
Spatial Congruence for
the Ambients is Decidable

Silvano Dal Zilio
Microsoft Research

May 2000

Technical Report
MSR-TR-2000-41

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

Spatial Congruence for

the Ambients is Decidable

Silvano Dal Zilio
Microsoft Research

May 2000

Abstract

The ambient calculus of Cardelli and Gordon is a process calculus
for describing mobile computation where processes may reside within a
hierarchy of locations, called ambients. The dynamic semantics of this
calculus is presented in a chemical style that allows for a compact and
simple formulation. In this semantics, an equivalence relation, the spatial
congruence, is defined on the top of an unlabelled transition system, the
reduction system. Reduction is used to represent a real step of evolution
(in time), while spatial congruence is used to identify processes up to
particular (spatial) rearrangements.

In this paper, we show that it is decidable to check whether two ambi-
ent calculus processes are spatially congruent, or not. Our proof is based
on a natural and intuitive interpretation of ambient processes as edge-
labelled finite-depth trees. This allows us to concentrate on the subtle
interaction between two key operators of the ambient calculus, namely re-
striction, that accounts for the dynamic generation of new location names,
and replication, used to encode recursion. The result of our study is the
definition of an algorithm to decide spatial congruence and a definition
of a normal form for processes that is useful in the proof of interesting
equivalence laws.

Contents

1 Introduction 1

2 The Ambient Calculus 2
2.1 Dynamic Semantics . 3
2.2 Static Semantics . 4

3 Spatial Trees 5
3.1 Equality Between Spatial Trees 8
3.2 Exponentiation of Spatial Trees 12

4 Relation Between Trees and Processes 12

5 Applications of Normal Form 15

6 Summary 19

References 19

A Proofs 21
A.1 Equality Between Spatial Trees 21
A.2 Exponentiation of Spatial Trees 28
A.3 Relation Between Trees and Processes 30

1 Introduction

Algebraic frameworks, of which process algebras are one of the most prominent
examples, have proved to be a valuable mathematical tool to reason about the
behaviour of distributed and communicating systems. Recently, Cardelli and
Gordon have proposed a new process algebra, the ambient calculus (Cardelli
and Gordon 1998), for describing systems with mobile computations.

In the ambient calculus, processes may reside within a hierarchy of loca-
tions, called ambients. Each location is a cluster of processes and sub-ambients
that can move as a group. Ambients provide an interesting abstraction that
combines, within the same theoretical framework, notions such as mobile com-
putations, that is, computations that can dynamically change the place where
they are executed and are continuously active before and after movement (like
agents), the sites where these computations happen: processor, router, etc.
the mobility of these sites, such as found with mobile computers (or even sim-
ply temporarily disconnected computers), or in the crossing of administrative
boundary, like applets crossing a firewall.

In the study of process algebras, as in the mathematical branch of algebra
from which they have borrowed their name, the notion of equivalence plays a
central role. This paper reports a proof that spatial congruence, one of the
simplest and most important equivalence between processes, is decidable. That
is, the problem of checking whether two processes are spatially congruent, or
not, is decidable.

Inspired by the chemical machine (Berry and Boudol 1992) and the “chem-
ical” presentation of the π-calculus semantics (Milner 1992), the dynamic se-
mantics of the ambient calculus is based on a spatial congruence relation, ≡,
on which the reduction system is based. Spatial congruence identifies processes
up to elementary spatial rearrangements and allows a simple and compact pre-
sentation of the reduction rules in which the sub-processes having to interact –
the “redexes” in λ-calculus terminology – appear in contiguous position. Intu-
itively, reduction is used to represent a real step of evolution (in time), while
spatial congruence is used to identify processes up to particular (spatial) rear-
rangements.

The decidability result presented in this paper is important in many respects.
Since spatial congruence plays a central role in the definition of the operational
semantics, any attempt to provide a mechanical proof of semantics-based prop-
erties will rely on a formal study of spatial congruence and an implementation of
a test for equivalence of processes. Interesting examples of semantical properties
include proof of equivalences or validity of program transformations. Another
application of our result is the study of the modal logic for ambients (Cardelli
and Gordon 1999a), where spatial congruence is used in the definition of the
satisfaction relation. The decidability of spatial congruence is essential in the
proof that model checking (for a particular subset of the logic) is decidable.

To prove the decidability of spatial congruence, we use a natural and intuitive
interpretation of ambient processes as edge-labelled finite-depth trees. This
allows us to concentrate on the subtle interaction between two key operators

1

of the ambient calculus, namely restriction, which accounts for the dynamic
generation of new location names, and replication, which is used to encode
recursion.

The result of our study is the definition of an algorithm to test spatial
congruence and a definition of a normal form for processes that is useful in the
proof of interesting equivalence laws.

The structure of the paper is as follows. In the next section, we introduce
the syntax of the ambient calculus and define spatial congruence. In Section 3,
we define the interpretation of processes as a certain kind of trees, called spatial
trees, and study a very simple notion of equivalences between spatial trees. In
Section 4 we relate spatial trees (and the notion of tree equivalence), to processes
(and spatial congruence) and we define a notion of normal form for processes.
Before concluding, we use our results to prove some interesting equivalence laws.
Appendixes include proofs of propositions omitted from the main body of the
paper.

2 The Ambient Calculus

The following tables summarize the syntax of (untyped, monadic) processes and
the definition of spatial congruence.

The operators of the ambient calculus can be separated into two categories:
the spatial constructs, restriction, void, composition, replication and ambient,
which describe the “spatial configuration” of processes, and the temporal con-
structs, which describe their (possible) dynamic behaviours. As pointed out
in (Cardelli and Gordon 2000), this is similar to the distinction between static
and dynamic constructs made in CCS (Milner 1979).

Expressions, capabilities and processes:

M ::= expression
n name
act M capability
ε null path
M.M ′ path composition

act M ::= capability
in M can enter into M
out M can exit out of M
open M can open M

P,Q,R ::= process
(νn)P restriction
0 void
P | Q composition
!P replication
M [P] ambient
M.P capability action
(n).P input action

2

〈M〉 output action

In both an input, (n).P , and a restriction, (νn)P , the name n is bound with
scope P . Let fn(P) be the set of names that occur free in the process P . We
identify processes up to consistent renaming of bound names.

Free names, fn(P), of process P :

fn((νn)P) ∆= fn(P) \ {n} fn(0) ∆= ?

fn(P | Q) ∆= fn(P) ∪ fn(Q) fn(!P) ∆= fn(P)
fn(M [P]) ∆= fn(M) ∪ fn(P) fn(M.P) ∆= fn(M) ∪ fn(P)
fn((n).P) ∆= fn(P) \ {n} fn(〈M〉) ∆= fn(M)
fn(n) ∆= {n} fn(act M) ∆= fn(M)
fn(ε) ∆= ? fn(M.M ′) ∆= fn(M) ∪ fn(M ′)

Since the definition of the operational semantics is not needed in our study,
we omit the definition of the reduction relation from the presentation. The
reader interested in a thorough introduction to the ambient calculus is referred
to (Cardelli and Gordon 1998).

2.1 Dynamic Semantics

The rules defining spatial congruence can be separated in different categories.
The first two categories of rule state that it is an equivalence relation and a
congruence. The third category states that parallel composition is an asso-
ciative and commutative operator with identity element 0. Another category
specifies properties of replicated processes, !P , which acts like an infinite paral-
lel composition of replicas of P . The next category describes scoping rules for
the restriction operator, (νn)P , used to model the dynamic generation of new
ambient names.

Spatial congruence:

P ≡ P (Struct Refl)
Q ≡ P ⇒ P ≡ Q (Struct Symm)
P ≡ Q,Q ≡ R⇒ P ≡ R (Struct Trans)

P ≡ Q ⇒ (νn)P ≡ (νn)Q (Struct Res)
P ≡ Q ⇒ (P | R) ≡ (Q | R) (Struct Par)
P ≡ Q ⇒ !P ≡ !Q (Struct Repl)
P ≡ Q ⇒ M [P] ≡M [Q] (Struct Amb)
P ≡ Q ⇒ M.P ≡M.Q (Struct Action)
P ≡ Q ⇒ (n).P ≡ (n).Q (Struct Input)

P | Q ≡ Q | P (Struct Par Comm)
(P | Q) | R ≡ P | (Q | R) (Struct Par Assoc)

3

P | 0 ≡ P (Struct Par Zero)

!(P | Q) ≡ !P | !Q (Struct Repl Par)
!0 ≡ 0 (Struct Repl Zero)
!P ≡ P | !P (Struct Repl Copy)
!P ≡ !!P (Struct Repl Repl)

(νn)(νm)P ≡ (νm)(νn)P (Struct Res Res)
n 6∈ fn(P) ⇒ (νn)(P | Q) ≡ P | (νn)Q (Struct Res Par)
n 6= m ⇒ (νn)m[P] ≡ m[(νn)P] (Struct Res Amb)
(νn)0 ≡ 0 (Struct Res Zero)
n 6∈ fn(M) ⇒ (νn)M.P ≡M.(νn)P (Struct Res Action)
n 6= m ⇒ (νn)(m).P ≡ (m).(νn)P (Struct Res Input)

ε.P ≡ P (Struct ε)
(M.M ′).P ≡M.M ′.P (Struct .)

