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Abstract/Résumé

We define a method to statically bound the size of values computed during the execution of
a program as a function of the size of its parameters. More precisely, we consider bytecode
programs that should be executed on a simple stack machine with support for algebraic
data types, pattern-matching and tail-recursion. Our size verification method is expressed
as a static analysis, performed at the level of the bytecode, that relies on machine-checkable
certificates. We follow here the usual assumption that code and certificates may be forged
and should be checked before execution.

Our approach extends a system of static analyses based on the notion of quasi-interpreta-
tions that has already been used to enforce resource bounds on first-order functional pro-
grams. This paper makes two additional contributions. First, we are able to check opti-
mized programs, containing instructions for unconditional jumps and tail-recursive calls,
and remove restrictions on the structure of the bytecode that was imposed in previous
works. Second, we propose a direct algorithm that depends only on solving a set of arith-
metical constraints.

Keywords: Resource Control; Quasi-Interpretation; Program Analysis.

Nous présentons une méthode permettant de borner statiquement la taille des valeurs
générées durant l’exécution d’un programme, la borne obtenue étant exprimée comme
une fonction de la taille des paramètres initiaux. Plus précisément, nous considérons des
programmes écrits dans une forme pré-compilé, aussi appelé bytecode, qui doivent s’exécuter
sur une machine à pile très simple, offrant un support pour les types de données inductifs,
le filtrage et la récursion terminale. Cette méthode de vérification de taille est présentée
comme une analyse statique, menée au niveau du bytecode, qui repose sur des certificats
pouvant être validés automatiquement. Nous nous plaçons ici dans l’hypothèse courante
que le code et les certificats peuvent avoir été compromis et qu’ils doivent donc être vérifié
avant l’exécution.



Notre approche étend un système d’analyses statiques basé sur la notion de quasi-
interpretations qui ont été utilisés afin d’assurer des bornes sur l’utilisation des ressources
dans le cadre de programmes fonctionnels du premier ordre. Ce travail apporte deux nou-
velles contributions. D’abord, nous sommes capable de vérifier des programmes optimisés,
contenant des instructions de saut inconditionnel, sans imposer les restrictions sur la struc-
ture des programmes qui étaient nécessaires dans nos travaux précédents. Ensuite nous
proposons une méthode directe qui repose uniquement sur la résolution d’un systèmes de
contraintes arithmétique à variable rationnelles.

Mots-clefs: Contrôle de ressource; Quasi-interpretation; Analyse statique.

Relecteurs/Reviewers: Roberto Amadio and Solange Coupet-Grimal
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1 Introduction

Bytecode programs are a form of intermediate code commonly used by language imple-
mentors when programs should be distributed and run on multiple platforms. Because of
its advantages on performance and portability, many programming languages are actually
compiled into bytecode. Java and Microsoft C# are representative examples, but bytecode
compilers can also be found for less conventional languages, such as O’Caml, Perl or PHP.
On the downside, bytecode typically stands at an abstraction level in between (high-level)
source code and machine code: it is usually more compact and closer to the computer
architecture than program code that is intended for “human consumption”. Therefore, it
is necessary to devise specific verification methods to guarantee properties at the bytecode
level. For instance, to ensure the safety of executing newly loaded code, virtual machines
generally rely on machine-checkable certificates that the program will comply with user-
specific requirements. The interest of verification of such properties at the bytecode level
is now well understood, see for example [13, 16].

As networked and mobile applications become more and more pervasive, and with
the lack of third parties in control of trust management (like e.g. frameworks based on
code signing), security appears as a major issue. Initial proposals for securing bytecode
applications have focused on the integrity of the execution environment, such as the absence
of memory faults and access violations. In this paper, we consider another important
property, namely certifying bounds on the resources needed for the execution of the code.
This problem naturally occurs when dealing with mobile code, for example to prevent denial
of service attacks, in which the virtual machine is starved of memory by the execution of
a malicious program. More precisely, we define a method to statically bound the size of
values computed during the execution of a program. The size-bound obtained by this
method is expressed as a function of the size of the parameters of the program (actually as
a polynomial expression) and has several uses. For instance, together with an analysis that
bounds the maximal number of stacks in the evaluation of a program, it gives an overall
bound on the memory space needed by the virtual machine. This size-bound can also be
used with automatic memory management techniques, e.g. to bound the physical size of
regions in region-based systems [17].

We consider bytecode programs that should be executed on a simple stack machine
with support for algebraic data types, pattern-matching and tail-recursion. The bytecode
language can be the target of the compilation of a simply-typed, first-order functional
language. We hint at this functional source language in several places but, since all our
results are stated on the bytecode, we do not need to define it formally here (see [1] for
a definition). Our size verification algorithm is expressed as a static analysis relying on
certificates that can be verified at load time. We follow here the usual assumption that code
and certificates may be forged by a malicious party. In particular, they do not have to result
from the compilation of legit programs. Standard bytecode verification algorithms build
for each instruction an abstract representation of the stack. This information typically
consists of the types of the values on the stack when the instruction is executed. In a
nutshell, the size verification algorithm builds for each instruction an abstract bound on
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the size of the values in the stack. In our case the bound is a polynomial expression. It
also builds proof obligations that the bounds decrease throughout program execution.

Our method generalizes (and lift some of the restrictions) an approach designed for
first-order functional languages [1] that relies on a combination of standard techniques for
term rewriting systems with a static analysis based on the notion of quasi-interpretation.
Similar analyses were also used to deal with systems of concurrent, interactive threads
communicating via a shared memory [2]. This paper makes two additional contributions.
First, we are able to check programs containing instructions for unconditional jumps and
tail-recursive calls, and remove restrictions on the structure of the bytecode that was
imposed in these two initial works. These two instructions are essential in the optimization
of codes obtained from the compilation of functional programs. They are also required if
we need to compile procedural languages. Second, we propose a direct algorithm that
depends only on solving a set of arithmetical constraints. Indeed, the size verifications
defined in [1, 2] are based on a preliminary shape analysis which builds, for each bytecode
instruction, a sequence of first-order expressions representing the shape of the values in
the stack (e.g. it may give the top-most constructors). While the shape verification is
well-suited to the analysis of “functional code”, it does not scale to programs containing
tail recursive calls.

Another result of this work is educational: we present a minimal but still relevant
scenario in which problems connected to bytecode verification can be effectively studied.
For instance, our virtual machine is based on a set of 8 instructions, a number that has to
be compared with the almost 200 opcodes used in the Java Virtual Machine (JVM). We
believe that the simplicity of the virtual machine and the bytecode verifiers defined in this
paper make them suitable for teaching purposes. (Actually, we have already used them for
projects in compiler design classes.)

The paper is organized as follows. Section 2 defines a simple virtual machine and a
bytecode language built from a minimal set of instructions. In Section 3, we introduce the
notion of quasi-interpretations and define our size verification method. This verification
assumes that constructors and function symbols in the bytecode are annotated with suitable
functions to bound the size of the values on the stack. Before concluding, we study the
complexity of checking the constraints generated during the size analysis. In particular, we
show that their satisfiability can be reduced to checking the sign of a polynomial expression.

2 Virtual Machine

We define a simple set of bytecode instructions and a related stack machine. A program
is composed of a list of mutually recursive type definitions followed by a list of function
definitions. In our setting, a function is a sequence of bytecode instructions. Unlike
traditional virtual machines that operate on literal values, such as bytes or floating point
numbers, we consider values taken from an arbitrary set of inductive types.

A value v is a term built from a finite set of constructors, ranged over by c, d, . . . The
size of v, denoted |v|, is 0 if v is a constant (a constructor of arity 0) and 1 + Σi∈1..n|vi| if
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v is of the form c(v1, . . . , vn).
We consider a fixed set of type identifiers t, t′, . . . where each identifier is associated to

a unique type definition of the form t = . . . c of t1 ∗ · · · ∗ tn . . . For instance, we can
define the type nat of natural numbers in unary format and the type bw of binary words:

nat = z s of nat , bw = E O of bw I of bw .

For instance, the values s(s(z)) of type nat and O( I( O( E))) of type bw stand for the number
2. We will often use the type nat in our examples since functions manipulating natural
numbers can be interpreted as an abstraction of functions manipulating finite lists (e.g.
addition is related to list catenation).

