilio

Laboratoire d’Informatique Fondamentale

UMR 6166
CNRS - Université de Provence - Université de la Méditerranée

CMI 39 av. Joliot Curie, 13453 Marseille Cedex, France

lugiez,dalzilio@cmi.univ-mrs.fr

Abstract/Résumé

We describe multitree automata and a related logic on multitrees. Multitrees are extensions of trees with
both associative and associative-commutative symbols that may bear arbitrary numbers of sons. An originality
of our approach is that transitions of an automaton are restricted using Presburger’s constraints. The benefit of
this extension is that we generalize, all together, automata with equality and disequalities constraints as well as
counting constraints. This new class of automata appears very general as it may encompass hedge automata, a
simple yet effective model for XML schemata, feature tree automata, automata with constraints between brothers

and automata with arithmetical constraints. Moreover, the class of recognizable languages enjoys all the typical
good properties of traditional regular languages: closure under boolean operations and composition by associative
and associative-commutative operators, determinisation, decidability of the test for emptiness, ...

We apply our automata to query languages for XML-like documents and to automated inductive theorem prov-
ing based on rewriting, obtaining each time new results. Using a classical connection between logic and automata,
we design a decidable logic for (multi)trees that can be used as a foundation for querying XML-like document. This
proposition has the same flavour as a query language for semi-structured recently proposed by Cardelli and Ghelli.
The same tree logic is used to yield decidable cases of inductive reducibility modulo associativity-commutativity, a
key property in inductive theorem proving based on rewriting.

Keywords: tree automata, constraints, modal logic, query languages, automated theorem proving.

Nous décrivons des automates pour multiarbres et une logique correspondante sur les multiarbres et ses ap-
plications. Les multiarbres sont des extensions des arbres avec des symboles associatifs-commutatifs et associatifs.
Une originalité de l’approche est l’utilisation de contraintes de Presburger sur les transitions des automates. Ceci
permet de généraliser les contraintes d’égalité et les contraintes arithmétiques. Cette classe généralise les hedge

automata qui sont un modèle des schémas pour XML, les feature-tree automata et les automates à contraintes

entre frères. Les langages reconnus possèdent toutes les bonnes propriétés des langages réguliers: cloture par les
opérations ensemblistes et aussi par composition associative-commutative, et le vide est décidable.

Nous appliquons cette classes aux langages de requête pour XML et aux preuves par induction en démonstration
automatique. En faisant le lien usuel entre logique et automates (pour des multiarbres) nous obtenons une logique
décidable qui peut être utilisée comme langage de requête pour des documents XML. Cette logique est similaire à
celle proposée par Cardelli et Ghelli. La même logique est utilisée pour donner des cas décidables de la propriété de
réductibilité inductive modulo AC, une propriété clef pour la preuve de théorèmes inductifs utilisant la réécriture.

Relecteurs/Reviewers: R. Amadio

2



1 Introduction

The intimate relation between logic and automata has long been recognized, as attested for instance
by Rabin’s survey on decidable theories [Rab77]. The decidability of Presburger’s arithmetic
using word-automata is a striking example of this relation. Although word automata are very
popular, tree automata are also successful for this purpose, even in the case of finite trees; see for
example [Don70, TW68] for the connection between WSkS and regular tree languages. A chief
reason for this success is that finite tree regular languages enjoy all the typical good properties of
regular word languages (properties directly used for deciding the associated logic(s).) They can be
combined using boolean connectives, they are determinisable, emptiness of recognized languages
is efficiently decidable,. . .

Another important feature of (traditional) tree automata is their ability to be easily enriched
with additional features, leading to better discriminative power. Nonetheless this flexibility is
limited and, for example, non-linearity cannot be dealt with directly. A conventional example is
that the set of instances of f(t, t) is not a regular tree language. Also, regularity breaks down
when useful axioms are considered, like closure of languages under associativity or associativity-
commutativity of a function symbol. Finally, decision procedures derived from tree automata
usually exhibit bad complexity. To circumvent these limitations, many variations around the tree
automata principle have been designed, usually following the same basic ideas. For instance,
[Ohs01] defines automata that use equations (mainly associativity-commutativity) to get the clos-
ure of accepted languages. Another classical extension is to consider equality constraints between
subterms [BT92, CCD93, CCC+94]. In some occasions, like with temporal logics [Var97], spe-
cific variations have also been designed in order to obtain decidability results with an optimal
complexity.

Experience has proved that tree automata and related formalisms constitute an useful and ver-
satile framework, which has been successfully applied to many different computer science areas. For
example type inference and system analysis [AW92], evaluation of functional languages [Com00],
automated theorem proving [CJ94], approximation of cryptographic protocols [CCM01], query
processing for XML languages [Mur01], ... Nonetheless this approach to solving problems by ex-
tending the definition of tree automata has some drawbacks. Most particularly, extensions usually
do not preserve some important properties, like closure under boolean operations or the decidabil-
ity of the test for emptiness. Therefore it is important to build a formalism that is general enough
while still preserving the good properties of regular tree automata.

In this paper, we define a new class of tree automata which combines closure under constraints,
including equality constraints, and under associativity and associativity-commutativity axioms.
The combination of both associativity-commutativity and equalities requires replacing trees by
multitrees, which are roughly defined as multisets of trees where identical elements are grouped
together. These automata can be considered as a generalization of hedge automata [PQ68], fea-
ture tree automata [NP93], automata with constraint between brothers [BT92] and automata with
arithmetical constraints [LM94, Lug98] (the comparison is not exact since every classe works on
slightly different structures.) An originality of our approach is that we take constraints to be
regular expressions or Presburger’s arithmetic formulas and that we consider a new kind of con-
straints, called Presburger’s constraints. The constraints are described in a formalism reminding
regular expression and contains equality and disequality tests, like X = Y ⊕ Y or X 6= Y , see
Section 5.1. We prove a normal form property for our constraints language and the decidability of
their first-order theory. Then, we revamp tree automata to fit the multitree structure combined
with Presburger’s constraints. Surprisingly enough we find that, after this simple adjustment,
the class of recognizable languages is closed under the boolean operations and that the test for
emptiness is decidable. The proof of this result heavily relies on the use (and the decidability)
of Presburger’s arithmetic. Actually, a similar phenomenon appears in the domain of unification
modulo associativity-commutativity.

As a first application of multitree automata, we present a modal logic intended for querying
semi-structured data [AB99], like XML documents, in which, by design, every formula directly
relates to a multitree automaton. Our logic deliberately resembles (and extends on some points)
TQL, a query language for semi-structured data based on the ambient logic [CG00, CG01]. In their

3



presentation of TQL, the authors stick to a semantical point of view and consequently give only
some axioms and computation rules for their language. In particular, they provide no results on
the decidability of the satisfiability problem and give very few results on the computational aspects
of their logic. We design a similar logic, TL, which adds new features like Presburger’s constraints.
In this extended framework it becomes possible to state that we try to match documents with less
than two fields for authors or that contains similar subfields. Since the background of this logic
is our new class of tree automata, we obtain immediately the decidability of model-checking, that
is finding the answers to a query, and of the satisfiability problems, that is finding if a query is
trivially empty. We can also infer results on TQL and on the (static fragment of) ambient logic.
A similar technique could be applied to other modal logics with tree-like models, such as Pym’s
and O’Hearn’s bunch logic [OP99]. This provides incidentally another example of the power of
the (multitree) automata approach for logics in computer science.

To conclude, we put once again multitree automata to the test and use our approach to tackle
inductionless induction methods in automated theorem proving [JK89]. In this framework, a
key property is inductive reducibility, which is undecidable when associativity-commutativity is
involved [KNRZ91]. Since we can express this property in TL for restricted non-linear cases,
we get new decidable cases of this property. This result shed new light on the frontier between
decidability and undecidability for this problem.

2 Terms and multitrees

Terms are constructed from a denumerable set X of variables and a finite set F of function symbols
composed of a set F of free symbols, a set FA of associative symbols and a set FAC of associative-
commutative symbols. For simplicity we shall assume that FA contains only one symbol ., and
that FAC contains only one symbol ⊕ but all our results can be lifted to any number of distinct
associative-commutative symbols. We use infix notation for . and ⊕.

Equality of terms denoted by ≡, is defined modulo the associativity of . and associativity-
commutativity of ⊕ as usual (see [DJ90] for instance). Ground terms are terms without variables.
We shall work not on terms but on multitrees, which is a representation which takes into account
the axioms: we consider . as the concatenation operation (on terms, not letters) and ⊕ as a
multiset constructor. First we use the following rewrite rules to put terms in a standard form.

(x.y).z → x.(y.z)
(x⊕ y) ⊕ z → x⊕ (y ⊕ z)

Now we flatten a term t1 ⊕ (t2 ⊕ . . .⊕ tn)) by writing it as t1 ⊕ . . .⊕ tn (i.e. ⊕ is seen as a variadic
operator). Similarly we write t1.t2 . . . .tn for t1.(t2. . . . .tn)).

The last step is to add equal terms appearing in a sum t1 ⊕ t2 ⊕ . . .⊕ tn using commutativity
and the rule n.t⊕m.s→ (n+m).t if s ≡ t. Initially t1⊕t2⊕ . . .⊕tn is seen as 1.t1⊕1.t2⊕ . . .⊕1.tn.

These rewrite processes terminate and yield normalized terms. The set TF of ground normal-
ized terms can be described by the grammar:

TF ::= TF | TA | TAC

TF ::= f(TF , . . . , TF) with arity(f) = n ≥ 0
TA ::= (TF ∪ TAC) . . . . . (TF ∪ TAC)
TAC ::= n1(TF ∪ TA) ⊕ . . .⊕ np(TF ∪ TA)

where we assume that sums involve only terms which are not equal.

Example 1 From a term f((a.b).g(a), (a ⊕ b) ⊕ (b ⊕ a)), we get first f(a.b.g(a), a ⊕ b ⊕ b ⊕ a)
which is normalized into f(a.b.g(a), 2.a⊕2.b) (for simplicity we write x and a instead of 1.x, 1.a).
Notice that f(a.b.g(a), a⊕ 2.b⊕ a) is not normalized.

A multitree is a normalized term. Equality, still denoted by ≡, is equality modulo permutation
of arguments of ⊕, still denoted by ≡, for instance f(a.b.g(a), 2.a ⊕ 2.b) ≡ f(a.b.g(a), 2.b⊕ 2.a).
From now on, we shall consider only multitrees. In the remaining of the paper, we assume that

4



the set of equivalence class of multitrees (for ≡) of TF ∪ TA TF ∪ TA is enumerated as e1, e2, . . ..
Therefore each element of TF is equal to a sum Σiniei with the convention that ei = 1.ei i.e. we
consider the (infinite) sequence e1, e2, . . . as a set of generators and the natural numbers ni as the
coefficients (with respect to the generator set).

If t = n1t1 ⊕ . . .⊕nptp and s = m1s1 ⊕ . . .⊕mlsl, then, by definition, s⊕ t denotes a multitree
obtained by normalizing m1s1 ⊕ . . .⊕mlsl ⊕ n1t1 ⊕ . . .⊕ nptp. For example (2.a⊕ b) ⊕ (b⊕ c) is
2.a⊕ 2.b⊕ c.

Normalization is required to enable equality constraints: automata only have a finite memory,
but since the ⊕ operator may have an arbitrary number of arguments, two identical arguments can
be separated by an arbitrarily large distance exceeding the memory capacity of the automaton.

The size of t = Σiniei is the number of non-zero ni’s, and the module of t is the maximal value
of the ni’s. These notions induce a partial order on multitrees by comparing their sizes first and
then their modules. The minimal elements of some set of multitrees are the elements minimal
with respect to this order.

