
LIF

Laboratoire d’Informatique Fondamentale
de Marseille

Unité Mixte de Recherche 6166

CNRS - Université de Provence - Université de la Méditerranée

A Functional Scenario for Bytecode

Verification of Resource Bounds

Roberto M. Amadio, Solange Coupet-Grimal,

Silvano Dal Zilio and Line Jakubiec

Rapport/Report 17-2004

4 January, 2004

Les rapports du laboratoire sont téléchargeables à l’adresse suivante

Reports are downloadable at the following address

http://www.lif.univ-mrs.fr

1

A Functional Scenario for Bytecode
Verification of Resource Bounds

Roberto M. Amadio, Solange Coupet-Grimal,
Silvano Dal Zilio and Line Jakubiec

Laboratoire d’Informatique Fondamentale

UMR 6166

CNRS - Université de Provence - Université de la Méditerranée

{amadio,solange,dalzilio,jakubiec}@lif.univ-mrs.fr

Abstract/Résumé

We define a simple stack machine for a first-order functional language and show how to perform type,
size, and termination verifications at the level of the bytecode of the machine. In particular, we show that
a combination of size verification based on quasi-interpretations and of termination verification based on
lexicographic path orders leads to an explicit bound on the space required for the execution.

On définit une simple machine à pile pour un langage fonctionnel du premier ordre et on montre com-
ment mener des vérifications de type, de taille et de terminaison au niveau du code octet de la machine.
En particulier, on montre qu’une combinaison de la vérification de taille basée sur les quasi-interprétations
et de la vérification de terminaison basée sur un ordre récursif sur les chemins lexicographique mène à une
borne explicite sur l’espace nécessaire à l’exécution.

Relecteurs/Reviewers: Fréderic Dabrowski, Denis Lugiez.

Notes: The authors are partly supported by ACI CRISS.

2

1 Introduction

Research on mobile code has been a hot topic since the late 90’s with many proposals building on the Java

platform. Security issues are one of the fundamental problems that still have to be solved before mobile
code can become a well-established and well-accepted technology. Application scenarios may include, for
instance, programmable switches, network games, and applications for smart cards.

Initial proposals have focused on the integrity properties of the execution environment such as the
absence of memory faults. In this paper, we consider an additional property of interest to guarantee the
safety of a mobile code, that is, ensuring bounds on the (computational) resources needed for the execution
of the code.

The interest of carrying on such analyses at bytecode level are now well understood [MWCG99, Nec97].
First, mobile code is shipped around in pre-compiled form (i.e., bytecode) and needs to be analysed as
such. Second, compilation is an error prone process and therefore it seems safer to perform static analyses
at the level of the bytecode rather than at source level. In particular, we can reduce the size of the trusted
code: we only have to trust the analyser, not the whole compilation chain.

Approach. The problem of bounding the usage made by programs of their resources has already
attracted considerable attention. Automatic extraction of resource bounds has mainly focused on (first-
order) functional languages starting from Cobham’s characterization [Cob65] of polynomial time functions
by bounded recursion on notation. Following work, see, e.g., [BC92, Lei94, Jon97, Hof02], has developed
various inference techniques that allow for efficient analyses while capturing a sufficiently large range of
practical algorithms.

We consider a rather standard first-order functional programming language with inductive types,
pattern matching, and call-by value, that can be regarded as a fragment of various ml dialects. The
language is also quite close to term rewriting systems (TRS) with constructor symbols. The language
comes with three main varieties of static analyses: (i) a standard type analysis, (ii) an analysis of the
size of the computed values based on the notion of quasi-interpretation, and (iii) an analysis that ensures
termination; among the many available techniques we select here recursive path orderings.

The last two analyses, and in particular their combination, are instrumental to the prediction of
the space and time required for the execution of a program as a function of the size of the input data.
For instance, it is known [BMM01] that a program admitting a polynomially bound quasi-interpretation
and terminating by lexicographic path-ordering runs in polynomial space. This and other results can be
regarded as generalizations and variations over Cobham’s characterization.

Contribution. The synthesis of termination orderings is a classical topic in term rewriting (see for
instance [BN98]). The synthesis of quasi-interpretations—a concept introduced by Marion et al. [Mar00]—
is connected to the synthesis of polynomial interpretations for termination but it is generally easier because
inequalities do not need to be strict and small degree polynomials are often enough [Ama03]. We will not
address synthesis issues in this paper. We suppose that the bytecode comes with annotations such as types
and polynomial interpretations of function symbols and orders on function symbols.

We define a simple stack machine for a first-order functional language and show how to perform type,
size, and termination verifications at the level of the bytecode of the machine. These verifications rely
on certifiable annotations of the bytecode—we follow here the classical viewpoint that a program may
originate from a malicious party and does not necessarily result from the compilation of a well-formed
program.

Our main goal is to determine how these annotations have to be formulated and verified in order to
entail size bounds and termination at bytecode level, i.e., at the level of an assembler-like code produced
by a compiler and executable on a simple stack machine. We carry on this program up to the point where
it is possible to verify that a given bytecode will run in polynomial space thus providing a translation of
the result mentioned above at byte code level.

3

Beyond proving that the program ‘implements a PSPACE function’, we extract a polynomial that
bounds the size needed to run a program: given a function (identifier) f of arity n in a verified program,
we obtain a polynomial q(x1, . . . , xn) such that for all values v1, . . . , vn of the appropriate types, the size
needed for the evaluation of the call f(v1, . . . , vn) is bounded by q(|v1|, . . . , |vn|), where |v| stands for the
size of the value v.

Our secondary goal is of a pedagogical nature: present a minimal but still relevant scenario in which
problems connected to bytecode verification can be effectively discussed. Our functional virtual machine
is based on a set of 6 instructions, a number that has to be compared with the almost 200 opcodes used
in the Java virtual machine [LY99].

Paper organisation. The paper is organized as follows. Section 2 sketches a first-order func-
tional language with simple types and call-by-value evaluation and recalls some basic facts about quasi-
interpretations and termination. Section 3 describes a simple virtual machine comprising a minimal set of
6 instructions that suffice to compile the language described in the previous section. In Section 4, we define
a type verification that guarantees that all values on the stack will be well typed. This verification assumes
that constructors and function symbols in the bytecode are annotated with their type. In the following
sections, we also assume that they are annotated with suitable functions to bound the size of the values
on the stack (Section 6) and with an order to guarantee termination (Section 7). The size and termination
verifications depend on a path verification which is described in Section 5. We provide an example of type,
size,and termination verifications in Section 8. The presentation of each verification follows a common
pattern: (i) definition of constraints on the bytecode and (ii) definition of a predicate which is invariant
under machine reduction. The essential technical difficulty is in the structuring of the constraints and the
invariants, the proofs are then routine inductive arguments which we delay to the appendix.

Related work. Most work in the literature on bytecode verification tends to guarantee the integrity of
the execution environment. Work on resource bounds is carried on in the MRG project [San01]. The main
technical differences appear to be as follows: (i) they rely on a general proof carrying code approach while
we are closer to a typed assembly language approach and (ii) their analyses focus on the size of the heap
while we also consider the size of the stack and the termination of the execution. Another related work is
due to Marion and Moyen [MM03] who perform a resource analysis of counter machines by reduction to a
certain type of termination in Petri Nets. Their virtual machine is much more restricted than the one we
study here as natural numbers is the only data type and the stack can only contain return addresses.

2 A Functional Language

We consider a simple, typed, first-order functional language, with inductive types and pattern-matching. A
program is composed of a list of mutually recursive type definitions followed by a list of mutually recursive
first-order function definitions relying on pattern matching. Expressions and values in the language are
built from a finite number of constructors, ranged over by c, c1, . . . We use f, f ′, . . . to range over function
identifiers and x, x′, . . . for (first-order) variables, and distinguish the following three syntactic categories:

v ::= c(v, . . . , v) (values)
p ::= x c(p, . . . , p) (patterns)
e ::= x c(e, . . . , e) f(e, . . . , e) (expressions).

If e is an expression then Var(e) is the set of variables occurring in it. The size of an expression |e| is
defined as 0 if e is a constant or a variable and 1+Σi∈1..n|ei| if e is of the form c(e1, . . . , en) or f(e1, . . . , en).

A function is defined by a sequence of pattern-matching rules of the form f(p1, . . . , pn) ⇒ e, where e
is an expression. We follow the usual hypothesis that the patterns p1, . . . , pn are linear (a variable appears
at most once) and do not superpose.

4

2.1 Types

We use t, t1, . . . to range over type identifiers. A type definition associates to each identifier the sequence
of the types of its constructors, of the form c of t1 ∗ · · · ∗ tn. Hence, a type definition has the shape:

t = c1 of t11 ∗ · · · ∗ t1n1
· · · ck of tk1 ∗ · · · ∗ tknk

For instance, we can define the type bword of binary words and the type nat of natural numbers in
unary format:

bword = Nil 0 of bword 1 of bword
nat = z s of nat

In the following, we consider that constructors are declared with their functional type (t1, . . . , tn) →
t. Similar types can be either assigned or inferred for the function symbols. We use the notation f :
(t1, . . . , tn) → t to refer to the type of f and ar (f) for the arity of f . We use similar notations for
constructors. The typing rules for the language are standard and are omitted.

2.2 Evaluation

The following table defines the standard call-by-value evaluation relation, where σ is a substitution from
variables to values. In order to define the pattern-matching rule selected in the evaluation of a function
call, rule (Eval Fun), we rely on the function match which returns the unique substitution (if any) defined
on the the variables in the patterns and matching the patterns against the vector of values. In particular,
match((p1, . . . , pn), (v1, . . . , vn)) = σ implies that σ(pi) = vi for all i ∈ 1..n.

Evaluation: e ⇓ v

(Eval Cnst)
ej ⇓ vj j ∈ 1..n

c(e1, . . . , en) ⇓ c(v1, . . . , vn)

(Eval Fun)
ej ⇓ vj j ∈ 1..n match((p1, . . . , pn), (v1, . . . , vn)) = σ

f(p1, . . . , pn) ⇒ e rule σ(e) ⇓ v

f(e1, . . . , en) ⇓ v

Example 1 The function add : (nat , nat) → nat, defined by the following two rules, computes the sum
of two values of type nat.

add (z, y) ⇒ y
add (s(x), y) ⇒ add (x, s(y))

For instance, we have: add (s(s(z)), s(z)) ⇓ s(s(s(z))).

