
246 Silvano Dal Zilio and Denis Lugiez

XML Schema, Tree Logic and Sheaves Automata

Silvano Dal Zilio? and Denis Lugiez

Laboratoire d’Informatique Fondamentale de Marseille
CNRS (UMR 6166) and Université de Provence

Abstract. XML documents, and other forms of semi-structured data,
may be roughly described as edge labeled trees; it is therefore natural to
use tree automata to reason on them. This idea has already been suc-
cessfully applied in the context of Document Type Definition (DTD), the
simplest standard for defining XML documents validity, but additional
work is needed to take into account XML Schema, a more advanced stan-
dard, for which regular tree automata are not satisfactory. In this paper,
we define a tree logic that directly embeds XML Schema as a plain sub-
set as well as a new class of automata for unranked trees, used to decide
this logic, which is well-suited to the processing of XML documents and
schemas.

1 Introduction

We describe a new class of tree automata, and a related logic on trees, with
applications to the processing of XML documents and XML schemas. XML doc-
uments, and other forms of semi-structured data [1], may be roughly described
as edge labeled trees. It is therefore natural to use tree automata to reason
on them and try to apply the classical connection between automata, logic and
query languages. This approach has already been followed by various researchers,
both from a practical and a theoretical point of view, and has given some no-
table results, especially when dealing with Document Type Definition (DTD),
the simplest standard for defining XML documents validity. A good example
is the XDuce system of Pierce, Hosoya et al. [9], a typed functional language
with extended pattern-matching operators for XML documents manipulation.
In this tool, the types of XML documents are modeled by regular tree automata
and the typing of pattern matching expressions is based on closure operations
on automaton. Another example is given by the hedge automaton theory [11],
an extension of regular tree automaton for unranked trees (that is, tree with
nodes of unfixed and unbounded degrees). Hedge automata are at the basis of
the implementation of RELAX-NG [6], an alternative proposal to XML Schema.
Various extension of tree automata [2] and monadic tree logic have also been used
to study the complexity of manipulating tree structured data but, contrary to
our approach, these work are not directly concerned with schemas and are based

? work partially supported by ATIP CNRS “Fondements de l’Interrogation des Donnes
Semi-Structures” and by IST Global Computing Profundis.

Robert Nieuwenhuis (Ed.): RTA 2003, LNCS 2706, pp. 246–263, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

XML Schema, Tree Logic and Sheaves Automata 247

on ordered content models. More crucially, several mentions to automata theory
appear in the XML specifications, principally to express restrictions on DTD
and Schemas in order to obtain almost linear complexity for simple operations.

Document type definitions are expressed in a language akin to regular expres-
sions and specify the set of elements that may be present in a valid document,
as well as constraining their order of occurrence. Nonetheless, the “document
types” expressible by means of DTD are sometimes too rigid and, for example,
a document may become invalid after permutation of some of its elements. A
new standard, XML Schema, has been proposed to overcome some of the limita-
tions of the DTD model. In particular, we can interpret XML schemata as terms
built using both associative and associative-commutative (AC) operators with
unbounded arity, a situation for which regular tree automata are not satisfactory.
Indeed, while regular tree automata constitute a useful framework, it has some-
times proved inadequate for practical purposes and many applications require
the use of an extended model. To the best of our knowledge, no work so far has
considered unranked trees with both associative and associative-commutative
symbols, a situation found when dealing with XML Schemata.

We propose a new class of tree automata, named sheaves automata, for deal-
ing with XML documents and schema. We believe it is the first work on automata
theory applied to XML that consider the &-operator. By restricting our study to
deterministic automata, we obtain a class of recognizable languages that enjoys
good closure properties and we define a related modal logic for documents that
is decidable and exactly matches the recognizable languages. A leading goal in
the design of our logic is to include a simplified version of XML Schema as a
plain subset.

The content of this paper is as follows. We start by defining the syntax of
XML documents and XML schema. A distinctive aspect of our simplified schema
language is to include the operator &. In Sect. 4, we present a tree logic intended
for querying XML documents. This logic can be interpreted as a direct extension
of the schema language with logical operators. The logic deliberately resembles
(and extends on some points) TQL, a query language for semi-structured data
based on the ambient logic [5, 4]. We present a similar logic, with the difference
that we deal both with ordered and unordered data structures, while TQL only
deals with multisets of elements. Another difference with TQL lies in the addi-
tion of arithmetical constraints. In this extended logic, it becomes for instance
possible to express constraints on the number of occurrences of an element, such
as “there are more fields labeled a than labeled b” or “there is an even num-
ber of fields labeled a.” While the addition of counting constraints is purely
motivated by the presence of &, it incidentally provides a model for cardinality
constraint on repetitions, e{m,n}, that matches k repetitions of the expression
e, with m 6 k 6 n.

In Sect. 5, we introduce a new class of automata for unranked trees, called
Sheaves Automata (SA), that is used to decide our extended tree logic. In the
transition relation of SA, we combine the general rules for regular tree automata
with regular word expression and counting constraints. In this framework, regu-

248 Silvano Dal Zilio and Denis Lugiez

lar word expressions allow us to express constraints on sequences of elements and
are used when dealing with sequential composition of documents, as in the hedge
automata approach. Correspondingly, the counting constraints are used with the
&-operator. The counting constraints are Presburger arithmetic formulas on the
number of occurrences of each different type of elements. Intuitively, counting
constraints appear as the counterpart of regular expressions in the presence of
a commutative composition operator. Indeed, when the order of the elements
becomes irrelevant, that is, when we deal with bags instead of sequences, the
only pertinent constraints are numerical.