3 Presburger’s arithmetic and semilinear sets

Let N be the set of natural numbers and let + denote addition of natural numbers. Then the
first-order theory of equality on this structure is called Presburger’s arithmetic and is decidable.
We shall often work with n-uples of integers (or terms) together with other objects and we use
the vector notation (like ~x) to make the distinction clearer.

Given ~b ∈ N
n, P = {~p1, . . . , ~pm} with ~pi ∈ N

n the linear set L(~b, P ) is the set {~x ∈ N
n | ~x =

~b + Σi=m
i=1 λi~pi, λi ∈ N}. The element ~b is called the basis and the ~pi’s are the periods (if P = ∅,

then L(~b, P ) = {~b}). A semilinear set is a finite union of linear sets. Semilinear sets are closed
under set operations and are the models of Presburger’s arithmetic formulas.

3.1 Minimal solutions

The usual partial order on N
n is defined by ~x = (x1, . . . , , xn) ≤ ~y = (y1, . . . , yn) iff ∀i, xi ≤ yi.

The set of minimal elements of a set E ⊆ N
n is denoted by Min(E)1. This set is finite (By

Dickson’s lemma) and is equal to the solutions of ~x ∈ E ∧¬(∃~y ∈ E | ~y ≤ ~x). Similarly, given
a Presburger’s arithmetic formula φ(x1, . . . , xn), the set Min{(α1, . . . , αn) | φ(α1, . . . , αn)} is a

effectively computable finite semilinear set. We say that ~X is a solution of ϕ( ~X) if ϕ( ~X) is true

(which we denote by |= ϕ( ~X)).

Given some integer B, MaxBϕ( ~X) is used to bound Bth smallest solutions of ϕ. It is formally
defined as follows:

• if ϕ has less than B solutions then MaxBϕ( ~X) = Max{xi | ~X = (x1, . . . , xn) solution of ϕ}

• Let ~x1, . . . , ~xB be minimal solutions of Ψ( ~X1, . . . , ~XB) defined by

∧

1≤i<j≤B

Xi 6= Xj ∧
∧

1≤i≤B

ϕ( ~Xi)

Then MaxB(ϕ( ~X)) = Max1≤j≤B{xj
i | ~xj = (x1

j , . . . , x
n
j )}.

Since the value depends on the chosen minimal solutions, we can take MaxBϕ( ~X) to be the

largest possible one. The main point is that MaxBϕ( ~X) is computable. This definition is used in
sections 7.1, 7.4.

1beware that we have now two notions of minimality: one for terms and one for n-uples of natural numbers

5



3.2 Semilinear sets

We state now some properties on semilinear sets and Presburger’s formula which are essential in
the algorithm to decide emptiness of the language accepted by a multitree tree automaton.

Let L,M be a semilinear sets of N
n, let p ∈ N, then we define

• L.M = {~z = ~x+ ~y | ~x ∈ L, ~y ∈M}

• Lp = {~z = ~x1 + . . .+ ~xp | ~xi ∈ L} and L0 = {(0, . . . , 0)}

• L+ =
⋃

i>0 L
i and L∗ =

⋃

i≥0 L
i

Proposition 1 L.M, Lp, L+ and L∗ are semilinear sets.

The only non-trivial cases are the last ones. They are a consequence of the more general result
on membership constraints stated in the next proposition.

Proposition 2 The formula φ(~x,N) defined by ~x ∈ LN with L a semilinear set of N
n is a

effectively constructible Presburger’s arithmetic formula.

Proof Let L =
⋃i=l

i=1 L(~bi, Pi) with Pi = {~pi,j | j = 1, . . . , li}. Then we claim that φ(~x,N) is
equivalent to

∃µi, λi,j ∧(~x = Σi=l
i=1(µi

~bi + Σj=li
j=1 λi,j~pi,j)) /* ~x is a sum of sums of elements

of the linear sets composing L*/

∧
∧i=l

i=1((
∨j=li

j=1 λi,j 6= 0) ⇒ µi 6= 0) /* one occurrence of period yields

an occurrence of the associated basis*/
∧(N = Σi=l

i=1µi) /* the number of elements of linear sets
is the sum of occurrences of bases*/

• ⇒ direction. Let ~x = ~x1 + ~x2 + . . .+ ~xN with ~xj ∈ L(bij
, Pij

). Adding all ~x′js belonging to

the same L(~bi, Pi), we get that ~x = Σi=l
i=1(µi

~bi + Σj=li
j=1 λi,j~pi,j) setting µi, λi,j to 0 if no ~xj

belongs to L(~bi, Pi), and with the additional facts that N = Σi=l
i=1µi and that if λi,j 6= 0 for

some j ∈ 1, . . . , li then there is some ~xj s.t. ~xj ∈ L(~bi, Pi) hence µi ≥ 1.

• ⇐ direction. Let ~x,N satisfying the above formula. Then we can write ~x = Σi | µi 6=0(~bi +

Σj=li
j=1 λi,j~pi,j) +~bi + . . .+~bi

︸ ︷︷ ︸

µi−1 times

, i.e ~x = Σi|µi 6=0~xi with ~xi ∈ Lµi , i.e. ~x ∈ LN .

Proposition 3 The formula (~x ∈ LN1

1 .LN2

2 . . . L
Np
p )∧φ(~x,N1, . . . , Np) with free variables ~x,N1, . . . , Np

where Li’s are semilinear sets of N
n and φ a Presburger’s arithmetic formula, is a Presburger’s

arithmetic formula.

Proof The formula is equivalent to ∃~x1 . . . ~xp (~x = ~x1 + . . . + ~xp)∧ ~x1 ∈ LN1

1 ∧ . . .∧ ~xp ∈

L
Np
p )∧φ(~x,N1, . . . , Np)

A immediate consequence is that the set of minimal values (N1, . . . , Np) such that ∃~x ~x ∈

LN1

1 .LN2

2 . . . L
Np
p ∧φ(~x,N1, . . . , Np) is a finite computable set. Similarly, given some N1, . . . , Np,

the set of minimal values (~x1, . . . , ~xp) such that ~x1 ∈ LN1

1 ∧ ~x2 ∈ LN2

2 . . .∧ ~xp ∈ L
Np
p ∧ φ(~x1, . . . , ~xp, N1, . . . , Np)

is finite and computable. This property is used in the algorithm to decide the emptiness for tree
automata.

6



4 Presburger’s constraints

4.1 Definition

We define constraints on multitrees using a regular expression formalism.

Definition 1 Given a set X = {X1, . . . , } of variables, Presburger’s constraints are the formulae
defined by:

φ ::= ~X ∈ L+
1 . . . L

+
p | ¬φ | φ∧ φ | φ∨ φ | ∃X φ

where ~X = (X1, . . . , Xn) and L1, . . . , Lp are semilinear sets of N
n.

The satisfiability relation |= is defined by:

~t |= ~X ∈ L+
1 . . . L

+
p iff ~t = Σi∈I1

~λiei + . . .+ Σi∈Ip
~λiei

where







Ij 6= ∅ for j = 1, . . . , p /*each Lj occurs at least once*/

i ∈ Ij =⇒ ~λi ∈ Lj /*only elements of Lj can occur*/

∀i, ~λi 6= ~0 /* coefficients are non-trivial*/

∀j = 1, . . . , n ∃~λij
= (λ1, . . . , λj 6= 0, . . . , λn) /*a component j can’t be Σk0.ek*/

The satisfiability relation for non-atomic or quantified formulas is defined as usual. We shall
write |= φ(~t) when ~t satisfies φ( ~X).

4.2 Expressivity

A possible extension of this class of constraints is to allow L∗ instead of L+ with the obvious
semantics (the set of indices i such that ~λi ∈ L can be empty). This doesn’t change the expressivity

of formulas since ~X ∈ L+
1 . . . L

+
p L

∗ is equivalent to ~X ∈ L+
1 . . . L

+
p L

+ ∨ ~X ∈ L+
1 . . . L

+
p .

Presburger constraints are rich enough to express systems of equations and disequations in
multitrees. Given an equation ΣiαiXi = ΣjβjXj on free variables X1, . . . , Xn, with αi, βj ∈ N, let
L be the semilinear set corresponding to the solutions of this equation in N

n. Then the solution
of the equation (interpreted in multitrees) is the set of n-uples of multitrees satisfying ~X ∈ L+.
The closure of Presburger’s constraints under conjunction and negation yields the claim.

In Presburger’s arithmetic2, we can’t express x > y with a quantifier-free formula if > is not
a primitive predicate. But it can be easily defined by (x, y) ∈ L for L a semilinear set model of
∃z x = y + z + 1. The same situation occurs here since we can define X > Y for multitrees by
∃Z X = Y +Z which corresponds to (X,Y ) ∈ L+M∗ for M a semilinear set model of ∃z x = y+z
(L as previously).

4.3 Normal forms for quantifier free formula

Presburger’s constraints enjoy a kind of normal form property.

Proposition 4 Each quantifier free Presburger’s constraint is equivalent to a disjunction of atomic
formulas ~X ∈ L+

1 . . . L
+
p .

Proof The proof is by structural induction on the formulas.

2in this paper, we take Presburger’s arithmetic with non-negative numbers only

7



1. Negation of atomic formulas. We claim that ¬( ~X ∈ L+
1 . . . L

+
p ) is equivalent to

∨ ~X ∈ (L1 ∪ . . . ∪ Lp)
+
(L1 ∪ . . . ∪ Lp)

∗

∨
∨i=p

i=1(
~X ∈ ((L1 ∩ Li)

∗ . . . (Li−1 ∩ Li)
∗(Li+1 ∩ Li)

∗ . . . (Lp ∩ Li)
∗))

(where L denotes the complementation of L).

Let ~t such that ~t 6|= L+
1 . . . L

+
p . By definition, ~t = Σj

~λjej and

• Either there is one ~λj belonging to none of the Li’s (other ~λj may also be in the same
case or not). This is handled by the first member of the disjunction.

• Or each ~λj ’s are in some Lk, but there is at least one Li such that no ~λi belong to Li.
This is handled by the ithdisjunct of the second member.

2. Conjunction of atomic formula. ~X ∈ L+
1 . . . L

+
p ∧ ~X ∈M+

1 . . .M+
q is equivalent to

∨

{i1, . . . , il} = {1, . . . , p}
{j1, . . . , jl} = {1, . . . , q}

~X ∈ (Li1 ∩Mj1)
+ . . . (Lil

∩Mjl
)+

(several ik’s can be identical, and similarly for jk’s but each Li and each Mj occurs at least
once).

3. General case. Given φ = ¬φ1 or φ = φ1 ∧φ2, by induction hypothesis we can assume that
φi (i = 1, 2) are disjunction of atomic formulas. Then the same reasoning as above yields
the result.

4.4 Satisfiability of Presburger’s constraints

The normal form property allows to state:

Proposition 5 The satisfiability of quantifier free Presburger’s constraints is decidable.

Proof By proposition 4, we can restrict ourself to atomic constraints.
Let ~X ∈ L+

1 . . . L
+
p be an atomic constraint. We can assume that the Li’s are linear sets. Oth-

erwise if L = M1 ∪ . . .∪Mp with linear sets Mi’s, the constraint is equivalent to the disjunction of
the atomic constraints obtained by replacing L by M ∗

1 . . .M
∗
i−1M

+
i M

∗
i+1 . . .M

∗
p . The constraint

is unsatisfiable iff there is a component i in 1, . . . , n such that all ~λj ’s are zero on this component.