2.3 Quasi-interpretations

Given a program, an assignment q associates to constructors and function symbols functions over the
non-negative reals R+ such that:

• if c is a constant then qc is the constant 0,

• if c is a constructor with arity n > 1 then qc is the function in (R+)n → R+ such that qc(x1, . . . , xn) =
d + Σi∈1..nxi, for some d > 1,

• if f is a function (identifier) with arity n then qf : (R+)n → R+ is monotonic and for all i ∈ 1..n
we have qf (x1, . . . , xn) > xi.

5

An assignment q is extended to all expressions as follows:

qx = x ,
qc(e1 ,...,en) = qc(qe1 , . . . , qen

) ,
qf(e1,...,en) = qf (qe1 , . . . , qen

) .

Thus for every expression e we have a function expression qe with variables in Var(e). An assignment is
a quasi-interpretation, if for all the rules f(p1, . . . , pn) ⇒ e in the program, the following inequality holds
over R+:

qf(p1,...,pn) > qe . (1)

Example 2 With reference to the Example 1, consider the assignment qs = 1 + x and qadd (x, y) = x + y.
Since by definition qz = 0, we note that qv = |v| for all values v of type nat. Moreover, it is easy to check
that q is a quasi-interpretation as the inequalities qadd (0, y) > y and qadd (1 + x, y) > qadd (x, 1 + y) hold.

Quasi-interpretations are designed so as to provide a bound on the size of the computed values as a
function of the size of the input data. One can show that every value v computed during the evaluation
of f(v1, . . . , vn) satisfies the following condition:

|v| 6 qv 6 qf(v1,...,vn) = qf (qv1 , . . . , qvn
) 6 qf (d|v1|, . . . , d|vn|) .

Here d is a constant that depends only on the program and that can be chosen as the largest additive
constant in the interpretation of the constructors.

An interesting space for the synthesis of quasi-interpretations is the collection of max-plus polynomi-
als [Ama03], that is, functions equivalent to an expression of the form maxi∈I(Σj∈1..nai,jxj + ai), with
ai,j ∈ N and ai ∈ Q+, where N are the natural numbers and Q+ are the non-negative rationals. In this
case, checking whether an assignment is a quasi-interpretation can be reduced to checking the satisfiability
of a Pressburger formula, and is therefore a decidable problem.

2.4 Termination

Programs can be regarded as a set of term rewriting rules, just associate to every rule f(p1, . . . , pn) ⇒ e
the term rewriting rule f(p1, . . . , pn) → e. Hence termination methods developed for term rewriting
systems apply. In particular, under the hypothesis that the rules are orthogonal, termination of the TRS
is equivalent to the termination of the call-by-value evaluation strategy [Gra96].

3 The Virtual Machine

We define a simple stack machine and a related set of bytecode instructions for the compilation and the
evaluation of programs.

Notation. We adopt the usual notation on words: ε is the empty sequence, x · x′ is the concatenation
of two sequences x, x′. We may also omit the concatenation operation · by simply writing x x′. Moreover,
if x is a sequence then |x| is its length and x[i] its ith element counting from 1. We denote with ~y a vector
(y1, . . . , yn) of elements. Then, ~yi stands for the element yi and |~y| is the number n of elements in the
vector. In the following, we will often manipulate vectors of sequences and use the notation ~yi[k] to denote
the kth element in the ith sequence of vector ~y.

We suppose given a program with a set of constructor names and a disjoint set of function names. A
function identifier f will also denote the sequence of instructions of the associated code. Then f [i] stands
for the ith instruction in the (compiled) code of f and |f | for the number of instructions.

6

The virtual machine is built around a few components: (1) an association list between function
identifiers and function codes; (2) a configuration M , which is a sequence of frames representing the
memory of the machine; (3) a bytecode interpreter modeled as a reduction relation on configurations. In
turn, a frame is a triple (f, pc, `) composed of a function identifier, the value of the program counter
(a natural number in 1..|f |), and a stack. A stack is a sequence of values that serves both to store the
parameters and the values computed during the execution. We work with a minimal set of instructions
whose effect on the configuration is described in the table below and write M → M ′ if the configuration
M reduces to M ′ by applying exactly one of the transformations.

Bytecode Interpreter: M → M ′

(Load)
f [pc] = load i pc < |f | `[i] = v

M · (f, pc, `) → M · (f, pc + 1, ` · v)

(Build)
f [pc] = build c n pc < |f | ` = `′ · v1 · · · vn

M · (f, pc, `) → M · (f, pc + 1, `′ · c(v1, . . . , vn))

(Call)
f [pc] = call g n pc < |f | ` = `′ · v1 · · · vn

M · (f, pc, `) → M · (f, pc, `) · (g, 1, v1 · · · vn)

(Return)
f [pc] = return ` = `0 · v0 `′ = `′′ · v1 · · · vn

M · (g, pc′, `′) · (f, pc, `) → M · (g, pc ′ + 1, `′′ · v0)

(Stop)
f [pc] = stop

M · (f, pc, `) → ε

(BranchThen)
f [pc] = branch c j pc < |f | ` = `′ · c(v1, . . . , vn)

M · (f, pc, `) → M · (f, pc + 1, `′ · v1 · · · vn)

(BranchElse)
f [pc] = branch c j 1 6 j 6 |f | ` = `′ · d(. . .) c 6= d

M · (f, pc, `) → M · (f, j, `)

The reduction M → M ′ is deterministic. The empty sequence of frames ε is a special state which
cannot be accessed during a computation not raising an error, i.e., not executing the instruction stop. A
“good” execution starts with a configuration of the form (f, 1, v1 · · · vn), containing only one frame that
corresponds to the evaluation of the expression f(v1, . . . , vn). The execution ends with a configuration of
the form (f, pc, ` · v0) where 1 6 pc 6 |f | and f [pc] = return. In this case the result of the evaluation is
v0. All the other cases of blocked configuration, such that M 6→ , are considered as runtime errors.

Definition 1 We say that the configuration M is a result v0, denoted M ↓ v0, if M ≡ (f, pc, ` · v0) with
1 6 pc 6 |f | and f [pc] = return.

7

Informal semantics. We provide an informal explanation of the semantics of the machine instruc-
tions. The instruction load (i : nat) takes as parameter a valid index in the current stack `. Upon
execution, the stack is updated by pushing a copy of the ith value in ` to the top. New values may also
be created in the stack using the instruction build (c : ident) (n : nat), which takes an identifier that
corresponds to a constructor with arity n. When executed, the current stack, `, is updated as follows: the
n values, v1, . . . , vn, on top of ` are discarded and replaced by the single value c(v1, . . . , vn).

The following instructions call, return, and stop are the only ones with an effect on the number
of frames contained in the configuration. A function call is implemented by the instruction call (g :
ident) (n : nat), with first parameter an identifier corresponding to a function with arity n. Upon execution,
a new frame is created, which is initialized with a copy of the n values on top of the caller’s stack. The
lifetime of the current frame is controlled by two instructions, return and stop. The former discards the
current frame and returns the value at the head of the stack to the caller (i.e., the previous frame in the
configuration) while the latter stops the virtual machine in an erroneous state.

Finally, the instruction branch (c : ident) (j : nat) implements a conditional jump on the shape of
the value, v, found on top of the current stack. If v is of the form c(v1, . . . , vn), then the top of the
current execution stack is discarded and replaced by the n sub-values v1, . . . , vn. Otherwise, the stack is
left unchanged and the execution jumps to position j in the code (where 1 6 j 6 |f |).

3.1 Compilation

The language described in section 2 admits a direct compilation in our functional bytecode. Every function
is compiled into a segment of instructions and linear pattern matching is compiled into a nesting of branch
instructions. Finally, variables are replaced by offsets from the base of the stack frame.

Example 3 We give the result of the compilation of the function add in example 1, and show in parallel
the computation of the expression add (s(z), z).

add : (nat ,nat) → nat (add , 1, s(z) · z)
1 load 1
2 branch s 7
3 load 2
4 build s 1
5 call add 2
6 return

7 load 2
8 return

→ (add , 2, s(z) · z · s(z))
→ (add , 3, s(z) · z · z)
→ (add , 4, s(z) · z · z · z)
→ (add , 5, s(z) · z · z · s(z))
→ (add , 5, s(z) · z · z · s(z)) (add , 1, z · s(z))
→ (add , 5, s(z) · z · z · s(z)) (add , 2, z · s(z) · z)
→ (add , 5, s(z) · z · z · s(z)) (add , 7, z · s(z) · z)
→ (add , 5, s(z) · z · z · s(z)) (add , 8, z · s(z) · s(z))
→ (add , 6, s(z) · z · s(z))

returned result is s(z)

Clearly, a realistic implementation should at least include:

1. a mechanism to execute efficiently tail recursive calls (when a call instruction is immediately
followed by return): in this case, the new frame can just replace the calling frame.

2. a mechanism to share common sub-values in a configuration. For instance, one could keep a stack
of pointers to values which are allocated on a heap. Various policies could then be considered to
garbage collect the heap.

We leave the considerations on the possible enhancements of the virtual machine for future work.

8

3.2 Preliminary Verifications

We define a minimal set of (syntactical) conditions on the shape of the code so as to avoid the simplest
form of errors. For instance, to guarantee that the program counter stays within the intended bounds.

Since a new frame may only originate from a call instruction, we can easily define a well-formedness
condition on the configurations reachable during an execution. Indeed, for any pair of contiguous frames,
· · · (f, pc, `) · (g, pc′, `′) · · · , occurring in a “reachable configuration”, the instruction f [pc] must be of the
form call g n and the stack ` must end with n values, say v1 · · · vn, which are the parameters used in the
call for g.

