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1 Introduction
In this report, we define a high-level language for expressing properties over system expressed using Fiacre.
Our approach is based on the definition of a set of property patterns inspired by properties that occur
commonly during the specification of concurrent and reactive systems [Pat].

In the current state of the toolchain, properties are checked at the level of the generated state space
– that is at the level of the TTS target language – using the SELT model-checker. This has several
drawbacks:

• system events that are used in a property should refer to the names as they appear at the compiled
level, which means that the name of processes, variables and communication ports used in a property
are the one that appear in the TTS, after compilation from Fiacre. Hence this solution is not portable,
since the naming convention is contingent on the compiler implementation;

• properties need to be defined using a temporal logic formalism – such as LTL for verification with
SELT, or CTL is we use the MUSE model-checker – which are difficult to grasp by non-specialists;

• there are currently no tool supporting timed extension of temporal logic, and the known algorithms
have a very high complexity. Therefore it is not possible to check real-time properties of the system
using this method.

In the scope of the Quarteft project, we propose several additions to the Fiacre toolchain in order to
overcome these problems. Each proposal is defined in its own Section.

In Sect. 1, we define a new event language in order to unambiguously refer to the element of a Fiacre
model: components; processes; states; communication ports and variables; and to the system events that
are associated to these elements, namely a transition to a given state, a communication over a given port,
an assignment to a shared variable, etc. We also define a direct mapping from this event language into the
system at the TTS level.

In Sect. 3, we define a set of fundamental properties for components and processes, such as liveness,
safety, etc. The meaning of these fundamental properties is defined by defining the semantics of every
operator using an interpretation in LTL.

Finally, after introducing the formal framework required for our definition in Sect. 4 and 5, we define a
set of properties patterns in the style of [Pat]. The originality of our proposal is to allow the declaration
of timed patterns, that can express temporal constraints such as the compliance to deadline, worst-case
execution time, etc. For every pattern, we give a precise definition based on three different formalism:
algebraic formulas over timed traces; diagrams based on a formal, non-ambiguous, graphical language; and
a timed extension of LTL named MITL. (All these formalisms, as well as the semantics used to express
the set of observable actions of a system, are defined in Sect. 4 and 5.)

Concerning the verification of timed patterns, we propose a method based on the use of observers. In
a nutshell, to check a pattern P on a Fiacre program M , we compose an observer OP (that is a TTS
specification) with the TTS obtained from the compilation of M and check a given LTL formula φP on the
resulting system. As might be expected, observers are defined so that they do not interfere with the system
under observation. This approach has been implemented in a prototype extension to the frac compiler:
the compiler accept the declaration of patterns directly inside a Fiacre program, automatically generates
the corresponding observers and compose them with the specified system.

To conclude, we present another possible enhancement to the definition of properties for Fiacre pro-
grams based on the notion of probes. In this context, a probe is a look into the global state of a system
at runtime that can be retrieved without interfering with the system. This extension could be useful to
simplify the definition of observers directly inside a Fiacre specification, that is to allow a user to define
his owns observers.

3



2 Naming of Events in Fiacre

2.1 Naming of Processes and Components
Properties checked in the formal verification of systems typically express constraints on the occurence
of observable events – and essentially restrict the order and the date of occurrence of these events. In
the context of a Fiacre specification, an event is an instantaneous action involved in the evolution of the
system: it can be a process that moves its current state (more specifically the event of entering into or
leaving a given state); a transition in the system (e.g. due to a communication); or a modification of a
shared variable.

Remark: in this first version of the property language definition for RT-Fiacre we will not cover events
related to shared variables.

The frac compiler, used for the conversion of Fiacre into TTS, sets a unambiguous naming convention
for the states of a Fiacre program. Each state a – defined in a process P in a Fiacre source code –
may correspond to several “state instances”, where each state instance corresponds to a different process
instantiation. Indeed, each invocation of a process (respectively a component) in a component leads to the
generation of a process (resp. component) instance. It is possible to display the process and component
instances of program using the -arch command-line option of the frac compiler.

A valid Fiacre specification must declare the main component, say C̄. Each process/component instance
may be be connected to this initial component in a hierarchical way. To disambiguate two instances of the
same process/component, declared in the same context, we use indices. Thus, the qualified name A,B, . . .
of a process/component is either: C̄, also denoted //, for the main component; or the instance i of the
process/component C under the context A, that is denoted A/C[i]. In the remainder of this text – and
based on an analogy with the naming convention used for UNIX file systems – we speak of "absolute path"
and "relative path" to identify a process instance relative to the main component or against a context.