Since Lj = L(~bj , {~p
j
1, . . . , ~p

j
mj

}), this amounts to saying that the ith components of bj and of the

pj
l ’s for j = 1, . . . , p, l = 1, . . . ,mj , are zero. In this case any n-tuple ~t satisfying the constraint is

such that ti = Σi0.ei.

Conversely, if this is not the case, there exists Lj = L(~bj , {~p
j
1, . . . , ~p

j
mj

}) such that the ith

component of ~bj or of some ~pj
l is non-zero. Then there exists ~t such that |= ϕ(~t) and ti 6= 0 (choose

some ~λ = ~bj + ~pj
l ) which states that the formula is satisfiable.

We show now that this result actually holds for any first-order Presburger’s constraint. This
is obtained by showing that a formula ∃Xi

~X ∈ L+
1 . . . L

+
p is equivalent to a disjunction of atomic

constraints. The idea is to realize that this quantifier elimination process can be done by simply
erasing the ith component in the Li as this is done for the decidability of Presburger arithmetic
using the automata approach. However this procedure may be incorrect when the expression
L+

1 . . . L
+
p allows n-uples which have 0 on their ith components.

8



Example 2 Let L = L(

(
0
1

)

, {

(
1
1

)

})

Let us consider the formula ∃X1 (X1, X2) ∈ L. Eliminating X1 and the first component gives
X2 ∈ L/1 = L((1), {(1)}). Then X2 = 1 satisfies this latter constraint but there is no pair
(X1, X2) with X2 = 1 satisfying the first one: to avoid X1 = 0 requires that we use a strictly
positive multiple of the period. The problem disappears if we transform the constraint into the

equivalent one ∃X1 (X1, X2) ∈ L′ with L′ = L(

(
1
2

)

, {

(
1
1

)

}). We have added the period to

the basis to get a new basis which doesn’t raise any problem.

To overcome this problem, we show that each atomic formula ϕ( ~X) is equivalent to a disjunction
of atomic formulas where it is ensured that the ith component can’t be 0 (for some given i).

Given a semilinear set L, we have L = (L ∩ (Xi = 0)) ∪ (L ∩ Xi > 0) where Xi = 0 (resp.
Xi > 0) denotes the semilinear set of n-uples with ith component equal to 0 (resp. Xi > 0). The
intersection with L is semilinear and we can replace L+ by (L ∩ (Xi > 0))∗(L ∩ (Xi = 0))+ or
(L∩ (Xi = 0))∗(L∩ (Xi > 0))+. Iterating this process combined with the elimination of terms L∗,

we can replace an atomic constraint by a disjunction of ~X ∈ L+
1 . . . L

+
p where the ith component

of each element is 0 or the ith component of each element is greater than 03. We assume that
at least one Lj has non-zero ith component (otherwise the constraint is unsatisfiable). Let let

L/i denote {(x1, . . . , xi−1, xi+1, . . . , xn) | ∃xi (x1, . . . , xi−1, xi, xi+1, . . . , xn) ∈ L} and ~X/i denote
(X1, . . . , Xi−1, Xi+1, . . . , Xn). The following proposition allows to eliminate existential quantifiers.

Proposition 6 Let Lj ’s be as above, then ∃Xi
~X ∈ L+

1 . . . L
+
p is equivalent to ~X/i ∈ L1/i

+ . . . Lp/i
+.

From which we get:

Proposition 7 The satisfiability of Presburger’s constraints is decidable.

Proof The proof is a simple structural induction on formulas.

This result can also be obtained by encoding the constraints into skolem arithmetic which is
the theory of natural numbers with multiplication and is decidable (private communication from
Achim Blumensath).

5 Multitree automata with Presburger’s constraints

We describe our class of multitree automata with Presburger’s constraint and prove some basic
properties: closure under basic operations, determinisation, and decidability of the test for empti-
ness of the recognized language. Recall that the set of function symbol over which we operate is
F = F ] FA ] FAC and that, for the sake of brevity, we restrict our study to a unique associative
symbol, ·, and a unique AC symbol, ⊕.

5.1 Definition and Transition Relation

A multitree automaton with Presburger’s constraint is a triple A
∆

= 〈Q,Qfin , R〉 where Q is a finite
set of states and R is a set of transition relations. We suppose that Q is the disjoint union of
four simpler sets, QA, QAC , QF and QN2AC . In this setting, QAC is associated to the set FAC of
AC symbols (similarly for A and F ), while QN2AC is a set of auxiliary states used for transitions
from A,F to AC symbols. We also suppose that the set Qfin of final states does not contain
auxiliary states, that is Qfin ⊆ QF ]QA]QAC . Finally, we decompose the set R into four distinct
categories, (type 1) to (type 4) below.

(type 1) φ(X1, . . . , Xn) : f(q1, . . . , qn) → q with qi ∈ Q, q ∈ QF

φ(X1, . . . , Xn) a Presburger’s constraint

3this property can be established with a direct reasoning on the basis and the periods

9



(type 2) L(Aq) → q with q ∈ QA

Aq is a finite state word automaton on the alphabet QAC ∪QF

L(Aq) denotes the word language accepted by Aq

(type 3) ψ(N) : Nq → q′ with q ∈ QF ∪QA, q
′ ∈ QN2AC ,

ψ a Presburger’s arithmetic formula.

(type 4) ψ(N1, . . . , Np) : N1q1 ⊕ . . .⊕Npqp → q with QN2AC = {q1, . . . , qp}
ψ a Presburger’s arithmetic formula.

Before defining the transition relation we give some intuitions on the different types of rules.
Type 1 transition rules are similar to those found in traditional tree automata, with the notable
addition of the Presburger constraint φ(X1, . . . , Xn). This constraint allows expresssing very
liberal inequalities, disequalities and counting constraints between brothers. For example, the
rule (X1 = X2) : f(q1, q2) → q may fire only if we are at a node labeled f with equivalent left
and right children. Type 2 rules are almost orthogonal to the rest of the presentation and could
be added to other variations on tree automata without many complications. These rules use
regular word languages over the states of the automaton, as in (q2 + q3).q

∗
1 → q for example. This

idea is directly inspired by hedge automata [Mur01] and it has been added with the (successful)
intention to directly encompass hedge automaton in our framework. Type 3 and 4 rules are
extension of type 1 rules for associative and AC function symbols. Type 3 rules allow us to
express arithmetical constraints on the number of associative and free symbols. They “produce”
auxiliary states (in QN2AC .) Type 4 rules are the equivalent for AC symbols and “consume”
auxiliary states. The side condition QN2AC = {q1, . . . , qp} ensures that all auxiliary states are
taken into account. More formally, the transition relation →A is the smallest relation such that:

t = f(t1, . . . , tn) →A q if ti →A qi for i = 1, . . . , n
|= φ(t1, . . . , tn)
φ(X1, . . . , Xn) : f(q1, . . . , qn) → q ∈ R

t = t1.t2. . . . .tm →A q if ti →A qi ∈ QF ∪QAC for i = 1, . . . ,m
q1.q2. . . . .qm ∈ L(Aq)
L(Aq) → q ∈ R

t = nt′ →A q if t′ →A q′

|= ψ(n)
ψ(N) : Nq′ → q ∈ R

t = Σi=p
i=1(Σ

Ni

j=1ni,jti,j) →A q if ni,jti,j →A qi for j = 1, . . . , Ni

|= ψ(N1, . . . , Np)
ψ(N1, . . . , Np) : N1q1 ⊕ . . .⊕Npqp → q ∈ R

A multitree is accepted if t→A q with q ∈ Qfinal, and L(A) the language accepted by A is the
set of accepted multitrees. A straightforward consequence of the definition is that t ≡ t′ implies
that t →A q iff t′ →A q. Note that we can keep the transition relation of A when we add a new
state qp+1 in QF ∪QA (like some forthcoming constructions do) by adding a new term Np+1qp+1

and a new constraint Np+1 = 0 in type 4 rules.

Example 3 In this example, we use regular expressions and equations or disequations for con-
straints, which are equivalent to but more explicit than word automata or membership constraints.
Given F = {a, b, pair( , )}, we define A by QF = {qe, qo}, QA = {qA}, QN2AC = {q′e, q

′
o}, QAC =

{qS}, with QFinal = {qS}, and the rules:

10



a→ qe and b→ qe
a→ qo and b→ qo
(QF ∪QAC)∗ → qA
X1 = X2 : pair( , ) → qe /* elements of pair must be equal to reach qe*/
X1 6= X2 : pair( , ) → qo /* elements of pair must be distinctsto reach qo */
N = 1 : Nqe → q′e /* only one copy of an element of qe */
∃N ′ N = 2N ′ : Nqo → q′o /* only an even number of copies of elements of qo */
Ne = 1∧No ≥ 1 : Neq

′
e +Noq

′
o → qS /* only one q′e, any number of q′o */

(where stands for any state in the relevant set).

Then the multitrees pair(a.b, a.b) ⊕ 2pair(a, a.b) and pair(a ⊕ 2b, a ⊕ 2b) ⊕ 2pair(a, a.b) are
accepted but not 2pair(a, a) ⊕ pair(a.b, b).

A simpler definition of multitree automata is obtained by replacing type 3 and type 4 rules by
rules:

ψ(N1, . . . , Np) : N1q1 ⊕ . . .⊕Npqp → q

where t = Σknktk → q using the above rule if |= ψ(m1, . . . ,mp) where mi = Σtk→qi
nk. Unfor-

tunately this natural definition forbids the determinization of automata, and it is not even clear
whether the intersection of two recognizable languages is recognizable. This means that the cor-
responding class of automata probably doesn’t enjoy good properties.

An apparently richer formalism is to allow type 4 rules

φ(X)∧ψ(N1, . . . , Np) : N1q1 ⊕ . . .⊕Npqp → q

where φ is a Presburger’s constraint. Actually these rules can be simulated in the previous setting.
Given a constraint φ(X) of the form ~X ∈ L+

1 . . . L
+
m we construct a rule

ψ′(N1, . . . , Np) : N1q1 ⊕ . . .⊕Npqp → q

equivalent to
φ(X)∧ψ(N1, . . . , Np) : N1q1 ⊕ . . .⊕Npqp → q

Firstly, for each state qi, for each type 3 rule φ(N) : Nq′i → qi we introduce m states qj
i

(j = 1, . . . ,m) and the rules N ∈ Lj ∧φ(N) : Nq′i → qj
i . Finally we add the rule:

i=p
∧

i=1

Ni = ΣjN
j
i ∧

j=m
∧

j=1

Σi=p
i=1N

j
i ≥ 1∧ψ(N1, . . . , Np) : N1

1 q
1
1 ⊕ . . .⊕Nm

p q
m
p → q

6 Basic operations on constrained automata

6.1 Completion

A automaton is complete iff each multitree reaches some state. From an automaton A we can
build a complete automaton B. First we add four sink states qs ∈ QF , qs,A ∈ QA, qs,N2AC ∈
QN2AC , qs,AC ∈ QAC , then we add the following new rules:

type 1 True : f(q1, . . . , qn) → qs for each sequence q1, . . . , qn with qi ∈ QF ∪ QA ∪ QAC ∪
{qs, qs,Aqs,AC},

type 2 L(Aqs,A
) → qs,A for aqs,A

an automaton accepting (QF ∪QAC)∗.

type 3 True : Nqs → qs,N2AC , True : Nqs,A → qs,N2AC ,

type 4 Ns > 0 : N1q1 ⊕ . . .⊕Npqp ⊕Nsqs,N2AC → qs,AC

11



and we replace the rules

ψ(N1, . . . , Np) : N1q1 ⊕ . . .⊕Npqp → q of A

by rules

ψ(N1, . . . , Np)∧Ns = 0∧Ns,N2AC = 0 : N1q1 ⊕ . . .⊕Npqp ⊕Nsqs,N2AC → q

Proposition 8 The automaton B is complete and L(B) = L(A).