Lemma 2.1 For all processes P we have that !P ≡ !P | !P .

Proof The relation !P ≡ !P | !P can be derived as follows. By (Struct Repl
Repl), !P ≡ !!P . By (Struct Repl Copy), (Struct Trans) and (Struct Repl),
!!P ≡ !(P | !P). By (Struct Repl Par), !(P | !P) ≡ !P | !!P . By (Struct Repl
Repl), (Struct Symm) and (Struct Par), !P | !!P ≡ !P | !P . �

Almost every axiom in the definition of spatial congruence has an equiva-
lent in the corresponding π-calculus equivalence, called structural congruence.
The most significant differences lies in the axioms for replication, (Struct Repl
Par) and (Struct Repl Repl), that are missing in the traditional definition of
structural congruence (Milner 1992). As a matter of fact, these axioms are
also missing in the seminal presentation of the ambient calculus (Cardelli and
Gordon 1998), where the relation ≡ is also called structural equivalence. These
differences have motivated our change in terminology.

The rules added to spatial congruence are similar to those added to (π-
calculus) structural congruence in (Engelfriet and Geselma 2000; Engelfriet and
Geselma 1999), where the authors proved that the resulting equivalence is de-
cidable. Another related work is (Hirschkoff 1999). In this paper, Hirschkoff
independently proposed a similar extension and proved the decidability result
using a more algorithmic approach.

2.2 Static Semantics

The definition of the calculus syntax imposes very few constraints on the set of
admissible processes. For example, processes such as (M.M ′)[P] or out (out n).P
are (syntactically) well formed. A usual method to avoid these pathological pro-
cesses is to define a type system, as the one proposed in (Cardelli and Gordon

4

1999b). Since we are not interested in the operational behaviour of processes,
we decide to impose simpler constraints, so simple that, in fact, they are not
preserved by reduction.

Good processes:

(Good ε)

ε ` ok

(Good Act)
M ` ok

act n.M ` ok

(Good Zero)

0 ` ok

(Good Res)
P ` ok

(νn)P ` ok

(Good Par)
P ` ok Q ` ok

P | Q ` ok

(Good Repl)
P ` ok
!P ` ok

(Good Amb)
P ` ok
n[P] ` ok

(Good Action)
M ` ok P ` ok

M.P ` ok

(Good Input)
P ` ok

(n).P ` ok

(Good Output 1)

〈n〉 ` ok

(Good Output 2)
M ` ok
〈M〉 ` ok

The restriction to good processes is very simple and, despite the fact that
it is not necessary to prove the decidability of spatial congruence, it greatly
simplifies the definitions and the presentation of our results. In the remainder
of this paper we restrict our study to good processes.

3 Spatial Trees

We define an interpretation of spatial processes as a certain kind of edge-labelled
finite-depth trees, which we name spatial trees, following the definition given
in (Cardelli and Gordon 2000) for a version of the ambient calculus without the
restriction operator.

A spatial tree will represent the hierarchy defined by ambients nesting, us-
ing the traditional notion of hierarchy defined by sub-trees. In our intuition,
edges stands for ambients and are tagged with an ambient name, nesting stands
for ambient encapsulation and, following our analogy, parallel composition of
processes naturally arises as trees sharing the same root.

For convenience, and to avoid confusion, we use a distinct category of names
to model restricted ambient names, called markers, ranged over by x, y, . . . We
use η to denote a name, n, or a marker, x. We use K,L, . . . to denote sets of
names, and X,Y, Z . . . for sets of markers.

A multiplicity, µ, is either 1 or ∞. A cone, C, is either the empty vector,
written ε, an input: µ(n).T , an output: µ〈M〉, a capability: µact η.T , or an
edge: µη[T] or !X.T , where T is a spatial tree and X is a non-empty set of
markers.

5

A spatial tree is a finite vector of cones, C1+· · ·+Ck, also written
∑

i∈1..k Ci.
The + operator is commutative and associative, with identity element ε; spatial
trees are identified up to these equations.

Spatial trees:

µ ::= multiplicity
1 single
∞ infinite

C ::= cone
ε empty vector
µ(n).T input
µ〈M〉 output of expression M
µact η.T capability
µη[T] edge tagged η
!X.T replicated edge with markers X

S, T ::= spatial tree
C1 + · · ·+ Ck vector of cones

Cones are a special type of spatial trees. The cone !X.T represents an infinite
copy of the tree T such that, in each copy, the markers in X are replaced with
fresh markers. In !X.T the markers in X are bound with scope T . The cone
µ(n).T represents an input action. In µ(n).T the name n is bound with scope
T . Spatial trees are identified up to consistent renaming of bound names and
markers.

Free markers, fm(T), of tree T :

fm(ε) ∆= ?

fm(µ〈M〉) ∆= fm(M)

fm(µη[T]) ∆=
{

fm(T) ∪ {η} if η is a marker
fm(T) otherwise

fm(µact η.T) ∆=
{

fm(T) ∪ {η} if η is a marker
fm(T) otherwise

fm(S + T) ∆= fm(S) ∪ fm(T)
fm(!X.T) ∆= fm(T) \X
fm(µ(n).T) ∆= fm(T)

We write T{n←x} for the capture-avoiding substitution of the marker x for
all the free occurrences of the name n in T .

For convenience, we extend the replication constructor, !X.T , to the empty
set of markers as follows:

!?.ε ∆= ε

!?.µ〈M〉 ∆=∞〈M〉
!?.µ(n).T ∆=∞(n).T

6

!?.µact η.T ∆=∞act η.T
!?.µη[T] ∆=∞η[T]
!?.!X.T ∆= !X.T
!?.(S + T) ∆= !?.S + !?.T

Lemma 3.1 We have !?.!?.T = !?.T .

Proof An easy induction on the structure of T . �

Since we have a notion of free (and bound) markers, we can define a notion
of connected tree, that is, tree whose sub-trees share mutual markers.

Connected trees:

A tree
∑

i∈1..p Ci is connected if and only if there are no partitions of 1..p into
two non-empty subsets, I, J , such that fm(

∑
i∈I Ci) ∩ fm(

∑
i∈J Cj) = ?.

Using this definition, we can compute for each tree the set of its connected
sub-trees.

Connected parts, conn(T), of tree T :

For all trees T =
∑

i∈1..p Ci we can construct a graph as follows.

(1) Let N be the set of cones {C1, . . . , Cp}.

(2) Let G be the graph with nodes in N and edges between nodes that have
a common (free) marker.

(3) Compute the connected components of the graph G, say G1, . . . ,Gk.

The connected parts of T , written conn(T), is the set {T1, . . . , Tk} such that for
all i ∈ 1..k the spatial tree Ti is the vector of the cones included in Gi.

Basic properties of the connected components of a spatial tree are:

Proposition 3.2

(1) If conn(T) = {T1, . . . , Tp} then for each j ∈ 1..p the tree Tj is connected.

(2) If conn(T) = {T1, . . . , Tp} then T = T1 + · · ·+ Tp.

(3) If conn(T) = {T1, . . . , Tp} and fm(Ti) = ? then Ti is a cone.

(4) For all trees T , where T =
∑

i∈1..p Ci, if fm(Ci) = ? then Ci is a con-
nected part of T .

7

3.1 Equality Between Spatial Trees

We define a reduction relation between trees, X ` S → T . This reduction
relation captures the essential intuitions of our model of edge-labelled trees,
such has, for example: “empty sub-trees can be forgotten”, rule (Red Zero),
or “two infinite copies of a sub-tree can be replaced by only one infinite copy
of this same sub-tree”, rule (Red Add Edge). In the definition of reduction,
X ` S → T , the set X, the effect of the reduction, is used to represent markers
that must not appear free in the result of a reduction.

Reduction: X ` S → T

(Red Zero)

? ` T + ε→ T

(Red Add Edge)

? ` ∞η[T] + µη[T]→∞η[T]

(Red Add Output)

? ` ∞〈M〉+ µ〈M〉 → ∞〈M〉

(Red Add Input)

? ` ∞(n).T + µ(n).T →∞(n).T

(Red Add Action)

? ` ∞act η.T + µact η.T →∞act η.T

(Red Add Repl)

? ` !X.T + !X.T → !X.T

(Red Copy)

X ` !X.T + T → !X.T

(Red Sub)
X ` T → S X ⊆ Y

Y ` T → S

(Red Repl)
X ` T → S (Y ′ = Y ∩ fm(S))

X \ Y ` !Y.T → !Y ′.S

(Red η)
X ` T → S (η 6∈ X)
X ` µη[T]→ µη[S]

(Red +)
X ` T → S (fm(R) ∩X = ?)

X ` T +R→ S +R

(Red Input)
X ` T → S

X ` µ(n).T → µ(n).S

(Red Action)
X ` T → S

X ` µact η.T → µact η.S

The rules for reductions can be separated in two categories. Rules that
involves two cones: (Red Zero) to (Red Copy), of which only (Red Copy) and
(Red Sub) can extend the effect, and structural rules: (Red Repl) to (Red
Action), which states that → is compositional.

Proposition 3.3 If X ` S →∗
∑

i∈1..p Ci then there exist S1, . . . , Sp such that
S =

∑
i∈1..p Si and X ` Si →∗ Ci for each i ∈ 1..p.