Example In the following example, we show how processes and components of a Fiacre program are
named with our approach. We have added in front of each identifier, between brackets, the indices com-
puted by frac when generating the TTS file.

process A is . . .

process B is . . .

component D is
par A || B end

component C is
par A || D | | D end

component Main is
par C | | D | | A end

Main

Main–C(1)–A(1)

| |–D(1)-A(2)

| | |-B(1)

| |–D(2)-A(3)

| |-B(2)

|–D(3)–A(4)

| |–B(3)

|–A(5)

• Process //D[1]/A[1] – with our notation – corresponds to process
A_4 in the TTS generated from frac.

• State //D[1]/A[1]/init corresponds to the state A_4_sinit in TTS.

2.2 Basic Events
We use uppercase letters L,M,N, . . . to denote an observable event in Fiacre, and the symbol [[L]] for
the interpretation of L as an event set. A state a in the process A[i] is denoted A[i]/a. Likewise, a
communication port p defined in A[i] is denoted CA[i]/p. Since transitions are not directly exposed in
Fiacre (and are “encoded” inside the macro-transition associated to each state), we do not offer the ability
to name them. In the following, we use t0, t1, . . . for the name of transitions and we say t ∈ A if t is
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a transition associated to the process A. In the case where the transition is linked with to the same
transition. We denote t ∈ A/p the fact that transition t corresponds to a communication over the port
A/p.

• the most basic event is the move of a process, say A, in a new state, say a. This event is denoted
A/ǎ ;

• conversely, the event associated with the exit of the process A from state a is denoted A/â ;

• the event A/p is used to refer to all the transitions associated with a synchronisation over the port
A/p.

2.3 Observable Events
Let A be an instance of a process and B an instance of a component. We use the following notations:

Event L InterpretationofL([[L]])

A/a {A/ǎ }
A/â {A/â }
B/p {t | t ∈ B/p}
A {t | t ∈ A}
B

⋃
{[[A]] | A instance dans B}

In the following Section, we define a first set of properties based on our notation for observable events.

3 Fundamental Properties
We define a list of general properties that can be used to express fundamental characteristics of a system,
like the absence of a deadlock for example. For each fundamental properties – whenever possible – we give
their interpretation in LTL and CTL. In the following table, the symbol L is used for an observable event
of the system (or a set of events), as defined in Sect. 2.2 and 2.3.

Property LTL CTL
NoGlobalDeadlock []-dead AG-dead
Never L []-[[L]] AG-[[L]]
Eventually L <>[[L]] AF[[L]]
InfinitelyOften L []<>[[L]] (not expressible)
Mortal L <>[]-[[L]] AF EG-[[L]](weaker definition)
Live L (not expressible) AG EF[[L]]

We may give an intuitive definition for each of these basic properties.

NoGlobalDeadlock is true for a system that has no deadlocks or interlocking, that is a state where the
system is stuck and cannot evolve.

Never If L is a state (or set of states) then Never L means that the system may never reach reach the
states in [[L]]. If L is a reference to a process, then Never L means that the process may never execute
[[L]].

Eventually Is used to express a property on every possible execution of the system. If L is a state (or set
of states) then Eventually L means that the system will inevitably reach the states in [[L]] at least
once. If L is a reference to a process, then Eventually L means that the process will inevitably be
executed.

InfinitelyOften Similar to Eventually with the additional constraint that the state (resp. process) L should
be visited (resp. executed) infinitely often.
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Mortal Is used to express that, after some finite time, an event will never occur. If L is a state (or set
of states) then Mortal L means that the states in [[L]] will inevitably become inaccessible. It is also
possible to propose a weaker version of this operator (based on the CTL definition of the pattern)
that is equivalent to the property that it is always possible to reach a state where L will never be
reachable.

Live Is used to express liveness properties. If L is a state (or set of states) then Live L means that it is
always possible to reach a state in [[L]]. If L is a reference to a process, then Live L means that the
process may always potentially be executed. (This property cannot be expressed in LTL).

Before describing the rest of our property patterns – and especially the timed patterns – we set the
formal framework required for the definition and, in particular, the notion of timed trace.

4 Execution Traces
Properties describe expected behaviours of Fiacre systems. Formally, they are defined over timed traces,
which we define now.