6.2 Closure under union

Given two automata A and A′, a automaton B accepting L(A) ∪ L(A′) is obtained by taking the
union of the automata. A slight change required is to replace (type 4) rules of A

ψ(N1, . . . , Np) : N1q1 ⊕ . . .⊕Npqp → q

by

ψ(N1, . . . , Np)∧
∧

j

N ′
j = 0 : N1q1 ⊕ . . .⊕Npqp ⊕N ′

1q
′

1 ⊕ . . .⊕Nmq
′

m → q

(and similarly for A′)

Proposition 9 The automaton B accepts L(A) ∪ L(A′).

6.3 Closure under intersection

The classical product construction is used to get an automaton B accepting L(A) ∩ L(A′).

• The set of states is QF ×Q′
F ∪QA ×Q′

A ∪QN2AC ×Q′
N2AC ∪QAC ×Q′

AC .

• The set of final states is QF ×Q′
F .

• The set of rules RB is as follows.

(type 1) (φ∧ φ′)(X1, . . . , Xn) : f((q1, q
′
1), . . . , (qn, q

′
n)) → (q, q′) ∈ RB

if φ(X1, . . . , Xn) : f(q1, . . . , qn) → q ∈ RA

φ′(X1, . . . , Xn) : f(q′1, . . . , q
′
n) → q′ ∈ RA′

(type 2) L(Aq ×Aq′ ) → (q, q′) ∈ RB

where Aq ×Aq′ is the product automaton accepting {(qi, q
′
j) | qi ∈ L(Aq), q

′
j ∈ L(Aq′).

(type 3) (ψ ∧ψ′)(N) : N(q1, q2) → (q′1, q
′
2) ∈ RB

if ψ(N) : Nq1 → q′1 ∈ RA,
ψ′(N) : Nq2 → q′2 ∈ RA′

(type 4) ψ(ΣjN1j , . . . ,ΣjNpj)
∧ψ′(ΣiNi1, . . . ,ΣiNip′)

: N1,1(q1, q
′
1) ⊕ . . .⊕Np,p′(qp, q

′

p′) → (q, q′) ∈ RB

if ψ(N1, . . . , Np) : N1q1 ⊕ . . .⊕Npqp → q ∈ RA,

ψ′(N1, . . . , Np′) : N1q
′

1 ⊕ . . .⊕Np′q
′

p → q′ ∈ RA

Proposition 10 The automaton B accepts L(A) ∩ L(A′).

12



Proof We show that t →B (q, q′) iff t →A q and t →A′ q′. The proof is by structural induction
on multitrees and is similar to the proof for tree automata. Only the case of type 4 rule is slightly
more complex. Assume t = Σiti → (q, q′) using

ψ(ΣjN1j , . . . ,ΣjNpj)∧ψ
′(ΣiNi1, . . . ,ΣiNip′) : N11(q1, q

′
1) ⊕ . . .⊕Npp′(qp, q

′

p′) → (q, q′)

Then t = Σ
i=n1,1

i=1 ti1,1⊕ . . .⊕Σ
i=np,p′

i=1 tp,p′ with ti1,1 → (q1, q
′
1) for i = 1, . . . , n1,1, . . . ,tip,p′ → (qp, q

′

p′)
for i = 1, . . . , np,p′ and |= ψ(Σjn1j , . . . ,Σjnpj). Therefore t→A q (and similarly for q′ and A′).

Conversely assume that t →A q using ψ(N1, . . . , Np) : N1q1 ⊕ . . . ⊕ Npqp → q and t →A′ q′

using ψ′(N1, . . . , Np) : N1q
′
1 ⊕ . . .⊕Npq

′
p → q′.

We have t = t1⊕. . .⊕tn with







n1 multitrees t
′
ks reach q1

. . .
np multitrees tk reach qp
|= ψ(n1, . . . , np)

and







n′
1 multitrees t

′
ks reach q

′
1

. . .
n′

p multitrees t
′
ks reach q

′
p

|= ψ′(n′
1, . . . , n

′
p)

We write t as Σi,jΣ tk →A qi
tk →A′ q′j

tk and we define mi,j as the number of tk appearing in the

subsum. By definition we have ni = Σjmi,j and n′
j = Σimi,j . Therefore t→B (q, q′).

6.4 Determinization

An automaton A is deterministic if for each t there is at most one state q such that t →A q. We
describe how to compute an equivalent deterministic tree automaton with a variant of the classical
subset construction. The basic idea is similar to the idea for determinization of automata with
constraints between brothers [BT92], but the Presburger’s arithmetic constraints require some
additional work: if M distincts multitrees si (of the form n.t) reach the state Q = {q1, . . . , ql} in
the deterministic automaton, meaning that each si reaches all the qj ’s of Q in the non-deterministic
automaton, we must find out which states q the multitree s1 ⊕ . . . ⊕ sM can reach in the non-
deterministic automaton. Therefore we decompose s1 ⊕ . . .⊕ sM into all possible expressions

Σsi reach q1
si

︸ ︷︷ ︸

x1 element

⊕ . . .⊕ Σsi reach ql
si

︸ ︷︷ ︸

xl element

(some xj can be zero, but M = Σj=1,...,lxj) and check which states these expressions can reach.

6.4.1 Determinization of condition

We recall how to get rid of the non-determinism arising from the overlapping of conditions of rules.
Let φ1, . . . , φn be formula on free variables X1, . . . , Xm, then for each I ⊆ {1, ..., n}, we define
φI =

∧

i∈I φi ∧
∧

j 6∈I ¬φj . Then φI ∧ φJ is unsatisfiable if I 6= J and φi is equivalent to
∨

I3i φI .
Computing the φI ’s and replacing a rule with condition φ by the rules with condition φI will be
called determinization of conditions. Clearly, this operation doesn’t modify the language accepted
by the automaton.

6.4.2 The subset construction

The deterministic automaton ADet is constructed from the non-deterministic complete automaton
A as follows.

• The set of states QDet is the union of QDet
F = 2QF , QDet

A = 2QA , QDet
N2AC = 2QN2ACand

QDet
AC = 2QAC .

• The final states are the states Q ∈ QDet containing a final state of A.

• The set of rules RADet
is obtained as follows.

13



1. Perform the determinization of conditions φ(X1, . . . , Xn) : f(q1, . . . , qn) → q of type 1
rules. For simplicity we still denote by RA the resulting set of rules. Then

φI (X1, . . . , Xn) : f(Q1, . . . ,Qn) → Q ∈ RADet

if Q = {q ∈ QF | ∃q1 ∈ Q1, . . . , qn ∈ Qn s.t. φI (X1, . . . , Xn) : f(q1, . . . , qn) → q ∈ RA}.

2. For each QA ∈ QA, for each q ∈ QA,

– Transform the automaton Aq with alphabet QF ∪QAC into an automaton AR
q on

the alphabet QDet
F ∪QDet

AC as follows 4: AR
q has the same set of states as Aq, has the

same initial state, the same set of final states, it contains the transition s.Q → s′

iff there exists a transition s.q → s′ in Aq with q ∈ Q.

– For each Q ⊆ QA, compute ADet
Q a (not necessarily deterministic) automaton

accepting
⋂

q∈Q L(AR
q ) ∩

⋂

q 6∈Q L(AR
q ).

Then

L(ADet
Q ) → Q ∈ RADet

(type 3) Perform the determinization of condition on type 3 rules ψ(N) : Nq → q′ ∈ RA. For
simplicity we still denote by RA the resulting set of rules. Then

ψI(N) : NQ → Q′ ∈ RADet

if Q′ = {q′ | ∃q ∈ Q s.t. ψI(N) : Nq → q′ ∈ RA}

(type 4) Let QDet
N2AC = {Q1, . . . ,Ql}, and let Ind(Qi) = {k | qk ∈ Qi}. To each ψ(N1, . . . , Np)

condition of type 4 rules, we associate ψ′(M1, . . . ,Ml) defined as

∃xj
i

i=l∧

i=1

(Mi = Σj∈Ind(Qi)x
i
j)∧ψ(Σi | 1∈Ind(Qi)x

i
1, . . . ,Σi | p∈Ind(Qi)x

i
p)

and we compute the formula ψI by determinizing the ψ′
i (i = 1, . . . , n). Then

ψI (M1, . . . ,Ml) : M1Q1 ⊕ . . .⊕MlQl → Q ∈ RADet

if Q = {q | ∃i ∈ I s.t. ψi(N1, . . . , Np) : N1q1 ⊕ . . .⊕Npqp → q ∈ RA}

Proposition 11 The automaton ADet is deterministic and L(ADet) = L(A).

Proof We use →A to denote the transition relation of A and →ADet
to denote the transition

relation of ADet. We show by structural induction on t that t→ADet
Q iff Q = {q | t→A q}.

1. Let t = f(t1, . . . , tn) for (n ≥ 0). By induction hypothesis, for each j = 1, . . . , n we have
tj →ADet

QJ iff Qj = {qk | tj →A qk}.

(a) Let ψI(t1, . . . , tn) be the unique condition such that |= ψI (t1, . . . , tn) (only conditions
of relevant rules are considered). If f(t1, . . . , tn) →A q, there is a rule ψI(X1, . . . , Xn) :
f(q1, . . . , qn) → q ∈ RA such that ti →A qi and |= ψI(t1, . . . , tn). If f(t1, . . . , tn) 6→A

q′, then for all rule ψK(X1, . . . , Xn) : f(q′1, . . . , q
′
n) → q′ either there is some i such

that ti 6→A q′i (i.e. q′i 6∈ Qi or 6|= ψK(t1, . . . , tn). This implies that t′ADet
Q using

ψI(X1, . . . , Xn) : f(Q1, . . . ,Qn) → Q with Q = {q | t→A q}.

4R for refined, since the new alphabet can be seen as a refinement of the old one

14



(b) Conversely, assume that t →ADet
Q and let ψI(X1, . . . , Xn) : f(Q1, . . . ,Qn) → Q

be the last applied rule. By definition ti →ADet
Qi and |= ψI(t1, . . . , tn). Therefore

t→A q for each rule ψI (X1, . . . , Xn) : f(q1, . . . , qn) → q and t 6→A q′ for any other rule
ψK(X1, . . . , Xn) : f(q′1, . . . , q

′
n) → q′ such that either qi 6∈ Qi or I 6= K.

Therefore t→ADet
Q iff Q = {q | t→A q}.

2. First, we show the correctness of the construction of the automata for the refined alphabet.
Let qA be in QA, let s0 denote the initial state of AqA

, →AqA
(resp. →AR

qA
) denote the

transition relation of AqA
(resp. AR

qA
). We show that

{s | s0.Q1 . . .Qm →AR
qA
s} = {s | s0.q1 . . . qm →AqA

s for q1 ∈ Q1, . . . , qm ∈ Qm}

by induction on m.

• m = 1. s0.Q1 →ADet
qA

s′ implies s0.q →AqA
s′ for some q ∈ Q. Conversely if s0.q →Aq

s′

for q ∈ Q1 then s0.Q1 →Aq
s′.

• Assume that the property holds up to m − 1. By definition, {s | Q1 . . .Qm →AR
qA

s} = {s′ | s0.Q1 . . .Qm−1 →AR
qA

s′′ and s′′.Qm → AR
qA
s}. Let s′′ be such that

s0.Q1 . . .Qm−1 →AR
qA

s′′, then s′′.Qm →ADet
qA

s′ implies that q ∈ Qm, s′′.q → s′.