The choice of Presburger arithmetic is not exclusively motivated by the fact
that it is a large class of constraints over natural numbers, which increases the
expressiveness of our logic while still remaining decidable. Indeed, we prove that
Presburger constraints arises naturally when we consider schemas that combine
interleaving, &, and recursive definitions (see Sect. 3). Another reason is that
this extension preserves many enjoyable properties of regular tree automata: the
class of languages recognized by sheaves automata is closed under union and
intersection, testing for emptiness is decidable, ..., while adding some new ones,
like the fact that recognizable languages are closed by composition of sequential
and commutative operators. Even so, the gain in expressiveness is significant as
such. Indeed, Muscholl, Schwentick and Seidl have very recently proposed a new
and independent class of automaton very close to our model for the sole purpose
of making numerical queries on XML documents [12].

Before concluding, we give some results on the complexity of basic problems
for schemas. By design, every formula of our extended tree logic directly relates
to a deterministic sheaves automaton. As a consequence, we obtain the decid-
ability of the model-checking problem for SL, that is finding the answers to a
query, and of the satisfiability problems, that is finding if a query is trivially
empty. Moreover, since schemas are directly embedded in the models of SL, we
can relate a XML schema to an accepting sheaves automaton obtaining the de-
cidability of all basic problems: typing a document by a schema, computing the
set of documents typed by a schema, computing the set of documents typed by
the difference of two schemas ... In proving these results, we also make clear
how simple syntactical restrictions on schemas improve the complexity of simple
operations.

Omitted proofs may be found in a long version of this paper [8].

2 Documents and Schemata

XML documents are a simple textual representation for unranked, edge labeled
trees. In this report, we follow the notations found in the XDuce system [9] and
choose a simplified version of XML documents by leaving aside attributes among
other details. Most of the simplifications and notation conventions taken here
are also found in the presentation of MSL [3], an attempt to formalize some of
the core ideas found in XML Schema.

A document, d, is an ordered sequence of elements, a1[d1]·. . .·an[dn], where ai
is a tag name and di is a sub-document. A document may also be empty, denoted

XML Schema, Tree Logic and Sheaves Automata 249

ε, or be a constant. We consider given sets of atomic data constant partitioned
into primitive data types, like String or Integer for instance. Documents may
be concatenated, denoted d1 · d2, and this composition operation is associative
with identity element ε.

Elements and Documents

e ::= element or constant
a[d] element labeled a, containing d
cst constant (any type)

d ::= document
ε empty document
e element
d1 · d2 document composition

Example 1. A typical entry of a bibliographical database could be the document:

book [auth[”Knuth”] · title[”Art of Computer Programming”] · year [1970]]

A schema may be interpreted as the type of a document. Our definition
mostly follows the presentation made in MSL [3]. Nonetheless, we bring some
simplifications and modifications to better fit our objective. In particular, we
consider three separate syntactical categories: E for element schema definitions,
S for (regular) schemata, and T for schemata that may only appear at top level
of an element definition.

Schemas

E ::= Element schema
a[T] element with tag a and interior matching T
a[T]? optional element
Datatype datatype constant

S ::= Regular schema
ε empty schema
E element
S1 · S2 sequential composition
S + S choice
S∗ indefinite repetition

T ::= Top-level schema
AnyT any type (match everything)
S regular schema
E1 & . . . & En interleaving composition

A schema is basically a regular expression that constrains the order and
number of occurrences of elements in a document. An element, a[T], describes
documents that contain a single top element tagged with a and enclosing a sub-
document satisfying the schema T . An optional element, a[T]?, matches one or
zero occurrence of a[T]. The constructors for schemata include the standard op-
erators found in regular expression languages, where S ·S′ stands for concatena-
tion and S+S′ for choice. For simplicity reasons, we have chosen both iteration,

250 Silvano Dal Zilio and Denis Lugiez

S∗, and option, a[T]?, instead of the repetition operator S{m,n} found in the
Schema recommendation. The most original operator is the interleaving oper-
ator, E1 & . . . & En, which describes documents containing (exactly) elements
matching E1 to En regardless of their order. Our simplified Schema definition
also contains a constant, AnyT , which stands for the most general type or Any
Type in XML Schema terminology.

Example 2. Assuming that String and Year are the types associated to string
and date constants, the following schema matches the book entry given in Ex-
ample 1: (book [title[String] & auth[String] & year [Year]?).

The distinction of a top-level schema allows us to express some of the con-
straints on the interleaving operator found in the XML specification. For exam-
ple, & must appear as the sole child at the top of an element schema, that is,
terms like E1 · (E2 & E3) or (E1 & E2)∗ are ill-formed.

To capture some situations arising in practice, we may enrich schemata by
recursive definitions presented by a system of equations. This can be simply
obtained by enriching the syntax with variables, X,Y, . . ., and an operator for
recursive schema definition, (S where X1 = S1, . . . , Xn = Sn), where the Xi’s
are bound variable names.

Example 3. We may extend book entries with a ref element listing the entries
cited in the book:

Book where Book = book [auth[String] & title[String] & Ref],
Ref = ref [Book∗]?

Next, we make explicit the role of schemas as a type system for documents
and define the relation d : S, meaning that the document d satisfies the schema
S. This relation is based on an auxiliary function, inter(d), which computes
the interleaving of the elements in d, that is the set of documents obtain-
able from d after permutation of its elements: inter(e1 · ... · en) =

{
eσ(1) · ... ·

eσ(n) σ permutation of 1..n
}
.

In the long version of this paper [8], we define a more complex relation,
X1 : S1, . . . , Xn : Sn ` d : S, to type documents using recursive schemas.

Good Documents

d : T

a[d] : a[T]

d : T

a[d] : a[T]? ε : a[T]?

cst ∈ Datatype

cst : Datatype ε : ε

d1 : S1 d2 : S2

d1 · d2 : S1 · S2

d : S

d : S + S′
d : S′

d : S + S′
d1 : S, . . . , dn : S

d1 · . . . · dn : S∗ d : AnyT

d ∈ inter(e1 · . . . · en)
e1 : E1 . . . en : En

d : E1 & . . . & En

In the next section, we introduce some basic mathematical tools that will be
useful in the definition of both our tree logic and our new class of tree automata.