For the sake of simplicity, we suppose that the code and type of functions is fixed and
known in advance. Hence we consider a fixed set of constructor and function names. We
suppose that every constructor is declared with its functional type (t1, . . . , tn) → t and
we denote ar(c) the arity of the constructor c. Similar types can be either assigned or
inferred for functions. We adopt the notation ε for the empty sequence and ` · `′ for the
catenation of two sequences. The expression |`| denotes the length of ` and `[i] denotes
the ith element in `. When the length is given by the context, we will sometimes use the
vectorial notation ~v to represent the sequence (v1, . . . , vn). In the following, we equate a
function identifier f with the sequence of instructions of its body code and thus write f [i]
for the ith instruction in f .

2.1 Dynamic Semantics

The virtual machine is built around three components: (1) a configuration M that is a stack
of call frames; (2) an association list between function identifier and code; (3) a bytecode
interpreter, modeled as a reduction relation M → M ′. The state of the interpreter, the
configuration M , is a sequence of frames and we write M →M ′ if M reduces to M ′ using
one of the transformation rules described by the table below.

The most important operation of the virtual machine corresponds to function calls.
The execution of a function call is represented by a frame, that is a triple (f, pc, `)ρ made
of a function identifier f , the value of the program counter pc (a natural number in 1..|f |)
and an evaluation stack `. A stack is a sequence of values that is used to store both
the parameters of the call as well as the “local values” computed during the life span
of the frame. Hence the stack partially plays the role devoted to registers in traditional
architectures. The annotation ρ is used to keep trace of the call that initiated the frame
and has no operational meaning (it is only used to validate our size verification method).
We refine the system of annotations in Section 2.2.

Bytecode Interpreter: M →M ′

(Load)

f [pc] = load i pc < |f | `[i] = v

M · (f, pc, `)ρ → M · (f, pc + 1, ` · v)ρ

(Build)
f [pc] = build c n pc < |f | ar (c) = n

` = `′ · (v1, . . . , vn) vo = c(v1, . . . , vn)

M · (f, pc, `)ρ → M · (f, pc + 1, `′ · vo)ρ
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(BranchThen)
f [pc] = branch c j pc < |f |

` = `′ · c(v1, . . . , vn)

M · (f, pc, `)ρ → M · (f, pc + 1, `′ · (v1, . . . , vn))ρ

(BranchElse)
f [pc] = branch c j 1 6 j 6 |f |

` = `′ · d(. . . ) c 6= d

M · (f, pc, `)ρ → M · (f, j, `)ρ

(Call)
f [pc] = call g n pc < |f | ar (g) = n

` = `′ · `′′ `′′ = (v1, . . . , vn) ρ′ = g(v1, . . . , vn)

M · (f, pc, `)ρ → M · (f, pc, `′)ρ · (g, 1, `′′)ρ′

(Jump)
f [pc] = jump j n 1 6 j 6 |f |
` = `′ · `′′ `′′ = (v1, . . . , vn)

M · (f, pc, `)ρ → M · (f, j, `′′)ρ

(TCall)
f [pc] = tcall g n pc < |f | ar(g) = n

` = `′ · `′′ `′′ = (v1, . . . , vn)

M · (f, pc, `)ρ → M · (g, 1, `′′)ρ

(Stop)

f [pc] = stop

M · (f, pc, `)ρ → error

(Return)
f [pc] = return ` = `′′ · vo

M · (g, pc ′, `′)ρ′ · (f, pc, `)ρ → M · (g, pc ′ + 1, `′ · vo)ρ′

We give an informal description of the bytecode language. Let ` be the stack of the
current frame, i.e. the frame on the top of the current configuration. The instruction
load i takes a copy of the ith value of ` and puts it on the top of the stack (i.e. it is
equivalent to a register load). New values may be created using the instruction build c n,
where c is a constructor of arity n. When executed, the n values v1, . . . , vn on top of ` are
replaced by c(v1, . . . , vn). The instruction branch c j implements a conditional jump on
the shape of the value v found on top of `. If v is of the form c(v1, . . . , vn) then the top of
the stack is replaced by the n values v1, . . . , vn (rule BranchThen). Otherwise, the stack
is left unchanged and the execution jumps to position j in the code, with j ∈ 1..|f | (rule
BranchElse).

Function calls are implemented by the instruction call f n, where n is the arity of
f . Upon execution, a fresh call frame is created, which is initialized with a copy of the
n values on top of the caller’s stack. The lifetime of the current frame is controlled by
two instructions: return discards the current frame and returns the value on top of the
caller’s stack; stop finishes the execution and returns an error code. Finally, the instruction
jump j n is an unconditional jump, similar to a goto statement, whereas tcall g n is similar
to a call instruction, except that the current frame is used to evaluate the call to g. These
two instructions are used to share common code between functions and to efficiently compile
tail recursion (when call instructions are immediately followed by a return). This is essential
because many programming idioms depend heavily on recursion. For example, the Scheme
language reference explicitly requires tail recursion to be recognized and automatically
optimized by a compiler.

The reduction relation M →M ′ is deterministic and uses a special state of the memory,
error , that denotes the empty configuration ε. The empty state cannot be reached during
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an execution that does not raise an error (executes a stop instruction). A “correct”
execution starts with a single frame Mι = (f, 1, `)f(`), where ` = (v1, . . . , vn), and ends with
a configuration of the form Mo = (f, pc, `′ · v0)f(`), where 1 6 pc 6 |f | and f [pc] = return.
We name the configuration Mι a call to f(v1, . . . , vn) and Mo the result of evaluating Mι

and we write Mo ↘ v0. The others cases of blocked configurations are runtime errors.

2.2 Control Flow Graphs and Well-Formedness

Before giving examples of bytecode programs, we define the notions of control flow graph
(CFG) and checkpoints of a function f . The CFG of f is the smallest directed graph
({1, . . . , |f |}, E) such that for all node i ∈ 1..|f | the edge (i, i+ 1) is in E if f [i] is a load,
build, call or branch instruction and (i, j) is in E if f [i] is branch c j or jump j n.
Nodes that are the target of a jump or branch instruction can have several immediate
predecessors. We call such nodes the checkpoints of f . The first instruction of a function
is also a checkpoint.

Definition 1 (Checkpoint) An instruction ( indices) i of the function f is a checkpoint
if it is equal to 1 or if it is a node with at least two incoming edges in the CFG of f .

We associate to every node i of f the node PC i ∈ 1..|f | that is the only checkpoint
dominating the node i in the CFG of f : it is the first checkpoint encountered from i when
moving backward in the CFG. We say that PC i is the checkpoint of i and we have PC i = i
iff i is a checkpoint. By construction, every node of a CFG is associated to a unique
checkpoint and there is a unique path between PC i and i without cycles. We also define
the predicate Controlf(i) which is true iff i is a checkpoint of f .

We refine the semantics of the virtual machine to take into account checkpoints in frame
annotation. We store in the annotations the state of the execution stack when we pass a
new checkpoint (together with the state of the stack when the frame is initialized). This
improvement is needed for our size analysis but the dynamic semantics of the machine
does not need any change. The only difference is in the frame annotation ρ that is now
of the form (g(`o), i, `c) where g(`o) is the “call” used to initialize the frame, i is the last
checkpoint encountered and `c is the state of the execution stack when we passed i. For each
transition M · (f, pc, `)ρ → M ′ · (f ′, pc′, `′)ρ′ of the new relation, we have ρ′ = (. . . , pc′, `′)
if pc ′ is a checkpoint of the function f ′ and ρ′ = ρ otherwise. Note that the evaluation of a
call or tcall instruction (the only case in which f 6= f ′) always leads to a configuration
where the program counter of the last frame is equal to 1, i.e. is a checkpoint.

Annotated Semantics

(Regular)
M · (f, pc, `)g(`o) → M · (f, pc ′, `′)g(`o)

Control f (pc ′) is false ρ = (g(`o), i, `c)

M · (f, pc, `)ρ → M · (f, pc ′, `′)ρ

(Checkpoint)
M · (f, pc, `)g(`o) → M ′ · (f ′, pc ′, `′)h(`1)

Control f (pc ′) is true ρ = (g(`o), i, `c)

M · (f, pc, `)ρ → M ′ · (f ′, pc ′, `′)(h(`1),pc′,`′)
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In Section 3 we define an analysis to ensure that machine configurations are well-typed
during an execution. Prior to that, we check some constraints on the code of every function
in the program. We ask for every function f that: (1) the CFG of f is connected and (2)
for all i ∈ 1..|f | if f [i] = load k then k > 1 and if f [i] = branch c j or jump n j
then 1 6 j 6 |f |, i.e. we check that the program counter stays within bounds. We also
impose well-formedness conditions on configurations to make clear that the creation of a
new frame can only result from a call instruction: for every pair of contiguous frames
. . . · (f, pc, `)ρ · (g, pc

′, `′)ρ′ · . . . the instruction f [pc] must be of the form call f ′ n.
With our annotated semantics, the first element of the annotation ρ′ is of the form

f ′(`o) where `o is the stack of parameters used in the initialization of the second frame.
Also, we do not necessarily have f ′ = g because of the tcall instruction. We can easily
show that well-formedness of configurations is preserved by execution, see e.g. [1]. In the
following, we use the notation arg(M, j) to stand for the sequence of parameters used to
initialize the jth frame in M .