8

Proof An easy induction on the derivation of X ` S →∗
∑

i∈1..p Ci. �

An equivalent of rules (Red Add Repl), (Red Copy) and (Red Repl), for the
special case where the set X is empty, can be derived in our system.

Proposition 3.4

(1) ? ` !?.T + !?.T →∗ !?.T .

(2) ? ` !?.T + T →∗ !?.T .

(3) If ? ` T → S then ? ` !?.T →∗ !?.S.

It is worth mentioning that there are trees, T , such that ? ` !Y.T → !?.S.
For example, if T is the tree !Y.T ′ + T ′ then we get ? ` !Y.(!Y.T ′ + T ′) →
!?.!Y.T ′, which is equal to !Y.T ′.

Equivalence between trees: S ∼X T and S ≈ T
The relation ∼X is the smallest reflexive, symmetric and transitive relation such
that if X ` S → T then S ∼X T . The relation ≈ is such that S ≈ T if and
only if there exist two finite injective mappings, σ1, σ2, and a set X such that
dom(σ1) = fm(S) and dom(σ2) = fm(T) and Sσ1 ∼X Tσ2.

The equivalence ∼X is a congruence and if Y ⊆ X then ∼Y ⊆ ∼X ⊆ ≈.
Basic properties of ≈ are:

Proposition 3.5 The relation ≈ satisfies the congruence properties:

(1) If (fm(S) ∪ fm(T)) ∩ fm(R) = ? and S ≈ T then T +R ≈ S +R.

(2) If S ≈ T then µn[S] ≈ µn[T].

(3) If S ≈ T then µact η.S ≈ µact η.T .

(4) If S ≈ T then µ(n).S ≈ µ(n).T .

Next, we study the interaction between tree equivalence and substitution.

Lemma 3.6 If X ` S → T then fm(T) ⊆ fm(S) and fm(S) \ fm(T) ⊆ X.

Proof See Appendix A.1. �

Lemma 3.7 If X ` S → T and x 6∈ X then X ` S{n←x} → T{n←x}.

Proof An easy induction on the derivation of X ` T → S. �

In the previous lemma, the condition x 6∈ X is fundamental. For example,
we have {x} ` !{x}.〈x〉 + 〈x〉 + 〈n〉 → !{x}.〈x〉 + 〈n〉, whereas the spatial tree
(!{x}.〈x〉+ 〈x〉+ 〈n〉){n←x} does not reduce.

9

Corollary 3.8

(1) If S ∼X T and x 6∈ X then S{n←x} ≈ T{n←x}

(2) If S ≈ T and x 6∈ fm(S) ∪ fm(T) then S{n←x} ≈ T{n←x}.

Next, we prove that the reduction relation on spatial trees is locally conflu-
ent.

Theorem 3.9 If X1 ` T → T1 and X2 ` T → T2 then there exists a tree S
such that X1 ∪X2 ` T1 →∗ S and X1 ∪X2 ` T2 →∗ S.

Proof See Appendix A.1. �

The reduction relation is decreasing, in the sense that the number of symbol
is decreased along reductions. Therefore there can only be a finite number of
reductions from any tree. Since the reduction relation is also confluent, we have
the following property.

Theorem 3.10 The relation → is strongly normalizing.

Proof We define a weighting function for trees, h(.), as follows:

h(ε) = 1
h(µ(n).T) = h(T) + 1
h(µ〈M〉) = 1
h(µact η.T) = h(T) + 1
h(µη[T]) = h(T) + 1
h(!X.T) = h(T) + 1
h(S + T) = h(S) + h(T)

Note that the function h(.) is strictly positive. The theorem follows by
showing that X ` T → S implies h(T) > h(S). We proceed by induction on
the derivation of X ` T → S.

(Red Zero) Then T = S + ε. Hence, h(T) = h(S) + 1 > h(S).

(Red Add Edge) Then T =∞η[T ′]+µη[T ′] and S =∞η[T ′]. Hence, h(T) =
2.(h(T ′) + 1) > h(S). Cases (Red Add Output), (Red Add Input), (Red
Add Action), (Red Add Repl) and (Red Copy) are similar.

(Red Sub) Then Y ` T → S with Y ⊆ X. By induction hypothesis, h(T) >
h(S).

(Red η) Then T = µη[T ′] and S = µη(S′) where X ` T ′ → S′. By induction
hypothesis, h(T ′) > h(S′). Hence, h(T) = h(T ′) + 1 > h(S′) + 1 = h(S).
Cases (Red Input) and (Red Action) are similar.

10

(Red +) Then T = T ′ +R and S = S′ +R where X ` T ′ → S′. By induction
hypothesis, h(T ′) > h(S′). Hence, h(T) = h(T ′) +h(R) > h(S′) +h(R) =
h(S). �

Based on the this result, we can define an algorithm to decide the equiva-
lence of spatial trees, and therefore the equivalence of ambients processes. For
instance, to decide if S1 ∼X S2, you compute the normal form of S1 and S2,
that is, the spatial trees S′1, S

′
2 such that X ` Si →∗ S′i and S′i is irreducible for

each i ∈ 1..2. By Theorem 3.10, these trees exist and can be computed using
a finite number of reductions. Then, you verify whether the normal forms are
equal.

Theorem 3.11 The equivalences ∼X and ≈ are decidable.

Proof To decide if S1 ∼X S2, you compute the normal form of S1 and S2, that
is, the spatial trees S′1, S

′
2 such that X ` Si →∗ S′i and S′i is irreducible for

each i ∈ 1..2. By Theorem 3.10, these trees exist and can be computed using
a finite number of reductions. Then, you verify whether the normal forms are
equal. This amount to test the equality up to α-equivalence of bound markers
and associativity-commutativity of +. Since this is a decidable problem, we get
that ∼X is decidable.

To decide if S1 ≈ S2, you test whether S1σ1 ∼X S2σ2 for each finite injective
mapping σ1, σ2 and for each set X such that such that dom(σ1) = fm(S1) and
dom(σ2) = fm(S2) and X ⊆ fm(S1σ1) ∪ fm(S2σ2). It is sufficient to consider
mappings σ1, σ2 that have their image in a fresh set of markers that has the
cardinality of fm(S1)∪ fm(S2). Since the sets fm(S2) and fm(S1) are finite, and
since ∼X is decidable, we get that ≈ is decidable. �

Using the property of strong normalization, we can define a notion of normal
form for trees. For all spatial trees T , there is a tree, T ′, such that T ≈ T ′ and
such that T ′ has the following form:∑

i1∈I1

µi1ηi1 [Ti1] +
∑

i2∈I2

!Xi2 .Ti2︸ ︷︷ ︸
edges, with restriction and replication

+
∑

i3∈I3

µi3act ni3 .Ti3︸ ︷︷ ︸
actions

+

∑
i4∈I4

µi4(ni4).Ti4︸ ︷︷ ︸
inputs

+
∑

i5∈I5

µi5〈Mi5〉︸ ︷︷ ︸
outputs

Where:

(1) I1, I2, I3, I4 and I5 are finite and pairwise disjoint sets of indices.

(2) for all i ∈
⋃

j∈1..5 Ij , the trees Tj are in normal form.

(3) for all i, j ∈ I1, if ηi = ηj then Ti 6∼? Tj or µi = µj = 1.

(4) for all i, j ∈ I2, if !Xi.Ti ∼? !Xj .Tj then i = j.

11

3.2 Exponentiation of Spatial Trees

In this section, we define a new operation on trees, exp(T), obtained as the
outcome of replicating every connected part of T . This operation will prove
useful in the interpretation of ambient processes.

Exponentiation, exp(T), of a tree T :

The exponentiation of a tree T , written exp(T), is the tree !X1.T1 + · · ·+!Xp.Tp

where {T1, . . . , Tp} = conn(T) and Xi = fm(Ti) for each i ∈ 1..p.

Next, we study the properties of exp(T).

Proposition 3.12

(1) If fm(S) ∩ fm(T) = ? then exp(S + T) ∼? exp(S) + exp(T).

(2) The function exp(.) is idempotent, that is, exp(exp(T)) = exp(T).

Lemma 3.13 If X ` S → T then X ` exp(S)→∗ exp(T).

Proof See Appendix A.2. �

Theorem 3.14 If S ≈ T then exp(S) ≈ exp(T).

Proof Assume S ≈ T . By definition, there are two finite injective mappings,
σ1, σ2 and a set X such that Sσ1 ∼X Tσ2. By Theorem 3.9, there is a tree
S′ such that X ` Sσ1 →∗ S′ and X ` Tσ2 →∗ S′. By Lemma 3.13 several
times, X ` exp(Sσ1) →∗ exp(S′) and X ` exp(Tσ2) →∗ exp(S′). Therefore,
exp(Sσ1) ∼X exp(Tσ2), where exp(Tσ2) = exp(T). Hence, exp(S) ≈ exp(T). �

Proposition 3.15 For all spatial trees T we have exp(T) + T ≈ exp(T).