XML Schema, Tree Logic and Sheaves Automata 251

3 Basic Results on Presburger Arithmetic and Words

Some computational aspects of our tree automaton rely on arithmetical prop-
erties over the group (N,+) of natural numbers with addition. The first-order
theory of equality on this structure, also known as Presburger arithmetic, is de-
cidable. Formulas of Presburger arithmetic, also called Presburger constraint, are
given by the following grammar. We use N,M, . . . to range over integer variables
and n,m, . . . to range over integer values.

Presburger Constraint

Exp ::= Integer expression
n positive integer constant
N positive integer variable
Exp1 + Exp2 addition

φ, ψ, . . . ::= Presburger constraint
(Exp1 = Exp2) test for equality
¬φ negation
φ∨ψ disjunction
∃N.φ existential quantification

Presburger constraints allow us to define flexible, yet decidable, properties
over positive integers like for example: the value of X is strictly greater than
the value of Y , using the formula ∃Z.(X = Y +Z + 1); or X is an odd number,
∃Z.(X = Z + Z + 1). We denote φ(X1, . . . , Xp) a Presburger formula with free
integer variables X1, . . . , Xp and we shall simply write |= φ(n1, . . . , np) when
φ(n1, . . . , np) is satisfied.

Decidability of Presburger arithmetic may be proved using a connection
with semilinear sets of natural numbers. A linear set of Nn, L(b, P), is a set
of vectors generated by linear combination of the periods P = {p1, . . . ,pk}
(where pi ∈ Nn for all i ∈ 1..k), with the base b ∈ Nn, that is, L(b, P) =def{
b +

∑
i∈1..k λipi λ1, . . . , λk ∈ N

}
. A semilinear set is a finite union of linear

sets and the models of Presburger formulas (with p free variables) are semilinear
sets of Np. An important result is that semilinear sets are closed under union,
sum and iteration, where: L+M = {x+y x ∈ L, y ∈M}, and Ln = L+ . . .+L
(n times) and L∗ =

⋃
n≥0 L

n. In the case of iteration, the semilinear set L∗ may
be a union of exponentially many linear sets (in the number of linear sets in L).

3.1 Parikh mapping

Another mathematical tool needed in the presentation of our new class of au-
tomaton is the notion of Parikh mapping. Given some finite alphabet Σ =
{a1, . . . , an}, that we consider totally ordered, the Parikh mapping of a word
w of Σ∗ is a n-uple of natural numbers, #(w) = (m1, . . . ,mn), where mi is the
number of occurrences of the letter ai in w. We shall use the notation #a(w) for
the number of occurrences of a in w, or simply # a when there is no ambiguity.

252 Silvano Dal Zilio and Denis Lugiez

The Parikh mapping of a set of words is the set of Parikh mappings of its
elements. When the set of words is a regular language, the Parikh mapping can
be easily computed and it corresponds to the model of a Presburger formula.
Furthermore, when the regular language is described by a regular expression, reg ,
we can compute the Parikh mapping in time O(|reg |) (using regular expressions
of semilinear sets). For example, if ai is the ith letter in Σ, then #(ai) is the
linear set L(ui, ∅), where ui is the ith unit vector of Nn, and the mapping of a
sequential composition expression, reg1 · reg2, is the linear set #(reg1)+ #(reg2).

Proposition 1. The Parikh mapping of a regular language is a semilinear set.

This property is useful when we consider the intersection of a regular word
language with a set of words whose Parikh mapping satisfies a given Presburger
constraint. This is the case in Sect. 4, for example, when we test the emptiness
of the language accepted by a Sheaves automaton.

3.2 Relation with XML Schema

We clarify the relation between Presburger constraint, Parikh’s mapping and
the semantics of the interleaving operator and try to give an intuition on how
the &-operator may add “counting capabilities” to schemas.

Let a1, . . . , ap be distinct element tags and d be a “flat document”, i.e. of the
form ai1 [ε]·. . .·aik [ε], then #(.) provides a straightforward mapping from d to Np.
Suppose now that we slightly relax the syntactic constraints on schemas in order
to accept expressions of the form ((E1 & · · · & En)+E) and (E1 & · · · & En & X).
Then, for any Presburger constraint, φ, it is possible to define an (extended
recursive) schema that matches the vectors of integers satisfying φ. For example,
the schemaX where X = ((a1 & a2 & X)+ε) is associated to the formula # a1 =
a2 (there are as many a1’s than a2’s) and X where X = ((a1 & a1 & X) + ε)
is associated to ∃N.# a1 = N +N (there is an even number of a1’s).

Proposition 2. For every Presburger formula φ, there is a schema, S, such
that d : S iff |= φ#(d).

We conjecture that this ability to count is exactly circumscribed to Pres-
burger arithmetic, that is, for every schema denoting a set of natural numbers,
there is a Presburger formula denoting the same set.

In the next section, we introduce a modal logic for documents that directly
embeds counting constraint. Indeed, Proposition 2 indicates that it is necessary
to take into account Presburger constraints when dealing with the &-operator.
Moreover, aside from the fact that counting constraints add expressiveness to our
logic, another reason for adding Presburger formulas is that we extend the set of
recognizable trees while still preserving good (and decidable) closure properties.

4 The Sheaves Logic

We extend our simplified version of XML Schema with a set of logical operators
and relax some of its syntactical constraints in order to define a modal logic

XML Schema, Tree Logic and Sheaves Automata 253

for documents, the Sheaves Logic (SL). The sheaves logic is a logic in the spirit
of the Tree Query Logic (TQL) of Cardelli and Ghelli [4], a modal logic for
unranked, edge-labeled trees that has recently been proposed as the basis of a
query language for semi-structured data. A main difference between TQL and
SL is that the latter may express properties on both ordered and unordered sets
of trees. In contrast, our logic lacks some of the operators found in TQL like
recursion or quantification over tag names, which could be added at the cost of
some extra complexity.