Conversely if s′′.q →AqA
s′ with q ∈ Qm then s0.Q1 . . .Qm →AR

qA
s′.

Let us show now the property on multitrees and states. Let t = t1. . . . .tm and assume that
ti →ADet

Qi. By definition t →ADet
QA iff Q1. . . . .Qm →AR

qA
s for s a final state of AR

qA
,

qA ∈ QA, and Q1. . . . .Qm 6→AR
qA
s for s a final state of AR

qA
if qA 6∈ QA.

Since a word Q1. . . . .Qm reaches a unique QA, the same property holds for t .

3. Let t = n.s.

By induction hypothesis, s→ADet
Q iff Q = {q | s→A q}.

(a) By definition t→A q′ iff there is a rule ψI(N) : Nq → q′ ∈ RA such that |= ψI(n) and
s→A q. If Q′ = {q′ | t→A q′} then we have t→ADet

Q′.

(b) Conversely, if t→ADet
Q′ using ψI(N) : NQ → Q′ then s→A q iff q ∈ Q and |= ψI (n).

Therefore t →A q′ for all q′ ∈ Q′. There is no other rule ψI(N) : Nq → q′ such that
t→A q′ using this rule as the last one since either q 6∈ Q or 6|= ψI(λ).

Therefore t→ADet
Q′ iff Q′ = {q | t→A q}.

4. Let t = Σksk where each sk has the form nktk. By induction hypothesis, sk →ADet
Qi iff

Qi = {qi | sk →A qi}.

(a) We can write t = Σi=l
i=1Σsk→ADet

Qi
sk. Let Mi = |{sk | sk →ADet

Qi}|. We have t→A q
iff there is a type 4 rule ψ(N1, . . . , Np) : N1q1 ⊕ . . .⊕Npqp → q ∈ RA such that







for any i ∈ 1, . . . , l, j ∈ Ind(Qi), ∃xi
j s.t. Mi = Σj∈Ind(Qi)x

i
j ,

|= φ(Σ1∈Ind(Qi)x
i
1, . . . ,Σp∈Ind(Qi)x

i
p)

Therefore t →ADet
Q with Q the set of states q of rules satisfying the previous condi-

tions.

(b) Conversely assume that t →ADet
Q, with ψI(M1, . . . ,Ml) : M1Q1 ⊕ . . . ⊕ MlQl →

Q the last rule applied. Then t = Σi=l
i=1Σsk→ADet

Qi
sk where |{sk →ADet

Qi}| =

Mi. Moreover for i = 1, . . . , l there exist xi
j ’s such that Mi = Σj∈Ind(Qi)x

i
j and

|= φ(Σ1∈Ind(Qi)x
i
1, . . . ,Σp∈Ind(Qi)x

i
p) with φ(N1, . . . , Np) : N1q1 ⊕ . . . ⊕ Npqp → q a

type 4 rule. Combined with the induction hypothesis, this implies that t →A q for all
q ∈ Q and that t 6→A q if q 6∈ Q.

15



6.4.3 Closure under complementation

Let A be a complete deterministic automaton (by previous results, we can always compute such
an automaton accepting the same language as A). A automaton B accepting the complement of
L(A) is obtained from A by exchanging final and non final states.

6.5 Closure under concatenation and sum

The closure under concatenation is straightforward and directly follows from the closure of regular
word languages under concatenation.

The closure under the ⊕ operation is more complex. Given A and A′ ( supposed to be complete)
we construct an automaton B such that L(B) = {t | t ≡ t1 ⊕ t2, t1 ∈ L(A), t2 ∈ L(A′)}. A slight
difficulty arises in this case: for instance if t = 2a⊕ b ∈ L(A) and t′ = a⊕ c ∈ L(A′), the multitree
corresponding to t⊕ t′ is 3a⊕ b⊕ c. Therefore B must be able to split 3a into 2a and a (at type 3
rule level) and to transfer this information at type 4 rule level. For simplicity we assume that the
multitrees accepted by A and A′ are all in TAC (when it is not the case, a construction similar to
the next one can be done).

First B contains the same states and rules as the automaton for the intersection except that
the set of final states is empty. Now we add a new state (q, q′)⊕ for each pair (q, q′) and the rule

∃N1 > 0, N2 > 0 : N = N1 +N2 ∧φ(N1)∧φ
′(N2) : N(q, q′) → (qN2AC , q

′
N2AC)⊕

if φ(N) : Nq → qN2AC is a rule of A and φ′(N) : Nq′ → q′N2AC is a rule of A′.

Then we add a state qSuccess which is final and the rules:

∃N1
(q,q′), N

2
(q,q′) : ∧

∧

(q,q′)N(q,q′) = N1
(q,q′) +N2

(q,q′)

∧ φ(Σq′N1
(q1,q′) + Σq′N⊕

(q1,q′), . . . ,Σq′N1
(qp,q′) + Σq′N⊕

(qp,q′))

∧ φ′(ΣqN
2
(q,q′

1
) + ΣqN

⊕
(q,q′

1
), . . . ,ΣqN

1
(q,q′

p′ )
+ ΣqN

⊕
(q,q′

p′ )
) :

N(q1,q′
1
)(q1, q

′
1) ⊕ . . .⊕N(qp,q′

p′ )(qp, q
′
p′) ⊕N(q1,q′

1′
)⊕(q1, q

′
1′)⊕ ⊕ . . .⊕N(qp,q′

p′ )
⊕(qp, q

′
p′)⊕ → qSuccess

if φ(N1, . . . , Np) : N1q1 ⊕ . . .⊕Npqp → q ∈ RA with q a final state (and similarly for A′).

Proposition 12 L(B) = {t | t ≡ t1 ⊕ t2, t1 ∈ L(A), t2 ∈ L(A′)}

Proof Assume that t = n1t1 ⊕ . . .⊕ nltl → q in A with φ(N1, . . . , Np) : N1q1 ⊕ . . .⊕Npqp → q.
Moreover we assume that the last rule used for niti in this derivation is φi(N) : Nq′ji

→ qji
. A

similar situation occurs for s = m1s1 ⊕ . . .⊕ml′sl′ → q and A′.

t⊕ s = Σsi≡ti
(ni +mi)ti ⊕ Σ∈Initi ⊕ Σj∈Jmjsj

ni+mi satisfies ∃N1 > 0, N2 > 0 : N = N1+N2 ∧φ(N1)∧φ′(N2) then (ni+mi)ti → (qki
, q′k′

i
)⊕.

For ti occurring in the second sum, we have ti → (qki
, q′) (the value of q′k is irrelevant). The

number of terms reaching (qi, ) in the first and second sum, is the number of terms reaching qi

in t. Similarly for the first and third sum and s and A′. Therefore we can use the new type 4 rule
to get t→ qSuccess.

Conversely, assume that t→ qSuccess in B. We can write

t = u1 ⊕ . . .⊕ um1
⊕ v1 ⊕ . . .⊕ vm2

⊕ w1 ⊕ . . .⊕ wm3

where ui → (qji
, q′j′i

)⊕ for i = 1, . . . ,m1, vi → (qji
, ) for i = 1, . . . ,m2, wi → ( , qji

) for i =

1, . . . ,m1 and the for each qi the number of u’s and v’s reaching a state (qi, )⊕ or (qi, ) is what
is needed to satisfy φ(N1, . . . , Np) (similarly for u’s, w’s, A′ and φ′(N1, . . . , Np).

Moreover each ui → (qji
, q′ji

)⊕ means that ui = (ni + mi)ti such that niti → qji
in A and

miti → q′j′i
. Therefore we can split t into s accepted by A and s′ accepted by A′.

16



7 Bounds for multitree automata

This section gives technical results which are required by the algorithm which decides the emptiness
of the language accepted by a multitree automaton.

The basic idea of the algorithm is classical: from a set of marked states we compute all the
reachable states and mark them until we reach a fixed point. But the problem is more complex
here. Because of the constraints, we may have to require that more than one multitree reach a
state before marking it. For instance in automata with constraints between brothers (which are a
particular subcase of our class), given a rule X1 6= X2 : f(q, q) → q′, to have one multitree reaching
q is not enough to mark q′ (since the constraint can’t be satisfied if the set of multitrees reaching
q consists of one unique term). The state q′ will be marked only when more than two multitrees
reach q (two multitrees are not enough because it doesn’t ensure the conservation of the invariant,
but three multitrees is since it ensure not only that q′ is reachable but also that it is reached
by at least three multitrees). Therefore the algorithm computes a static bound which indicates
how many multitrees must reach a state before marking it. Unfortunately, another complication
arises in our case because multitrees like Σk=p

k=1niti can be arbitrarily large since ⊕ can have any
number of arguments. This is why we compute a bound which is a pair: the first element of
the pair bounds the size of multitrees (i.e. p), the other one bounds the module of multitrees i.e.
Maxi=1,...,p(ni.).

To set up these bounds, we discuss each type of rule from the easiest case to the hardest one.
From now on, we assume that A is a deterministic complete automaton. In the following, the
determinism ensures that if a multitree reaches a state q it can’t reach another state q ′.

7.1 Type 2 rules

Type 2 rules are easy to handle. Let t1. . . . .tm → qA with the rule L(AqA
) → qA. Assume

that ti → qi for i = 1, . . . ,m and that there is one qi, say qi0 which is reached by more than B
multitrees. Then we construct more than B distinct terms reaching qA (replace ti0 by any term
reaching qi0).

7.2 Type 3 rules

Let ψ(N) : Nq′ → q be a type 3 rule R where we assume that ψ(N) is satisfable. If more than B
multitrees reach q′, then there are more than B multitrees reaching q. Moreover, given some B,
we can compute MR(B) = MaxB(ψ(N) (see definition in section 3.1).

7.3 Type 4 rules

Let ψ(N1, . . . , Np) : N1q1 ⊕ . . . ⊕Npqp → q be a type 3 rule R. Let BR be a the maximal value
of the components of minimal solutions of ψ(N1, . . . , Np). Assume that t = t1 ⊕ . . .⊕ tm reaches
q using R as the last rule, and thet t is minimal in size. We say that t and t′ are independent if
we don’t have t = n.s′′ and t′ = m.s′′. Let qi be the (unique) state reached by ti. If there are at
least BR + 1 independent multitrees reaching qi, then there are at least CBR

BR+1 distinct multitrees

reaching q: in t there are at most BR such multitrees, therefore we have at least CBR

BR+1 possible
choices to construct distinct multitrees reaching q with R like s.

Example 4 Let R be N1 + N2 ≥ 2 : N1q1 ⊕ N2q2 → q. The minimal solutions of ψ are
(2, 0), (1, 1), (0, 2) hence BR = 2. Assume that we have computed three (3 = BR + 1) independent
multitrees s1, s2, s3 that reach q1, and that we have found that s1 ⊕ s2 reach q. Then we know that
there are C2

3 = 3 distinct terms reaching q in the same way: s1 ⊕ s2, s2 ⊕ s3, s1 ⊕ s3

7.4 Type 1 rules

Let R be a type 1 rule
~X ∈ L+

1 . . . L
+
m : f(qR

1 , . . . , q
R
n ) → qR

F

17



The normalization property (proposition 4) ensures that we can consider only such conditions. For
simplicity, we shall assume that each qi is some qR

l in QAC . Actually the case of qi ∈ QF ∪QA is
simpler, one simply replace corresponding sums in the proof by sums consisting of a single element.
We merge condition of type 4 rules to have a unique rule

Ψj(N1, . . . , Np) : N1q⊕ . . .⊕ : Npqp → qAC
j

for each qAC
j . Similarly, we assume that for each pair q′, q′ there is a unique type 3 rule:

ψq′,q(N) : Nq′ → q

Given t = f(t1, . . . , tn) reaching q using R as the last rule. We have ~t = Σk
~λkek and we show now

that the ~λk’s must belong to some particular specific semilinear sets and that they are finitely
many such sets.