Definition 1 (Timed Trace) Given a set of events Ω, a timed trace σ is a possibly infinite sequence of
events A ∈ Ω and durations d(t) with t ∈ R+. Formally, σ is a mapping from either N or [0;n] for some
n ∈ N to Ω ∪ {d(t) | t ∈ R+}.

Thus, traces can be finite or infinite. The subset of finite traces could be equivalently defined with :
Finite timed trace σf ::= ε | σf .d(t) | σf .A with t ∈ R+, A ∈ Ω, and ε stands for the empty trace.

The set of events Ω is not necessarily finite. In particular, we assume that events contain information
about the system’s current state. For instance, an event could be a pair of a transition name and the new
system state.

Concatenation and duration Given a finite trace σ1 and a (possibly infinite) trace σ2, we note σ1 ·σ2

the concatenation of σ1 and σ2 (we omit the details). The concatenation operator is associative. Given a
finite trace σ, the duration of σ, written ∆(σ) is defined inductively as :

∆(ε) = 0 ∆(σ.d(t)) = ∆(σ) + t ∆(σ.A) = ∆(σ)

Definition 2 (Equivalence over timed traces) The equivalence relation over timed traces, written ≡,
is the smallest equivalence relation satisfying σ.d(0) · σ′ ≡ σ · σ′ and σ.d(t).d(t′) · σ′ ≡ σ.d(t+ t′) · σ′.

We note that σ1 ≡ σ2 implies ∆(σ1) = ∆(σ2).

Well-formed traces In the following, we only consider well-formed traces, that is, traces that let time
ellapse. Formally all traces σ must satisfy

σ infinite ⇒ ∀t > 0 ∃σ1,σ2 . σ = σ1σ2 ∧∆(σ1) > t

5 Formalisms
Properties over Fiacre systems are formally defined and illustrated next. To ease the understanding of
these properties, we describe them using different means, including a graphical notation (named TGIL)
and a timed temporal logic (MITL), both of which are introduced now.
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5.1 TGIL: Timed Graphical Interval Logic
Some users may understand more easily a graphical notation rather than a textual definition. For this
reason, we define a graphical language, named TGIL, which is mostly inspired by GIL [DKM+94], a
graphical language for temporal logic. Note, however, that our notations may differ a bit from GIL’s
notations.

Notation We write with letters A, B, . . . , predicates over events, that is, functions from Ω to booleans.
For example, a predicate may check the system’s state (since the system’s state is part of the event). Or,
another predicate may check the occurrence of a given transition.

In the following, we say that an event ω is an occurrence of A if and only if A(ω) is true.

Execution contexts All TGIL diagrams are defined under an execution context, depicted as

which, by default, represents the whole trace. When a starting point is specified, as in A (for
instance A can be the result of a search primitive), then this execution context represents the part of the

trace occurring strictly after A. The closed version, including the occurrence of A, is drawn as A .

Additionally, the ending point can be specified (typically by a search point), as in A or A .

Searches Given an execution context, we define a weak search primitive depicted as a dashed arrow

A
which represents the first occurrence of predicate A, if any (it is not an error if no such occurrence

exists). The strong variant, depicted as
A

, requires the occurrence to exist.

Searches results can be used to define new execution contexts, as in this example, to be read from top
to bottom :

A

B

In the default context (above), find the first occurrence of A (which does not necessarily exist), and
then find the first occurrence of B located strictly after A (such a B must exist)1.

We omit execution contexts when they can be unambiguously inferred from the diagram. Thus, the
example above is equivalently drawn as :

A
B

In the following diagram, the triangle below ¬A indicates that predicate B must hold at the very point
returned by the search (if any). Thus, the whole diagram means that either A holds on the whole trace,
either B holds at the first point where A is false.

This pattern is known as A until B (weak version), usually written A W B.

¬A

B

As an optimization, the search could stop as soon as B is found. The following diagram also happens
to be equivalent to A W B.

(B ∧ ¬A)

B
1By abuse of language, we just write A instead of “the occurrence of A”. Similarly, for B.
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Finally, here is a diagram standing for the strong variant of A until B, written A U B, which requires
B to hold eventually :

(B ∧ ¬A)

B

Quantifiers Given a context and a predicate A, we can state that A holds at some point in the context,
or that A holds for the whole context.