The formulas of SL ranged over by A,B, . . . are given by the following gram-
mar. The formulas are partitioned into three syntactical categories: (1) elements
formula, E, to express properties of a single element in a document; (2) regular
formulas, S, corresponding to regular expressions on sequences of elements; (3)
counting formulas, T , to express counting constraints on bags of elements, that
is in the situation where the order of the elements is irrelevant.

Logical Formulas

E ::= Element
a[S] element with tag a and regular formula S
a[T] element with tag a and counting formula T
AnyE any element
Datatype datatype constant

S ::= Regular formula
ε empty
E element
S · S′ sequential composition
S∗ indefinite repetition
S ∨S choice
¬S negation

T ::= Counting formula
∃N : φ(N) : N1E1 & . . . & NpEp generalized interleaving, N = (N1, . . . , Np)
T ∨T choice
¬T negation

A,B, . . . ::= S T A∨A ¬A Sheaves Logic Formula

Aside from the usual propositional logic operators, our main addition to the
logic is the “Any Element”constant, AnyE , and a constrained form of existential
quantification, ∃N : φ(N) : N1E1 & . . . & NpEp, that matches documents made
of n1 + ...+ np elements, with n1 elements matching E1, ..., np elements match-
ing Ep (regardless of their order), such that (n1, ..., np) satisfies the Presburger
formula φ.

The generalized interleaving operator is inspired by the relation between
schema and counting constraint given in Sect. 2. This operator is useful to express
more liberal properties on documents than with Schemas. For example, it is now
possible to define the type (an example of ill-formed schemas) E1∗ & E2, of
documents made only of elements matching E1 but one matching E2, using the
formula ∃N1, N2 : (N1 > 0)∧(N2 = 1) : N1E1 & N2E2. The AnyE formula
matches documents made of a single element. It has been chosen instead of the

254 Silvano Dal Zilio and Denis Lugiez

less general schema AnyT since it could be used in a constrained existential
quantification. It is possible to model AnyT using the formulas ∃N : (N > 0) :
NAnyE and AnyE∗.

Satisfaction relation. We define the relation d |= A, meaning that the docu-
ment d satisfies the formula A. This relation is defined inductively on the def-
inition of A, and the rules shared for regular and counting formulas. In the
following, we use the symbol Ψ to stand for formulas of sort S, T or A.

Satisfaction

d |= a[Ψ] iff (d = a[d′]) ∧ (d′ |= Ψ)
d |= AnyE iff (d = a[d′])
d |= Datatype iff (d = cst) ∧ (cst ∈ Datatype)
d |= ε iff d = ε
d |= S · S′ iff (d = d1 · d2) ∧ (d1 |= S) ∧ (d2 |= S′)
d |= S∗ iff (d = ε) ∨

((d = d1 · . . . · dp) ∧ (∀i ∈ 1..p, di |= S))

d |= ∃N : φ(N) : N1E1 & . . . & NpEp iff ∃n1, . . . , np,∃(ej
1)j∈1..n1 , . . . , (e

j
p)j∈1..np

ej
i |= Ei ∧ |= φ(n1, . . . , np) ∧
d ∈ inter(e11 · . . . · e

np
p)

d |= Ψ ∨Ψ ′ iff (d |= Ψ) ∨ (d |= Ψ ′)
d |= ¬Ψ iff not (d |= Ψ)

Example of Formulas. We start by defining some syntactic sugar. The formula
True will be used for tautologies, that is formulas satisfied by all documents (like
T ∨¬T for instance). We also define the notation E1 & . . . & Ep, for the formula
satisfied by documents made of a sequence of p elements matching E1, . . . , Ep,
regardless of their order.

(E1 & . . . & Ep) =def ∃N1, ..., Np : (N1 = ... = Np = 1) : N1E1 & . . . & NpEp

Likewise, we define the notation (a[S] & · · ·) for the formula satisfied by docu-
ments containing at least one element matching a[S]:

(a[S] & · · ·) =def ∃M,N : (M = 1)∧(N > 0) : Ma[S] & NAnyE

For a more complex example, let us assume that a book reference is given
by the schema in Example 2. The references may have been collected in several
databases and we cannot be sure of the order of the fields. The following formula
matches collections of books that contain at least 50 entries written by Knuth
or Lamport.

∃N,M,X : (N +M = 50 +X) :
(
Nbook [(auth[”Knuth”] & · · ·)]
& Mbook [(auth[”Lamport”] & · · ·)]

)
Next, we define a new class of tree automata that will be used to decide SL,

in the sense that the set of documents matched by a formula will correspond to
the set of terms accepted by an automaton.

XML Schema, Tree Logic and Sheaves Automata 255

5 A New Class of Tree Automata

We define a class of automata specifically designed to operate on XML schemata.
A main distinction with other automata-theoretic approaches, like hedge au-
tomata [11] for example, is that we do not focus on regular expressions over
paths but, instead, concentrate on the &-operator, which is one of the chief ad-
ditions of XML Schema with respect to DTD. The definitions presented here
have been trimmed down for the sake of brevity. For example, in the complete
version of our class of automaton, we consider rich sets of constraints between
subtrees [10]. Moreover, the definition of SA can be extended to any signature
involving free function symbols and an arbitrary number of associative and AC
symbols, giving an elegant way to model XML attributes.