Definition 2 (Frame Initial Parameters, arg(M, j)) Let M be the configuration
(f1, i1, `1)ρ1

· . . . · (fm, im, `m)ρm
, for all j in 1..m the expression arg(M, j) denotes the stack

`jo such that ρj = (gj(`
j
o), pc

j , `jc).

2.3 Examples

Our first example is the function dble : nat → nat , below, that doubles its parameter. A
possible specification of this function using a functional syntax could be dble(z) = z and
dble(s(x)) = s(s(dble(x))). Actually, this code is the result of compiling the functional
program as in [1]. In the following, we display the index of each instruction next to its
code and underline the indices of checkpoints.

dble = 1 : load 1 5 : branch s 10 9 : return

2 : branch z 5 6 : call dble 1 10 : stop

3 : build z 0 7 : build s 1
4 : return 8 : build s 1

The evaluation of the call to dble(s(v)) gives the following reductions, where w stands for
the result of the call to dble(v) (we do not write annotations in this example).

(dble, 1, (s(v))) → (dble, 2, (s(v), s(v))) → (dble, 5, (s(v), s(v))) → (dble, 6, (s(v), v))
→ (dble, 6, (s(v))) · (dble, 1, (v)) → · · · → (dble, 6, (s(v))) · (dble, 9, (w))
→ (dble, 7, (s(v), w)) → (dble, 8, (s(v), s(w))) → (dble, 9, (s(v), s(s(w)))) ↘ s(s(w))

¿From this simple example we can already see that first-order functional programs
admit a direct compilation into our bytecode: every function is compiled into a segment
of instructions where pattern matching is represented by a nesting of branch instructions.
In particular the CFG of a compiled program is a tree. Because our virtual machine does
not allow to store code closures, we cannot directly support subroutines or higher-order
functions. We plan to study these extensions in future works.
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We can simplify our first example following two distinct directions. We obtain an
equivalent function by noticing that a natural number that is not of the form s(. . . ) is
necessarily z. Hence we can discard a useless branch instruction. A better optimization
is obtained with the function tdble : nat → nat : we duplicate the parameter (with a load

instruction) and use it as an accumulator, giving the opportunity to use a jump instruction.
Finally, the function xdble : nat → nat is an example of malicious code that loops and
computes unbounded values.

inst. # : dble xdble tdble CFG of tdble

1 : load 1 load 1 load 1 •1

2 : branch s 6 build s 1 load 1 I•2

3 : call dble 1 build s 1 branch s 7 •3

4 : build s 1 call xdble 1 load 2 •4

5 : build s 1 return build s 1 •5

6 : return jump 2 2 •6

7 : load 2 •7

8 : return •8

Our last example is the function sum : (nat , nat) → nat such that a call to sum(x, y)
computes the value of the expression y + x + (x − 1) + · · · + 1. The function sum is
interesting because it is a non trivial example mixing tail recursion and “superlinear” size
computations: the size verification can be used to prove that the size of the result is
bounded by 1

2
|x|(|x|+1)+ |y|. Actually, this is almost an exercise in code obfuscation that

is used to show that our technique can be applied to very convoluted programs.

sum = 1 : load 1 6 : load 3 11 : tcall sum 2
2 : branch s 8 7 : jump 2 3 12 : load 2
3 : load 1 8 : load 1 13 : return

4 : load 2 9 : branch s 12
5 : build s 1 10 : load 2

2.4 Well-Typed Programs

We define a type verification that associates to every bytecode instruction an abstraction
of the stack when it is executed. In our case, an abstract state T is a sequence of types
(t1, . . . , tn) that matches the types of the values in the stack. We say that a stack ` has
type T , and we note ` : T , if ` = (v1, . . . , vn) where vi is a value of type ti for all i ∈ 1..n.
The type of a function f is a sequence of length |f | of type stacks and a well-typed function
is a sequence of well-typed instructions. The notion of well-typed instruction is formally
defined by means of the relation wt i(f, ~T ), defined below. For example, if f [i] = load k and
if the type of f [i] is Ti = (t1, . . . , tn), with n > k, then the type of f [i+ 1] should be equal

to (t1, . . . , tn, tk). A program is well-typed if all its functions are well-typed: a sequence ~T

is a valid abstract execution of the function f : (t1, . . . , tn) → t0, denoted wt(f, ~T ), if and
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only if T1 = (t1 . . . tn) and wt i(f, ~T ) for all i ∈ 1..|f |. The definition of wt i(f, ~T ) is by case
analysis on the instruction f [i], see Table 1.

Table 1: Type Analysis (wt i(f, ~T ))

Assume f : (t1, . . . , tn) → t0. Case f [i] of:

(load k) then wt i(f, ~T ) is true iff i < |f |, Ti[k] = tk and Ti+1 = Ti · tk;

(build c m) let c : (t′1, . . . , t
′
m) → t′0, then wt i(f, ~T ) is true iff i < |f |, Ti = T · (t′1, . . . , t

′
m)

and Ti+1 = T · t′0;

(branch c j) let c : (t′1, . . . , t
′
m) → t′0, then wt i(f, ~T ) is true iff i < |f |, j ∈ 1..|f |, Ti = T · t′0,

Ti+1 = T · (t′1 . . . t
′
m) and Tj = Ti;

(call g m) let g : (t′1, . . . , t
′
m) → t′0, then wt i(f, ~T ) is true iff i < |f |, Ti = T · (t′1 . . . t

′
m) and

Ti+1 = T · t′0;

(tcall g m) let g : (t′1, . . . , t
′
m) → t′0, then wt i(f, ~T ) is true iff i < |f |, t0 = t′0, Ti =

T · (t′1, . . . , t
′
m) and Ti+1 = T · t0;

(jump j m) then wt i(f, ~T ) is true iff 1 6 j ∈ 1..|f |, Ti = T · (t′1 . . . t
′
m) and Tj = (t′1 . . . t

′
m);

(return) then wt i(f, ~T ) is true iff Ti = T · t0;

(stop) Then wt i(f, ~T ) is true.

We can define from the predicate wt an algorithm that computes a valid type for a
function f if it exists, e.g. using Kildall’s algorithm [15]. (We can view type verification as
a kind of symbolic execution on stacks of types.) Moreover, we can prove that if the CFG
is a connected graph then there is at most one valid type. Then we can assign to every
instruction of f the size of its stack, and to every element of that stack a single type. As
an example, we give the type inferred for the functions tdble and xdble of type nat → nat :

tdble 1 : load 1 (nat) 5 : build s 1 (nat , nat , nat , nat)
2 : load 1 (nat , nat) 6 : jump 2 2 (nat , nat , nat , nat)
3 : branch s 7 (nat , nat , nat) 7 : load 2 (nat , nat , nat)
4 : load 2 (nat , nat , nat) 8 : return (nat , nat , nat , nat)

xdble 1 : load 1 (nat) 4 : call xdble 1 (nat , nat)
2 : build s 1 (nat , nat) 5 : return (nat , nat)
3 : build s 1 (nat , nat)

and the type inferred for the function sum : (nat , nat) → nat :
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1 : load 1 (nat , nat) 8 : load 1 (nat , nat , nat)
2 : branch s 8 (nat , nat , nat) 9 : branch s 12 (nat , nat , nat , nat)
3 : load 1 (nat , nat , nat) 10 : load 2 (nat , nat , nat , nat)
4 : load 2 (nat , nat , nat , nat) 11 : tcall sum 2 (nat , nat , nat , nat , nat)
5 : build s 1 (nat , nat , nat , nat , nat) 12 : load 2 (nat , nat , nat , nat)
6 : load 3 (nat , nat , nat , nat , nat) 13 : return (nat , nat , nat , nat , nat)
7 : jump 2 3 (nat , nat , nat , nat , nat , nat)

We can prove that the execution of a well-typed program never fails. For example, We
can prove a subject reduction property and follow an approach similar to the one used in
Section 3 to prove the validity of our size analysis. A similar proof may be found in [1] (we
just have to consider two additional cases for the instructions tcall and jump, which are
not problematic for typing purposes).