Let q ∈ QF ∪ QA, let ~q = (q1, . . . , qn) be a n-uple of elements of QN2AC . For simplicity we
denote by ψl(N) : Nq → ql the type 3 rule associated to the pair q, ql. We define Li,q,~q ⊆ N

n as:

Li,q,~q = {~x = (x1, . . . , xn) |

{
~x ∈ Li

|= ψl(xl) for l = 1, . . . , n
}

The last technical notation is needed to distinguish between zero and non-zero components in
a n-uple ~λ (because Σk0.ek is not a term). Given J ⊆ {1, . . . , n} we define the semilinear set
Li,q,~q,J ⊆ N

n as:

Li,q,~q,J = {~x = (x1, . . . , xn) |

{
~x ∈ Li,q,~q

∀j ∈ J xj = 0 and ∀j 6∈ J xj > 0
}

The multitree t reaches qR
F with R the last rule applied iff

~t = Σq∈QA∪QF
Σek→q

~λkek

with
∀k, ∃i ~λk ∈ Li and ∀i = 1, . . . ,m, ∃k ~λk ∈ Li

∀l = 1, . . . , n tl = Σq∈QA∪QF
Σek→qλ

l
kek → qR

l

where ~λk = (λ1
k , . . . , λ

n
k ).

Let
~Λi,q,~q,J = Σ

ek → q
~λk ∈ Li,q,~q,J

~λk = (Λ1
i,q,~q,J , . . . ,Λ

n
i,q,~q,J) ∈ L

αi,q,~q,J

i,q,~q,J

(fix q, then sum all ~λk’s in the same Li,q,~q,J ’s for all possible choices of i, ~q, J).
Similarly for i = 1, . . . , n, k = 1, . . . , |QN2AC | let αk

l be the number of distinct (non-zero)

subterms of tl reaching qk ∈ QF ∪ QA, and let ~αl = (α1
l , . . . , α

|QN2AC |
l ). By definition of Li,q,~q,J

we have
: αk

l = Σq∈QA∪QF
Σ i = 1, . . . ,m
l 6∈ J
lth component of ~q is qk

αi,q,~q,J

Let us denote Ψl(N1, . . . , Np) : N1q1 ⊕ . . . ⊕ qp → qR
l the last rule used in tl → qR

l . By the
above remarks, an equivalent formulation of the conditions on ~t is:

∃αi,q,~q,J :
∧

i,q,~q,J

~Λi,q,~q,J ∈ L
αi,q,~q,J

i,q,~q,J ∧
i=m∧

i=1

Σq,~q,Jαi,q,~q,J > 0∧
l=n∧

l=1

Ψl(α
1
l , . . . , α

|QN2AC |
l )

18



for all q do h=0; Lh
q = ∅ endfor

repeat
for each q do Lh+1

q = Lh
q endfor

for each q do case
q ∈ QF then repeat add to Lh+1

q a multitree t = f(t1, . . . , tn) s.t.
t→ q and ∀i = 1, . . . , n, ti ∈ Lh

qi
for some qi

until no new t can be added or |Lh+1
q | > B

q ∈ QA then repeat add to Lh+1
q a multitree t = t1. . . . .tm s.t.

ti ∈ Lh
qi

for some qi
until no new t can be added or |Lh+1

q | > B
q ∈ QN2AC then repeat add to Lh+1

q a multitree t = n.t′ s.t.
t→ q and n ≤M , t′ ∈ Lh

q′ for some q′

until no new t can be added or |Lh+1
q | > B

q ∈ QAC then repeat add to Lh+1
q a multitree t = n1.t1 ⊕ . . .⊕ np.tp s.t.

t→ q and ni ≤M less than B multitrees ti
reach the same state, ti ∈ Lh

qi
for some qi

until no new t can be added or |Lh+1
q | > B

esac
h=h+1

until there is some final state such that Lh(q) 6= ∅ or Lh
q = Lh+1

q for all q’s
if there is some final state q with L(q) 6= ∅ then return non-empty

else return empty

Figure 1: The emptiness decision algorithm

which is a Presburger’s arithmetic formula Φ in the free variables Λj
i,q,~q,J ’s and αk

l ’s (from pro-

position 3). The minimal solutions of ∃ . . .Λj
i,q,~q,J . . . : φ(. . . ,Λj

i,q,~q,J , . . . , α
k
l , . . .) give the minimal

number of multitrees that much reach qi in QF ∪QA to get a multitree t reaching qR
F using R as

the last rule. Actually for each state qk ∈ QF ∪ QA, we need only αk = Maxl=1,...,nα
k
l elements

reaching qk. Similarly, we need a bound on the coefficients of multitrees reaching qk ∈ QF ∪QA,
then we introduce Nk = Maxj=1,...,n(Σi,~q,JΛj

i,qk,~q,J) which bounds the maximal values of the
coefficients of multitrees reaching qk.

Finally we get the Presburger’s arithmetic formula Ψ(N1, . . . , Np, α1, . . . , α|QN2AC |):

∃Λj
i,q,~q,J

′s ∃αk
l

′s

∧ Φ(Λi,q,~q,J
′s, αi,q,~q,J

′s)

∧
∧k=p

k=1 αk = Maxl=1,...,n(αk
l )

∧
∧k=p

k=1 Nk = Maxj=1,...,n(Σi,~q,JΛj
i,qk,~q,J)

Then we compute the set of minimal solutions of ∃N1, . . . , Np Ψ(N1, . . . , Np, α1, . . . , α|QN2AC |)
and a bound BR which is the maximum of all components of these p-tuples. Moreover given
some value B, for each minimal solution (α1, . . . , α|QN2AC |) we can compute MR(B) defined by
MR(B) = MaxB(Ψ(N1, . . . , Np, α1, . . . , α|QN2AC |)).

8 Decidability of emptiness

We compute B the maximum of BR for R a type 1or type 4 rule. Then we compute M the
maximum of MR(B) for type 1, 3 rules. The algorithm to decide emptiness is given in figure 1.

Theorem 1 follows from the next proposition.

Proposition 13 The emptiness decision algorithm terminates and returns empty iff L(A) is
empty.

19



Proof Termination is obvious since at each step at least one Lh
q is augmented by one or more

element, or no element is added to any Lh
q .

The height h(t) of a multitree t is defined by:







h(f(t1, . . . , tn)) = 1 +Maxi=1,...,n(h(ti))
h(t1. . . . .tm)) = 1 +Maxi=1,...,m(h(ti))
h(Σiniti = 1 +Maxi=1,...,n(h(ti))
h(n.t) = 1 + h(t)

We define Lh
q = {t | t→ q and h(t) ≤ h}. By construction, we have that Lh

q ⊆ Lh
q . We show by

induction on h that Lh
q = Lh

q or |Lh
q | > B. We assume that the property holds for any h′ ≤ h and

we show that it holds for h + 1. To this purpose, we discuss the way Lh+1
q is built, according to

the type of the rule. The hypothesis that A is deterministic is used as follows: we construct new
multitrees si’s reaching a state from one multitree t reaching the same state by replacing a subterm
u of t by other multitrees v1, v2, . . . also reaching the same state q than u. The determinism of A
ensures that these vi’s are different from all other multitrees reaching another state q′, therefore
the si’s are indeed new.

1. Type 1 rule.

Let us assume that t = f(t1, . . . , tn) → q using R as the last rule, where ti ∈ Lh
qi

. Moreover,
we assume that t is minimal. There are three possibilities:

(a) There is some qi, say q1, such that at least B + 1 terms reach qi. Then ~t = ~λ1e1 +

. . . + ~λkek + Σe′
j→qj ,j>1

~λ′je
′
j with k ≤ B (t is minimal) and ei → q1 for i = 1, . . . , k.

Let q1
h = {e1, . . . , ek, . . . , eB, eB+1, . . .} be the multitrees reaching q1. Since k ≤ B,

we can construct at least CB
B+1 ≥ B+1 different multitrees multitrees reaching q using

the same rule: in t replace e1, . . . , ek by ei1 , . . . , eik
∈ Lh

q1
. Then Lh+1

q contains at least
B + 1 terms.

(b) There are at least B + 1 different sets of values for ~λ1, . . . , ~λmin such that ~t = ~λ1e1 +

. . . + ~λminemin → q. Then Lh+1
q contains at least B + 1 multitrees constructed from

Lh
q and these sets of values.

(c) None of the above cases holds. Then Lh
q = Lh

q and Lh+1
q contains all multitrees of

height h+ 1 that can reach q using the rule R.

2. Type 2 rule. If there is a term t1. . . . .tm ∈ Lh+1
qA

and ti ∈ Lh
qi

where |Lh
qi
| > B, tehn we

can construct at least B + 1 terms reaching qA and |Lh+1
qA

| > B.

3. Type 3 rule.

Again, there are three possibilities:

(a) If |Lh
q | > B, then we can add at least B + 1 multitrees to Lh+1

q .

(b) If φ(N) has at least B + 1 solutions smaller than M, then we add at least B + 1
multitrees to Lh+1

q .

(c) If φ(N) has less than B+ 1 solutions smaller than M, then all its solutions are smaller
than M. Since Lh

q = Lh
q in this case, Lh+1

q contains all multitrees of Lh+1
q reaching q

using R as the last rule.

4. Type 4 rule.

R is φ(N1, . . . , Np) : N1q1 ⊕ . . .⊕Npqp → q

Let t = Σi=p
i=1Σsi→qi

si be a minimal multitree reaching q.

There are still three possibilities:

20



(a) Either there is some qi, say q1, such that at least B + 1 independent multitrees reach
q1. We have t = Σi=k

i=1si ⊕ Σi=p
i=2Σs′

i→qi
si with k ≤ B (t is minimal). Let Lh

q1
=

{s1, . . . , sk, . . . , sB , sB+1, . . .} ⊆ Lh+1
q1

be the set of terms reaching q1 from multitrees of

Lh
q′ . We can chose at least CB

B+1 ≥ B + 1 distinct subsets of terms of S to build more
than B+1 multitrees reaching q using the same rule: replace s1, . . . , sk by si1 , . . . , sik

∈
S in t.

(b) There are at least B+1 possible solutions λ1, . . . , λk, . . . , λB+1, . . . of φ(N) less than M
for some rule, say φ(N) : Nq1 → q. Therefore there are at least CB

B+1 ≥ B+ 1 possible
different subsets {λi1 , . . . , λik

} since k ≤ B. Each subset yield a different multitree
reaching q using R as the last rule: replace in t the subterms si = λiei by λji

ei for
i = 1, . . . , k.

(c) None of the above case holds. Then Lh+1
q contains all the multitrees reaching q using

R and multitrees of Lh
q (for q ∈ QNAC).

Theorem 1 Let A be a deterministic constrained automaton, then it is decidable whether L(A)
is empty or not.

Since we can construct a deterministic automaton equivalent to a non-deterministic one, a
straightforward consequence of theorem 1 is:

Theorem 2 It is decidable whether L(A) is empty or not.

An interesting question is whether the determinism is actually required to decide emptiness,
since we mainly use the fact that we can build enough diferent multitrees from a large enough set
of multitrees. The answer is probably no, but this is likely to add a lot of technicalities to the
already technical proof.