A (bottom-up) sheaves automaton, A, is a triple 〈QA, Qfin, R〉 where QA is
a finite set of states, {q1, . . . , qp}, Qfin is a set of final states included in QA, and
R is a set of transition rules. Transition rules are of three kinds:

(1) c→ q
(2) a[q′] → q
(3) φ(N1, . . . , Np) ` Reg(QA) → q

Type (1) and type (2) rules correspond to the transition rules found in regu-
lar tree automata for constants (leave nodes) and unary function symbols. Type
(3) rules, also termed constrained rules, are the only addition to the regular tree
automata model and are used to compute on nodes built using the concate-
nation operator (the only nodes with an unbounded arity). In type (3) rules,
Reg(QA) is a regular expression on the alphabet {q1, . . . , qp} and φ(N1, . . . , Np)
is a Presburger arithmetic formula with free variables N1, . . . , Np. Intuitively,
the variable Ni denotes the number of occurrences of the state qi in a run of the
automata. A type (3) rule may fire if we have a term of the form d1 · . . . ·dn such
that:

– each term di leads to a state qji ∈ QA;
– the word qj1 · . . . · qjn is in the language defined by Reg(QA);
– the formula φ#(qj1 · . . . · qjn) is satisfied, that is, |= φ(n1, . . . , np), where ni

is the number of occurrences of qi in qj1 · . . . · qjn .

To stress the connection between variables in the counting constraint φ and
the number of occurrences of qi matched by Reg(QA), we will use # qi instead
of Ni as the name of integer variables.

Example 4. An example of automaton on the signature {c, a[], b[]} is given by
the set of states QA = {qa, qb, qs}, the set of final states Qfin = {qs} and the
following set of five transition rules:

ε→ qs a[qs] → qa (# qa = # qb)∧(# qs > 0) ` (qa + qb + qs)∗ → qs
c→ qs b[qs] → qb

We show in Example 5, after defining the transition relation, that this particular
automaton accepts terms with as many a’s than b’s at each node, like for example
b[ε] · a[c · b[ε] · c · a[ε]].

256 Silvano Dal Zilio and Denis Lugiez

If we drop the Presburger arithmetic constraint and restrict to type (3)
rules of the form True ` Reg(QA) → q, we get hedge automata [11]. Con-
versely, if we drop the regular word expression and restrict to rules of the form
φ(# q1, . . . ,# qp) ` (q1 + . . .+ qp)∗ → q, we get a class of automata which enjoys
all the good properties of regular tree automata, that is closure under boolean
operations, a determinisation algorithm, decidability of the test for emptiness,
... When both counting and regular word constraints are needed, some of these
properties are no longer valid (at least in the case of non-deterministic SA).

Transition Relation. The transition relation of an automaton A, denoted
d→A q, or simply → when there is no ambiguity, is the transitive closure of the
relation defined by the following three rules.

Transition Relation: →

(type 1)
c→ q ∈ R
c→ q

(type 2)
d→ q′ n[q′] → q ∈ R

n[d] → q

(type 3)
e1 → qj1 . . . en → qjn

qj1 · . . . · qjn ∈ Reg |= φ#(qj1 · . . . · qjn)
φ ` Reg → q ∈ R (n > 2)

e1 · . . . · en → q

The rule for constrained transitions (type (3) rules), can only be applied to
sequences of length at least 2. Therefore it could not be applied to the empty
sequence, ε, or to sequence of only one element. It could be possible to extend the
transition relation for type (3) rules to these two particular cases, but it would
needlessly complicate our definitions and proofs without adding expressivity.

Example 5. Let A be the automaton defined in Example 4 and d be the docu-
ment a[c] · b[a[c] · b[c]]. A possible accepting run of the automaton is given below:

d→ a[c] · b[a[qs] · b[c]] → a[qs] · b[a[qs] · b[c]] → a[qs] · b[a[qs] · b[qs]]
→ qa · b[a[qs] · b[qs]] → qa · b[a[qs] · qb] → qa · b[qa · qb]
?→ qa · b[qs] → qa · qb

?→ qs

Transitions marked with a ?-symbol (transitions 7 and 9) use the only con-
strained rule of A. It is easy to check that, in each case, the word used in the
constraints is qa ·qb, that this word belongs to (qa+qb+qs)∗ and that it contains
as many qa’s than qb’s (its Parikh mapping is (1, 1, 0)).

Our example shows that SA can accept languages which are very different
from regular tree languages, in fact closer to those accepted by context-free
languages. In this example, we can recognize trees in which every sequences
contains as many a’s than b’s as top elements. Indeed, the constrained rule in
Example 4 can be interpreted as: “the word q1 · . . . · qn belongs to the context-
free language of words with as many qa’s than qb’s.” It is even possible to write
constraints defining languages which are not even context-free, like qna · qnb · qnc
(just take the Presburger constraint (# qa = # qb)∧(# qb = # qc) in Example 4).

XML Schema, Tree Logic and Sheaves Automata 257

As it is usual with automata, we say that a document d is accepted by a
sheaves automaton A if there is a final state q ∈ Qfin such that d →A q. The
language L(A) is the set of terms accepted by A. In the following, we will only
consider complete automaton, such that every term reaches some state. This can
be done without loss of generality since, for any SA, A, it is always possible to
build an equivalent complete automaton, Ac [8].

Proposition 3. For any SA, A, we can construct a complete automaton, Ac,
that accepts the language L(A) and it is deterministic if A is deterministic.

Next, we enumerate of list of properties for our new class of automaton.

Deterministic SA are less Powerful than Non-deterministic SA. A
sheaves automaton is deterministic if and only if a term reaches at most one
state. Contrary to regular tree automata, the class of deterministic sheaves au-
tomata is strictly weaker than the class of sheaves automata. In order to preserve
determinism as much as possible, we will choose constructions for basic opera-
tions on automata that are a little bit more complex than the usual ones.

Proposition 4. There is a language accepted by a sheaves automaton that can
not be accepted by any deterministic sheaves automaton.