The type verification provides a bound on the length of the stacks during an execution
and we note hf,i the size of the stack ` in a frame (f, i, `)ρ of a well-typed configuration. In
the next section we show how to obtain a bound on the size of the computed values from
our size analysis. Together, these two information can already be used to reject programs
that compute arbitrarily large values but, to obtain a bound on the size needed for the
execution of a program, we also need to bound the maximal number of frames, which
usually necessitates a termination analysis.

3 Size Verification

We define a size verification based on the notion of quasi-interpretations [11]. This paper
makes two additional contributions to our previous works on resource certification [1, 2].
First, we are able to check programs whose CFG contains cycles, improving what was done
in previous work. Second, we propose a direct algorithm that depends only on solving a
set of arithmetical constraints, without resorting to an auxiliary shape analysis.

3.1 Quasi-interpretation

Quasi-interpretations have been defined by Marion et al. [11] to reason about the implicit
complexity of term rewriting systems. The idea is close to polynomial interpretation for
termination proofs: we assign to every function and constructor of a program a numerical
function bounding the size of the computed values. More formally, a quasi-interpretation
assigns to every identifier id in a program a function qid (with arity ar(id)) over the
non-negative rational numbers Q+ such that:

(1) if c is a constant then qc( ) = 0;

(2) if c is a constructor with arity n then qc(x1, . . . , xn) = d+ Σi∈1..nxi, where d > 1;
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(3) if f is a function with arity n then qf : (Q+)n → Q+ is monotonic and for all i ∈ 1..n
we have qf (x1, . . . , xn) > xi.

An assignment can be easily extended to functional expressions as follows: qx = x;
qc(e1,...,en) = qc(qe1

, . . . , qen
); and qf(e1,...,en) = qf (qe1

, . . . , qen
). Then an assignment is a valid

quasi-interpretation for a system of recursive function definitions if for all declarations
f(p1, . . . , pn) = e in the program, the inequality qf(p1,...,pn) > qe holds. For instance, if
we choose qs = 1 + x for the quasi-interpretation of the constructor in nat (by definition,
qz = 0) then qdble(x) = 2x is a valid quasi-interpretation for the function dble defined in
our examples: we have qdble(qz( )) > qz( ) and qdble(qs(x)) > qs(qs(qdble(x))). In general, a
quasi-interpretation provides a bound on the size of the computed values as a function of
the size of the input data. If f(v1, . . . , vn) ↘ v then |v| 6 qv 6 qf(|v1|, . . . , |vn|).

The problem of synthesizing quasi-interpretations (from a set of functional declarations)
is connected to the synthesis of polynomial interpretations for termination but it is generally
easier because inequalities do not need to be strict and small degree polynomials are often
enough. For instance, Amadio [3, 4] has considered the problem of automatically inferring
quasi-interpretations in the space of multi-variate max-plus polynomials.

In this paper, we define a similar notion of quasi-interpretation for bytecode programs.
Assume a function f of the bytecode program. An assignment associates to every check-
point i of f a polynomial expression qf,i with hf,i variables. We also use the notation qf
to denote the function qf,1 assigned to the entry point of f .

Like in the functional case, we require that each polynomial qf,i satisfies the hypotheses
for quasi-interpretations (properties (1)-(3) listed above). The machine-checkable certifi-
cates used in our size verification are quasi-interpretations, that is assignment of numerical
functions, in our case polynomial expressions, to instructions in the program. An advan-
tage of this approach is that quasi-interpretation can be synthesized at the source-code
level and verified at the bytecode level. We will not address synthesis issues in this paper
and we suppose that the bytecode comes with all the necessary types and size annotations.

For example the function tdble has two checkpoints, the nodes 1 and 2, with respective
types (nat) and (nat , nat), which means that htdble,1 = ar(tdble) = 1 and htdble,2 = 2.
Likewise, for the function sum, the reader can check that we have hsum ,1 = ar(sum) = 2
and hsum ,2 = 3. In the following we assume that the assignment for the function tdble is
qtdble,1(x1) = 2x1 and qtdble,2(y1, y2) = y1 + y2 and for the function sum is qsum ,1(x1, x2) =
x2

1 + x2 + 1 and qsum ,2(y1, y2, y3) = y1(y1 − 1) + y2 + y3 + 1. In the next section we prove
that there is no valid assignment for the function xdble.

¿From the discussion on the definition of sum, see Section 2.3, we could expect to have
the expression 1

2
|x1|(|x1| + 1) + |x2| assigned to the first checkpoint of sum. While it is

actually possible to use this more precise bound, we have chosen the current assignment
in order to show that it is not necessary to find the quasi-interpretation giving the best
bound for the verification to work.
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3.2 Size Analysis

We show how to check the validity of an assignment and to obtain a size bound from a
quasi-interpretation. Like the type verification, our size verification associates to every
bytecode instruction an abstraction of the stack at the time it is executed. In this case,
the abstraction is a combination of a sequence of size variables, which stands for the best
size bounds we can obtain, together with arithmetic constraints between these variables.
Contrary to the size verification defined in [1], we directly infer a size bound, without
using an auxiliary “shape verification” (that is a static analysis which provides partial
informations on the structure of the elements in the stack). The advantage of a direct
approach is to get rid of the restrictions imposed by the shape analysis, especially: (1)
that the CFG of functions must be a tree and (2) that along each execution path, we must
not have a branch instruction after a call instruction.

We suppose that the bytecode is well-typed, which means that we know the number
hf,i of elements on the stack before executing the instruction f [i]. We associate to each
checkpoint i of the function f : (1) a sequence of fresh (size) variables ~xf,i =def (x1, . . . , xhf,i

)
and (2) a polynomial expression qf,i with variables ~xf,i and coefficients in Q.

The size analysis is formally defined by the predicate wsz i(f, ~S, ~Φ) given in Table 2.

The definition of wsz i(f, ~S, ~Φ) is by case analysis on the instruction f [i] and expresses that
(1) the size of every element on the stack at instruction i is bounded by the expression
qf,PCi

(~xf,PCi
), and (2) the quasi-interpretations decrease every time we pass a new check-

point. We say that the size analysis is successful if there are two sequences ~S = (S1, . . . , S|f |)

and ~Φ = (Φ1, . . . ,Φ|f |) such that wsz i(f, ~S, ~Φ) for all i ∈ 1..|f |, and Si = ~xf,i and Φi = ∅ if

i is a checkpoint of f . We note this relation wsz (f, ~S, ~Φ).
The size analysis is compositional (we only need to analyze each functions separately)

and always terminates (since every instruction is visited at most once). The size analysis
for a function f associates to every instruction i of f a sequence of variables of size hf,i,
denoted Si, and a set of constraints between linear combinations of these variables, denoted
Φi. Intuitively, the kth variable of Si is a bound on the size of the kth element of the
execution stack when the instruction f [i] is executed, while Φi contains valid constraints
between the bounds. For example, if f [i] = load k and Si = (x1, . . . , xn) we impose that
Si+1 = Si ·x and that Φi+1 implies x = xk, meaning that we add a value on top of the stack
`, whose size is bounded by xk, our best known bound on the size of the kth value in `.
The analysis generates also a set of proof obligations, ψsucc , ψcall , . . . which are arithmetic
formulas that should be checked in order to prove the validity of the size certificates (i.e.
the quasi-interpretation). We say that the formula Φ ⇒ p(~x) > q(~y) with free size variables
~y is a tautology if for all valuation σ from ~y to positive natural numbers such that σ(Φ) is
true then the inequality σ(p(~x) > σ(q(~y)) is true.

3.2.1 Examples

We show the result of the size analysis for our running example, tdble . We give in front of
each instruction the size stack Si and the constraint Φi such that wsz (f, ~S, ~Φ). Then we
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Table 2: Size Analysis (wsz i(f, ~S, ~Φ))

Let j = PCi be the checkpoint of i. Case f [i] of:

(load k) let xk be the kth variable of Si, and x a fresh size variable. If Control(i+ 1) then

wsz i(f, ~S, ~Φ) iff the formula ψsucc =def

(

Φi ∧ x = xk

)

⇒
(

qf,j(~xf,j) > qf,i+1(Si · x)
)

is a

tautology. Otherwise wsz i(f, ~S, ~Φ) iff
(

Si+1 = Si · x
)

and
(

Φi+1 = Φi ∧ x = xk

)

.

(build c n) Assume n = ar(c) and Si = S ′ · (x1, . . . , xn), and let x0 be a fresh size variable.
First we check the validity of ψbuild =def Φi ⇒

(

qf,j(~xf,j) > qc(x1, . . . , xn)
)

.