Proof The proposition follows by showing that fm(T) ` exp(T)+T →∗ exp(T).
This is proved using an easy induction on the derivation of exp(T) and rule (Red
Copy). �

4 Relation Between Trees and Processes

We can now define the tree semantics of processes, that is, a mapping from
(good) processes to spatial trees. This semantics extends a a similar definition
given in (Cardelli and Gordon 1999a) for the calculus without the restriction
operator.

12

Tree semantics (of good processes):

[[0]] ∆= ε (Zero)
[[〈M〉]] ∆= 1〈M〉 (Output)
[[(n).P]] ∆= 1(n).[[P]] (Input)
[[act η.P]] ∆= 1act η.[[P]] (Action)
[[ε.P]] ∆= [[P]] (Action ε)
[[(M.M ′).P]] ∆= [[M.(M ′.P)]] (Action .)
[[n[P]]] ∆= 1n[[[P]]] (Amb)
[[!P]] ∆= exp([[P]]) (Repl)
fm([[P]]) ∩ fm([[Q]]) = ? ⇒ [[P | Q]] ∆= [[P]] + [[Q]] (Par)
x 6∈ fm([[P]]) ⇒ [[(νn)P]] ∆= [[P]]{n←x} (Res)

Next, we show that the axiomatisation of spatial congruence is sound.

Theorem 4.1 (Soundness) If P ≡ Q then [[P]] ≈ [[Q]].

Proof See Appendix A.3. �

We now prove the completeness of our axiomatisation. We start by defining
an inverse mapping from trees to processes.

Process semantics (of trees):

Let L be a set of fresh, pairwise distinct names with the cardinality of X.
([ε]) ∆= 0 (Empty)
([1〈M〉]) ∆= 〈M〉 (Output 1)
([∞〈M〉]) ∆= !〈M〉 (Output ∞)
([1(n).T]) ∆= (n).([T]) (Input 1)
([∞(n).T]) ∆= !(n).([T]) (Input ∞)
([1act n.T]) ∆= act n.([T]) (Action 1)
([∞act n.T]) ∆= !act n.([T]) (Action ∞)
([1n[T]]) ∆= n[([T])] (Edge 1)
([∞n[T]]) ∆= !n[([T])] (Edge ∞)
([!X.T]) ∆= !(νL)([T{X←L}]) (Repl)
([S + T]) ∆= ([S]) | ([T]) (Sum)

Meaning, mean(T), of a tree T :

The meaning of a tree T , written mean(T), is the (good) process (νK)([Tσ]),
where σ is a bijection from fm(T) to a set of fresh names and K is σ(fm(T)),
the image of σ.

Next, we prove that there is a simple relation between a process and the
meaning of its interpretation.

13

Lemma 4.2 For all processes P we have mean([[P]]) ≡ P .

Proof See Appendix A.3. �

Theorem 4.3 If S ≈ T then mean(S) ≡ mean(T).

Proof Assume S ≈ T . By definition, there are two finite injective map-
pings, σ1, σ2 and a set X such that Sσ1 ∼X Tσ2. By Theorem 3.9, there
is a tree S′ such that X ` Sσ1 →∗ S′ and X ` Tσ2 →∗ S′. The prop-
erty follows by Lemma A.11, proved in Appendix A.3, which states that if
X ` T → S then (νK)([Tσ]) ≡ (νK)([Sσ]), where σ is a bijection from fm(T)
to a set of fresh names and K = σ(fm(T) ∩ X) . By Lemma A.11 several
times, (νK)([Tσ2σ

′]) ≡ (νK1)([S′σ′]) and (νK)([Sσ1σ
′]) ≡ (νK)([S′σ′]), where

σ′ is a bijection from fm(S′) to a set of fresh names and K = σ(fm(S′) ∩
X). Hence, (νK)([Tσ2σ

′]) ≡ (νK)([Sσ1σ
′]). By (Struct Res), (νK ′)([Tσ2σ

′]) ≡
(νK ′)([Sσ1σ

′]), where K ′ = σ(fm(S′)). By α-renaming of markers in K ′, we
get that mean(S) = (νK ′)([Sσ1σ

′]) and mean(T) = (νK ′)([Tσ2σ
′]). Hence,

mean(S) ≡ mean(T), as required.

Theorem 4.4 (Completeness) If [[P]] ≈ [[Q]] then P ≡ Q.

Proof Let P and Q be two processes such that [[P]] ≈ [[Q]]. By Theorem 4.3,
mean([[P]]) ≡ mean([[Q]]). By Lemma 4.2, P ≡ mean([[P]]) and Q ≡ mean([[Q]]).
Hence, P ≡ Q. �

Theorem 4.5 (Decidability) The relation ≡ is decidable.

Proof To decide whether P ≡ Q, you compute [[P]] and [[Q]] and you verify if
they are equivalent. By Theorem. 3.11, this is a decidable problem. �

Using Theorem 4.4 and the definition of normal form for spatial trees given
at the end of Section 3.1, we can define a normal form (up to spatial congruence)
for ambient processes. This normal form is unique up to very simple (spatial)
transformations such as commutativity-associativity of the parallel composition
and the reordering of restrictions, as in rule (Struct Res Res) for instance. More
precisely, for all processes P , there exists a process Q such that P ≡ Q and Q
is a process of the kind:

14

∏
i1∈I1

ni1 [Qi1] |
∏

i2∈I2

!ni2 [Qi2] |
∏

i3∈I3

!(νLi3)Qi3︸ ︷︷ ︸
ambients, with restriction and replication

|

∏
i4∈I4

act ni4 .Qi4 |
∏

i5∈I5

!act ni5 .Qi5︸ ︷︷ ︸
expressions

|

∏
i6∈I6

(ni6).Qi6 |
∏

i7∈I7

!(ni7).Qi7 |
∏

i8∈I8

〈Mi8〉 |
∏

i9∈I9

!〈Mi9〉︸ ︷︷ ︸
input and output actions

Where:

(1) the set of indices I1, . . . , I9 are finite and pairwise disjoint.

(2) for all i ∈
⋃

j∈1..9 Ij , the processes Qj are in normal form.

(3) for all i ∈ I1, j ∈ I2, if ni = nj then Qi 6≡ Qj .

(4) for all i, j ∈ I3, if (νLi)Qi ≡ (νLj)Qj then i = j.

5 Applications of Normal Form

In this section, we use our results on spatial congruence to prove interesting
equivalence laws of ambient processes. For example, we can prove laws used in
the extended presentation of the modal logic for ambients (Cardelli and Gordon
1999a, Section 2-10). We also prove Theorem 5.8, an interesting property that
validates the distribution of restriction over parallel composition under certain
hypothesis.

Theorem 5.1 If P | Q ≡ 0 then P ≡ 0 and Q ≡ 0.

Proof The proposition follows by showing that for any finite set of indices, I,
if X `

∑
i∈I Ci →∗ ε then X ` Ci →∗ ε for all i ∈ I. We proceed by induction

on the derivation of X `
∑

i∈I Ci →∗ ε. The case
∑

i∈I Ci = ε is trivial.

(Red Zero) Then there exists i ∈ I such that Ci = ε and X `
∑

j∈I\{i} Cj →∗
ε. By induction hypothesis, X ` Cj →∗ ε for all j ∈ I \ {i}, as required.

(Red Add Edge) Then I = {i, j} where Ci = ∞η[T] and Cj = µη[T]. This
contradicts the fact that there are no spatial trees, T , such that X `
µη[T] →∗ ε. Cases (Red Add Output), (Red Add Input), (Red Add
Repl), (Red Copy), (Red η), (Red Repl), (Red Input) and (Red Action)
are similar.

15

(Red Sub) Then Y `
∑

i∈I Ci →∗ ε where Y ⊆ X. By induction hypothesis,
Y ` Ci →∗ ε for all i ∈ I. By (Red Sub), X ` Ci →∗ ε for all i ∈ I.

(Red +) Then there is a partition of I into two subsets, I1 and I2, such that
X `

∑
i∈I1

Ci →
∑

i∈I′
1
C ′i, with X ` (

∑
i∈I′

1
C ′i) + (

∑
i∈I2

Ci) →∗ ε.
By induction hypothesis, X ` Ci →∗ ε for all i ∈ I ′1 ∪ I2. Hence, X `∑

i∈I1
Ci → ε. By induction hypothesis, X ` Ci →∗ ε for all i ∈ I1, as

required.

Now, assume P | Q ≡ 0. By Theorem 4.1, [[P]] + [[Q]] ≈ ε. Hence, there
exists a set X such that [[P]] + [[Q]] ∼X ε. By Theorem 3.9, and since ε is an
irreducible spatial trees, X ` [[P]] + [[Q]] →∗ ε. Therefore, X ` [[P]] →∗ ε and
X ` [[Q]]→∗ ε. Hence, [[P]] ≈ ε and [[Q]] ≈ ε. By Theorem 4.4, P ≡ Q ≡ 0. �

Lemma 5.2 If X ` µη[T]→ S then there exist a tree S′ and a set Y such that
Y ⊆ X, S = µη[S′] and Y ` T → S′ with η 6∈ Y .

Proof By induction on the derivation of X ` µη[T]→ S. By inspection of the
possible derivations, the last rule used can only be (Red Sub) or (Red η).