Proof. Using an improved “pumping lemma” [8], we prove that the language L,
consisting of the terms an · bn · am · bm, with n,m > 0, is not recognizable by a
deterministic SA, although there is a non-deterministic SA accepting L. ut

Product, Union and Intersection. Given two automata A = 〈Q,Qfin, R〉
and A′ = 〈Q′, Q′fin, R

′〉, we can construct the product automaton, A × A′, that
will prove useful in the definition of the automata for union and intersection.
The product A×A′ is the automaton A× = 〈Q×, ∅, R×〉 such that:

– Q× = Q×Q′ = {(q1, q′1), . . . , (qp, q′l)},
– for every type (1) rules a → q ∈ R and a → q′ ∈ R′, the rule a → (q, q′) is

in R×,
– for every type (2) rules n[q] → s ∈ R and n[q′] → s′ ∈ R′, the rule n[(q, q′)] →

(s, s′) is in R×,
– for every type (3) rules φ ` Reg → q ∈ R and φ′ ` Reg ′ → q′ ∈ R, the

rule φ× ` Reg× → (q, q′) is in R×, where Reg× is the regular expression
corresponding to the product Reg × Reg ′ (this expression can be obtained
from the product of an automaton accepting Reg by an automaton accepting
Reg ′). The formula φ× is the product of the formulas φ and φ′ obtained as
follows. Let #(q, q′) be the name of the variable associated to the numbers
of occurrences of the state (q, q′), then:

φ× =def φ
(∑
q′∈Q′

#(q1, q′), . . . ,
∑
q′∈Q′

#(qp, q′)
)
∧φ′

(∑
q∈Q

#(q, q′1), . . . ,
∑
q∈Q

#(q, q′l)
)

258 Silvano Dal Zilio and Denis Lugiez

Proposition 5. We have d → (q, q′) in the automaton A × A′, if and only if
both d→A q and d→A′ q′.

Given two automata, A and A′, it is possible to obtain an automaton ac-
cepting the language L(A) ∪ L(A′) and an automaton accepting L(A) ∩ L(A′).
The intersection A∩A′ and the union A∪A′ may be simply obtained from the
product A×A′ by setting the set of final states to:

Q∩fin =def

{
(q, q′) q ∈ Qfin ∧ q ∈ Q′fin

}
Q∪fin =def

{
(q, q′) q ∈ Qfin ∨ q ∈ Q′fin

}
The union automaton may also be obtained using a simpler construction:

take the union of the states of A and A′ (supposed disjoint) and modify type
(3) rules accordingly. It is enough to simply add the new states to each type (3)
rules together with an extra counting constraint stating that the corresponding
coefficients must be nil.

Proposition 6. The automaton A∪A′ accepts L(A)∪L(A′) and A∩A′ accepts
L(A)∩L(A′). Moreover, the union and intersection automaton are deterministic
whenever both A and A′ are deterministic.

Complement. Given a deterministic automaton, A, we may obtain a deter-
ministic automaton that recognizes the complement of the language L(A) sim-
ply by exchanging final and non-final states. This property does not hold for
non-deterministic automata.

Proposition 7. Non-deterministic Sheaves languages are not closed under com-
plementation.

Proof. We prove in [8] that given a two-counter machine, there is a non-determi-
nistic automaton accepting exactly the bad computations of the machine. Thus,
if the complement of this language was also accepted by some automaton, we
could easily derive an automaton accepting the (good) computations reaching a
final state, hence decide if the two-counter machine halts. ut

Membership. We consider the problem of checking whether a document, d,
is accepted by a non-deterministic automaton A. We use the notation |d| for
the number of elements occurring in d and |S| for the number of elements in a
set S. The size of an automaton, |A|, is the number of symbols occurring in its
definition.

Assume there is a function Cost such that, for all constraints φ, the evaluation
of φ(n1, . . . , np) can be done in time O(Cost(p, n)) whenever ni 6 n for all i in
1..p. For quantifier-free Presburger formula (and if n is in binary notation) such a
function is given byK.p. log(n), whereK is the greatest coefficient occurring in φ.
For arbitrary situations, that is for formulas involving any quantifiers alternation
(which is very unlikely to occur in practice), the complexity is doubly exponential
for a non-deterministic algorithm.

XML Schema, Tree Logic and Sheaves Automata 259

Proposition 8. For an automaton A = 〈Q,Qfin, R〉, the problem d
?
∈ L(A) can

be decided in time O(|d| · |R| · Cost(|Q|, |d|)) for a deterministic automaton and
in time O(|d|2 · |Q| · |R| · Cost(|Q|, |d|)))) for a non-deterministic automaton.

Proof. The proof is standard in the case of deterministic automata. Otherwise,
there are |d| · |Q| possible labeling of the tree d by states of Q, and we check the
applicability of each rules at each internal node. ut

Test for Emptiness. We give an algorithm for deciding emptiness that com-
bines a marking algorithm with a test to decide if the combination of a regular
expression and a Presburger constraint is satisfiable. We start by defining an
algorithm for checking when a word on a sub-alphabet satisfies both a given
regular word expression and a given counting constraint. We consider a set of
states, Q = {q1, . . . , qp}, that is also the alphabet for a regular expression Reg
and a Presburger formula φ(# q1, . . . ,# qp). The problem is to decide whether
there is a word on the sub-alphabet Q′ ⊆ Q satisfying both Reg and φ. We start
by computing the regular expression Reg |Q′ that corresponds to the words on
the alphabet Q′ satisfying Reg . This expression can be easily obtained from Reg
by a set of simple syntactical rewritings. Then we compute the Parikh mapping
#(Reg |Q′) as explained in Sect. 3 and test the satisfiability of the Presburger
formula:

φ(# q1, . . . ,# qp) ∧
∧
q/∈Q′

(# q = 0) ∧ #(Reg |Q′)

When this formula is satisfiable, we say that the constraint φ ` Reg restricted
to Q′ is satisfiable. This notion is useful in the definition of an updated version
of a standard marking algorithm for regular tree automaton. The marking al-
gorithm computes a set QM ⊆ Q of states and returns a positive answer if and
only if there is a final state reachable in the automaton.