If Control(i+ 1) then wsz i(f, ~S, ~Φ) iff the formula ψsucc =def

(

Φi ∧ x0 = qc(x1, . . . , xn)
)

⇒
(

qf,j(~xf,j) > qf,i+1(S
′ · x0)

)

is a tautology. Otherwise wsz i(f, ~S, ~Φ) iff
(

Si+1 = S ′ · x0

)

and
(

Φi+1 = Φi ∧ x0 = qc(x1, . . . , xn)
)

.

(branch c k) Assume n = ar(c) and Si = S ′ · x0, and let x1, . . . , xn be fresh size variables.

The predicate wsz i(f, ~S, ~Φ) is true iff the following two conditions are true (one condition
for each successor of i in f).

(C1) if Control(i+ 1) then ψthen =def

(

Φi ∧ x0 = qc(x1, . . . , xn)
)

⇒
(

qf,j(~xf,j) > qf,i+1(S
′ ·

(x1 . . . xn))
)

is a tautology otherwise
(

Si+1 = S ′ · (x1 . . . xn)
)

and
(

Φi+1 = Φi ∧ x0 =
qc(x1, . . . , xn)

)

.

(C2) if Control(k) then ψelse =def Φi ⇒
(

qf,j(~xf,j) > qf,k(Si)
)

is a tautology otherwise
(

Sk = Si

)

and
(

Φk = Φi

)

.

(call g n) Assume n = ar(g) and Si = S ′ · (x1, . . . , xn) and let x0 be a fresh size variable.
First we check the validity of ψcall =def Φi ⇒

(

qf,j(~xf,j) > qg,1(x1, . . . , xn)
)

.

If Control(i+1) then wsz i(f, ~S, ~Φ) iff the formula ψsucc =def

(

Φi ∧x0 6 qg,1(x1, . . . , xn)
)

⇒
(

qf,j(~xf,j) > qf,i+1(S
′ · x0)

)

is a tautology. Otherwise wsz i(f, ~S, ~Φ) iff
(

Si+1 = S ′ · x0

)

and
(

Φi+1 = Φi ∧ x0 6 qg,1(x1, . . . , xn)
)

.

(tcall g n) Assume n = ar(g) and Si = S ′ · (x1, . . . , xn) and let x0 be a fresh size variable.

The predicate wsz i(f, ~S, ~Φ) is true iff the formula ψtcall is valid, where ψtcall =def Φi ⇒
(

qf,j(~xf,j) > qg,1(x1, . . . , xn)
)

.

(jump k n) Assume Si = S ′ · (x1, . . . , xn). If Control(k) then wsz i(f, ~S, ~Φ) iff the formula

ψsucc =def Φi ⇒
(

qf,j(~xf,j) > qf,k(x1 . . . xn)
)

is a tautology. Otherwise wsz i(f, ~S, ~Φ) iff
(

Sk = (x1, . . . , xn)
)

and
(

Φk = Φi

)

.

(stop or return) Then the predicate wsz i(f, ~S, ~Φ) is true.
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check the validity of the various auxiliary conditions: there is one condition to prove each
time the successor of an instruction is a checkpoint and one condition to prove for each
build, call and tcall instruction.

1 : load 1 x1 ∅
2 : load 1 y1 y2 ∅
3 : branch s 7 y1 y2 z1 (z1 = y1)
4 : load 2 y1 y2 z2 (z1 = y1) ∧ (z1 = z2 + 1)
5 : build s 1 y1 y2 z2 z3 (z1 = y1) ∧ (z1 = z2 + 1) ∧ (z3 = y2)
6 : jump 2 2 y1 y2 z2 z4 (z1 = y1) ∧ (z1 = z2 + 1) ∧ (z3 = y2) ∧ (z4 = z3 + 1)
7 : load 2 y1 y2 z1 (z1 = y1)
8 : return y1 y2 z1 z5 (z1 = y1) ∧ (z5 = y2)

We need to check three proof obligations in the size verification of tdble. The first
formula corresponds to the build instruction ψ5 = Φ5 ⇒

(

qtdble ,2(y1, y2) > qs(z3)
)

. The two
others formulas correspond to the possible transitions to checkpoint 2 (from instructions
1 and 6) which gives ψ1 =def Φ1 ⇒

(

qtdble,1(x1) > qtdble,2(x1, x1)
)

and ψ6 =def Φ6 ⇒
(

qtdble,2(y1, y2) > qtdble,2(z2, z4)
)

. Once simplified, we can easily show that these constraints
are valid: ψ5 is equivalent to (z1 = y1)∧ (z1 = z2 + 1)∧ (z3 = y2) ⇒ y1 + y2 > z3 +1, while
ψ1 ≡ 2x1 > x1 + x1 and ψ6 ≡ (y1 = z2 + 1) ∧ (z4 = y2 + 1) ⇒ (y1 + y2 > z2 + z4).

We can also check that the function xdble, our example of malicious code, does not
succeed the size analysis. Let us consider the proof obligations generated in the analysis
of the function:

1 : load 1 x1 ∅
2 : build s 1 x1 x2 x2 = x1

3 : build s 1 x1 x3 x2 = x1 ∧ x3 = x2 + 1
4 : call xdble 1 x1 x4 x2 = x1 ∧ · · · ∧ x4 = x3 + 1
5 : return x1 x5 x2 = x1 ∧ · · · ∧ x5 6 qxdble,1(x4)

The condition corresponding to instruction 4, the only call instruction, is Φ[4] ⇒
qxdble,1(x1) > qxdble,1(x4), that is equivalent to x4 = x1 + 2 ⇒ qxdble ,1(x1) > qxdble,1(x4),
which is obviously not satisfiable since qxdble,1(x) is monotone.

To conclude this section, we study the result of the size verification for the function
sum : (nat , nat) → nat , see Table 3.

We need to check the validity of proof obligations for instructions 1 and 7 (the successor
is a checkpoint), 5 (it is a build) and 11 (it is a tcall). We obtain one arithmetic formula
ψi to check for each instruction i ∈ {1, 5, 7, 11}, with:

ψ1 ≡ qsum ,1(x1, x2) > qsum,2(x1, x2, x1)
ψ5 ≡ (z3 = y2) ⇒ qsum,2(y1, y2, y3) > qs(z3)
ψ7 ≡ (z2 = y1) ∧ (z4 = y2 + 1) ∧ (z5 + 1 = y3) ⇒ qsum,2(y1, y2, y3) > qsum ,2(z2, z4, z5)
ψ11 ≡ (z8 = y2) ∧ (z7 + 1 = y1) ⇒ qsum ,2(y1, y2, y3) > qsum,1(z7, z8)
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Table 3: Size Verification for sum : (nat , nat) → nat

1 : load 1 (x1, x2) ∅
2 : branch s 8 (y1, y2, y3) ∅
3 : load 1 (y1, y2, z1) (y3 = z1 + 1)
4 : load 2 (y1, y2, z1, z2) (y3 = z1 + 1) ∧ (z2 = y1)
5 : build s 1 (y1, y2, z1, z2, z3) (y3 = z1 + 1) ∧ (z2 = y1) ∧ (z3 = y2)
6 : load 3 (y1, y2, z1, z2, z4) (y3 = z1 + 1) ∧ · · · ∧ (z3 = y2) ∧ (z4 = z3 + 1)
7 : jump 2 3 (y1, y2, z1, z2, z4, z5) (y3 = z1 + 1) ∧ · · · ∧ (z4 = z3 + 1) ∧ (z5 = z1)
8 : load 1 (y1, y2, y3) ∅
9 : branch s 12 (y1, y2, y3, z6) (z6 = y1)
10 : load 2 (y1, y2, y3, z7) (z6 = y1) ∧ (z6 = z7 + 1)
11 : tcall sum 2 (y1, y2, y3, z7, z8) (z6 = y1) ∧ (z6 = z7 + 1) ∧ (z8 = y2)
12 : load 2 (y1, y2, y3, z6) (z6 = y1)
13 : return (y1, y2, y3, z6, z9) (z6 = y1) ∧ (z9 = y2)

These formulas may be simplified to obtain the system of inequations given below, which
is trivially satisfiable (the value of size variables range over N+). Hence the function sum
is well-sized.