Definition 2 (Frame Parameters) The expression arg(M, j) stands for the vector of arguments with
which, under suitable hypothesis, the jth frame in M has been called: if M ≡ (f1, i1, `1) · · · (fm, im, `m)
and 1 < j 6 m, we have:

arg(M, j) = (v1, . . . , vk) where ar(fj) = k and `j−1 = ` · v1 · · · vk .

By convention, we use arg(M, 1) for the sequence of values used to initialize the execution of the machine,
that is, the values occurring in the initial stack of the initial frame.

We say that a function f is well-formed if the sequence of code of f terminates either with the stop

or with the return instruction. Moreover, for every index i ∈ 1..|f |, we ask that: (1) if f [i] = load k
then k > 1 and (2) if f [i] = branch c j then 1 6 j 6 |f |. We assume that every function in the code
is well-formed; the result of the compilation of functional programs clearly meets these well-formedness
conditions.

We say that a configuration M ≡ (f1, i1, `1) · · · (fm, im, `m) is well-formed if for all j ∈ 1..m we have
(1) the program counter ij is in 1..|fj |; (2) the expression arg(M, j) is defined; and (3) for all j ∈ 1..m− 1
we have fj [ij] = call fj+1. Well-formedness is preserved during execution, in particular, the configuration
ε is well-formed.

Proposition 1 If M is a well-formed configuration and M → M ′ then the configuration M ′ is also
well-formed.

4 Type Verification

In this section, we define a simple type verification to ensure the well-formedness and well-typedness of
the machine configurations during execution. This verification is very similar to the so called bytecode
verification in the Java platform. It can be directly used as the basis of an algorithm for validating the
bytecode before its execution by the interpreter; the only difference is that we do not have to consider
access modifiers and object initialization in our language.

Type verification associates with every instruction (every step in the evaluation of a function code) an
abstraction of the stack. In our case, an abstract stack is a sequence of types, or type stack, T = t1 · · · tn,
that should exactly match the types of the values present in the stack at the time of the execution.
Accordingly, an abstract execution for a function f is a sequence ~T of type stacks such that |~T | = |f |.

To express that an abstract execution ~T is coherent with the instructions in f , we define the notion of
well-typed instruction based on the auxiliary relation wt i(f, ~T), given below. Informally, we have wt i(f, ~T)

if ~Ti = t1 · · · tk and for every valid evaluation of f , the stack of values at the time of the execution of f [i]
is ` = v1 · · · vk where vi is a value of type ti for every i ∈ 1..k.

9

Well-Typed Instructions: wt i(f, ~T)

The definition of the relation wt i(f, ~T), where |f | = |~T |, is by case analysis on the instruction f [i].

f [i] wt i(f, ~T)

load k i < |~T |, ~Ti[k] = t and ~Ti+1 = ~Ti · t

build c n let c : (t1, . . . , tn) → t0 in

i < |~T |, ~Ti = T · t1 · · · tn and ~Ti+1 = T · t0

call g n let g : (t1, . . . , tn) → t0 in

i < |~T |, ~Ti = T · t1 · · · tn and ~Ti+1 = T · t0

return let f : (t1, . . . , tn) → t0 in ~Ti = T · t0

stop true

branch c j let c : (t1, . . . , tn) → t0 in

i < |~T |, j ∈ 1..|~T |, ~Ti = T · t0,
~Ti+1 = T · t1 · · · tn and ~Tj = T · t0.

It is now possible to define a well-typed function as a sequence of well-typed instructions. To verify a
whole program, we simply need to verify every function separately.

Definition 3 (Well-Typed Function) A sequence ~T is a valid abstract execution for the function f

with signature (t1, . . . , tn) → t0, denoted wt(f, ~T), if and only if ~T1 = t1 · · · tn and wt i(f, ~T) for every
i ∈ 1..|f |.

We define the flow graph of function f as the directed graph ({1, . . . , |f |}, Ef) such that for all i ∈
1..|f | − 1, the edge (i, i + 1) is in Ef if f [i] is a load, build, or call instruction and the edges (i, i + 1)
and (i, j) are in Ef if f [i] is the instruction branch c j.

Proposition 2 If every node in the flow graph ({1, . . . , |f |}, Ef) is reachable form the node 1 then there

is at most one abstract execution, ~T , such that wt(f, ~T). Moreover, ~T can be effectively computed.

Proof. Assume there is a solution ~T . For every i ∈ 1..|f |, show by induction on the length of the shortest

path from 1 to i that ~Ti is uniquely determined. �

In the following, we assume that every node in the flow graph is accessible. If ~T is “the valid abstract
execution” of f , we say that f is a function (code) of type ~T .

10

Example 4 We continue with our running example and display the type of each instructions in the code
of add . We also show the flow graph associated to the function, which is a tree corresponding to the two
possible “execution paths” in the code of add .

add : (nat ,nat) → nat Eadd

1 : nat nat : load 1 1•
2 : nat nat nat : branch s 7 2•
3 : nat nat nat : load 2 3•
4 : nat nat nat nat : build s 1 4•
5 : nat nat nat nat : call add 2 5•
6 : nat nat nat : return 6•
7 : nat nat nat : load 2 7•
8 : nat nat nat nat : return 8•

Next, we prove that the execution of verified programs never fails. As expected, we start by proving
that type information is preserved during evaluation. This relies on the notions of well-typed frames and
configurations. For instance, we say that a stack has type T , denoted ` : T , if T = t1 · · · tn and ` = v1 · · · vn,
where vi is a value of type ti for all i ∈ 1..n.

Well-Typed Configurations: wt(M)

c : (t1, . . . , tn) → t vi : ti i ∈ 1..n

c(v1, . . . , vn) : t

vi : ti i ∈ 1..n

v1 · · · vn : t1 · · · tn

wt(f, ~T) ` : ~Ti

wt(f, i, `)

M ≡ (f1, i1, `1) . . . (fm, im, `m) well-formed
wt(fj , ij , `j) j ∈ 1..m

wt(M)

Assume the bytecode of the function f has passed the type verification. If f(v1, . . . , vn) is a well-typed
expression of the functional languge then it is easy to check that the initial configuration (f, 1, v1 · · · vn) is
also well-typed.

Proposition 3 (Type Invariant) Let M be a configuration. If wt(M) and M → M ′ then wt(M ′).

The soundness of the type verification follows from a progress property.

Proposition 4 (Progress) Assume M is a well-typed configuration. Then either (1) M ≡ ε, or (2) M
is a result (cf. definition 1), or (3) M reduces, ∃M ′ (M → M ′).

As a side result of the type verification, we obtain, for every instruction, the size of the stack at the
time of its execution. Coupled with a bound on the size of every value appearing in a stack (from the
value size verification) and a bound on the maximal number of frames (from the termination verification)
this result is instrumental in the computation of a bound on the total space needed by an execution of the
machine.

5 Shape Verification

We define a shape verification on the bytecode which appears to be original. Instead of simply computing
the type of the values in the stack, we prove that we can also obtain partial information on their shape such
as the identity of their top-most constructor. This verification is used in the following size and termination
verifications (Sections 6 and 7).

11

Notation. We suppose that the code of every function f in the program passes the type verification
of Section 4 and that wt(f, ~T). We denote with ~h a vector of numbers such that ~hi is the height of the

stack for instruction i, that is ~hi = |~Ti| for all i ∈ 1..|f |. Furthermore, for every instruction index i and

position k ∈ 1..~hi in the corresponding stack we assume a fresh variable xi,k ranging over expressions, that
is terms built from variables, constructors and function symbols.

A first attempt. We start by giving some intuitions on the approach used for the shape verification.
The idea is to use the variable xi,k to express constraints on the value occurring in kth position in the
stack during the evaluation of the instruction f [i]. For example, these constraints could be expressed in
the first-order theory of equality between expressions. The following table defines for every instruction
index i ∈ 1..|f | a formula φi constraining the variables xj,l, with j ∈ 1..|f | and l ∈ 1..~hj . There are no
constraints for return or stop instructions and we assume that φ1 is the empty constraint. For instance,
if f [i] = build c n, the constraints in φi+1 entails that the value represented by x

i+1,~hi+1
(the value on

top of the stack at the time of the evaluation of f [i + 1]) is of the form c(. . .).

f [i] Shape constraints φi

load k φi+1 =
∧

16l<~hi+1
(xi+1,l = xi,l) ∧ (x

i+1,~hi+1
= xi,k)

where ~hi+1 = ~hi + 1

build c n φi+1 =
∧

16l<~hi+1
(xi+1,l = xi,l)

∧
(

x
i+1,~hi+1

= c(x
i,~hi+1

, . . . , x
i,~hi

)
)

where ~hi+1 = ~hi − ar(c) + 1

call g n φi+1 =
∧

16l<~hi+1
(xi+1,l = xi,l)

∧
(

x
i+1,~hi+1

= g(x
i,~hi+1

, . . . , x
i,~hi

)
)

where ~hi+1 = ~hi − ar(g) + 1

branch c j φi+1 =
∧

16l6~hi−1(xi+1,l = xi,l)

∧
(

x
i,~hi

= c(x
i+1,~hi

, . . . , x
i+1,~hi+1

)
)

φj =
∧

16l6~hj
(xj,l = xi,l)

where ~hi+1 = ~hi + ar(c) − 1 and ~hj = ~hi

Example 5 The following example displays the solved form of the constraints for the code of the function
add in our running example. For the sake of clarity, we use simpler variable identifiers.

add : (nat ,nat) → nat
1 : x1 x2 : load 1
2 : x1 x2 x1 : branch s 7
3 : s(x3) x2 x3 : load 2 s(x3) = x1

4 : s(x3) x2 x3 x2 : build s 1
5 : s(x3) x2 x3 s(x2) : call add 2
6 : s(x3) x2 add (x3, s(x2)) : return

7 : x6 x2 x6 : load 2 x6 = x1

8 : x6 x2 x6 x2 : return

Thus, if we initialize a new frame for the function add with initial parameters v1 v2, we can guarantee
that if the execution reaches instruction 5 then v1 = s(v3), for some value v3, and the value on top of

12

the stack is s(v2). In particular, we may deduce that the termination of add(s(v3), v2) is equivalent to
the termination of add (v3, s(v2)), and that the two calls have the same outcome. We note that the shape
verification is performed on the bytecode without any knowledge of the sources at the programming language
level—actually, the bytecode is not necessarily obtained from the compilation of a functional program. Also,
we could improve our analysis by replacing the constraint x6 = x1 in the shape verification of the branch
instruction, by the more refined condition: x6 = z. More generally, if f [i] = branch c n, we could replace
the condition x

j,~hi
= x

i,~hi
by the formula (x

j,~hi
= x

i,~hi
) ∧ (∀ ~x (x

j,~hi
6= c(~x)).