A

A holds at some point in the context

A

A always holds in the context

If A1 and A2 are occurrences of predicates (for example, a result of a search, as introduced above, or
an event satisfying a predicate), we can state that A2 occurs after A1 within a given interval I, that is,
t(A2)− t(A1) ∈ I, where t(A) is the time of the occurrence of A. This is depicted as follows :

A1 A2

∈ I

Thus, for example, the following diagram states that the first occurrence of A after the first occurrence
of B (if any), is such that the delay between both occurrences belongs to interval I.

B
A

∈ I

This pattern will be introduced later as present A after B within I.

Grouping Grouping is just a graphical notation for parentheses. Compare the following picture with
the previous one.

B
A

∈ I

The only difference, the dotted rectangle, groups together predicate A with the time constraint. As
a consequence, the search primitive looks for the first occurence of A such that (t(A) − t(B) ∈ I) (other
occurrences of A can exist after B and before this one). In contrast, in the previous example, the first
occurence of A had to satisfy (t(A)− t(B) ∈ I).

Remember that a TGIL diagram should be read from top to bottom, and can be roughly understood
as a sequential algorithm.

Time context Given a context, one can restrict it to a time interval I (relatively to the starting point
of the context), drawn as follows :

I

Note that if the given initial context is bounded, the resulting interval might be empty. It should not
be considered as an error at this point. Yet, all searches performed within this interval will certainly fail
(which is an error for strong searches).

If the given initial context is bounded, we can write −I for the time interval in order to indicate that
I is relative to the ending point of the context. Thus −[1, 2] means between 1 and 2 units of time before
the ending point.
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5.2 MITL: Metric Interval Temporal Logic
Another way to describe formal properties is to use MITL [AFH96], which is a dense-time extension of
LTL. MITL core syntax is defined by the grammar : φ ::= p | ¬φ | φ1 ∨ φ2 | φ1 U φ2 | φ1 U[a,b] φ2

where p is a proposition, and [a, b] an interval of R+. Intuitively, the property φ1 U[a,b] φ2 means that φ1

must hold until φ2 becomes true, the latter of which must happen between a and b units of time from the
current time (for more details, read the precise semantics of MITL [AFH96]), Thanks to these operators,
one can derive other standard operators including the time-constrained eventually and always operators :
♦[a,b]φ, defined as True U[a,b] φ, and ![a,b]φ, defined as ¬♦[a,b]¬φ.

6 Property Patterns
We follow the classification introduced at [Pat], that is, we consider existence patterns, absence patterns,
universality patterns, precedence patterns, and response patterns.
For some patterns, we propose a timed version. Note that it is usually the case that we chose one timed
extension among several extensions that seemed natural for a given untimed pattern.

Notation We use letters A and B for predicates over Ω, I for time intervals, that is, intervals of R+,
and D for durations (in R+). The notation σ = σ1ωAσ2 means that there exists ω such that σ = σ1ωσ2

and A(ω) is true. When we do not need to refer to the variable ω, we just write σ = σ1Aσ2 instead of
σ = σ1ωAσ2.
We write A ∈ σ instead of ∃σ1,σ2 . σ = σ1Aσ2. Given a predicate over events A, we consider it as a
predicate overs traces, such that A(σ) holds if and only if ∀ω ∈ σ , A(ω) holds (meaning that A holds over
the whole trace σ).

6.1 Existence
Present A

A

There is an occurrence of A.

LTL definition : ♦A
Definition over the timed-trace σ : A ∈ σ

Present A after B

B
A

There is an occurrence of A after the first occurrence of B, if any.

LTL definition : (¬B) W (B ∧ ♦A)

Definition over the timed-trace σ :
∀σ1,σ2 . (σ = σ1ωBσ2 ∧B /∈ σ1) ⇒ A ∈ ωσ2

Present A after B within I

B
A

∈ I

The first occurrence of A holds within I after the first occurrence
of B, if any.

MITL definition : (¬B) W (B ∧ (¬A) UI A)

Definition over the timed-trace σ :
∀σ1,σ2 . (σ = σ1ωBσ2 ∧B /∈ σ1) ⇒ ∃σ3,σ4 . ωσ2 = σ3Aσ4

∧A /∈ σ3 ∧∆(σ3) ∈ I

9



Variants of this pattern may be defined. We can relax the constraints so as to look for one occurrence of
A within I instead of the first.

Present A before B

B

A

There is an occurrence of A strictly before the first occurrence of B,
if any.

LTL definition : ¬B W (A ∧ ¬B)

Definition over the timed-trace σ :
∀σ1,σ2 . (σ = σ1Bσ2 ∧B /∈ σ1) ⇒ A ∈ σ1

Present A before B within I

B

A

∈ I

The first occurrence of A holds within I before the first occurrence
of B, if any.