ψ1 ≡ x2
1 + x2 + 1 > x1(x1 − 1) + x2 + x1 + 1

ψ5 ≡ y1(y1 − 1) + y2 + y3 + 1 > y2 + 1
ψ7 ≡ y1(y1 − 1) + y2 + (z5 + 1) + 1 > y1(y1 − 1) + (y2 + 1) + z5 + 1
ψ11 ≡ (z7 + 1)z7 + y2 + y3 + 1 > z2

7 + y2 + 1

3.2.2 Extracting Size-Bounds from the Size-Analysis

Next, we prove that if the size analysis returns a solution for all the functions of a program,
then we can extract a bound on the size of the values computed during the execution. In or-
der to prove this property, we extend the predicate wsz to frames and then configurations of
the virtual machine. Assume wsz (f, ~S, ~Φ) and let ρ be the annotation (g(`o), k, (v1 . . . vn)).
We say that the frame (f, i, `)ρ is well-sized if qf,k(qv1

, . . . , qvn
) bounds the size of all the

values in ` and if the constraint Φi is verified when we replace the variables of Si by the
quasi interpretation of the corresponding values in ` and the variables of ~xf,k by the values

qv1
, . . . , qvn

. We denote this last property (f, i, `)ρ |= (~S, ~Φ). Then we say that the configu-
ration M is well-sized if all the frames in M are well-sized and if the quasi-interpretations
of the checkpoints decrease, see the table below which defines the relation wsz (M). We
introduce some auxiliary notations to help us to define this relation formally. Assume
wsz (f, ~S, ~Φ) and let (f, i, `)ρ be a frame such that ρ is the annotation (g(`o), k, `c). Assume
`o = (u1, . . . , un) and `c = (u′1, . . . , u

′
m). We define the two expressions q̂(ρ) and q(f, ρ)

as follows: q̂(ρ) =def qg,1(qu1
, . . . , qun

) and q(f, ρ) =def qf,k(qu′

1
, . . . , qu′

m
). The value of q̂(ρ)
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denotes the best size bound known when the frame is initialized, while q(f, ρ) denotes the
best size bound known when we reached the last checkpoint. Let ` = (v1, . . . , vn) be a
sequence of values and ~x = (x1, . . . , xn) a sequence of variables of the same length. We

write
[

`/~x

]

|| the substitution
[

qv1/x1

]

. . .
[

qvn/xn

]

. The constraint ~Φ is true for the frame

(f, i, `)ρ, denoted (f, i, `)ρ |= (~S, ~Φ) iff the constraint Φi

[

`/Si

]

||
[

`c/~xf,k

]

|| is valid.

Well-Sized Configurations: wsz (M)

wsz(f, ~S, ~Φ)

(f, pc, `)ρ |= (~S, ~Φ) ` = (v1, . . . , vn)
q̂(ρ) > q(f, ρ) > |vi| i ∈ 1..n

wsz(f, pc, `)ρ

M ≡ (f1, i1, `1)ρ1
. . . (fm, im, `m)ρm

`ok = arg(M, k + 1) wsz (fk, ik, `k · `
o
k)ρk

wsz(fm, im, `m)ρm
q(fj, ρj) > q(fj+1, ρj+1)

k ∈ 1..m− 1 j ∈ 1..m− 1

wsz(M)

We can show that the predicate wsz is preserved by reduction.

Theorem 1 (Preservation) If wsz(M) and M →M ′ then wsz(M ′).

Proof. By induction on the derivation of M →M ′, see Appendix A. �

A corollary of this result is that for every program succeeding the size analysis, if the
initial configuration (f, 1, (v1 . . . vn)) is well-sized then the values computed during the
execution are bounded by qf(qv1

, . . . , qvn
).

Theorem 2 (Size Bound) Assume f is a function in a program that succeeds the size
analysis. If the initial configuration (f, 1, (v1 . . . vn)) reduces to M then for all value v
occurring in a frame of M we have |v| 6 qf(qv1

, . . . , qvn
).

Proof. Let ` be a stack of the form (v1, . . . , vn). By hypothesis we have (f, 1, `)ρ →∗ M
with ρ = (f(`), 1, `) and M ≡ (f1, i1, `1)ρ1

. . . (fm, im, `m)ρm
, where ρ1 is of the form

(f(`), PCi1, `
1
c). By Theorem 1 we have that M is well-sized, that is wsz(M). Hence (1)

q(fj, ρj) > q(fj+1, ρj+1) for all j ∈ 1..m− 1 and (2) wsz(fk, ik, `k · `
o
k)ρk

for all k ∈ 1..m− 1
and wsz (fm, im, `m)ρm

. By property (2) and definition of the predicate wsz on frames,
|v| 6 q(fk, ρk) 6 q̂(ρk) for all value v occurring in the kth frame of M and by property (1)
we obtain that |v| 6 q(f1, ρ1) 6 q̂(ρ1) = qf(qv1

, . . . , qvn
), as needed. �

4 Solving Size Constraints

Size verification generates a system of auxiliary arithmetical constraints that we need to
solve. On the whole, each constraint is of the form Φ ⇒ p(~x) 6 q(~y), where Φ is a
conjunction of equality and inequality constraints (see the discussion below) and p, q are
polynomial expressions with coefficients in Q. A constraint is generated for each build,
call and tcall instruction and for each transition from an instruction to a checkpoint.
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In this section we study the problem of checking the validity of these constraints and show
that we can always reduce to the problem of checking the sign of a polynomial expression.

We start by partitioning the set V of all size variables used in the size verification. We
define the sets Vload, Vbuild, Vbranch and Vcall of variables that were introduced respectively
when checking a load, build, branch and a call or a tcall instruction. We also define
the set Vo of all variables associated to checkpoints. To simplify our result, we assume
that branch instructions never act on variables in Vbuild (and transitively on variables
introduced by a load instruction that corresponds to a variable of Vbuild). Intuitively,
this corresponds to forbid cases where a branch instruction is applied to a value whose
head constructor is known at compile time (indeed it is possible to trace back the build

instruction that created it). A consequence of this assumption is to avoid “dead-code”, i.e.
a part of the code that cannot be reached during an execution.

A brief inspection of the definition of wsz shows that the proof obligations generated
during the size analysis are all of the form Φ ⇒ qf(~xf ) > qg(y1, . . . , yn), where ~xf is a
vector of fresh variables and Φ is a conjunction of atoms of the form:

(Load) y = x where y ∈ Vload
(Build) y =

∑

i∈I xi + d where y ∈ Vbuild, and d > 1
(Branch)

∑

i∈I yi + d = x where yi ∈ Vbranch for all i ∈ I and d > 1
(Call) y 6 q(x1, . . . , xn) where y ∈ Vcall and q is a polynomial expression

with the properties of quasi-interpretations.

We can solve this kind of constraints using the following simple steps:

1. first, we eliminate the variables of Vload and Vbuild by substitution. This step elim-
inates the constraints of type (Load) and (Build). The system resulting after this
step is made up of (Branch) and (Call) constraints and all the remaining variables
are in V \ (Vload ∪ Vbuild) ;

2. then we use the hypothesis that we never apply a branch instruction on a value
introduced by a build. So we can replace every (Branch) constraint by a simple
substitution. Hence all the constraints of the resulting system are of type (Call) with
variables in Vo ∪ Vcall ;

3. We are left to check an inequality of the form σ(g(y1, . . . , yn)) 6 σ(f(~xf )) where σ
is the substitution obtained after the first two steps. By construction they are no
variables of Vcall in σ(f(~xf)). Let C1, . . . , Cm be the remaining (Call) constraints.
For every i ∈ 1..m the constraint Ci is of the kind zi 6 p(~ai). Since there are no
variables of Vcall in σ(f(~xf)) we can simply check the inequality after replacing the
occurrences of zi by the expression p(~ai) (since we work with quasi-interpretation the
function p is monotone). Hence it is equivalent to check the sign of the (polynomial)
expression:

(

f(~xf ) − g(y1, . . . , yn)
)

(σ ◦
[

p(~ai)/zi

]

i∈1..m) .

We show how to apply this solving procedure in the case of the function sum (see the
example size verification of Section 3.2.1). More precisely, we study the proof obligation
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generated for the verification of the tcall instruction 11. We annotate every sub-constraint
with the name of the bytecode instruction that introduced it:

(load) (branch) (load)
(z6 = y1) ∧ (z6 = z7 + 1) ∧ (z8 = y2) ⇒ y1(y1 − 1) + y2 + y3 + 1 > z2

7 + z8 + 1

The resolution of the system gives the following trace. Step 1, elimination of load and
build constraints:

(branch)
(y1 = z7 + 1) ⇒ y1(y1 − 1) + y2 + y3 + 1 > z2

7 + y2 + 1

Then step 2, elimination of branch constraints (there are no third step since we have no
call constraints in this example), leads to the inequation (z7+1)z7+y2+y3+1 > z2

7 +y2+1,
that is testing the sign of the expression z7 + y3.