A second attempt. Next, we show that under some restrictions on the form of the code, we can
solve the shape constraints and associate to every reachable instruction a substitution, ~σi, and to every
position of the related stack an expression, ei,j . We can compare the shape verification with the type
verification of Section 4: we compute for each instruction a sequence of expressions, E = e1 · · · en, instead
of a sequence of types T = t1 · · · tn. The restrictions on the code are the following:

1. the flow graph of the function is a tree rooted at instruction 1 whose leaves correspond to the
instructions return or stop;

2. every branch instruction is preceded only by load or branch instructions.

These conditions are satisfied by the bytecode obtained from the (non-optimized) compilation of func-
tional programs. To accommodate sharing of code, the first condition could be relaxed to allow directed
acyclic graphs rather than trees. These restrictions entail that in every path from the root we cross a
sequence of branch and load instructions, then a sequence of load, build, and call instructions, and
finally either a stop or return instruction. In particular, thanks to condition (2), in any given path, we
cannot find an instruction call before a branch. Thus, it is not possible to infer from a (shape) formula
φi a constraint of the form

(

xi,j = c(. . .)
)

∧
(

xi,j = f(. . .)
)

, where c is a constant and f a function symbol.
The shape constraints are displayed below. We note that applying a branch c j instruction to a stack

whose head value is of the shape d(. . .) with d 6= c produces no effect which is fine since then the following
instruction is not reachable (since the flow graph is a tree, we have j 6= i+1). Hence the shape verification
may also be used to locate dead code.

Shape Constraints at Instruction i: wsh i(f, ~σ, ~E)

The definition of the relation wsh i(f, ~σ, ~E), where |f | = |~σ| = | ~E|, is by case analysis on the instruction

f [i]. There are no constraints on ~σ and ~E if f [i] is a return or stop instruction.

f [i] wsh i(f, ~σ, ~E)

load k ~σi+1 = ~σi and ~Ei+1 = ~Ei · ~Ei[k]

build c n ~σi+1 = ~σi, ~Ei = E · e1 · · · en and ~Ei+1 = E · c(e1, . . . , en)

call g n ~σi+1 = ~σi, ~Ei = E · e1 · · · en and ~Ei+1 = E · g(e1, . . . , en)

branch c j let ~Ei = E · p in

if p is a variable x

let σ′ = [c(x
i+1,~hi

, . . . , x
i+1,~hi+1

)/x] in

~σj = ~σi, ~Ej = ~Ei, ~σi+1 = σ′ ◦ ~σi

13

and ~Ei+1 = σ′(E) · x
i+1,~hi

· · ·x
i+1,~hi+1

if p = c(e1, . . . , en)

~σi+1 = ~σi and ~Ei+1 = E · e1 · · · en

if p = d(. . .), with d 6= c

~σj = ~σi and ~Ej = ~Ei

where ~hi+1 = ~hi + ar(c) − 1 and ~hj = ~hi

The soundness of path verification is obtained through the definition of a new predicate on configura-
tions, wsh , which improves on the “well-typed” predicate introduced in the previous section.

Definition 4 (Well-Shaped Function) A pair (~σ, ~E) is a valid shape for the function f : (t1, . . . , tn) →

t0, denoted wsh(f, ~σ, ~E), if ~σ1 is the identity substitution, id, ~E1 = x1,1 · · ·x1,ar(f), and wsh i(f, ~σ, ~E) for
all i ∈ 1..|f |.

Assume we have a well-formed configuration M containing the frame (f, i, `) in jth position, with
` = v1 · · · v~hi

and that arg(M, j) = (u1, . . . , uk) are the parameters used to initialize this frame. The
substitution ~σi relates the values, u1, . . . , uk to the values occurring in the stack `. More precisely, ~σi(x1,l)
is a pattern with variables in (xi,j)j∈1..~hi

and there is at most one matching substitution ρ such that

ρ ◦ ~σi(x1,l) = ul for all l ∈ 1..k. On the other hand, the expressions ei,j describe the values occurring in
`. If ei,j is a pattern, that is, if it does not contain a function symbol (which is always the case if the
instruction f [i] occurs before the first function call in the execution path), then vj = ρ(ei,j).

Proposition 5 Assume (~σ, ~E) is a valid shape for the function f . Then for all i ∈ 1..|f |:

1. The sequence of patterns ~σi(x1,1) · · ·~σi(x1,ar(f)) is linear (a variable appears in at most one pattern
and at most once);

2. If ~Ei = e1 · · · e~hi
and x ∈ Var(ej) then x occurs in one of the patterns ~σi(x1,j), for j ∈ 1..ar(f).

Example 6 The shape constraints computed for the function add of the running example are as follows:

Expression Instruction Substitution
1 : x1,1 x1,2 : load 1 : id
2 : x1,1 x1,2 x1,1 : branch s 7 : id
3 : s(x3,3) x1,2 x3,3 : load 2 : [s(x3.3)/x1,1]
4 : s(x3,3) x1,2 x3,3 x1,2 : build s 1 : [s(x3.3)/x1,1]
5 : s(x3,3) x1,2 x3,3 s(x1,2) : call add 2 : [s(x3.3)/x1,1]
6 : s(x3,3) x1,2 add (x3,3, s(x1,2)) : return : [s(x3.3)/x1,1]

7 : x1,1 x1,2 x1,1 : load 2 : id
8 : x1,1 x1,2 x1,1 x1,2 : return : id

A configuration M is well-shaped if all the frames (f, i, `) in M are well-shaped. This condition relies
on the parameters used to initialize the frame.

Well-Shaped Configurations: wsh(M)

wsh(f, ~σ, ~E) match
(

(~σi(x1,1), . . . , ~σi(x1,ar(f))), ~u
)

= ρ

if ~Ei[j] is a pattern then `[j] = ρ(~Ei[j])

wsh(f, ~u, i, `)

14

M ≡ (f1, i1, `1) . . . (fm, im, `m) wt(M)

~uj = arg(M, j) wsh(fj , ~uj , ij , `j) j ∈ 1..m

wsh(M)

Assume the bytecode of the function f has passed the type and shape verifications. If we study
the evaluation of a well-typed expression f(v1, . . . , vn), it is easy to check that the initial configuration
(f, 1, v1 · · · vn) is well-shaped. Indeed, by definition, arg(M, 1) = (v1, . . . , vn), ~σ1 is the identity substitution

and ~E1 is the sequence x1,1 · · ·x1,ar(f). In the same way as for type verification, our main property relies
on the fact that the shape predicate is invariant under reduction.

Proposition 6 If wsh(M) and M → M ′ then wsh(M ′).

6 Value Size Verification

We assume that we have synthesized suitable quasi-interpretations at the language level (before compila-
tion) and that these informations are added to the bytecode. Hence, for every constructor c and function
symbol f , the functions qc : (R+)ar(c) → R+ and qf : (R+)ar(f) → R+ are given.

We prove that we can check the validity of the quasi-interpretations at the bytecode level (and then
prevent malicious code containing deceitful size annotations) and that we may infer a bound on the size
of the frames on the stack.

We assume the bytecode passes the shape verification. Thus for every instruction index i in the
segment of the function f , the sequence of expressions ~Ei and the substitution ~σi are determined. We also
know ~hi, the height of the stack at instruction i, as computed during the type verification.

A first step is to check that the size annotations given with the bytecode are correct.

Definition 5 We say that the size annotations for the function f are correct if the following condition
holds for all i ∈ 1..|f |. Assume ~Ei = e1 · · · e~hi

, then:

∀j ∈ 1..~hi qf (q~σi(x1,1), . . . , q~σi(x1,ar(f))) > qej
over R+ (2)

Remark 7 The complexity of verifying condition (2) depends on the space of quasi-interpretations se-
lected. This problem has the same complexity as verifying the correction of the quasi-interpretation at
the level of the functional language, see (1) in Section 2.3. We also notice that the condition is quite
redundant. First, by the definition of quasi-interpretation the requirement is automatically verified for all
instructions which are not preceded by a build or call instruction. Second, for the remaining instructions
we could just perform one verification for every path that terminates with a return instruction provided
that: (i) on a path terminating with a stop instruction, no build or call instructions occur and (ii) on a
path terminating with a return instruction, the expressions built with build and call actually appear as
subexpressions of the returned expression. These two conditions are needed because otherwise, a malicious
bytecode could allocate on the frame large values which are not actually used.

Next, we show (Corollary 9) that the size of all the values occurring in a configuration during the eval-
uation of an expression f(v1, . . . , vn) are bounded by the quasi-interpretation of f(v1, . . . , vn). This result
follows directly from the definition of a predicate wsz (M) (for well-sized) on well-shaped configurations,
and an associated invariant property.

15

Well-Sized Configurations: wsz (M)

wsh(f, ~σ, ~E) match
(

(~σi(x1,1), . . . , ~σi(x1,ar(f))), ~u) = ρ

~Ei = e1 · · · e~hi
` = v1 · · · v~hi

qρ(ej) > qvj
j ∈ 1..~hi

wsz (f, ~u, i, `)

M ≡ (f1, i1, `1) . . . (fm, im, `m) wsh(M)

~uj = arg(M, j) wsz (fj , ~uj , ij , `j) j ∈ 1..m

qfk(~uk) > qfk+1(~uk+1) k ∈ 1..m − 1

wsz (M)

Assume the bytecode of the function f has passed the type and shape verifications. If we study
the evaluation of a well-typed expression f(v1, . . . , vn), it is easy to check that the initial configuration
(f, 1, v1 · · · vn) is well-sized. Indeed, by definition, arg(M, 1) = (v1, . . . , vn), ~σ1 is the identity substitution

and ~E1 is the sequence x1,1 · · ·x1,ar(f). In the same way as for type and shape verification, the main
property is an invariant.