MITL definition : (♦B) ⇒ ( (¬A∧¬B) U (A∧¬B ∧ (¬B UI B)) )

Definition over the timed-trace σ :
∀σ1,σ2 . (σ = σ1Bσ2 ∧B /∈ σ1) ⇒ ∃σ3,σ4 . σ1 = σ3Aσ4

∧A /∈ σ3 ∧∆(σ4) ∈ I
In this pattern, we have chosen to consider the first occurrence of A. A similar pattern could be defined
by taking the last occurrence of A. Additionally, considering any occurrence of A seems feasible (could be
implemented with an observer).

Warning : the two following patterns have definitions that differ from the ones found at [Pat].

Present A between B and C

B

C

A

After the first occurrence of B, if any, and before the first subsequent
occurrence of C, if any, there must be an occurence of A.

Requirement : B and C must be in exclusion, that is ¬(B(ω) ∧
C(ω)) holds for every event ω occuring in σ.

LTL definition : (¬B) W (B ∧ ((¬C) W (A ∧ ¬C)))

Definition over the timed-trace σ :
∀σ1,σ2,σ3 . (σ = σ1Bσ2Cσ3 ∧B /∈ σ1 ∧ C /∈ σ2) ⇒ A ∈ σ2

Present A after B until C

B

A

¬C

After the first occurrence of B, if any, there must be an occurrence
of A that holds before the first subsequent occurrence of C, if any.

Requirement : B and C must be in exclusion (see above).

LTL definition : (¬B) W (B ∧ ((¬C) U (A ∧ ¬C)))

Definition over the timed-trace σ :
∀σ1,σ2 . (σ = σ1Bσ2 ∧B /∈ σ1) ⇒ ∃σ3,σ4,ω . σ2 = σ3ωAσ4

∧ C /∈ σ3ω
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Present A lasting D

A

A

[0;D]

From the first occurrence of A, the predicate A remains true for at
least duration D.

MITL definition : (¬A) U (![0,D]A)

Definition over the timed-trace σ :
∃σ1,σ2,σ3 . σ = σ1σ2σ3 ∧A /∈ σ1 ∧∆(σ2) " D ∧A(σ2)

6.2 Absence
Absent A

¬A

There is no occurrence of A

LTL definition : !¬A

Definition over the timed-trace σ : A /∈ σ

Absent A after B

B

¬A

There is no occurence of A after the first occurrence of B, if any.

LTL definition : !(B ⇒ !(¬A))

Definition over the timed-trace σ :
∀σ1,σ2 . (σ = σ1Bσ2 ∧B /∈ σ1) ⇒ A /∈ σ2

Absent A after B for interval I

B

¬A

I

After the first occurrence of B, if any, no A can occur within I

MITL definition : ¬B W (B ∧ !I¬A)

Definition over the timed-trace σ :
∀σ1,σ2,σ3,ω . (σ = σ1Bσ2ωσ3 ∧B /∈ σ1 ∧∆(σ2) ∈ I) ⇒ ¬A(ω)

Absent A before B

B

¬A

No A can occur before the first occurrence of B, if any.

LTL definition : ♦B ⇒ (¬A U B)

Definition over the timed-trace σ :
∀σ1,σ2 . (σ = σ1Bσ2 ∧B /∈ σ1) ⇒ A /∈ σ1

Absent A before B for duration D

B

−[0, D]

¬A

No A can occur less than D unit of time before the first occurrence
of B, if any

MITL definition : ♦B ⇒ (A ⇒ (![0;D]¬B)) U B

Definition over the timed-trace σ :
∀σ1,σ2,σ3,ω . (σ = σ1σ2Bσ3 ∧B /∈ (σ1σ2) ∧∆(σ2) # D) ⇒ A /∈ σ2
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Absent A between B and C

B

C

¬A

After every occurrence of B, if there is a subsequent occurrence of
C, then A cannot occur (strictly) inbetween.

Requirement : B and C must be in exclusion (see above).