Algorithm 1. Test for Emptiness

QM = ∅
repeat if a→ q ∈ R then QM = QM ∪ {q}

if n[q′] → q ∈ R and q′ ∈ QM then QM = QM ∪ {q}

if

{
φ ` Reg → q ∈ R and the constraint
φ ` Reg restricted to QM is satisfiable

then QM = QM ∪ {q}

until no new state can be added to QM

if QM contains a final state then return not empty else return empty

Proposition 9. A state q is marked by Algorithm 1, that is q ∈ QM , iff there
exists a term t such that t→ q.

We may prove this claim using a reasoning similar to the one for regular tree
automata. We can also establish a result on the complexity of this algorithm.
Let CostA denote the maximal time required to decide the satisfiability of the
constraints occurring in the type (3) rules of A = (Q,Qfin, R).

260 Silvano Dal Zilio and Denis Lugiez

Proposition 10. The problem L(A) ?= ∅ is decidable in time O(|Q|·|R|·CostA).

The bound can be improved for regular tree automata, yielding a linear
complexity. We could also get a linear bound if we have an oracle that, for each
set of states Q′ ⊆ Q and each constraint, tells whether the constraint restricted
to Q′ is satisfiable.

6 Results on the Tree Logic and on XML Schema

We prove our main property linking sheaves automata and the sheaves logic and
use this result to derive several important properties of the simplified schema
language introduced in Sect. 2.

Theorem 1 (Definability). For each formula Ψ of SL, we can construct a
deterministic, complete, sheaves automaton AΨ accepting the models of Ψ .

Proof. By structural induction on the definition of Ψ . Without loss of generality,
we may strengthen the proposition with the following additional conditions: (1) a
state q occurring in the right-hand side of a constrained rule may not occur in the
left-hand side of a constrained rule; (2) a state occurring in the right-hand side
of an unconstrained rule may not occur in the right-hand side of a constrained
rule; (3) Presburger constraint may only occur when the right-hand side is not
a final state, i.e. constrained rules are of the form True ` Reg(Q) → q whenever
q is a final state. We only consider the difficult cases. For the case Ψ = Ψ ∨Ψ or
¬Ψ ′, we simply use the fact that deterministic SA are closed under union and
complement.

Ψ = a[T]. Let AT be the automaton constructed for T . Let q be a final state
and q′ be a state occurring in a rule a[q] → q′ of AT . The idea is to choose
the states of the form q′ as the set of final states.
Let q be a final state occurring in a rule of the form a[q] → q′. Whenever q′

also occurs in a rule c → q′ or b[. . .] → q′ of AT , we split q, q′ in two states
qa, qa′ and qā, qā′ such that qa′ occurs only in rules a[qa] → qa′ and that qā′

is used for the other rules, say c→ qā′ or b[. . .] → qā′. This is done for all such
states q, q′ ofA. The state-splitting is necessary to preserve determinism. The
automaton AΨ is obtained by choosing the states qa′ (where q is final in AT)
as the set of final states.

Ψ = S∗, S ∨S, S̄ or S, S′. In this case, Ψ is a regular expression on some al-
phabet E1, . . . , En where Ei are element formulas. By induction, there is a
deterministic automaton Ai accepting the models of Ei for all i ∈ 1..p. Let
A be the product automaton of the Ai’s. A state Q of A is of the form
(q1, ..., qp), with qi a state of Ai. Therefore Q may represent terms accepted
by several Ai’s. We use the notation Q ∈ fin(Ai) to say that the ith compo-
nent of Q is a final state of Ai.
We consider the regular expression RegS , with alphabet the set of states ofA,
obtained by syntactically replacing Ei in Ψ with the expression

⋃
{Q Q ∈

fin(Ai)}. The complement of RegS is denoted ¯RegS .

XML Schema, Tree Logic and Sheaves Automata 261

For every state Q and rule φ ` Reg → Q of A, we split Q into two states,
QS and Q̄S , and the constrained rule into two rules φ ` Reg ∩ RegS → QS
and φ ` Reg ∩ ¯RegS → Q̄S . To conclude, we choose the states of the form
QS (where Q is final in A) as the set of final states. This automaton is
deterministic and complete and the property follows by showing that d |= Ψ
if and only if d ∈ L(A).

Ψ = ∃N : φ : N1E1 & . . . & NpEp. By induction, there is a deterministic au-
tomaton Ai accepting the models of Ei for all i ∈ 1..p. The construction
is similar to a determinisation process. Let A be the product automaton of
the Ai’s and let {Q1, ...,Qm} be the states of A. A state Q of A is of the
form (q1, ..., qp), with qi a state of Ai, and it may therefore represent terms
accepted by several Ai’s. We use the notation Q ∈ fin(Ai) to say that the
ith component of Q is a final state of Ai.
The constrained rules of A are of the form ψ(M1, . . . ,Mm) ` Reg → Q,
where Mi stands for the number of occurrences of the state Qi in a run. The
idea is to define a Presburger formula, φ∃(M1, . . . ,Mm), satisfied by configu-
rations Qj1 · ... ·Qjn containing a number of final states of the Ai’s satisfying
φ, and to augment all the type (3) rules with this counting constraint. To
define φ∃, we decompose Mi into a sum of integer variables, xij for j ∈ 1..p,
with xij corresponding to a number of final states of Aj occurring in Qi.

φ∃ =def ∃
(
xij

)
i∈1..m
j∈1..p

·
∧

i∈1..m

(
Mi =

∑
j∈1..p

Qi∈fin(Aj)

xij
)
∧ φ

(∑
i∈1..m

Qi∈fin(A1)

xi1, . . . ,
∑
i∈1..m

Qi∈fin(Ap)

xip
)

Finally, we split each constrained rule ψ ` Reg → Q of A into the two rules
ψ ∧φ∃ ` Reg → QT and ψ ∧¬φ∃ ` Reg → Q̄T , splitting also the state Q into
QT and Q̄T . The automaton AΨ is obtained by choosing the states of the
form QS (where Q is final in A) as the set of final states. The automaton is
deterministic and complete and the property follows by showing that d |= Ψ
if and only if d ∈ L(A). ut

As a direct corollary of Theorem 1 and Propositions 8 and 10, we obtain
key results on the decidability and on the complexity of the sheaves logic. Let
|Q(AΨ)| be the number of states of the SA associated to Ψ .