(Red Sub) We have Y ` µη[T] → S and Y ⊆ X implies X ` µη[T] → S.
By induction hypothesis, there exists a tree S′ and a set Y ′ such that
Y ′ ⊆ Y ⊆ X, and S = µη[S′] and Y ′ ` T → S′ and η 6∈ Y ′, as required.

(Red η) Then there is S′ such that S = µη[S′] and X ` T → S′ and η 6∈ X.
Let Y = X. We get that Y ⊆ X, and Y ` T → S′ and η 6∈ Y , as required.

�

Lemma 5.3 If X ` !Y.T → S then there exists a tree S′ such that S =
!(Y ∩ fm(S′)).S′ and (X ∪ Y) ` T → S′.

Proof An easy induction on the derivation of X ` !Y.T → S. The proof is
similar to the one of Lemma 5.2. �

Theorem 5.4 For all processes P we have n[P] 6≡ 0.

Proof Assume n[P] ≡ 0. By Theorem 4.1, [[n[P]]] ≈ ε. Hence, there exists a set
X such that 1n[[[P]]] ∼X ε. By Theorem 3.9, and since ε is an irreducible spatial
trees, X ` 1n[[[P]]]→∗ ε, which contradicts Lemma 5.2. Hence, n[P] 6≡ 0. �

Theorem 5.5 If n[P] ≡ Q | R then either Q ≡ n[P] and R ≡ 0, or Q ≡ 0 and
R ≡ n[P].

16

Proof The proposition follows by showing that for all finite sets of indices, I,
if X `

∑
i∈I Ci →∗ 1n[S] then there exists i ∈ I such that X ` Ci →∗ 1n[S]

and X `
∑

j∈I\{i} Cj →∗ ε. We proceed by induction on the derivation of
X `

∑
i∈I Ci →∗ 1n[S]. The case

∑
i∈I Ci = 1n[S] is trivial.

(Red Zero) Then there exists j ∈ I such that Cj = ε and X `
∑

i∈I\{j} Ci →∗
1n[S]. By induction hypothesis, there exists i ∈ I \ {j} such that X `
Cj →∗ 1n[S] and X `

∑
k∈I\{i,j} Ck →∗ ε. Hence, X `

∑
j∈I\{i} Ck →∗ ε,

as required.

(Red Add Edge) Then I = {i, j} where Ci = ∞η[T] and Cj = µη[T]. This
contradicts the fact that there are no spatial trees, T , such that X `
∞n[T]→∗ 1n[S].

(Red Add Output) Then I = {i, j} where Ci = ∞〈M〉 and Cj = µ〈M〉.
This contradicts the fact that there are no actions, M , such that X `
∞〈M〉 →∗ 1n[S]. Cases (Red Add Input), (Red Add Repl), (Red Copy),
(Red Repl), (Red Input) and (Red Action) are similar.

(Red Sub) Trivial.

(Red η) Then I = {i} and X ` Ci →∗ 1n[S], as required.

(Red +) Then there is a partition of I into two subsets, I1 and I2, such that
X `

∑
i∈I1

Ci →
∑

i∈I′
1
C ′i, with X ` (

∑
i∈I′

1
C ′i) + (

∑
j∈I2

Cj) →∗ 1n[S].
By induction hypothesis, either (1) there is i ∈ I ′1 such that X ` Ci →∗
1n[S] and X ` (

∑
j∈I′

1\{i}
C ′j) + (

∑
j∈I2

Cj) →∗ ε, or (2) there is i ∈ I2
such that X ` Ci →∗ 1n[S] and X ` (

∑
j∈I′

1
C ′j) + (

∑
j∈I2\{i} Cj) →∗ ε.

Assume we are in case (1). Hence, X `
∑

i∈I1
Ci →∗ 1n[S]. By induction

hypothesis, there exists an indices i ∈ I1 such that X ` Ci →∗ 1n[S]
and X `

∑
j∈I1\{i} Cj → ε. By (Red +), X `

∑
j∈(I1∪I2)\{i} Cj → ε, as

required. Assume we are in case (2). By Theorem 5.1, X `
∑

i∈I1
Ci → ε

and, by (Red +), X `
∑

j∈(I1∪I2)\{i} Cj → ε, as required.

Assume n[P] ≡ Q | R. By Theorem 4.1, [[n[P]]] ≈ [[Q]] + [[R]]. Hence, there
exists a set X and two finite injective mappings, σ1, σ2 such that 1n[[[P]]]σ1 ∼X

[[Qσ2]] + [[Rσ2]]. By Theorem 3.9, there exists a spatial tree S such that both
X ` 1n[[[P]]]σ1 →∗ S and X ` [[Qσ2]] + [[Rσ2]] →∗ S. By Lemma 5.2, there
exists a tree S′ such that S = 1n[S′] and X ` [[Qσ2]] + [[Rσ2]] →∗ 1n[S′] and
X ` 1n[[[P]]]σ1 →∗ 1n[S′]. Hence, [[n[P]]] ≈ 1n[S′]. Therefore either (1) X `
[[Qσ2]] →∗ 1n[S′] and X ` [[Rσ2]] →∗ ε or (2) X ` [[Qσ2]] →∗ ε and X `
[[Rσ2]]→∗ 1n[S′]. Assume we are in case (1). Hence, [[Q]] ≈ 1n[S′] and [[R]] ≈ ε.
By Theorem 4.4, Q ≡ n[P] and R ≡ 0. Case (2) is symmetric. �

Theorem 5.6 If m[P] ≡ n[Q] then m = n and P ≡ Q.

17

Proof Assume m[P] ≡ n[Q]. By Theorem 4.1, [[m[P]]] ≈ [[n[Q]]]. Hence, there
exists a set X and two finite injective mappings, σ1, σ2 such that 1m[[[P]]σ1] ∼X

1n[[[Q]]σ2]. By Theorem 3.9, there exists a spatial tree S such that both X `
1m[[[P]]σ1]→∗ S and X ` 1n[[[Q]]σ2]→∗ S. By Lemma 5.2, we have that m = n
and that there exists a tree S′ such that S = 1n[S′] and X ` [[Q]]σ2 →∗ S′ and
X ` [[P]]σ1 →∗ S′. Hence, [[P]] ≈ S′ ≈ [[Q]]. By Theorem 4.4, P ≡ Q, as
required. �

Theorem 5.7 If (νn)P ≡ m[Q] then there exists R such that P ≡ m[R] and
Q ≡ (νn)R.

Proof Assume (νn)P ≡ m[Q]. By Theorem 4.1, [[(νn)P]] ≈ [[m[Q]]]. There-
fore, for every fresh marker, x, we have [[P]]{n←x} ≈ 1m[[[Q]]]. By defini-
tion, there exist two finite injective mappings, σ1, σ2 and a set X such that
[[P]]σ1{n←z} ∼X 1m[[[Q]]σ2] where z = σ1(x). Let S be the normal form of
[[P]]σ1. Therefore, S ≈ [[P]]σ1 ∼Y 1m[[[Q]]σ2{z←n}]. By Proposition 3.3, it
must be the case that S = 1m[T] where T ≈ [[Q]]σ2{z←n}. Let R be the
process mean(T). Then, [[m[R]]] ≈ S ≈ [[P]] and, by Theorem 4.4, m[R] ≡ P .
Moreover, [[(νn)R]] ≈ T{n←z} ≈ [[Q]] and, by Theorem 4.4, (νn)R ≡ Q, as
required. �

Theorem 5.8 If P | Q ≡ (νn)R then there exist two processes, R1, R2, such
that R ≡ R1 | R2, and P ≡ (νn)R1, and Q ≡ (νn)R2.

Proof Assume P | Q ≡ (νn)R. By Theorem 4.1, [[P | Q]] ≈ [[(νn)R]]. There-
fore, for every fresh marker, x, we have [[P]]+[[Q]] ≈ [[R]]{n←x}, where fm([[P]])∩
fm([[Q]]) = ?. By definition, there exist two finite injective mappings, σ1, σ2

and a set X such that [[P]]σ1 + [[Q]]σ1 ∼X [[R]]σ2{n←y}, where y = σ2(x).
Let S, T and O be the normal forms of [[P]]σ1, [[Q]]σ1 and [[R]]σ2, respectively.

Hence, S + T ∼Y O{n←y} for some set of markers Y such that X ⊆ Y and
with the side-condition fm(S)∩fm(T) = ?. Assume

∑
i∈1..p Ci is the (common)

normal form of S + T and O{n←y}. By Proposition 3.3, and since S, T and O
are in normal form, there is S1, . . . , Sp, T1, . . . , Tp, O1, . . . , Op, each in normal
form, such that:

(1) S =
∑

i∈1..p Si and T =
∑

i∈1..p Ti and O =
∑

i∈1..pOi.

(2) Si + Ti ∼Y Oi{n←y} for each i ∈ 1..p.

(3) Y ` Si + Ti →∗ Ci and Y ` Oi{n←y} →∗ Ci for each i ∈ 1..p.

The proof follows by constructing the spatial trees corresponding to the
processes R1, R2. We proceed by defining two families of trees, (S′i)i∈1..p and
(T ′i)i∈1..p, and proving that Oi ∼Y (S′i + T ′i), and Si ∼Y S′i{n←y}, and Ti ∼Y

T ′i{n←y} for each i ∈ 1..p. The trees S′i and T ′i are defined by case analysis on
the definition of Ci.