LTL definition : !((B ∧ ♦C) ⇒ (¬A U C))

Definition over the timed-trace σ :
∀σ1,σ2,σ3 . (σ = σ1Bσ2Cσ3 ∧ C /∈ σ2) ⇒ A /∈ σ2

6.3 Response
A leadsto first B within I

A
B

∈ I

After each occurrence of A, there is an occurrence of B, the first of
which occurs within I

MITL definition : !(A ⇒ (¬B) UI B)

Definition over the timed-trace σ :
∀σ1,σ2 . (σ = σ1 ·A · σ2) ⇒ ∃σ3,σ4 . σ2 = σ3Bσ4 ∧∆(σ3) ∈ I

∧B /∈ σ3

A leadsto B within I

A

B

I

After each occurrence of A, there is an occurrence of B that occurs
within I

MITL definition : !(A ⇒ ♦IB)

Definition over the timed-trace σ :
∀σ1,σ2 . (σ = σ1Aσ2) ⇒ ∃σ3,σ4 . σ2 = σ3Bσ4 ∧∆(σ3) ∈ I

B leadsto A before C

B

C

A

After every occurrence of B, if there is a subsequent occurrence of
C, then A occurs (strictly) inbetween.

Requirement : B and C must be in exclusion, that is ¬(B(ω) ∧
C(ω)) holds for every event ω occuring in σ.

LTL definition : !(B ⇒ (¬C W (A ∧ ¬C)))

Definition over the timed-trace σ :
∀σ1,σ2,σ3 . (σ = σ1Bσ2Cσ3 ∧ C /∈ σ2) ⇒ A ∈ σ2
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B leadsto A until C

B

A

¬C

After every occurrence of B, there must be an occurrence of A, which
must hold before the first subsequent occurrence of C, if any.

Requirement : B and C must be in exclusion (see above).

LTL definition : !(B ⇒ (¬C U (A ∧ ¬C)))

Definition over the timed-trace σ :
∀σ1,σ2 . (σ = σ1Bσ2) ⇒ ∃σ3,σ4 . σ2 = σ3ωAσ4 ∧ C /∈ σ3ω

7 Implementing Patterns with Observers
While the basic patterns expressed in Sect. 3 can be translated into a temporal logic framework (and hence
be checked using the model-checking tools that accept TTS inputs), it is not possible to do the same with
the timed patterns. To check these more expressive patterns, we propose to use an approach based on
observers that will be defined at the level of TTS.
We also describe an approach for implementing observers directly in Fiacre through the use of probes. While
we already provide some tooling that support the definition of patterns in Fiacre, the formal definition of
a probe language is scheduled for the next version of this deliverable.

7.1 Observer at the TTS Level
We give an example of observer associated to the property E1 leadsto E2 within [0, 4], that is “every event
E1 is followed by an event E2 at least before 4 unit of times” . This observer is expressed in TTS format
and only synchronizes with the events E1 and E2, which are assumed to be transition of the observed
system. Therefore, since we do not make use of data in this case, we can “draw” the observer using the
graphical syntax for Timed Petri Net extended with priorities (pictured as dashed line between transitions
in the following diagram). We give more information on the behavior of observers in the next Section.

E1 error E2

late [4, 4]

watch

E1

E1 E2

idle

E2

In this example, transition late has priority over E1 and E2. (We also make use of read arcs, depicted with
rounded ends.) Then, to check that the property is valid, it is enough to compose the TTS obtained from
the system with the observer and to check a simple LTL property. In this case that the state error cannot
be reach, i.e. Never(error). With the help of observers, we essentially reduce the model-checking of a timed
property to the model-checking of a simpler LTL property on an extended system.
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7.2 Current Implementation Within Fiacre
We have defined a set of observers for some of the patterns defined in Sect. 6. In our experiments, and in
this Section, we focus our attention on the leadsto pattern.
The target language of the Fiacre language – the TTS format – is quite rich, as it includes both: concurrency
constructs (through places and transitions as in Petri Nets); shared variables (through the inclusion of
data); and priorities. Therefore we may implement the observer associated to a given pattern in several
ways as there is no “natural paradigm”. We propose three different classes: a first approach based on the
use of transitions (this is the style of observers that has been used in the example of Sect. 7.1); a second
based on the observation of places; and a third approach based on the observation of shared, boolean
variables added to the system. While the use of transitions are typical for observing Petri Nets behaviors,
the use of an observer on data is quite new. The results of our experiments show that, in practice, this is
the best way to implement an observer.
For educational purpose, we give an example of observer for each of these three different classes for the
real-time pattern: E1 leadsto E2 within [0,max ], meaning that whenever E1 occurs, then eventually E2

must occur in less than max unit of times.