Theorem 2 (Decidability). The logic SL is decidable.

Theorem 3 (Model Checking). For any document, d, and formula, Ψ , the
problem d |= ψ is decidable in time O(|d| · |Aψ| · Cost(|Q(AΨ)|, |d|)|.

Since the schema language is a plain subset of our tree logic, we can directly
transfer these results to schemas and decide the relation d : S using sheaves
automata.

Proposition 11. For every schema, S, there is a deterministic SA, A, such
that L(A) = {d d : S}, and for every recursive schema, S, there is a SA such
that L(A) = {d d : S}.

262 Silvano Dal Zilio and Denis Lugiez

Proof. Similar to the proof of Theorem 1. In the case of recursive schemas, we
need to introduce a special state qX for each definition X = T in S. Then we
construct the automata corresponding to T and replace qX in AS by any final
state of AT . ut

Combined with our previous results, we obtain several decidability properties
on schemas, as well as automata-based decision procedures. We can, for exam-
ple, easily define the intersection and difference of two schemas (that are not
necessarily well-formed schemas).

Theorem 4 (XML Typing). Given a document, d, and a schema, S, the
problem d : S is decidable.

Theorem 5 (Satisfaction). Given a schema S, the problem ∃d . d : S is de-
cidable.

7 Conclusion

Our contribution is a new class of automaton for unranked trees aiming at the
manipulation of XML schemas. We believe it is the first work on applying tree
automata theory to XML that considers the &-operator. This addition is signifi-
cant in that interleaving is the source of many complications, essentially because
it involves the combination of ordered and unordered data models. This led us to
extend hedge automata [11] with counting constraints as a way to express prop-
erties on both sequences and multisets of elements. This extension appears quite
natural since, when no counting constraints occurs, we obtain hedge automata
and, when no constraints occur, we obtain regular tree automata.

The interleaving operator has been the subject of many controversial debates
among the XML community, mainly because a similar operator was responsible
for difficult implementation problems in SGML. Our work gives some justifica-
tions for these difficulties, like the undecidability of computing the complement
of non-deterministic languages. To elude this problem, and in order to limit
ourselves to deterministic automata, we have introduced two separate sorts for
regular and counting formulas in our logic. It is interesting to observe that a
stronger restriction appears in the schema specification, namely that & may
only appears at top-level position in an element definition.

Another source of problems is related to the size and complexity of counting
constraints. While the complexity of many operations on Presburger arithmetic
is hyper-exponential (in the worst case), the constraints observed in practice
are very simple and it seems possible to neglect the complexity of constraints
solving in realistic circumstances. As a matter of fact, some simple syntactical
restrictions on schemas yield simple Presburger formulas. For example, we may
obtain polynomial complexity by imposing that each element tag in an expression
a1[S1] & . . . & ap[Sp] be distinct, a restriction that also appears in the schema
specification.

XML Schema, Tree Logic and Sheaves Automata 263

The goal of this work is not to devise a new schema or pattern language for
XML, but rather to find an implementation framework compatible with schemas.
An advantage of using tree automata theory for this task is that it also gives us
complexity results on problems related to XML schema (and to possible exten-
sions of schemas with logical operators). As indicated by our previous remarks,
we may also hope to use our approach to define improved restrictions on schema
and to give a better intuition on their impact. Another advantage of using tree
automata is that it suggests multiple directions for improvements. Like for in-
stance to add the capacity for the reverse traversal of a document or to extend
our logic with some kind of path expression modality. These two extensions
are quite orthogonal to what is already present in our logic and they could be
added using some form of backtracking, like a parallel or alternating [7] variant
of our tree automata, or by considering tree grammars (that is, equivalently,
top-down tree automata). The same extension is needed if we want to process
tree-structured data in a streamed way, a situation for which bottom-up tree
automata are not well-suited.

References

1. S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web : From Relations to
Semistructured Data and XML. Morgan Kaufmann, 1999.

2. A. Berlea and H. Seidl. Binary queries. In Extreme Markup Languages, 2002.
3. A. Brown, M. Fuchs, J. Robie, and P. Wadler. MSL: A model for W3C XML

schema. In WWW 10, 2001.
4. L. Cardelli and G. Ghelli. A query language based on the ambient logic. In

European Symposium on Programming (ESOP), volume 2028 of LNCS, pages 1–
22, 2001.

5. L. Cardelli and A. Gordon. Anytime, anywhere: Modal logic for mobile ambients.
In Principles of Programming Languages (POPL). ACM Press, 2000.

6. J. Clark and M. Makoto, editors. RELAX-NG Tutorial. OASIS, 2001.
7. H. Comon, M. Dauchet, F. Jacquemard, D. Lugiez, S. Tison, and M. Tommasi.

Tree Automata and their application. To appear as a book, 2003.
8. S. Dal Zilio and D. Lugiez. XML schema, tree logic and sheaves automata. Tech-

nical Report 4631, INRIA, 2002.
9. H. Hosoya and B. C. Pierce. Regular expression pattern matching for XML. In

Principles of Programming Languages (POPL), pages 67–80. ACM Press, 2001.
10. D. Lugiez and S. Dal Zilio. Multitrees automata, Presburger’s constraints and tree

logics. Technical Report 08-2002, LIF, 2002.
11. M. Makoto. Extended path expression for XML. In Principles of Database Systems

(PODS). ACM Press, 2001.
12. A. Muscholl, T. Schwentick, and H. Seidl. Numerical document queries. In Prin-

ciple of Databases Systems (PODS). ACM Press, 2003.