Proposition 8 If wsz (M) and M → M ′ then wsz (M ′).

Corollary 9 Assume that all the functions in the program are well-shaped. If f(v1, . . . , vn) is a well-typed

expression and (f, 1, v1 · · · vn)
∗
→ M · (g, i, `) then |v| 6 qf(v1,...,vn) for all the values v occurring in `.

Proof. By definition, wsz (f, 1, v1 · · · vn). By proposition 8, it follows that wsz (M · (g, i, `)). Let ~u =
(u1, . . . , uk) be the parameters used in the initialization of the top frame: ~u = arg(M · (g, i, `), |M | + 1).
Since the configuration is well-sized, we have wsz (g, ~u, i, `) and there is a substitution ρ such that:

(c1) qf(v1,...,vn) > qg(u1,...,uk) ,

(c2) ρ ◦ ~σi(x1,j) = uj for all j ∈ 1..k ,

(c3) wsh(g, ~σ, ~E) and ~Ei = e1 · · · en and qρ(ej) > q`[j] for j ∈ 1..n.

By definition, the size annotations in the bytecode are correct, which means that by the verification
condition (2) we have: qg(~σi(x1,1),...,~σi(x1,k)) > qej

for all j ∈ 1..n. Thus:

qf(v1,...,vn) > qg(u1,...,uk) by (c1)
= qg(ρ◦~σi(x1,1),...,ρ◦~σi(x1,k)) by (c2)
> qρ(ej) by (2) and monotonicity
> qv by (c3)
> |v| qv is a quasi-interpretation ,

as needed. �

7 Termination Verification

In this section, we adapt recursive path orderings, a popular technique for checking termination (see, e.g.,
[BN98]), to prove termination of the evaluation of the virtual machine. We suppose that the code succeeds
the shape verification. We assume given a pre-order >Σ on the function symbols so that f =Σ g implies
ar(f) = ar(g). Recursive path ordering conditions, force f >Σ g whenever f may call g and f =Σ g

16

whenever f and g are mutually recursive. The pre-order >Σ is extended to the constructor symbols by
assuming that a constructor is always smaller than a function symbol and that two distinct constructors
are incomparable.

We recall that in the recursive path ordering one associates a status to each symbol specifying how its
arguments have to be compared. It is required that if f =Σ g then f and g have the same status. Here we
suppose that the status of every function symbol is lexicographic and that the status of every constructor
symbol is the product. We denote with >l the induced path order. Note that on values v >l v′ if and only
if v embeds homomorphically v′, that is, on values the relation >l coincides with the relation generated
by the following two rules. Hence, v >l v′ implies |v| > |v′|.

s > t
c(. . . , s, . . .) > t

si > ti i ∈ 1..n ∃ j ∈ 1..n (sj > tj)
c(s1, . . . , sn) > c(t1, . . . , tn)

Hence, v >l v′ implies |v| > |v′|. The technical development resembles the one for the value size verification.
First, we have to define when the termination annotations given with the bytecode are correct.

Definition 6 We say that the termination annotations for the function f are correct if the following
condition holds for all i ∈ 1..|f |. Assume ~Ei = e1 · · · e~hi

, then:

∀j ∈ 1..~hi f
(

~σi(x1,1), . . . , ~σi(x1,ar(f))
)

>l ei (3)

Next, we introduce a predicate ter (for terminating) on well-shaped configurations M .

Termination Invariant on Configurations: ter(M)

wsh(f, ~σ, ~E) match
(

(~σi(x1,1), . . . , ~σi(x1,ar(f))), ~u) = ρ

~Ei = e1 · · · e~hi
` = v1 · · · v~hi

ρ(ej) >l vj j ∈ 1..~hi

ter(f, ~u, i, `)

M ≡ (f1, i1, `1) . . . (fm, im, `m) wsh(M)

~uj = arg(M, j) ter(fj , ~uj , ij , `j) j ∈ 1..m

fk(~uk) >l fk+1(~uk+1) k ∈ 1..m − 1

ter(M)

Like with value size verification, it is easy to check that the initial configuration (f, 1, v1 · · · vn) corres-
ponding to the evaluation of a well-typed expression f(v1, . . . , vn) satisfies the predicate ter . As expected,
the termination predicate is an invariant.

Proposition 10 If ter(M) and M → M ′ then ter(M ′).

Corollary 11 Assume that all the functions in the program have correct termination information. Then
every execution starting with a frame (f, 1, v1 · · · vn) terminates.

Proof. We define a well-ordering on well-formed configurations that is compatible with the evaluation of
the machine.

If i is the index of an instruction in the code of f , let acc(i) denotes the number instructions reachable
from i in the flow graph Ef . Since the flow graph is a tree, whenever we increment the counter or jump
to another instruction this value decreases.

17

Let T = (TΣ, >l) be the collection of values with the lexicographic path order. It is well known that
this is a well-founded order. Then consider T × N with the lexicographic order from left to right. Again
this is a well-founded order. Finally, consider M(T × N) the finite multisets over T × N with the induced
well-founded order. We associate to a configuration M the following measure:

µ(ε) =def ∅
µ
(

(f1, i1, `1) · · · (fm, im, `m)
)

=def {|(f1arg(M, 1), acc(i1) − 1), . . . ,
(fm−1arg(M, m − 1), acc(im−1) − 1),

(fmarg(M, m), acc(im))|}

We are only left to check that all the reduction rules decrease this measure. The proof is by case
analysis on the instruction fm[im]. Assume fm[im] = call g n. An element (f(~v), i) of the multiset is
replaced by the two elements (f(~v), i − 1) and (g(~u), acc(1)), where f(~v) >l g(~u) (by the invariant ter) so
that, with respect to the lexicographic order:

(f(~v), i) > (f(~v), i − 1) and (f(~v), i) > (g(~u), acc(1))

In the other cases, an element (f(~v), i) is either removed or replaced by (f(~v), j) with i > j, as needed.
�

As observed in [BMM01], termination by lexicographic order combined with a polynomial bound on
the size of the values leads to polynomial space. We derive a similar result with a similar proof at bytecode
level.

Corollary 12 Suppose that the quasi-interpretations are bound by polynomials and that the bytecode suc-
ceeds the value size and termination verifications. Then every execution starting from a frame (f, 1, v1 · · · vn)
(terminates and) runs in space polynomial in the size of the arguments |v1|, . . . , |vk|.

Proof. Note that if f(~v) >l g(~u) then either f >Σ g or f =Σ g and ~v >l ~u. In a sequence f1(~v1) >l · · · >l

fm(~vm), the first case can occur a constant number of times (the number of equivalence classes of function
symbols with respect to >Σ) thus it is enough to analyse the length of strictly decreasing sequences of
tuples of values (v1, . . . , vk) lexicographically ordered where k is the largest arity of a function symbol. If
b is a bound on the size of the values then since on values v >l v′ implies |v| > |v′| we derive that the
sequence has length at most bk. Since b is polynomial in the size of the arguments and the number of
values on a frame is bound by a constant (via the stack height verification), a polynomial bound is easily
derived. �

8 Example

We consider a classical example: a program that checks the validity of a quantified propositional formula.
The source code in the syntax of a prototype compiler is displayed below

type bool = T | F ;;

type nat = Z | S of nat ;;

type env = Nil | C of nat * env ;;

type form = Var of nat

| Not of form

| Or of form * form

| Ex of nat * form ;;

not (T) -> F or (T,y) -> T eq (Z,Z) -> T

not (F) -> T or (F,T) -> T eq (Z,S(y)) -> F

18

or (F,F) -> F eq (S(x),S(y)) -> eq(x,y)

member (x,Nil) -> F

member (x,C(y,l)) -> or(eq(x,y),member(x,l))

check (Var(x), l) -> member(x,l)

check (Not(f1), l) -> not(check(f1,l))

check (Or(f1,f2), l) -> or(check(f1,l),check(f2,l))

check (Ex(x,f1), l) -> or(check(f1,l),check(f1, C(x,l)))

qbf (f) -> check(f,Nil)

Types, quasi-interpretations, and orders for the program are given below. We assume check has
lexicographic status from left to right and the remaining functions have product status. In the specific
case, this information could be obtained automatically. It is interesting to note that in a recursive call
of the check function the size of the first argument is always decreased. This means that the number of
frames that the check function allocates on the stack is linear in the size of the input data rather than
quadratic as foreseen by Corollary 12. Clearly, we could perform a finer analysis of the termination order
to have a better bound on the memory usage.

not : bool -> bool or : (bool, bool) -> bool

eq : (nat, nat) -> nat member : (nat, env) -> bool

check : (form, env) -> bool qbf : form -> bool

q_S = q_Var = q_Not = x + 1 q_C = q_Or = q_Ex = x + y + 1

q_not = q_qbf = x q_or = q_eq = max(x,y)

q_check = x + y

qbf > check > member > not, or, eq

Next, we display the bytecode resulting from a possible compilation of the function check as well as
the result of the type verification. (We leave a blank line between the different call blocks.)

1 : load 1 form env

2 : branch Var 7 form env form

3 : load 3 form env nat

4 : load 2 form env nat nat

5 : call member 2 form env nat nat env

6 : return form env nat bool

7 : branch Not 13 form env form

8 : load 3 form env form

9 : load 2 form env form form

10 : call check 2 form env form form env

11 : call not 1 form env form bool

12 : return form env form bool

13 : branch Or 22 form env form

14 : load 3 form env form form

15 : load 2 form env form form form

16 : call check 2 form env form form form env

19

17 : load 4 form env form form bool

18 : load 2 form env form form bool form

19 : call check 2 form env form form bool form env

20 : call or 2 form env form form bool bool

21 : return form env form form bool

22 : branch Ex 33 form env form

23 : load 4 form env nat form

24 : load 2 form env nat form form

25 : call check 2 form env nat form form env

26 : load 4 form env nat form bool

27 : load 3 form env nat form bool form

28 : load 2 form env nat form bool form nat

29 : build C form env nat form bool form nat env

30 : call check 2 form env nat form bool form env

31 : call or 2 form env nat form bool bool

32 : return form env nat form bool

33 : stop form env form

We also give the result of the path verification for the first block of instructions, corresponding to the
compilation of the first rule of check , that is: check(Var(x), l) = member(x, l).