9 A Query Language Based on a Tree Logic

As a first application of our new class of automata, we study query languages for semi-structured
data [AB99], like XML documents. We take our inspiration from a recent proposal by Cardelli
and Ghelli [CG01] that defines a query language for extensions of XML, TQL, itself based on a
serendipitous connection with the ambient modal logic [CG00]. In this framework, a query is seen
as a logical formula and the answers to a query are the models of the formula. Most particularly,
model-checking amounts to finding all answers to a query. Following the same spirit, we design a
logic for (multi)trees, TL, and show that satisfiability and model-checking are decidable problems
in this logic. We do not aim at providing an extensive treatment of this subject, or to formally
establish the relations between TL and TQL (we will need more space, but it will be the subject
of a forthcoming work.) What we aim at, principally, is to prove the versatility and ease-of-use of
our tree automata.

9.1 The Tree Logic TL

We consider multitrees constructed from a unique constant, 0, and a denumerable set of unary
symbols, η[ ], where η is primarily intended as a label. As previously, we also consider a concat-
enation and a (parallel) composition operator, · and ⊕. For simplicity reasons, we do not assume
0 to be neutral for ⊕, but this hypothesis can be safely added.

While the set of labels may be infinite, only a finite number of labels are used explicitly in
a formula (or a database.) This allows to use co-finite sets, 6= (η1, . . . , ηn), defining the infinite
set of labels not in {η1, . . . , ηn}. While the finiteness of the alphabet is a usual assumption for
regular tree or word languages, it is not a mandatory hypothesis for most of the properties and
algorithms.

21



The language built on 0 and ⊕, · is a regular tree language that can be dealt with easily in
our framework. It corresponds exactly to the set of terms considered in TQL. In this setting, a
bibliographic database consisting of references labeled by article containing (unordered) fields for
author, title, . . . may be represented by a tree of the form (where η stands for the tree η[0]) :

article [author [Knuth] ⊕ author [Bendix ] ⊕ title[. . . ] ⊕ . . . ] ⊕ article [. . . ] ⊕ . . .

Some examples of queries that a user could ask are: find an article with no more than two authors,
find an article written by Knuth and Bendix (no more authors) in 1970. We could also look for
articles which have duplicated identical fields (which probably indicate an erroneous entry.)

The syntax of Tree Logic formulas is given below. We use A,B, . . . to range over TL-formulas
to avoid confusion with the Presburger’s constraint of Section 4, and ~N and ~A for sequences of
integer variables and formulas. For simplicity reasons, we identify a particular syntactic category
of atomic formulas, E,F, . . . , that corresponds to formulas over atomic terms nη[. . . ].

A,B, . . . ::= True 0 ¬A A∨B A⊕B �A

Regn(A1, . . . , An) ∃N.ψ(N) : Nη[A] ∃ ~N.ψ( ~N) : N1E1 ⊕ . . .⊕NpEp

E,F, . . . ::= ∃N.ψ(N) : Nη[A]

This logic resembles the (static part) of the ambient logic. We have a logical constant for the
empty tree, 0. We have a tensor product, A ⊕ B, denoting trees where A and B are satisfied
“contiguously” (this is noted A|B in [CG00].) And we have the eventually modality, �A, denoting
that there is a subtree satisfying A.

The last three operators of TL are original. The formula Regn(A1, . . . , An) defines a regular
expression over the alphabet A1, . . . , An, for example (A1+A2)·A∗

3, and allows to express recursive
properties over paths along ·. For simplicity reasons, we consider that the Ai’s are not of the form
Regk(. . .). This modality corresponds to type 2 rules and allows expressing queries of the kind
provided by hedge automata [Mur01]. The extended existential quantification correspond to type

3 and type 4 rules. For the sake of brevity, we use
⊕ ~N ~E to denote the product N1E1⊕· · ·⊕NpEp.

Then, the formula ∃ ~N.ψ( ~N) :
⊕

~N ~E denotes trees of the form
⊕
niti where ti satisfies Ei for all

i ∈ 1..p and ψ(n1, . . . , np) holds. Note that the syntax force the Ei’s to be atomic formulas, that
is ti to be of the form nη[. . . ].

We define the satisfaction relation t |= A, meaning that the tree t satisfies A.

∀t. t |= True (always true)

∀t, A. t |= ¬A
∆

= ¬ t |= A

∀t, A,B. t |= A∨B
∆

= t |= A ∨ t |= B

∀t. t |= 0
∆

= t ≡ 0

∀t, A,B. t |= A⊕B
∆

= ∃s, s′. t ≡ s⊕ s′ ∧ s |= A ∧ s′ |= A′

∀t, A. t |= �A
∆

= t |= A
∨ (t = η[t′]∨ t = nt′)∧ t′ |= �A
∨ t = n1t1 ⊕ . . .⊕ nptp ∧∃i ∈ 1..p.ti |= A

∀t, ~A. t |= Regn(A1, . . . , An)
∆

= t = t1 · . . . · tp ∧ ∀i ∈ 1..p ∃ji ∈ 1..n. ti |= Aji

∧ Aj1 · . . . ·Ajm
∈ L(Regn(A1, . . . , An))

∀t, A. t |= ∃N.ψ(N) : Nη[A]
∆

= t = nη[t′] where t′ |= φ ∧ |= ψ(n)

∀t, ~N, ~E. t |= ∃N.ψ( ~N) :
⊕

~N ~E
∆

= t ≡
∑

i 6 pm
1
i t

1
i ⊕ · · · ⊕mni

i t
ni

i

∧ ∀j ∈ 1..ni. m
j
i t

j
i |= Ei ∧ |= ψ(n1, . . . , np)

This is a crude logic and a realistic proposition requires some syntactic sugar to be more user
friendly, as was done in [CG01]. Indeed, it is more appropriate to understand the modalities in TL
as a kind of abstract machine operations underlying a more complex query language. Nonetheless,
it is possible to give some simple examples of interesting queries. For example, X |= article [A] ⊕
True means that the tree X contains an article satisfying some property A (and maybe something
else). We write this kind of formulas (X |= (article[Y ] ⊕ True)) where (Y |= A) to get more

22



readable expressions latter. Another example is a formula denoting articles with two identical
author fields

∃N,M.(N > 1) : NZ ⊕M(6= author )[True] where (Z |= ∃N.N > 2 : Nauthor [True])

The following example denotes articles written in 1970 by at most two different authors:

∃M,N,P.(M 6 2)∧(N = 1) : Mauthor [True] ⊕Nyear [1970]⊕ P 6= (year , author)[True]

As a last example, we can define a formula denoting articles written by Knuth and Bendix in
1970. It is enough to take the conjunction of the two previous formulas together with the one
given below (but it is also possible to build a more direct and efficient query):

∃M,N,P.(M = 1)∧(N = 1) : M (∃N.(N = 1) : Nauthor [Knuth])
⊕ N (∃N.(N = 1) : Nauthor [Bendix ])
⊕ P (6= (year , author)[True])

9.2 Decidability Results and Extensions

Since modalities of TL directly correspond to operations on multitree automata, we can easily lift
Theorem 2, our decidability results on recognized languages, to the level of the logic. Indeed, there
is a direct and simple interpretation of formulas as automata that to any formula, A, associates
an automaton, A, such that the language recognized by A is exactly the set {t | t |= A} of trees
satisfying A. In this setting, it is equivalent to say that A is satisfiable or that L(A) is non-empty.
The result for model-checking is even simpler since, by definition, t |= A is equivalent to A accepts
t. More than a result on the complexity of the logic, what we obtain is in fact an effective way to
model-check and test the satisfiability of formulas.

Theorem 3 Satisfiability and model checking are decidable for the tree logic TL.

Proof The proof follows the usual pattern: to each formula we associate an automaton which
recognizes the models of the formula. This is done by structural induction on the formula which
reflects the closure property of multitree automata and the design of the logic.

• The cases of 0 or True are straightforward.

• The case of ¬ϕ, ϕ∨ϕ, ϕ⊕ ϕ directly follow from the closure properties of section 6.

• The case of Regn(ϕ1, . . . , ϕn) is simple. For each ϕi we assume that there is an automaton
Ai recognizing the models of ϕi. We take the union of these automata add a new state which
is the unique final state qϕ and the rule L(Aϕ) → qϕ where Aϕ is the automaton accepting
the language generated by the regular expressions qϕ1

. . . . .qϕn
where the qϕ are final state

of |Ai or a regular expression generating L(Ai) if Ai contains the rule L(Ai) → qfinal
A with

qfinal
A a final state of Ai.

• The case ψ(N) : Nη[ϕ] is not difficult. We take Aϕ an automaton accepting the models of
ϕ, set the final states to {qsuccess} (qsuccess a new state) and we add the rules

True : η(qϕ → qF
ϕ with qϕ a final state of Aϕ, qF

ϕ a new state
ψ(N) : NqF

varphi → qN2AC
ϕ with qN2AC

ϕ a new state

N = 1∧
∧

i≥1Ni = 0 : NqN2AC
ϕ → qsuccess ⊕ Σi≥1Niqi

• The case of ψ(N1, . . . , Np) : N1ϕ1⊕. . .⊕Npϕp is easy when the ϕi’s are pairwise unsatisfiable
(which is usually true). In this case, we take the union of the automata accepting ϕi, set
the set of final states to {qsuccess} and we add the rules:

ψ(N1, . . . , Np) : N1qϕ1
⊕ . . .⊕Npqϕp

→ qsuccess

23



By construction if a term is accepted by the automaton it satisfies the initial formula.
Conversely, a term satisfying the formula is necessarily t = t11 ⊕ t1n1

︸ ︷︷ ︸

t1j |=ϕ1

⊕ . . . ⊕ t11 ⊕ t1np
︸ ︷︷ ︸

t
p
j |=ϕp

where

each tij is some ni
js

i
j . Since tij satisfies only ϕi, we have necessarily |= ψ(n1, . . . , np), then t

is accepted.

In the general case, we perform some kind of determinization of formulas. We consider all
possible partitions of {1, . . . , p}. Let J1, . . . , Jm be one such partition, then we set φl for
l = 1, . . . ,m to be

∧

i∈Jl
ϕi ∧

∧

i6∈Jl
¬ϕi. By construction the φi’s are pairwise unsatisfiable.

Now consider let ΨJ1,...,Jl
the formula

∃xk
i

∧i=l
i=1 Mi = Σk∈Ji

xi
k :

∧j=p
j=1 Nj = Σi=l

i=1x
i
j ∧ψ(N1, . . . , Np) : M1φ1 ⊕ . . .⊕Mpφp

Then the initial formula is equivalent to
∨

{J1,...,Jl}partitionof{1,...,p} ΨJ1,...,Jl
. By construction

the models of these formula are included in the model of the original formula. Conversely
for each t = t1 ⊕ . . . ⊕ tn satisfying the formula, we group together the ti’s satisfying the
same ϕi’s and we get that t satisfies one of the above ΨJ1,...,Jl

.

• The case ♦ϕ requires little work. Take an automaton accepting ϕ add new final states
{qs, qA, qs,AC} and the rules

True : η( ) → qs if is any final state
N ≥ 1 : N → qs,N2AC if is any final state
N ≥ 1 : Nqs,N2AC ⊕ . . .→ qs,AC

By looking at the definition of TL, it is possible to define a simplification of multitree automata
that still enjoys similar simulation results. This simplification is obtained by replacing type 3
and type 4 rules with rules of the form ψ( ~N) : N1q1 ⊕ . . . ⊕ Npqp → q, and modifying the
relation →A accordingly: there is a transition t →A q if t =

∑

k nktk and |= ψ(m1, . . . ,mp)
where mi =

∑
{nk | tk → qi}. Unfortunately this natural definition forbids the determinization of

automata, and it is not even clear whether the intersection of two recognizable languages is still
recognizable. This provides another example of the fact that, while it may be easy to devise new
classes of tree automata, it is much more difficult to find classes that enjoy all the good typical
properties.