18

(Empty) Then Ci = ε. Since S, T and O are in normal form, it must be the
case that Si = Ti = Oi = ε. Let S′i = T ′i = ε. Trivial.

(Output) Then Ci = µ〈M〉. Since Oi is in normal form, it must be the case
that Oi{n←y} = µ〈M〉. Let S′i = Si{y←n} and T ′i = Ti{y←n}. Trivial.
We follow the same definition for the cases where Ci is an input, an action
or an edge.

(Repl) Then Ci = !Y ′.T ′. Since Oi is in normal form, it must be the case that
Oi{n←y} = !Y ′.T ′′+T ′′′ and T ′ ∼Y ∪Y ′ T ′′. Since Si and Ti are in normal
form and fm(Si)∩fm(Ti) = ?, it must be the case that either (1) Si ∼Y Ci

or (2) Ti ∼Y Ci. Assume we are in case (1). Let S′i = (Si + T ′′′){y←n}
and T ′i = Ti{y←n}. Then S′i{n←y} ∼Y Ci + T ′′′ ∼Y Ci ∼Y Si, and
(S′i + T ′i) = (Si + Ti + T ′′′){y←n} ∼Y (Ci + T ′′′){y←n} ∼Y Oi, as
required.

An easy induction on the definition of
∑

i∈1..p Ci proves that:

O ∼Y

∑
i∈1..p(S′i + T ′i)∑

i∈1..p Si ∼Y

∑
i∈1..p S

′
i{n←y}∑

i∈1..p Ti ∼Y

∑
i∈1..p T

′
i{n←y}

Let R1 and R2 be the processes mean(
∑

i∈1..p S
′
i) and mean(

∑
i∈1..p T

′
i),

respectively. Hence, [[R]] ≈ O ∼Y [[R1]]+[[R2]] and, by Theorem 4.4, R ≡ R1 |R2.
Moreover, [[(νn)R1]] ≈

∑
i∈1..p Si ≈ [[P]] and [[(νn)R2]] ≈

∑
i∈1..p Ti ≈ [[Q]].

Therefore, by Theorem 4.4, (νn)R1 ≡ P and (νn)R2 ≡ Q, as required. �

The proof of the last result is surprisingly subtle and difficult, and uses dif-
ferent properties of normal forms and the interpretation of processes. Following
the “constructive” approach taken in this paper, our proof method not only
demonstrates the existence of a solution, but also describe an algorithm to com-
pute it, that is, it defines an algorithm that computes the two processes R1 and
R2. The following equivalences give an example of solutions to a non-trivial
instance of Theorem 5.8:

(νn) (!(νn)n[0] | n[0])︸ ︷︷ ︸
R

≡ !(νn)n[0]︸ ︷︷ ︸
P

| !(νn)n[0]︸ ︷︷ ︸
Q

≡ (νn) (!(νn)n[0] | n[0])︸ ︷︷ ︸
R1

| (νn) !(νn)n[0]︸ ︷︷ ︸
R2

6 Summary

We proposed an algorithmic method to decide whether two ambient calculus
processes are spatially congruent. This method is based on an intuitive inter-
pretation of processes as edge-labelled trees (called spatial trees), and a strongly
normalizing rewriting system. The results presented here extend previous re-
sults given in (Cardelli and Gordon 1999a) for a version of the calculus without
restriction.

19

References

Berry, G. and G. Boudol (1992). The chemical abstract machine. Theoretical
Computer Science 96, 217–248. 1

Cardelli, L. and A. D. Gordon (1998). Mobile ambients. In M. Nivat (Ed.),
Proc. of FoSSaCS ’98 – Foundations of Software Science and Computa-
tional Structures, Volume 1378 of Lecture Notes in Computer Science, pp.
140–155. Springer-Verlag. To appear in Theoretical Computer Science,
special issue on Coordination, D. Le Métayer. 1, 2, 2.1

Cardelli, L. and A. D. Gordon (1999a, July). Anytime, anywhere: Modal
logics for mobile ambients. Extended abstract of (Cardelli and Gordon
2000). 1, 4, 5, 6

Cardelli, L. and A. D. Gordon (1999b). Types for mobile ambients. In Proc. of
POPL ’99 – 26th Annual ACM Symposium on Principles of Programming
Languages, pp. 79–92. 2.2

Cardelli, L. and A. D. Gordon (2000, January). Anytime, anywhere: Modal
logics for mobile ambients. In Proc. of POPL ’00 – 27th Annual ACM
Symposium on Principles of Programming Languages. 2, 3, 6

Engelfriet, J. and T. Geselma (1999, January). Multisets and structural con-
gruence of the pi-calculus with replication. Theoretical Computer Sci-
ence 211 (1-2), 311–337. 2.1

Engelfriet, J. and T. Geselma (2000, January). Structural congruence in the
pi-calculus with potential replication. Technical Report 00-02, Leiden In-
stitute of Advanced Computer Science. 2.1

Hirschkoff, D. (1999). Mise en oeuvre de preuves de bisimulation. Ph. D.
thesis, École Nationale des Ponts et Chaussées. 2.1

Milner, R. (1979, October). Flow graphs and flow algebras. Journal of the
ACM 26 (4), 794–818. 2

Milner, R. (1992). Functions as processes. Mathematical Structures in Com-
puter Science 2, 119–141. 1, 2.1

20

A Proofs

A.1 Equality Between Spatial Trees

In this appendix, we give the proof that were omitted in Section 3.1.

Lemma A.1 ? ` !?.T + !?.T →∗ !?.T .

Proof By induction on the structure of T .

(Empty) Then T = ε. By definition, !?.ε = ε and, by (Red Zero), ? ` ε+ ε→
ε.

(Output) Then T = µ〈M〉. By definition, !?.µ〈M〉 = ∞〈M〉 and, by (Red
Add Output), ? ` ∞〈M〉+∞〈M〉 → ∞〈M〉.

(Input) Then T = µ(n).T . By definition, !?.µ(n).T = ∞(n).T and, by (Red
Add Input), ? ` ∞(n).T +∞(n).T →∞(n).T .

(Action) Then T = µact η.T . By definition, !?.µact η.T = ∞act η.T and, by
(Red Add Action), ? ` ∞act η.T +∞act η.T →∞act η.T .

(Edge) Then T = µη[T]. By definition, !?.µη[T] = ∞η[T] and, by (Red Add
Edge), ? ` ∞η[T] +∞η[T]→∞η[T].

(Repl) Then T = !X.T . By definition, !?.!X.T = !X.T and, by (Red Repl),
? ` !X.T + !X.T → !X.T .

(Sum) Then T = T1 + T2. By definition, !?.T = !?.T1 + !?.T2. By induction
hypothesis, ? ` !?.Ti + !?.Ti →∗ !?.Ti for each i ∈ {1, 2}. Therefore, by
(Red +), ? ` (!?.T1 + !?.T1) + (!?.T2 + !?.T2)→∗ !?.T . �

Lemma A.2 ? ` !?.T + T →∗ !?.T .

Proof By induction on the structure of T .

(Empty) Then T = ε. By definition, !?.ε = ε and, by (Red Zero), ? ` ε+ ε→
ε.

(Output) Then T = µ〈M〉. By definition, !?.µ〈M〉 = ∞〈M〉 and, by (Red
Add Output), ? ` ∞〈M〉+ µ〈M〉 → ∞〈M〉.

(Input) Then T = µ(n).T . By definition, !?.µ(n).T = ∞(n).T and, by (Red
Add Input), ? ` ∞(n).T + µ(n).T →∞(n).T .

(Action) Then T = µact η.T . By definition, !?.µact η.T = ∞act η.T and, by
(Red Add Action), ? ` ∞act η.T + µact η.T →∞act η.T .

(Edge) Then T = µη[T]. By definition, !?.µη[T] = ∞η[T] and, by (Red Add
Edge), ? ` ∞η[T] + µη[T]→∞η[T].

21

(Repl) Then T = !X.T . By definition, !?.!X.T = !X.T and, by (Red Add
Repl), ? ` !X.T + !X.T → !X.T .

(Sum) Then T = T1 + T2. By definition, !?.T = !?.T1 + !?.T2. By induction
hypothesis, ? ` !?.Ti + Ti →∗ !?.Ti for each i ∈ {1, 2}. Therefore, by
(Red +), ? ` (!?.T1 + T1) + (!?.T2 + T2)→∗ !?.T . �

Lemma A.3 If ? ` T → S then ? ` !?.T →∗ !?.S.

Proof By induction on the derivation of ? ` T → S.

(Red Zero) Then T = S + ε. By definition, !?.T = !?.S + ε and, by (Red
Zero), ? ` !?.S + ε→ !?.S.

(Red Add Edge) Then T =∞η[T ′] + µη[T ′] and S =∞η[T ′]. By (Red Add
Edge), ? ` ∞η[T ′] +∞η[T ′] → !?.S. Cases (Red Add Output), (Red
Add Input) and (Red Add Action) are similar.

(Red Add Repl) Then T = !X.T ′+!X.T ′ and S = !X.T ′. We have !?.T = T
and !?.S = S. Trivial. Case (Red Repl) is similar.