Expression Instruction Substitution
1 : x1,1 x1,2 : load 1 : id
2 : x1,1 x1,2 x1,1 : branch Var 7 : id
3 : Var(x3,3) x1,2 x3,3 : load 3 : [Var(x3.3)/x1,1]
4 : Var(x3,3) x1,2 x3,3 x3,3 : load 2 : [Var(x3.3)/x1,1]
5 : Var(x3,3) x1,2 x3,3 x3,3 x1,2 : call member 2 : [Var(x3.3)/x1,1]
6 : Var(x3,3) x1,2 x3,3 member(x3,3, x1,2) : return : [Var(x3.3)/x1,1]

For this block, the relevant conditions that need to be checked for proving that the size and termination
annotations are correct are:

qcheck(Var(x3.3),x1,2) > qmember(x3,3,x1,2) (size condition)

check (Var(x3.3), x1,2) >l member(x3,3, x1,2) (termination condition)

9 Conclusion

The problem of bounding the size of the memory needed for executing a program has already attracted
considerable attention. Nonetheless, automatic extraction of resource bounds has mainly focused on first-
order functional languages and very few works have addressed this problem at the level of the bytecode
(or of the compiled program).

In this paper, we study the resource bounds problem in a simple stack machine and show how to
perform type, size, and termination verifications at the level of the bytecode. In particular, we show that
a combination of size verification based on quasi-interpretations and of termination verification based on
lexicographic path orders leads to an explicit polynomial bound on the space required for the execution.
We believe that the choice of a simple set of bytecode instructions has a pedagogical value: we can present
a minimal but still relevant scenario in which problems connected to bytecode verification can be effectively
discussed.

We are in the process of formalizing our virtual machine and the related invariants in the Coq proof
assistant. We are also experimenting with the automatic synthesis of annotations at the source code level

20

and with their verification at byte code level. Moreover, we plan to refine the predictions on the space
needed for the execution of a program by referring to an optimized implementation of the virtual machine.
Yet in another direction, we could consider an extended machine that interprets the annotations carried
by unverified bytecode as directives to be enforced during the execution.

References

[Ama03] R. Amadio. Max-plus quasi-interpretations. In Proc. Typed Lambda Calculi and Applications
(TLCA ’03), LNCS 2701, Springer, 2003.

[BC92] S. Bellantoni and S. Cook. A new recursion-theoretic characterization of the poly-time functions.
Computational Complexity, 2:97–110, 1992.

[BMM01] G. Bonfante, J.-Y. Marion, and J.-Y. Moyen. On termination methods with space bound cer-
tifications. In Andrei Ershov Fourth International Conference ”Perspectives of System Informatics”,
LNCS. Springer, 2001.

[BN98] F. Baader and T. Nipkow. Term rewriting and all that. Cambridge University Press, 1998.

[Cob65] A. Cobham. The intrinsic computational difficulty of functions. In Proc. Logic, Methodology, and
Philosophy of Science II, North Holland, 1965.

[Gra96] B. Gramlich. On proving termination by innermost termination. In Proc. 7th Int. Conf. on
Rewriting Techniques and Applications (RTA ’96), volume 1103 of LNCS, pp. 93–107. Springer, 1996.

[Hof02] M. Hofmann. The strength of non size-increasing computation. In Proc. POPL, ACM Press, 2002.

[Jon97] N. Jones. Computability and complexity, from a programming perspective. MIT-Press, 1997.

[Lei94] D. Leivant. Predicative recurrence and computational complexity i: word recurrence and poly-
time. Feasible mathematics II, Clote and Remmel (eds.), Birkhäuser:320–343, 1994.

[LY99] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-Wesley, 1999.

[Mar00] J.-Y. Marion. Complexité implicite des calculs, de la théorie à la pratique. PhD thesis, Université
de Nancy, 2000. Habilitation à diriger des recherches.

[MM03] J.-Y. Marion, J.-Y. Moyen. Termination and resource analysis of assembly programs by Petri
Nets. Technical Report, Université de Nancy, 2003.

[MWCG99] G. Morriset, D. Walker, K. Crary and N. Glew. From System F to Typed Assembly Language.
In ACM Transactions on Programming Languages and Systems, 21(3):528-569, 1999.

[Nec97] G. Necula. Proof carrying code. In Proc. POPL, ACM Press, 1997.

[San01] D. Sannella. Mobile resource guarantee. Ist-global computing research proposal, U. Edinburgh,
2001. http://www.dcs.ed.ac.uk/home/mrg/.

21

A Proof of Proposition 3: Type invariant

Proposition 3 Type Invariant Let M be a configuration. If wt(M) and M → M ′ then wt(M ′).

Proof. By case analysis on the rule applied in the derivation of M → M ′. Assume M ≡ M0 · (f, i, `). Since

wt(M), we have wt(f, ~T) for some valid abstract execution ~T and ` : ~Ti with i ∈ 1..|~T |.

(Load) we have f [i] = loadk. Immediate since ~Ti+1[~hi + 1] = ~Ti[k].

(Build) we have f [i] = build c k and c : (t1, . . . , tk) → t0, where ~Ti = T · t1 · · · tk, and ` = `′ · v1 · · · vk

and M ′ = M0 · (f, i + 1, `′ · c(v1, . . . , vk)). Then vi : ti for all i ∈ 1..k and the property follows since
~Ti+1[~hi+1] = T · t0.

(Call) we have f [i] = call g k and g : (t1, . . . , tk) → t0, where ~Ti = T · t1 · · · tk, ` = `′ · v1 · · · vk,
and M ′ = M · (g, 1, v1 · · · vk). By definition, g must be well-typed and vi : t1 for all i ∈ 1..k. Then
wt(g, 1, v1 · · · vk) and M ′ is well-formed, as needed.

(Return) we have f [i] = return and M ≡ M1 · (g, i′, `′′ · v1 · · · vk) · (f, i, `′ · v) → M1 · (g, i′ + 1, `′′ · v).
Since M is well-typed (and well-formed), the vector arg(M, m) is defined (where m = |M |), the function

g is well-typed and g[i′] = call f k with f : t1, . . . , tk → t0 and v : t0. Assume ~T ′ is the type of g, the

property follows since ~T ′

i′+1[
~h′

i′ + 1] = t0.

(Stop) we have f [i] = stop and M ′ ≡ ε. By definition, wt(ε).

(BranchThen) we have f [i] = branch c j, ` = `′ ·c(v1, . . . , vk), and M ′ ≡ M0 · (f, i + 1, ` ·v1 · · · vk) where

c : (t1, . . . , tk) → t0 and t0 = ~Ti[~hi]. Then vi : ti for all i ∈ 1..k and the property follows by definition of
~Ti+1.

(BranchElse) we have f [i] = branchc j and ` = `′ · d(. . .) where c 6= d and M ′ ≡ M0 · (f, j, `). The

property follows since ~Tj = ~Ti.
�

B Proof of Proposition 4: Progress

Proposition 4 (Progress) Assume M is a well-typed configuration. Then either (1) M ≡ ε, or (2) M
is a result, or (3) M reduces, ∃M ′ (M → M ′).

Proof. If M is not the error configuration, ε, we have M ≡ M0 · (f, i, `). Since M is well-typed (and

well-formed), we have wt(f, ~T) for some valid abstract execution ~T and ` : ~Ti with i ∈ 1..|~T |. In particular,

the instruction f [i] is defined and |`| = |~Ti|. The proof proceeds by case analysis on f [i].

(Load) we have f [i] = load k and |`| > k and i < |f |. Hence rule (Load) applies and M reduces.

(Build) we have f [i] = build c n and |`| > ar(c) and i < |f |. Hence rule (Build) applies and M reduces.

(Call) we have f [i] = call g n and |`| > ar(g) and i < |f |. Hence rule (Call) applies and M reduces.

(Return) we have f [i] = return. Let m = |M |. There are two different cases: either m = 1 and M is a
result, or m > 2 and, since M is well-formed, the vector arg(M, m) is defined. In the latter case, we have
M ≡ M1 · (g, i′, `′) · (f, i, `) with |`| > 1 and |`′| > ar(f). Hence rule (Return) applies and M reduces.

(Stop) By definition M reduces to ε.

(Branch) we have f [i] = branch c j and i < |f | and j ∈ 1..|f |. There are two different cases subject to the
value on top of the stack `. Assume ` = `′ ·v then either (1) v = c(v1, . . . , vn) and rule (BranchThen) applies
or (2) v = d(. . .) with c 6= d and rule (BranchElse) applies. Therefore, in both cases the configuration M
reduces. �

22

C Proof of Proposition 5: Shape Substitutions

In the following proofs, we apply the restrictions on the flow graph given in Sections 4 and 5: for every
function, f , appearing in the code of the program we have that (C1) every node in the flow graph Ef is
accessible; (C2) the flow graph Ef is a tree rooted at instruction 1 whose leaves correspond to the instruc-
tions return or stop; and (C3) on any given path from the root, every branch instruction is preceded
only by load or branch instructions.

Proposition 5 Assume (~σ, ~E) is a valid shape for the function f . Then for all i ∈ 1..|f |:

1. the sequence of patterns ~σi(x1,1) · · ·~σi(x1,ar(f)) is linear (a variable appears in at most one pattern
and at most once);

2. assume ~Ei = e1 · · · e~hi
, if x ∈ Var(ej) then x occurs in one of the patterns ~σi(x1,j), for j ∈ 1..ar(f).