Observer based on transitions: in this example, we assume that E1 and E2 are labels used in the
transitions of the system. We propose a possible implementation based on a deterministic observer,
that examines all occurrences of E1 for the failure of a deadline. We only give a simplified version of
the correct observer, that needs to be extended if one of the transition E1 or E2 bears a non-trivial
time constraint (that is, different from [0,∞]) in the system. By virtue of the definition of Petri Net
composition, the observer duplicates each transition labeled E1 (respectively E2): one copy can be
fired if place S is empty – as a result of the inhibitor arc – wile the other can be fired only if place S
is full.

E1
error

[max ,max ] E2

S
E1 E2

It is also possible to define a non-deterministic observer, such that occurences of E1 may be disre-
garded. This approach is safe – since, using model-checking, all cases will be perused – and close to
the treatment obtained when model-checking the equivalent property using an LTL formula. Exper-
iments have shown that the deterministic observer is more efficient, which underlines the benefit of
singling out particular properties when looking for optimizations.

Observer based on states: in this approach, we assume that events E1 and E2 are associated to the
system entering some given states S1 and S2. We can easily adapt this net to observe events associated
to transitions in the system. In our case, the observer will be composed with the system through its
places S1 and S2 (we can extend the classic composition of Petri Nets over transitions to composition
over places). In our observer, we use a transition labeled E1 whenever a token is placed in S1. Note
that TTS obtained from Fiacre are 1-safe, meaning that at most one token may be in S1 at any
given time. Likewise, we use a transition E2 for observing that the system is in state S2. The error
transition is fired if the observer stays in state obs for more than max unit of times, as needed.

S1

[0, 0]
E1

obs
error

[max,max]

E2S2
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Observer based on data: the use of data in the TTS model is quite simple: a TTS has a set of shared
variables, its environment (values and variables are typed and there is a rich type system); every
transition t may be conditioned by the values of the shared variables (we call it the precondition of t)
and, upon firing, a transition may update the value of the environment (we call this the action of t).
In this last class of observers, the idea is to condition the error transition of the observer on the value
of a private boolean shared variable, say FLAG. Hence the precondition of error is the predicate
(FLAG == false). We assume that the initial value of FLAG is false. To connect the observer to
the system, we add to every transition in E1 the action (FLAG := true) and to every transition in
E2 the action (FLAG := false).

In the context of the Quarteft project, we have implemented an extension of the frac compiler that
understands the syntax of patterns and automatically compose a system with the necessary observer. In
the case where the pattern is not valid, we obtain a counter-example, that is a sequence of events (with
time information) that leads to a problematic state.
In the following listing, we illustrate the use of patterns in an actual Fiacre specification that models the
operation of a simple manufacturing plant. A factory assembles products from two command lines, L1
and L2, composed of a set of machines. Two workers and one technician operate the lines, with worker
W1 on line L1 and W2 on line L2.
The factory is subject to operational and legal requirements: (1) workers should operate on work cycles
of less than 35 minutes, separated by 5 minutes pauses; (2) the duration of a machine task is between 5
and 10 minutes; (3) machines should be maintained after 15 task cycles. The leadsto pattern may be used
to check these requirements. For instance, the listing show the declaration of a property that corresponds
to requirement that each Worker must pause after at most 35 minutes of work2.

Listing 1: A factory example in Fiacre
propertyWorker_1_sWork leadstoWorker_1_sPausewithin [0, 35]

process Machine [StartMachine: machinename, EndMachine: machinename,
StartMachineMnt: machinename, EndMachineMnt: machinename]
(name: machinename) is

states Idle, Work, Mnt

var x: linename, y: machinename, cycle: nat:=0

from Idle StartMachine?name; toWork

fromWork
if cycle<=15 thenEndMachine!name; cycle:= cycle+1; to Idle
else StartMachineMnt!name; toMntend

fromMntEndMachineMnt?y where y=name; cycle:=0; to Idle

process Worker[Startline: linename, Endline: linename] (line: linename) is

states Idle, Work, Pause

var y: linename

from Idle Startline?y where y= line; toWork

fromWorkEndline?y where y=line; to Pause

from Pause wait [5,5]; to Idle

We can define the complexity of an observer as its impact on the augmentation of the state space of the
observed system. Hence the complexity of an observer O is a function CO of the system, say S, such
that CO(S) is the value size(S⊗O)/size(S). For verification, we take the size of the state space of a system
as the size of a system. This notion of complexity is useful to explain the impact of an observer during
verification, if we assume that model-checking a property on a system S is linear in size(S). Unfortunately,
it is not possible to give an analytical definition of CO outside of the most simple cases.