(Red Sub) Then Y ` T → S with Y ⊆ ?. Hence, Y = ?. Trivial.

(Red Copy) Then T = !X.T ′+T ′. This case is impossible since it contradicts
X 6= ?.

(Red η) Then T = µη[T ′] and S = µη(S′) where ? ` T ′ → S′. By (Red η),
? ` ∞η[T ′]→∞η[S′]. Cases (Red Input) and (Red Action) are similar.

(Red +) Then T = T ′ +R and S = S′ +R where ? ` T ′ → S′. By induction
hypothesis, ? ` !?.T ′ → !?.S′. By (Red +), ? ` !?.T ′ + !?.R →
!?.S′ + !?.R. �

Proof of Lemma 3.6 If X ` T → S then fm(S) ⊆ fm(T) and fm(T) \
fm(S) ⊆ X.

Proof By induction on the derivation of X ` T → S. Note that the only
reduction rule that decreases the set of free markers is (Red Copy). All the
other rules preserve the set of free markers.

(Red Zero) Then T = S + ε and X = ?. Hence, fm(T) = fm(S), as required.

(Red Add Edge) Then T = ∞η[T ′] + µη[T ′] and S = ∞η[T ′] and X = ?.
Hence, fm(T) = fm(S), as required.

(Red Add Repl) Then T = !X.T ′+!X.T ′ and S = !X.T ′ and X = ?. Hence,
fm(T) = fm(S), as required.

(Red Sub) Then Y ` T → S where Y ⊆ X. By induction hypothesis, fm(S) ⊆
fm(T) and fm(T) \ fm(S) ⊆ Y ⊆ X, as required.

22

(Red Copy) Then T = !X.T ′ + T ′ and S = !X.T ′. Therefore, fm(S) ⊆ fm(T)
and fm(T) \ fm(S) = X, as required.

(Red η) Then T = µη[T ′] and S = µη(S′) where X ` T ′ → S′ and η 6∈ X. By
induction hypothesis, fm(S′) ⊆ fm(T ′) and fm(T ′) \ fm(S′) ⊆ X. Hence,
fm(S) ⊆ fm(T) and fm(S) \ fm(T) ⊆ X, as required.

(Red +) Then T = T ′+R and S = S′+R where X ` T ′ → S′ and fm(R)∩X =
?. By induction hypothesis, fm(S′) ⊆ fm(T ′) and fm(T ′) \ fm(S′) ⊆ X.
Hence, fm(S) ⊆ fm(T) and fm(T) \ fm(S) ⊆ X, as required.

(Red Repl) Then T = !Y.T ′ and S = !Y ′.S′ where X ∪ Y ` T ′ → S′ and
Y ′ = (Y ∩fm(S′)). By induction hypothesis, fm(S′) ⊆ fm(T ′) and fm(T ′)\
fm(S′) ⊆ X ∪ Y . By definition, fm(S) = fm(S′) \ Y ′ and fm(T) =
fm(T ′) \ Y . Hence, fm(S) ⊆ fm(T) and fm(T) \ fm(S) ⊆ X, as required.

(Red Input) Then T = µ(n).T ′ and S = µ(n).S′ where X ` T ′ → S′. By
induction hypothesis, fm(S′) ⊆ fm(T ′) and fm(T ′) \ fm(S′) ⊆ X. Hence,
fm(S) ⊆ fm(T) and fm(T) \ fm(S) ⊆ X, as required.

(Red Action) Then T = µact n.T ′ and S = µact n.S′ where X ` T ′ → S′. By
induction hypothesis, fm(S′) ⊆ fm(T ′) and fm(T ′) \ fm(S′) ⊆ X. Hence,
fm(S) ⊆ fm(T) and fm(T) \ fm(S) ⊆ X, as required. �

Next, we define the condensed representation of a tree, T ?, which, intuitively,
factors out all the possible reductions involving an empty cone.

Condensed tree: T ?

ε?
∆= ε (µ〈M〉)? ∆= µ〈M〉

(µη[T])? ∆= µη[T ?] (!X.T)? ∆= !(X ∩ fm(T)).T ?

(µact n.T)? ∆= µact n.T ? (µ(n).T)? ∆= µ(n).(T ?)

(S + T)? ∆=

 T ? if S? = ε
S? if T ? = ε
S? + T ? otherwise

We also define a new reduction relation on trees, S ↓ T , that corresponds to
the evaluation of the condensed representation of a spatial tree (see Lemma A.6).
The notation S ⇓ T is short for the fact that there is a sequence of reductions
S1 ↓ S2, . . . , Sk ↓ Sk+1 where S = S1 and T = Sk+1.

Located reduction: S ↓ T

(Do Zero)

T + ε ↓ T

(Do η)
T ↓ S

µη[T] ↓ µη[S]

(Do +)
T ↓ S

T +R ↓ S +R

(Do Repl)
T ↓ S (Y ′ = Y ∩ fm(S))

!Y.T ↓ !Y ′.S

(Do Input)
T ↓ S

µ(n).T ↓ µ(n).S

(Do Action)
T ↓ S

µact n.T ↓ µact n.S

23

Basic properties of the condensed representation of a spatial tree are:

Lemma A.4 If T ↓ S then ? ` T → S.

Proof An easy induction on the derivation of T ↓ S. �

Lemma A.5 If T ↓ S then !?.T ↓ !?.S.

Proof By induction on the derivation of T ↓ S

(Do Zero) Then T = S + ε. Therefore, !?.T = !?.S + ε and, by (Do Zero),
!?.S + ε ↓ !?.S, as required.

(Do η) Then T = µη[T ′] and S = µη(S′) where T ′ ↓ S′. By (Do η), ∞η[T ′] ↓
∞η[S′], as required.

(Do +) Then T = T ′ + R and S = S′ + R where X ` T ′ → S′. By induction
hypothesis, !?.T ′ ↓ !?.S′. Hence, by (Do +), !?.T ′+!?.R ↓ !?.S′+!?.R,
as required.

(Do Repl) Then T = !Y.T ′ and S = !Y ′.S′ where T ′ ↓ S′ and Y ′ = (Y ∩
fm(S′)). We have T = !?.T and S = !?.S. Trivial.

(Do Input) Then T = µ(n).T ′ and S = µ(n).S′ where T ′ ↓ S′. By (Do Input),
∞(n).T ′ ↓ ∞(n).S′, as required.

(Do Action) Then T = µact n.T ′ and S = µact n.S′ where T ′ ↓ S′. By (Do
Action), µact n.T ′ ↓ µact n.S′, as required. �

Basic properties of the condensed form are:

Lemma A.6 For all spatial trees T we have T ⇓ T ?.

Proof By induction the structure of T .

(Empty) Then T = ε. We have ε? = ε. Trivial.

(Input) Then T = µ(n).S. By induction hypothesis, S ⇓ S?. By (Do Input),
T ⇓ T ?, as required.

(Output) Then T = µ〈M〉. We have (µ〈M〉)? = µ〈M〉. Trivial.

(Capability) Then T = µact η.S. By induction hypothesis, S ⇓ S?. By (Do
Action), µact η.S ↓ µact n.S?, as required.

(Edge) Then T = µη[S]. Hence, T ? = µη[S?]. By induction hypothesis,
S ⇓ S?. By (Do η), T ⇓ T ?, as required.

(Repl) Then T = !Y.S. Hence, T ? = !Y ′.S? where Y ′ = (Y ∩ fm(S)). By
induction hypothesis, S ⇓ S?. By (Do Repl), T ⇓ !Y ′.S?, as required.

24

(Sum) Then T = S1 +S2. By induction hypothesis, Si ⇓ S?
i for each i ∈ {1, 2}.

Assume S?
i 6= ε for each i ∈ {1, 2}. Hence, T ? = S?

1 + S?
2 and, by (Do +),

T ⇓ T ?. Assume S?
1 = ε. By (Do +) and (Do Zero), T ⇓ S?

2 . The case
S?

2 = ε is symmetric. �

Lemma A.7 For all spatial trees T we have ? ` T →∗ T ?.

Proof By Lemma A.6, T ⇓ T ?. Therefore, by Lemma A.4, ? ` T →∗ T ?. �

Lemma A.8 For all spatial trees T we have fm(T ?) = fm(T).

Proof An easy induction on the structure of T . �

Lemma A.9 If X ` T → S then X ` T ? →∗ S?.

Proof By induction on the derivation of X ` T → S.

(Red Zero) Then T = S + ε and X = ?. Hence, T ? = S?. Trivial.

(Red Sub) Then Y ` T → S with Y ⊆ X. By induction hypothesis, Y `
T ? →∗ S?. By (Red Sub), X ` T ? →∗ S?, as required. Cases (Red η),
(Red +), (Red Repl), (Red Input) and (Red Action) are similar.

(Red Add Edge) Then T = ∞η[T ′] + µη[T ′] and S = ∞η[T ′] and X = ?.
Hence, T ? =∞η[T ′?] + µη[T ′?] and S? =∞η[T ′?]. By (Red Add Edge),
X ` T ? → S?, as required.

(Red Add Repl) Then T = !X.T ′ + !X.T ′ and S = !X.T ′. Hence, T ? =
!Z.T ′? + !Z.T ′? and S? = !Z.T ′?, where Z = X ∩ fm(T ′). By (Red Add
Repl), X ` T ? → S?, as required.