Proof. By induction on the length of the path from 1 to i. Since ~σ1 = id and e1,j = x1,j for all j ∈ 1..ar(f),
properties (1) and (2) of Proposition 5 are true in the case where i = 1. In the cases where i 6= 1, the
proof proceeds by case analysis of the instruction associated to the unique immediate predecessor of i in
the tree Ef . Assume i′ is the predecessor of i.

(Load) we have f [i′] = load k and i = i′ +1. Since wsh i′(f, ~σ, ~E), we have ~σi = ~σi′ and ~Ei = ~Ei′ · ~Ei′ [k].
Hence properties (1) and (2) hold by inductive hypothesis.

(Build) we have f [i′] = build c n and i = i′ + 1, where c : (t1, . . . , tn) → t0. Since wsh i′(f, ~σ, ~E), we

have ~σi = ~σi′ and ~Ei′ = E · e1 · · · en and ~Ei = E · c(e1, . . . , en). Hence properties (1) and (2) hold by
inductive hypothesis. Note that Var(e

i,~hi
) = Var(e

i′,~hi−ar(c)+1) ∪ · · · ∪ Var(e
i,~hi

). The proof is similar if

the preceding instruction is a function call, call g n.

(Branch) we have f [i′] = branch c j and we need to consider two possible cases corresponding to the
two possible outcomes of a branch instruction. Either instruction i directly follows the branch instruction
and i = i′ + 1, or it is the target of the branch instruction, in which case j = i.

Assume ~Ei′ = E · p where p is a variable x. In the first case, we have ~σi = σ′ ◦ ~σi′ and ~Ei =
σ′(E) ·x

i,~hi−ar(c)+1 · · ·xi,~hi
where σ′ is the substitution [c(x

i,~hi−ar(c)+1, . . . , xi,~hi
)/x]. We start by proving

property (1). By inductive hypothesis, there is a unique index k such that x occurs once in ~σix1,k and
therefore:

~σi(x1,1) · · ·~σi(x1,k) · · · = ~σi′ (x1,1) · · ·σ
′(~σi′ (x1,k)) · · ·

Since the variables (xi,j)j∈1..~hi
are fresh and distinct the patterns occurring in this sequence are linear,

as needed. For property (2), suppose y ∈ Var(ei,j) for some j ∈ 1..~hi. The property follows by the fact
that y 6= x and that either y occurs in ei′,j′ for some j′ or it belongs to the fresh variables xi,j introduced

in ~Ei which do occur in the related linear pattern.
If p is a variable x and i is the target of the branch instruction, i = j (since Ef is a tree we have

i′+1 6= j), then ~σi = ~σi′ and ~Ei = ~E′

i and properties (1) and (2) hold immediately by inductive hypothesis.

If p is a pattern c(e1, . . . , en) then i = i′ + 1 and ~σi = ~σi′ and ~Ei = E · e1 · · · en. The proof is similar
to the case where the preceding instruction is a build.

The remaining case is for p a pattern of the from d(. . .) with d 6= c. In this case i = j, ~σi = ~σi′ and
~Ei = ~E′

i. Properties (1) and (2) hold immediately by inductive hypothesis. �

D Proof of Proposition 6: Shape Invariant

Proposition 6 Let M be a stack. If wsh(M) and M → M ′ then wsh(M ′).

23

Proof. By case analysis on the rule applied in the derivation of M → M ′. Assume M ≡ M0 · (f, i, `). Since

wsh(M), we have wsh(f, ~σ, ~E) for some valid shape (~σ, ~E) and if ~Ei[j] is a pattern then `[j] = ρ(~Ei[j])
where ρ is the solution of match

(

(~σi(x1,1), . . . , ~σi(x1,ar(f))), ~u
)

, ~u = arg(M, m), and m = |M |.

(Load) we have f [i] = load k and ~σi+1 = ~σi and ~Ei+1 = ~Ei · ~Ei[k]. Hence the substitution ρ is also

solution of the matching of (~σi+1(x1,1), . . . , ~σi+1(x1,ar(f))) with the vector ~u and if ~Ei+1[j] is a pattern

then the jth element of ` · `[k] is equal to ρ(~Ei+1[j]). Therefore wsh(f, ~u, i + 1, ` · `[k]), as needed. The
proof is similar in the case of rule (Build).

(Call) we have f [i] = call g n, where g : (t1, . . . , tn) → t0, ` is of the form `0 · v1 · · · vk, and M ′ = M ·
(g, 1, v1 · · · vk). Since M is well-shaped, the proposition follows from the fact that wsh(g, v1 · · · vk, 1, v1 · · · vk).
This property is immediate since, by definition, ~σ1 = id and we can take ρ = [v1/x1,1, . . . , vk/x1,k].

(Return) we have f [i] = return and M ≡ M1 · (g, i′, `g · `′) · (f, i, `f · v) → M1 · (g, i′ + 1, `g · v) where
`′ = v1 · · · vk and the instruction g[i′] is call f k with f : (t1, . . . , tk) → t0. Since M is well-shaped,

we know that wsh(g, ~σ′, ~E′) and wsh(g, ~u, i′, `g · `′) where ~u = arg(M, m − 1) are the parameters used to

initialize the frame for g. In this case, ~σ′

i′+1 = ~σ′

i′ and ~E′

i′+1 contains at most the patterns in ~E′

i′ : the

only new element is the expression ~E′

i′+1[
~hi′+1] that is of the form f(. . .). Hence wsh(g, ~u, i′ + 1, `g · v), as

needed.

(Stop) we reduce to the error configuration, ε, which satisfies wsh by definition.

(BranchThen) we have f [i] = branch c j and ` = `0 · c(v1, . . . , vk) and M ′ ≡ M0 · (f, i + 1, `0 · v1 · · · vk)
where c : t1, . . . , tk → t0. Assume arg(M, m) is the vector ~u = (u1, . . . , uar(f)). Since M is well-shaped,

we also know that (ρ ◦ ~σi)(x1,j) = uj for all j ∈ 1..ar(f), ρ(~Ei[~hi + j − 1]) = vj if 1 6 j 6 ar(c), and
~Ei[~hi + j − 1] is a pattern.

Let p be the pattern ~Ei[~hi], which describes the shape of the value tested in the branch statement.
We have three different cases to consider depending on the form of p.

If p is a variable x, then ~σi+1 = σ′◦~σi and ~Ei+1 = σ′(~Ei)·xi+1,~hi
· · ·x

i+1,~hi+1
where σ′ is the substitution

[c(x
i+1,~hi

, . . . , x
i+1,~hi+1

)/x]. Let ρ′ be the substitution [v1/x
i+1,~hi

, . . . , vk/x
i+1,~hi+1

] ◦ ρ. We verify that

(i) ρ′ is the solution of matching the patterns (~σi+1(x1,1), . . . , ~σi+1(x1,ar(f))) with the values in ~u, (ii)

ρ′(~Ei+1[j]) = (ρ′ ◦σ′)(~Ei[j]) = `0[j] if 1 6 j < ~hi and ~Ei+1[j] is a pattern, and (iii) ρ′(~Ei+1[~hi +j−1]) = vj

for all j ∈ 1..ar(c). Hence, wsh(f, ~u, i + 1, `0 · v1 · · · vk), as needed.

If p = c(e1, . . . , ek) then ~σi+1 = ~σi and ~Ei+1 = ~Ei · e1 · · · ek. Hence the substitution ρ is also solution

of the matching of (~σi+1(x1,1), . . . , ~σi+1(x1,ar(f))) with the sequence `′ and if ~Ei+1[j] is a pattern then the

jth element of `0 · v1 · · · vk is equal to ρ(~Ei+1[j]). Therefore wsh(f, `′, i + 1, `0 · v1 · · · vk), as needed.
The remaining cases are p = f(. . .) and p = d(. . .), where c 6= d. The first case cannot arises since

only call instructions may introduce function symbols in the shape constraints and a branch instruction
cannot be preceded by a call (see restriction (C3) in Appendix C). The latter case is also impossible
since, by M well-shaped, we have ρ(p) = c(v1, . . . , vk).

The proof is similar in the case of rule (BranchElse). �

E Proof of Proposition 8: Size invariant

Proposition 8 Let M be a stack. If wsz (M) and M → M ′ then wsz (M ′).

Proof. By case analysis on the rule applied in the derivation of M → M ′. Assume M ≡ M0 · (f, i, `). Since

wsz (M), we have wsh(f, ~σ, ~E) for some valid shape (~σ, ~E) and there exists a substitution ρ solution of
matching the patterns (~σi(x1,1), . . . , ~σi(x1,ar(f))) with the values in ~u, where ~u = arg(M, m) and m = |M |.

(Load) we have f [i] = load k and M ′ ≡ M0 · (f, i + 1, ` · `[k]) with k 6 |`| and ~σi+1 = ~σi and
~Ei+1 = ~Ei · ~Ei[k]. Hence the substitution ρ is also solution of matching (~σi+1(x1,1), . . . , ~σi+1(x1,ar(f)))

24

with the vector ~u and for all j ∈ 1..~hi + 1 we have qρ(ej) > qvj
: the only new inequality is for j = ~hi + 1

in which case ρ(ej) = ρ(ek) and vj = vk. Therefore wsz (f, ~u, i + 1, ` · `[k]), as needed.

(Build) we have f [i] = build c k, where c : t1, . . . , tk → t0, and ` = `0 · v1 · · · vk and M ′ = M0 · (f, i +

1, `0 · c(v1, . . . , vk)). Since M is well-shaped we have ~Ei = E · e1 · · · ek where e1, . . . , ek are expressions

associated with the values v1, . . . , vk and ~Ei+1 = E · c(e1, . . . , ek). The proposition follows by proving
that wsz (f, ~u, i + 1, `0 · c(v1, . . . , vk)). As for the previous case, the substitution ρ is also solution of
the matching between the shape patterns and the values in ~u. Hence we are left with proving that
qρ(c(e1 ,...,ek)) > qc(v1,...,vk), which is a direct consequence of the monotonicity of qc and the fact that
qρei

> qvi
for all i ∈ 1..k.