5 Future and Related work

Ensuring bounds on the resources needed for executing a program is a critical safety prop-
erty. In this paper, we define a new “size analysis” and show how to derive a bound
on the size of the values computed by a program. This method has several advantages.
The size-bound obtained with our approach is a polynomial expression on the size of the
input parameters of the program. Also, programs can be analyzed incrementally (each
function is analyzed separately), at the level of the bytecode. These characteristics are
particularly interesting in the context of mobile code applications, in which programs can
be dynamically loaded from untrusted, possibly malicious sites.

The problem of bounding computational resources has already attracted considerable
attention. Many works have focused on (first-order) functional languages starting from
Cobham’s characterization of polynomial time functions by bounded recursion on nota-
tion [6]. Following works, see e.g. [5, 8, 9], have developed various inference techniques
that allow for efficient analyses while capturing a sufficiently large range of practical algo-
rithms. None of these works have been applied to bytecode languages. Actually, most of
the researches on bytecode verification tends to concentrate on the integrity of the execu-
tion environment. We have presented in [1] a virtual machine and a corresponding bytecode
for a first-order functional language and shown how size and termination annotations can
be formulated and verified at the level of the bytecode. In this paper, we extend this
language with instructions for “tail recursive” calls and unconditional jumps, which are
vital to implement common program optimizations. In particular, we can analyze bytecode
sequences whose control flow graph includes cycles, whereas the size analysis defined in [1]
can only handle tree shaped control flow graphs. Work on resource bounds for “Java-like”
bytecode languages is carried out in the MRG project [14]. One main technical difference
is that they rely on a general proof carrying code approach while we follow a Typed Assem-
bly Language (TAL) approach. Also, their analysis focuses on the size of the heap while
we only consider stack allocated values. Crary and Weirich [7] define a TAL for resource

20



bound certification. Their approach is based on a dependent type-system where types
include a “resource skeleton”, that is a set of functions (expressed in a ML-like language)
computing the resource behavior of the program. Resource skeleton cannot be inferred
and should be written by the programmer. Another related work is due to Marion and
Moyen [12] who define a resource analysis for counter machines by reduction to a certain
type of termination in Petri Nets. Their virtual machine is much more restricted than the
one studied here: natural numbers is the only data type and the stack can only contain
return addresses.

We are currently experimenting with the automatic derivation of quasi-interpretation
at the bytecode level. At the moment, we only have methods to infer quasi-interpretations
(with max-plus polynomials) from functional code [4]. Plans for future works also include
extending our approach to a more complicated virtual machine, e.g. with support for
objects (as in the Java Virtual Machine), heap references or subroutines.
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[13] G. Morriset, D. Walker, K. Crary and N. Glew. From system F to typed assembly
language. In ACM Transactions on Programming Languages and Systems, 21(3):528-
569, 1999.

[14] D. Sannella. Mobile Resource Guarantee. IST-Global Computing research project,
2001. http://www.dcs.ed.ac.uk/home/mrg/.

[15] G. Kildall. A unified approach to global program optimization. In Proc. POPL ’73 –
Principles of Programming Languages. ACM Press, 1973.

[16] G Necula. Proof-carrying code. In Proc. of POPL ’97 – Principles of Programming
Languages. ACM Press, 1997.

[17] M. Tofte and J.-P. Talpin. Region-Based Memory Management. In Information and
Computation, 132(2):109–176, 1997.

22



A Proof of Preservation Theorem

This section is devoted to the proof of the main technical result of this paper, which is a
subject reduction property for well-sized programs.

Theorem 1 (Preservation) If wsz (M) and M → M ′ then wsz (M ′).

The proof of Theorem 1 is by induction on the transition M → M ′. Let M ≡
(f1, i1, `1)ρ1

· . . . · (fm, im, `m)ρm
. Since we deal with well-sized functions, there are ~S and ~Φ

such that wsz (fm, ~S, ~Φ). We proceed by case analysis on the last reduction rule applied.

(Load) If fm[im] = load k then M ′ ≡ (f1, i1, `1)ρ1
· . . . · (fm, im + 1, `m · v)ρ′m

where
v = `m[k]. To prove wsz (M ′), we only have to show that wsz (fm, im + 1, `m · v)ρ′m

and
q(fm, ρm) > q(fm, ρ

′
m), since the remaining of the configuration is left unchanged. Note

that, by construction, we have q̂(ρm) = q̂(ρ′m) (the value of q̂ is constant for the lifetime of
the frame).

If im + 1 is not a checkpoint then ρm = ρ′m and so q(fm, ρm) = q(fm, ρ
′
m). Using the

hypothesis we have wsz (fm, im, `m)ρm
which implies qfm

(ρm) > |v| and (fm, im, `m)ρm
|=

(~S, ~Φ). By definition, Si+1 = Si · x and Φi+1 = Φi ∧ (x = xk). Consequently, (fm, im +

1, `m · v)ρ′m
|= (~S, ~Φ) and as q̂(ρm) = q̂(ρ′m), we easily obtain wsz (fm, im + 1, `m · v)ρ′m

, as
needed.

Now suppose that im + 1 is a checkpoint. Let j be the checkpoint associated to im
(j = PCim) and xk be the kth variable of Sim . The annotations ρm and ρ′m are of the form
ρm = (g(`om), j, `jm) and ρ′m = (g(`om), im + 1, `m · v). By property of quasi-interpretations,
we have that qfm,im+1(y1, . . . , yh) > yi for all i ∈ 1..h and qv > |v| for all value v. Hence,

q(fm, ρ
′
m) > qv′ > |v′| for all value v′ in `m · v. Moreover, the condition (f, i, `)ρ |= (~S, ~Φ)

is always true when i is a checkpoint of f since by definition we have Φi = ∅ in this
case. So we have wsz(fm, im + 1, ` · v)ρ′m

. It remains to prove that q(fm, ρm) > q(fm, ρ
′
m).

As (fm, im, `m)ρm
is well-sized we have (fm, im, `m)ρm

|= (~S, ~Φ), which implies that the
constraint (Φim)

[

`m/Sim

]

||
[

`
j
m/~xfm,j

]

|| is satisfied. Since fm is well-sized and im + 1 is a

checkpoint, the condition ψsucc =def

(

Φim ∧x = xk

)

⇒
(

qfm,j(~xfm,j) > qfm,im+1(Sim ·x)
)

is a

tautology. By applying the substitutions
[

`m/Sim

]

||,
[

`m[k]/x

]

|| and
[

`
j
m/~xfm,j

]

|| to ψsucc and
simplifying the left part of the implication we obtain the following inequation, as needed:

q(fm, ρm) = qfm,j(~xfm,j)
[

`
j
m/~xfm,j

]

||

> qfm,im+1(Sim · x)
[

`m/Sim

]

||
[

`m[k]/x

]

|| = q(fm, ρ
′
m) .

(Call) If fm[im] = call g n then we have M ′ ≡ (f1, i1, `1)ρ1
· . . . · (fm, im, `

′
m)ρm

· (g, 1, `)ρ,
where n is the arity of g, and ` = (v1, . . . , vn) is the only sequence of size n such that
`m = `′m ·`. Moreover the annotation ρ is equal to (g(`), 1, `) (since 1 is always a checkpoint
instruction). We need to prove that wsz(g, 1, `)ρ and q(fm, ρm) > q(g, ρ) since the other
frames of the configuration are left unchanged.

We start by proving wsz (g, 1, `)ρ. First note that we obviously have q̂(g, ρ) = q(g, ρ)

because ρ = (g(`), 1, `). Since g is well-sized, there are ~S ′ and ~Φ′ such that wsz (g, ~S ′, ~Φ′).
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Moreover, by property of quasi-interpretations, we easily obtain q(g, ρ) > |vi| for all i ∈

1..n. Finally, Φ′
1 = ∅ because 1 is a checkpoint of g and so the condition (g, 1, `)ρ |= (~S ′, ~Φ′)

is true.
Next, we prove that q(fm, ρm) > q(g, ρ). The annotation ρm is of the form (h(`om), j, `jm),

where j is the checkpoint of im in fm. By hypothesis, we have wsz(fm, im, `m)ρm
and there-

fore (fm, im, `m)ρm
|= (~S, ~Φ), which implies that Φim

[

`m/Sim

]

||
[

`
j
m/~xfm,j

]

|| is valid. Since fm

is well-sized and fm[im] is a call instruction, the condition ψcall =def

(

Φim ⇒ qfm
(~xfm,j) >

qg(x1, . . . , xn)
)

, where x1, . . . , xn are the n last variables of the sequence Sim, is a tautology.