2Our tool does not currently understand the syntax of events defined in Section 1 of this deliverable.
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Figure 1: Increase in systems transitions number in the case of verified properties

Figure 2: Increase in systems transitions number in the case of unverified properties

We have used our prototype compiler to experiment with different implementations for the observers. The
goal is to find the most efficient observer “in practice”, that is the observer with the lowest complexity. To
this end, we have run several experiments to compare the complexity of different implementations on a
fixed set of representative examples. Even if this solution is not perfect, we believe that this approach is
better than using randomly generated systems and events. We show in the following Figures two sets of
results obtained for the leadsto pattern. In each case, we take the precaution to consider both the cases
of valid and invalid patterns. In our experiments, we have consistently observed that observers based on
data are the most efficient.

7.3 Observers at the Level of Fiacre
In future version of the system, we envisage to enrich the Fiacre language with a notion of probes which
can be viewed as special ports that allow to observe the internal state of a process without perturbing it.
We do not plan to give more information at this stage but, with this simple analogy, it is already possible
to show how the observer defined in the previous Section could be directly expressed in Fiacre .

Listing 2: A factory example in Fiacre
processmax [E1,E2 : probe] is

states idle, watch, error
from idle

select
E1; to watch

[] E2; loop
end
from watch

select
E1; loop

[] E2; to idle
unless

wait [4,4]; to error
end
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from error
select

E1; to error
[] E2; to error
end

componentobsmax is
port E1 : probe is Main.1.3.state:A.enter
port E2 : probe is Main.1.3.state:B.enter
parmax [E1,E2] end

Then, to “connect” an observer with the system, we need to extend the declarations of Fiacre with the
keyword probe that states that the ports E1 et E2 must be synchronized with the observer non-intrusively.
The complete probe mechanism will be defined in the next milestone of the project.

8 Conclusion
We define a high-level language for expressing properties over system expressed using Fiacre. Our approach
is based on the definition of a set of property patterns inspired by properties that occur commonly during
the specification of concurrent and reactive systems (see [Pat]). The originality of our proposal lies in
in the definition of timed property patterns – that is, such that timed constraints can be declared on the
occurences of events – and on the definition of a tailored observer-based verification method.
The definition of a timed extension for property patterns is quite new, especially when coupled with a
static verification method, such as model-checking. While the choice of a particular set of patterns (and
a particular interpretation for each pattern) may appear arbitrary, we have based our selection on a set
of well-accepted “atemporal” patterns, together with the constraint that validation should be decidable.
As a result, we obtain a set of properties that is not comparable with the set of formulas defined in the
decidable fragment of timed temporal logics, such as MITL, or to the set of timed properties that may be
checked “ on-the-fly”. For instance, we are able to express properties over unbounded or punctual time
intervals.
Concerning our choice of verification technique; while observer-based approaches are well-known, they
often rely on observers that are expressed in the same language than the specification (usually without a
proof of their “ innocuousness”) and boils down to checking that the observer will never enter into a failure
state. Instead, in our approach, we use observer to convert a timed property into the verification of a
plain LTL formula over the composition of the system with an observer. (Hence we can express properties
beyond reachability.) To the best of our knowledge, this approach has never been explored before. Also,
we define observers in a low-level language, where we can apply more powerfull optimization techniques
and where the safety of the oberver is easier to enforce.

References
[AFH96] Rajeev Alur, Tomás Feder, and Thomas A. Henzinger. The benefits of relaxing punctuality.

J. ACM, 43:116–146, January 1996.

[DKM+94] L. K. Dillon, G. Kutty, L. E. Moser, P. M. Melliar-Smith, and Y. S. Ramakrishna. A graphical
interval logic for specifying concurrent systems. ACM Transactions on Software Engineering
and Methodology, 3:131–165, 1994.

[Pat] Patterns. http://patterns.projects.cis.ksu.edu/.

17

http://patterns.projects.cis.ksu.edu/

	Introduction
	Naming of Events in Fiacre
	Naming of Processes and Components
	Basic Events
	Observable Events

	Fundamental Properties
	Execution Traces
	Formalisms
	TGIL: Timed Graphical Interval Logic
	MITL: Metric Interval Temporal Logic

	Property Patterns
	Existence
	Absence
	Response

	Implementing Patterns with Observers
	Observer at the TTS Level
	Current Implementation Within Fiacre
	Observers Evaluation

	Observers at the Level of Fiacre

	Conclusion