(Call) we have f [i] = call g k, where g : (t1, . . . , tk) → t0, and ` is of the form `0 · v1 · · · vk and M ′ =
M · (g, 1, v1 · · · vk). Since M is well-sized, the proposition follows by proving wsz (g, (v1, . . . , vk), 1, v1 · · · vk)
and qg(v1 ,...,vk) 6 qf(~u).

The validity of the invariant for the frame g is immediate since wsh(g, ~σ′, ~E′) for some valid shape

(~σ′, ~E′) such that, by definition, ~σ′

1 = id and ~E′

1 = x1,1 · · ·x1,k. Indeed, the solution for the pattern-
matching is the substitution ρ′ = [v1/x1,1, . . . , vk/x1,k] and we have ρ(x1,i) = vi for all i ∈ 1..k.

To prove the validity of the inequality, we use the fact that size annotations are correct (see condition

(2) in Definition 5). Let e1, . . . , ek be the expressions associated to v1, . . . , vk in ~E1. Condition (2) applied
to instruction i + 1 leads to the following relation:

qf(~σi+1x1,1,...,~σi+1x1,ar(f)) > q~Ei+1[~hi+1]
= qg(e1,...,ek) ,

and since ~σi+1 = ~σi, we obtain:

qf(~u) = qf(ρ◦~σi(x1,1),...,ρ◦~σi(x1,ar(f)))

> qρg(e1,...,ek)

> qg(v1,...,vk) .

(Return) we have f [i] = return and M ≡ M1 · (g, i′, `g · `′) · (f, i, `f · v) and M ′ ≡ M1 · (g, i′ + 1, `g · v)
where `′ = v1 · · · vk and the instruction g[i′] is call f k with f : (t1, . . . , tk) → t0. Let ~u′ = (v1, . . . , vk) =

arg(M, |M |). Since M is well-shaped, we know that wsh(g, ~σ′, ~E′) and wsh(g, ~u, i′, `g · `′) where ~u =

arg(M, m − 1) are the parameters used to initialize the frame for g. We also know that ~σ′
i′+1 = ~σ′

i′ ,
~E′

i′ = E′ · e′1 · · · e
′

k and ~E′

i′+1 = E′ · f(e′1, . . . , e
′

k).
The proposition follows by proving that wsz (g, ~u, i′ + 1, `g · v). More particularly, if ρ′ denotes the

solution of the pattern-matching for the frame g, the same substitution is also solution for the resulting
frame and we only need to prove that qρ′(f(e′

1,...,e′

k
)) > qv.

Assume e is the expression ~Ei[~hi], which describes the shape of the value returned by the frame f . By
condition (2) on correct size annotations, we know that qf(~σi(x1,1),...,~σi(x1,k)) > qe. Since the (decorated)
frame (f, ~u′, i, `f · v) is well-sized, we also know that qρ(e) > qv and ρ ◦ ~σi(x1,j) = vj for all j ∈ 1..k.
Therefore we have (c1) qf(v1,...,vk) > qv. From the fact that the frame g is well-sized, we know that
(c2) qρ′(e′

j
) > qvj

for all j ∈ 1..k, and therefore:

qρ′(f(e′

1,...,e′

k
)) = qf (qρ′(e′

1), . . . , qρ′(e′

k
))

> qf (qv1 , . . . , qvk
) by (c2)

= qf(v1,...,vk)

> qv by (c1)

(Stop) we reduce to the error configuration, ε, which satisfies wsz by definition.

(BranchThen) we have f [i] = branch c j and ` = `0 · c(v1, . . . , vk) and M ′ ≡ M0 · (f, i + 1, `0 · v1 · · · vk)
where c : t1, . . . , tk → t0. From the proof of Proposition 6, Appendix D, we know that there exists a

25

substitution ρ′, solution of matching the patterns (~σi+1(x1,1), . . . , ~σi+1(x1,ar(f))) with the values in `′,

such that ρ′(~Ei+1[~hi + j − 1]) = vj for all j ∈ 1..ar(c). Hence q
ρ′(~Ei+1[~hi+j−1]) > qvj

and we have

wsz (f, `′, i + 1, ` · v1 · · · vk) as needed.
The proof is similar in the case of rule (BranchElse). �

F Proof of Proposition 10: Termination Invariant

Proposition 10 If ter(M) and M → M ′ then ter(M ′).

Proof. By case analysis on the rule applied in the derivation of M → M ′. Assume M ≡ M0 · (f, i, `). Since

ter(M), we have wsh(f, ~σ, ~E) for some valid shape (~σ, ~E) and there exists a substitution ρ solution of
matching the patterns (~σi(x1,1), . . . , ~σi(x1,ar(f))) with the values in ~u, where ~u = arg(M, m) and m = |M |.

(Load) we have f [i] = load k and M ′ ≡ M0 · (f, i + 1, ` · `[k]) with k 6 |`| and ~σi+1 = ~σi and
~Ei+1 = ~Ei · ~Ei[k]. Hence the substitution ρ is also solution of matching (~σi+1(x1,1), . . . , ~σi+1(x1,ar(f)))

with the vector ~u and for all j ∈ 1..~hi + 1 we have ρ(ej) >l vj : the only new inequality is for j = ~hi + 1 in
which case ρ(ej) = ρ(ek) and vj = vk. Therefore ter(f, ~u, i + 1, ` · `[k]), as needed.

(Build) we have f [i] = build c k, where c : t1, . . . , tk → t0, and ` = `0 · v1 · · · vk and M ′ = M0 · (f, i +

1, `0 · c(v1, . . . , vk)). Since M is well-shaped we have ~Ei = E · e1 · · · ek where e1, . . . , ek are expressions

associated with the values v1, . . . , vk and ~Ei+1 = E · c(e1, . . . , ek). The proposition follows by proving
that ter(f, ~u, i + 1, `0 · c(v1, . . . , vk)). As for the previous case, the substitution ρ is also solution of
the matching between the shape patterns and the values in ~u. Hence we are left with proving that
ρ(c(e1, . . . , ek)) >l c(v1, . . . , vk), which is a direct consequence of the fact that ρ(ei) >l vi for all i ∈ 1..k.

(Call) we have f [i] = call g k, where g : (t1, . . . , tk) → t0, and ` is of the form `0 · v1 · · · vk and
M ′ = M · (g, 1, v1 · · · vk). Since M obeys the termination invariant, the proposition follows by proving
ter(g, (v1, . . . , vk), 1, v1 · · · vk) and g(v1, . . . , vk) <l f(~u).

The validity of the invariant for the frame g is immediate since wsh(g, ~σ′, ~E′) for some valid shape

(~σ′, ~E′) such that, by definition, ~σ′

1 = id and ~E′

1 = x1,1 · · ·x1,k. Indeed, the solution for the pattern-
matching is the substitution ρ′ = [v1/x1,1, . . . , vk/x1,k] and we have ρ(x1,i) = vi for all i ∈ 1..k. To prove
the validity of the inequality, we use the fact that termination annotations are correct (see condition (3)

in Definition 6). Let e1, . . . , ek be the expressions associated to v1, . . . , vk in ~E1. Condition (3) applied to
instruction i + 1 leads to the following relation:

f(~σi+1x1,1, . . . , ~σi+1x1,ar(f)) >l
~Ei+1[~hi+1] = g(e1, . . . , ek) ,

and since ~σi+1 = ~σi, we obtain:

f(`′) = f(ρ ◦ ~σi(x1,1), . . . , ρ ◦ ~σi(x1,ar(f)))
>l ρ(g(e1, . . . , ek))
>l g(v1, . . . , vk) .

(Return) we have f [i] = return and M ≡ M1 · (g, i′, `g · `′) · (f, i, `f · v) and M ′ ≡ M1 · (g, i′ + 1, `g · v)
where `′ = v1 · · · vk and the instruction g[i′] is call f k with f : (t1, . . . , tk) → t0. Let ~u′ = (v1, . . . , vk) =

arg(M, |M |). Since M is well-shaped, we know that wsh(g, ~σ′, ~E′) and wsh(g, ~u, i′, `g · `′) where ~u =
arg(M, m − 1) are the parameters used to initialize the frame for g. We also know that ~σ ′

i′+1 = ~σ′

i′ ,
~E′

i′ = E′ · e′1 · · · e
′

k and ~E′

i′+1 = E′ · f(e′1, . . . , e
′

k).
The proposition follows by proving that ter(g, ~u, i′ + 1, `g · v). More particularly, if ρ′ denotes the

solution of the pattern-matching equation for the frame g, the same substitution is also solution for the
resulting frame and we only need to prove that ρ′(f(e′1, . . . , e

′

k)) >l v.

26

Assume e is the expression ~Ei[~hi], which describes the shape of the value returned by the frame f . By
condition (2) on correct termination annotations, we know that f(~σi(x1,1), . . . , ~σi(x1,k)) >l e. Since the
(decorated) frame (f, ~u′, i, `f · v) is well-shaped and obeys the termination invariant, we also know that
ρ(e) >l v and ρ ◦ ~σi(x1,j) = vj for all j ∈ 1..k. Therefore we have (c1) f(v1, . . . , vk) >l v. From the fact
that the frame g obeys the termination invariant, we know that (c2) ρ′(e′j) >l vj for all j ∈ 1..k, and
therefore:

ρ′(f(e′1, . . . , e
′

k)) = f(ρ′(e′1), . . . , ρ
′(e′k))

>l f(v1, . . . , vk) by (c2)
= f(v1, . . . , vk)
>l v by (c1)

(Stop) we reduce to the error configuration, ε, which satisfies ter by definition.

(BranchThen) we have f [i] = branch c j and ` = `0 · c(v1, . . . , vk) and M ′ ≡ M0 · (f, i + 1, `0 · v1 · · · vk)
where c : t1, . . . , tk → t0. From the proof of Proposition 6, Appendix D, we know that there exists a
substitution ρ′, solution of matching the patterns (~σi+1(x1,1), . . . , ~σi+1(x1,ar(f))) with the values in ~u,

such that ρ′(~Ei+1[~hi + j − 1]) = vj for all j ∈ 1..ar(c). Hence ρ′(~Ei+1[~hi + j − 1]) >l vj and we have
ter(f, ~u, i + 1, ` · v1 · · · vk) as needed. �

27