By applying the substitutions
[

`m/Sim

]

|| and
[

ρ
j
m/~xfm,j

]

|| to ψcall and simplifying the left
part of the implication we obtain the following inequation, as needed:

q(fm, ρm) = qfm,j(~xfm,j)
[

`
j
m/~xfm,j

]

||

> qg(x1, . . . , xn)
[

`m/Sim

]

||

= qg(qv1
, . . . , qvn

) = q(g, ρ) .

(Return) If fm[im] = return then M ′ ≡ (f1, i1, `1)ρ1
· . . . · (fm−1, im−1 + 1, `m−1 · v0)ρ′m−1

where `m ≡ `′m · v0. We need to show that the relations wsz(fm−1, im−1 + 1, `m−1 · v0)ρ′m−1

and q(fm−1, ρm−1) > q(fm−1, ρ
′
m−1) hold.

The function fm−1 is well-sized, so there are ~S ′ and ~Φ′ such that wsz(fm−1, ~S
′, ~Φ′). By

definition of the reduction relation, we have that fm−1[im−1] must be of the form call f n
where n = ar f . Moreover, if we assume arg(M,m) = (v1 . . . vn) then q̂(ρm) = qf (qv1

. . . qvn
).

Note that, it could be the case that f 6= fm because of tcall instructions. We have two
different cases, according to whether im−1 + 1 is a checkpoint or not.

If im−1 + 1 is not a checkpoint then ρm−1 = ρ′m−1 and therefore q(fm−1, ρm−1) =
q(fm−1, ρ

′
m−1). As we obviously have q̂(ρm−1) = q̂(ρ′m−1), we are left to prove that (1)

q(fm−1, ρ
′
m−1) > |v0| and (2) (fm−1, im−1 + 1, `m−1 · v0)ρm−1

|= (~S ′, ~Φ′).
Since (fm, im, `m)ρm

is a well-sized frame, we have that q(fm, ρm) > |v0|, and since M
is well-sized we have that q(fm−1, ρm−1) > q(fm, ρm). Therefore relation (1) is correct.

It remains to show that we have (fm−1, im−1 + 1, `m−1 · v0)ρm−1
|= (~S ′, ~Φ′). Since

fm−1[im−1] = call f n, we have that ~Φ′[im−1 + 1] = ~Φ′[im−1] ∧ (x0 6 qf(x1, . . . , xn))
where the variables (xi)i∈0..n are such that S ′

im−1+1 = S ′′ · x0 and S ′
im−1

= S ′′ · (x1 . . . xn).

Moreover, we have that (fm−1, im−1, `m−1 · (v1 . . . vn))ρm−1
|= (~S ′, ~Φ′). Hence we need to

prove the inequation (x0 6 qf (x1, . . . , xn))
[

qv0/x0

]

. . .
[

qvn/xn

]

is valid, which reduces to
qf (qv1

, . . . , qvn
) > qv0

.
Assume ρm−1 is the annotation (gm−1(`

o
m−1), j, `

j
m−1). If im−1 + 1 is a checkpoint, then

ρ′m−1 is of the form (gm−1(`
o
m−1), im−1 +1, `m−1 · v0). Whenever i is a control point we have

Φi = ∅ and q(f, ρ) = q̂(ρ). Like in the case for (Load), the only “non-trivial” condition
left to prove is q(fm−1, ρ

′
m−1) 6 q(fm−1, ρm−1) . Since fm−1 is well-sized and im−1 + 1 is

a checkpoint, the condition ψsucc =def

(

Φim−1
∧ x0 6 qf (x1, . . . , xn) ⇒ qfm−1,j(~xfm−1,j) >

qfm−1,im−1+1(S
′′ · x0)

)

is a tautology. If we apply the substitutions
[

`′m−1/ ~S′′

]

||,
[

v0/x0

]

||

and
[

`
j
m−1/~xfm−1,j

]

|| to ψsucc we get (we use (fm−1, im−1, `m−1 · (v1 . . . vn))ρm−1
|= (~S ′, ~Φ′) to
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simplify the left part):

q(fm−1, ρm−1) = qfm−1,j(~xfm−1,j)
[

`
j
m−1/~xfm−1,j

]

||

> qfm−1,im−1+1(S
′′ · x0)

[

`′m−1/ ~S′′

]

||
[

v0/x0

]

|| = q(fm−1, ρ
′
m−1).

(BranchThen) If fm[im] = branch c j and the branch instruction succeeds then M ′ ≡
(f1, i1, `1)ρ1

· . . . · (fm, im + 1, `′m · (v1, . . . , vn))ρ′m
with `m = `′m · v0, v0 = c(v1, . . . , vn) and

q̂(ρm) = q̂(ρ′m). We need to show that wsz(fm, im + 1, `′m · (v1, . . . , vn))ρ′m
and q(fm, ρm) >

q(fm, ρ
′
m) since the remaining of the configuration is unchanged.

If i+ 1 is not a checkpoint then ρm = ρ′m and so q(fm, ρm) = q(fm, ρ
′
m). By hypothesis

we have wsz(fm, im, `m)ρ which implies (fm, im, `m) |= (~S, ~Φ) and q(fm, ρm) > |v0|, and by
definition the size of v0 is equal to |v1|+· · ·+|vn|+1. Consequently q(fm, ρ

′
m) = q(fm, ρm) >

|vi| for all i ∈ 1..n. Moreover if Si is of the form S ′ · x0 then we have Si+1 = S ′ · (x1 . . . xn)

and Φi+1 = Φi ∧x0 = qc(x1, . . . , xn). We easily get (fm, im +1, `′m · (v1, . . . , vn))ρ′m
|= (~S, ~Φ)

and so wsz(fm, im + 1, `′m · (v1, . . . , vn))ρ′m
.

If i+1 is a checkpoint then assume ρm = (gm(`om), k, `km) and ρ′m = (gm(`om), im +1, `′m ·
(v1, . . . , vn)). We only need to show q(fm, ρm) > q(fm, ρ

′
m). As the function fm is well sized,

the condition ψthen =def

(

Φi ∧ x0 = qc(x1, . . . , xn)
)

⇒
(

qf,k(~xf,k) > qf,i+1(S
′ · (x1 . . . xn))

)

is a tautology. Moreover (fm, im, `m)ρm
is well-sized, so we have (fm, im, `m)ρm

|= (~S, ~Φ),
which implies that the constraint (Φim)

[

`m/Sim

]

||
[

`k
m/~xfm,k

]

|| is valid. By applying the sub-

stitutions
[

`m/Sim

]

||,
[

`k
m/~xfm,k

]

|| and
[

qvi/xi

]

for i = 0 to n this condition reduces to the
following inequation, as needed:

q(fm, ρm) = qfm,k(~xf,k)
[

`k
m/~xfm,k

]

||

> qfm,im+1(S
′ · (x1 . . . xn))

[

`m/Sim

]

||
[

qv1/x1

]

. . .
[

qvn/xn

]

= q(fm, ρ
′
m).

(BranchElse) If fm[im] = branch c j and the branch instruction fails then M ′ ≡
(f1, i1, `1)ρ1

· . . . · (fm, j, `m)ρ′m
and q̂(ρm) = q̂(ρ′m). (Since M is well-formed we know that

j ∈ 1..|f |.) We need to check two conditions, namely wsz(fm, k, `m)ρ′m
and q(fm, ρm) >

q(fm, ρ
′
m).

If j is not a checkpoint then we have q(fm, ρm) = q(fm, ρ
′
m). Moreover, since the stack

is unchanged, we obviously obtain wsz(fm, j, `m)ρ′m
from the fact that wsz(fm, im, `m)ρ.

Assume ρm is the annotation (gm(`om), k, `km). If j is a checkpoint then we have ρ′m =
(gm(`om), j, `m) and the only non trivial condition to verify is q(fm, ρm) > q(fm, ρ

′
m). As

wsz(fm, im, `m)ρ, we have (fm, im, `m)ρm
|= (~S, ~Φ), which implies that the validity of

(Φim)
[

`m/Sim

]

||
[

`k
m/~xfm,k

]

||. Since the function is well sized, ψelse =def Φi ⇒
(

qfm,k(~xf,k) >

qfm,im+1
(Sim)

)

is a tautology. By applying the substitutions
[

`m/Sim

]

|| and
[

`k
m/~xfm,k

]

|| we
get q(fm, ρm) > q(fm, ρ

′
m).

(Remaining cases) The case where f [i] is a tcall or a build instruction is similar
to the case (Call)/(Return) and the case f [i] is a jump instruction is similar to the case
(BranchElse). Finally, the case f [i] = stop is obvious since in this case we have M ′ = error
which is always a well-sized configuration.
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