There exists many possible extensions to this logic. The crucial point is that we can use
our underlying tree-automata model to easily add new modalities to TL while still preserving
the decidability results of Theorem 3. For instance, we could add some typical temporal logic
modalities, like AuntilB. Since our structures are finite, we do not need all the power of automata
on infinite structures as it is the case with temporal logics. This modality allows to get regular
expressions for paths along ⊕. For example, it permits to check that the tree a[b[0] ⊕ a[c[0]]] has
a path of the form a+c[0]. Another possible extension is to add monadic second-order variables
and quantification on these variables, A ::= . . . X ∀X .A. Then, as usual, a second-order
variable is interpreted by a set of multitrees. Unfortunately the resulting logic is undecidable
(by encoding two counter machines) but the uniform fragment is decidable because it enjoys a
monotonicity property. Here uniform means that each variable occurs only positively or occurs
only negatively, where positive/negative occurrences of a variable are defined as usual. Therefore,
to check satisfiability, it suffices to replace positive variables by the empty set (equivalently ¬True),
and negative variables by the set of all multitrees (that is True).

10 An application to inductive theorem proving

The inductionles induction method [JK89] is a powerful approach in automated theorem proving
which often succeeds when methods based on structural induction fail. In this framework, the

24



axioms are equational axioms which are oriented into rewrite rules and a completion-like process
computes inductive consequences of the theorem to prove until a contradiction is derived or all
subgoals are proved. The key property to check is that a term is inductively reducible [Pla85],
i.e. all its ground instances are reducible by the rewrite system. This method has been extended
to deal with non-orientable axioms like associativity-commutativity. Unfortunately, inductive
reducibility is undecidable in the associative-commutative case [KNRZ91]. However the linear
case is decidable, as well as also some non-linear cases [LM94]. We briefly describe how we can
use multitree automata and (a slight extension of) the modal logic TL to extend the decidable
cases. From now on, we consider multitrees build on F = F ∪ {⊕} and a set X of variables
(assuming more than one associative-commutative symbol doesn’t raise any difficulty). Ground
multitrees are multitrees without variables. The instances of a multitree are the multitree obtained
by replacing the variables by any ground multitree.

A multitree t (with variables) has non-linearity restricted to brother iff

• either t = f(t1, . . . , tn) where (i) ti = xi implies if xi occurs elsewhere in t then xi is some
tj , and (ii) for all i, ti has non-linearity restricted to brothers,

• or t = Σkniti with n > 1 where (i) if ti is a variable x then x doesn’t occur in the other tj ’s
and (ii) for all i, ti has non-linearity restricted to brothers .

A term t is inductively reducible with respect to a set of terms R = {t1, . . . , tn} iff any ground
instance of t contains a ground instance of some ti.

Proposition 14 The inductive reducibility of a term t with respect to a set of terms R = {t1, . . . , tn}
where the non-linearity is restricted to brothers is decidable.

Proof We show that inductive reducibility can be expressed in TL (extended to a signature with
free symbols of any arity, and with the corresponding type 4 rules).

Claim: Let t be a term with restricted non-linearity. Then the set of ground instances of t is
the model of a TL formula instance(t).

The proof is by structural induction on t.

• t is a variable x. Then instance(t) is True.

• t = nt′, where t′ is some f(. . .). Then s is a ground instance of t iff |= (N = n) :
N instance(t′).

• t = s1 ⊕ . . .⊕ sp with si = niti. Then s is a ground instance of t iff s |= instance(s1)⊕ . . .⊕
instance(sp)

• t = f(t1, . . . , tn) then instances(t) is ψ(X1, . . . , Xn) : f(instances(t1), . . . , instances(tn))
where ψ(X1, . . . , Xn) =

∧

i,j | ti=tj∈X Xi = Xj .

Claim: Let t be a term with restricted non-linearity. Then the set of ground terms containing
an instance of t is the model of a TL formula.

Let instance(t) be the TL formula describing the ground instances of t. Then ♦ϕt describes
the ground terms containing an instance of t.

From the two previous claims we get the formula expressing that t is not inductively reducible:

instance(t)∧¬(♦instance(l1)∨ . . .∨♦instance(ln))

This formula is satisfiable if there is an instance of t which is not an instance of any li.

The complexity of this decision procedure is too high for practical purposes. But the main
point here is to have a closer look at the frontier between decidable and undecidable cases.

25



Conclusion

We have presented and studied multitree automata and a related decidable tree logic. This work
can be continued in many directions. A first route is to develop the tree logic. We have already
proposed several extensions: new modalities, second-order variables, . . . and we still need to explore
the complexity of these extensions. In fact, our tree logic uses only a restricted portion of the
power of multitree automata. Most particularly, since all functions are either constant or monadic
symbols, Presburger’s constraints (used in type 1 rules) are quite simple. Therefore we can hope
for a better complexity than the one arising from our algorithm to decide emptiness. But we should
not hope too much, in the presence of AC symbols, even the matching problem is NP-complete.

Another route is to investigate different kind of multitree structures. Indeed, it can sometimes
be useful to use a multiset representation of trees, rather than multitrees where identical terms
are grouped together, using a ⊕ b ⊕ a instead of 2a ⊕ b for instance. In this case, we have also
designed tree automata that exhibit good properties. Note that in this case, while we still have
type 4 and type 1 rules and that some counting ability remains, we loose the ability to have type
3 rules. The benefit of this approach is that regular tree languages fall into this class as soon as
they are closed under associativity-commutativity.

From a pure logical point of view, we should mention that it is common to present transition
rules of tree automata as (Horn) clauses. In this framework, we can easily design alternating tree
automata, meaning that we can go up or down a tree during the acceptance process. Goubault
and Verma [GLV02] have recently used this approach to find a new decidable class of clauses with
additional associative-commutative axioms. It would be interesting to see if multitree automata
give some hint at a possible extension of this result.

References

[AB99] S. Abiteboul and P. Buneman. Data on the Web: From Relations to Semistructured Data and
XML. Morgan Kaufmann, 1999.

[AW92] A. Aiken and E. Wimmers. Solving systems of set constraints. In Proc. 7 th IEEE Symp. on
Logic in Computer Science, Santa Cruz, pages 329–340, 1992.

[BT92] B. Bogaert and S. Tison. Equality and disequality constraints on direct subterms in tree
automata. In Proceedings of the 9th Symposium on Theoretical Computer Science, volume 577
of Lecture Notes in Computer Science, pages 161–172, 1992.

[CCC+94] A.C. Caron, H. Comon, J.L. Coquidé, M. Dauchet, and F. Jacquemard. Pumping, cleaning
and symbolic constraints solving. In Proceedings 21st ICALP Conference, Jerusalem (Israel),
pages 436–449, 1994.

[CCD93] A-C. Caron, J-L. Coquide, and M. Dauchet. Encompassment properties and automata with
constraints. In C. Kirchner, editor, Proceedings 5th International Conference on Rewriting
Techniques and Applications (Montreal, Canada), volume 690 of Lecture Notes in Computer
Science, pages 328–342. Springer-Verlag, 1993.

[CCM01] H. Comon, V. Cortier, and J. Mitchell. Tree automata with one memory, set constraints and
ping-pong protocols. In Proceedings of 28th Int. Coll. Automata, Languages, and Programming
(ICALP’2001), volume 2076 of Lecture Notes in Computer Science, pages 682–693. Springer-
Verlag, 2001.

[CG00] L. Cardelli and A. Gordon. Anytime, anywhere: Modal logic for mobile ambients. In Proc. of
Principles of Programming Languages (POPL). ACM, January 2000.

[CG01] L. Cardelli and G. Ghelli. A query language based on the ambient logic. In Proceedings of
ESOP’01, volume 2028 of Lecture Notes in Computer Science, pages 1–22. Springer-Verlag,
2001.

[CJ94] H. Comon and F. Jacquemard. Ground reducibility and automata with disequality constraints.
In Springer-Verlag, editor, Proceedings of 11th Symposium on Theoretical Computer Science
STACS, number 820 in Lecture Notes in Computer Science, pages 151–162, 1994.

26



[Com00] H. Comon. Sequentiality, monadic second-order logic and tree automata. Information and
Computation, 157(1-2):25–51, 2000.

[DJ90] N. Dershowitz and J.-P. Jouannaud. Handbook of Theoretical Computer Science, volume B,
chapter 6: Rewrite Systems, pages 244–320. Elsevier Science Publishers B. V. (North-Holland),
1990.

[Don70] J.E. Doner. Tree acceptors and some of their applications. Journal of Computer and System
Sciences, 4:406–451, 1970.

[GLV02] J. Goubault-Larrecq and K.N. Verma. Alternating two-way AC-tree automata. Technical
report, LSV, ENS Cachan, 2002.

[JK89] J.P. Jouannaud and E. Kounalis. Automatic proofs by induction in theories without construct-
ors. Information and Computation, 82(1), 1989.

[KNRZ91] D. Kapur, P. Narendran, D. J. Rosenkrantz, and H. Zhang. Sufficient completeness, ground-
reducibility and their complexity. Acta Informatica, 28:311–350, 1991.

[LM94] D. Lugiez and J.L. Moysset. Tree automata help one to solve equational formulae in AC-
theories. Journal of Symbolic Computation, 18(4):297–318, 1994.

[Lug98] D. Lugiez. A good class of tree automata. In K. Larsen, Sven Skyum, and G. Winskel, editors,
ICALP 98, number 1443 in Lecture Notes in Computer Science, pages 409–420. Springer-
Verlag, July 1998.

[Mur01] Makoto Murata. Extended path expression for XML. In ACM, editor, Proceedings of the
Twenteenth Symposium on Principles of Database Systems (PODS), Santa Barbara, USA,
2001. ACM.

[NP93] Joachim Niehren and Andreas Podelski. Feature automata and recognizable sets of feature
trees. In Proceedings TAPSOFT’93, volume 668 of Lecture Notes in Computer Science, pages
356–375, 1993.

[Ohs01] Hitoshi Ohsaki. Beyond the regularity: Equational tree automata for associative and commut-
ative theories. In Proceedings of CSL 2001, volume 2142 of Lecture Notes in Computer Science.
Springer-Verlag, 2001.

[OP99] P. O’Hearn and D. J. Pym. The logic of bunched implications. Bulletin of Symbolic Logic,
5(2):215–244, 1999.

[Pla85] D. Plaisted. Semantic confluence and completion method. Information and Control, 65:182–
215, 1985.

[PQ68] C. Pair and A. Quéré. Définition et étude des bilangages réguliers. Information and Control,
13(6):565–593, 1968.

[Rab77] M.O. Rabin. Handbook of Mathematical Logic, chapter Decidable Theories, pages 595–627.
North-Holland, 1977.

[TW68] J.W. Thatcher and J.B. Wright. Generalized finite automata with an application to a decision
problem of second-order logic. Mathematical System Theory, 2:57–82, 1968.

[Var97] Moshe Y. Vardi. Alternating automata: Unifying truth and validity checking for temporal
logics. In William McCune, editor, Proceedings of the 14th International Conference on Auto-
mated deduction, volume 1249, pages 191–206, Berlin, 13–17 1997. Springer.

27