(Red Copy) Then T = !X.T ′ + T ′ and S = !X.T ′. There two possible cases:

(1) Assume T ′? 6= ε. Hence, T ? = !Z.T ′? + T ′
? and S? = !Z.T ′?, where

Z = X ∩ fm(T ′). By (Red Copy), Z ` T ? → S?. By (Red Sub),
X ` T ? → S?, as required.

(2) Otherwise. Hence, T ? = !Z.T ′? = !Z.ε and S? = !Z.ε, where Z =
X ∩ fm(T ′). By (Red Copy), X ` T ? → S?, as required.

(Red +) Then T = T ′ +R and S = S′ +R where X ` T ′ → S′. By induction
hypothesis, X ` T ′? →∗ S′?. There are three cases

(1) Assume T ′? = ε. Hence, X ` ε →∗ S′?, that is, S′? = ε. Therefore
T ? = S? = R?. Trivial.

(2) Assume R? = ε. Therefore T ? = T ′
? and S? = S′

?. Trivial.

25

(3) Otherwise, T ? = T ′
? + R? and S? = S′

? + R?. By (Red +), X `
T ? → S?, as required. �

Lemma A.10 If X ` T + ε→ S then X ` T →∗ S?.

Proof Assume X ` T + ε → S. Hence, T ? = (T + ε)? and, by Lemma A.9,
X ` (T + ε)? →∗ S?. By Lemma A.7, ? ` T →∗ T ?. Hence, by (Red Sub),
X ` T →∗ S?. �

Proof of Theorem 3.9 If X1 ` T → T1 and X2 ` T → T2 then there exists
a tree S such that X1 ∪X2 ` T1 →∗ S and X1 ∪X2 ` T2 →∗ S.

Proof By induction on the derivation of X1 ` T → T1.

(Red Sub) Then Y1 ` T → T1 and Y1 ⊆ X1. By induction hypothesis, there
exists a tree S such that Y ` T1 →∗ S and Y ` T2 →∗ S, where Y =
y1 ∪ X2. Hence, Y ⊆ X1 ∪ X2. By (Red Sub), X1 ∪X2 ` T1 →∗ S and
X1 ∪X2 ` T2 →∗ S, as required.

(Red Zero) Then T = T1 + ε and X1 = ?. Hence, X2 ` T1 + ε → T2 and
X1 ∪ X2 = X2. Let S be the spatial tree T ?

2 . By Lemma A.10, X2 `
T1 →∗ S. By Lemma A.7, ? ` T2 →∗ S. By (Red Sub), X2 ` T2 →∗ S,
as required.

(Red η) Then T = µη[R]. There exist two trees, R1, R2, such that Ti = µη[Ri]
and Xi ` R → Ri for each i ∈ {1, 2}. By induction hypothesis, there is a
tree S′ such that X1 ∪X2 ` Ri →∗ S′ for each i ∈ {1, 2}. Let S = µη[S′].
By (Red η), X1 ∪X2 ` Ti →∗ S for each i ∈ {1, 2}, as required. Cases
(Red Repl) and (Red Input) are similar.

(Red Action) Then T = µact η.R and T1 = µact η.R1 where X1 ` R → R1.
We proceed by induction on the derivation of X2 ` T → T2.

(Red Add Edge) This case is not possible since µact η.R is not a vector
of the kind µ1η[T ′] + µ2η[T ′′]. Cases (Red Add Repl), (Red Copy),
(Red η), (Red +), (Red Repl) and (Red Input) are similar.

(Red Sub) and (Red Zero) These cases have been proved previously.

(Red Action) There exists a spatial tree R2, such that T2 = µact η.R2

and X2 ` R → R2. By induction hypothesis, there is a tree S′ such
that X1 ∪X2 ` Ri →∗ S′ for each i ∈ {1, 2}. Let S = µact η.S′. By
(Red Action), X1 ∪X2 ` Ti →∗ S for each i ∈ {1, 2}, as required.

(Red Input) Similar to case (Red η).

(Red Repl) Similar to case (Red η).

(Red Add Edge) Then T = ∞η[R] + µη[R] and T1 = ∞η[R] and X1 = ?.
We proceed by case analysis on the derivation of X2 ` T → T2.

26

(Red Add Repl) This case is not possible possible. Cases (Red Copy),
(Red η), (Red Repl), (Red Input) and (Red Action) are similar.

(Red Add Edge) Then T1 = T2. Trivial.

(Red Sub) and (Red Zero) These cases have been proved previously.

(Red +) We have two possible cases. Either (1), we have X2 ` µη[R]→
R′ and T2 = ∞η[R] + R′, or (2), we have X2 ` ∞η[R] → R′ and
T2 = R′ + µη[R]. In each cases we have the side condition (H1):
fm(µη[R]) ∩ X2 = ?. Assume we are in case (1). By Lemma 5.2,
there exist a tree S′ and a set Y , with Y ⊆ X2, such that R′ = µη[S′]
and Y ` R → S′ and η 6∈ Y . Let S be the spatial tree ∞η[S′]. By
(Red η) and (Red Sub), X2 ` ∞η[R] → S. Hence, X2 ` T1 →∗ S.
By Lemma 3.6 and (H1), fm(∞η[S′]) ∩X2 = ?. Hence, by (Red η),
(Red +) and (Red Sub), X2 ` R′ +∞η[R]→ R′ + S. By (Red Add
Edge), X2 ` R′ + S → S. Hence, X2 ` T2 →∗ S, as require. Case
(2) is symmetric.

(Red Add Repl) Then T = !Y.R + !Y.R and T1 = !Y.R and X1 = ?. We
proceed by case analysis on the derivation of X2 ` T → T2.

(Red Add Edge) This case is not possible. Cases (Red Copy), (Red η),
(Red Repl), (Red Input) and (Red Action) are similar.

(Red Add Repl) Then T1 = T2. Trivial.

(Red Sub) and (Red Zero) These cases have been proved previously.

(Red +) Then T2 = S+!Y.R where X2 ` !Y.R→ S and (H1): fm(!Y.R)∩
X2 = ?. By Lemma 5.3, there exists a tree S′ such that S = !Z.S′

andX2 ∪ Y ` R→ S′ where Z is the set (Y ∩fm(S′)). By (Red Repl),
X2 ` !Y.R → !Z.S′. Hence, X2 ` T1 →∗ S. By Lemma 3.6 and
(H1), fm(!Z.S′) ∩X2 = ?. Therefore, by (Red Repl) and (Red +),
X2 ` S+!Y.R→ S+!Z.S′ and, by (Red Add Repl), X2 ` S+S → S.
Hence, X2 ` T2 →∗ S, as required.

(Red Copy) Then T = !X1.R + R and T1 = !X1.R. We proceed by case
analysis on the derivation of X2 ` T → T2.

(Red Zero) This case has been proved previously.

(Red Add Edge) This case is not possible since there are no trees R′

such that !Y.R = ∞η[R′]. Cases (Red Add Repl), (Red η), (Red
Repl), (Red Input) and (Red Action) are similar.

(Red Copy) Then T1 = T2. Trivial.

(Red Sub) This case has been proved previously.

(Red +) We have two possible cases. Either (1), we have T2 = S + R
where X2 ` !X1.R → S and with the side condition that fm(R) ∩
X2 = ?. Either (2), we have T2 = !X1.R + S where X2 ` R → S
and with the side condition that fm(!X1.R) ∩ X2 = ?. Assume we

27

are in case (1). By Lemma 5.3, there is a tree S′ such that S = !Z.S′

and X2 ∪X1 ` R → S′ where Z = (X1 ∩ fm(R′)). By Lemma 3.6,
fm(S) ∩ X2 = ?. By (Red +), X1 ` S + R → S + S′. By (Red
Copy), X1 ` S +R′ → S. Hence, X1 ∪X2 ` T2 →∗ S. On the other
part, by (Red Repl), X2 ` !X1.R → S. Hence, X1 ∪X2 ` T1 →∗ S,
as required. Case (2) is symmetric.

(Red +) Then T = R1 +R2 and T1 = S1 +R2 where X1 ` R1 → S1 and with
the side condition that fm(R2)∩X1 = ?. We proceed by case analysis on
the derivation of X2 ` T → T2.

(Red Repl) This case is not possible since there are no trees R such that
R1 + R2 = !Y.R. Cases (Red Repl), (Red Input) and (Red Action)
are similar.

(Red Zero) This case has been proved previously. Cases (Red Add
Edge), (Red Add Repl), (Red Sub) and (Red Copy) are similar.

(Red +) A possible case is such that X2 ` R2 → S2 and T2 = R2 + S2,
that is, the reductions come from two distinct subparts of T . Hence,
by induction hypothesis and (Red +), we have X1 ∪X2 ` Ti →
S1+S2 for each i ∈ {1, 2}, as required. Another cases involve “critical
pairs”. We denote S the part (that is, the sum of the cones) of T that
are not involved in the reductions. By inspection of the structure of
T we obtain the following cases.
(Red Zero)-(Red Zero) Then T = R1 +ε+R2 +S and T1 = T2 =

R1 +R2 + S. Trivial.
(Red Add Edge)-(Red Add Edge) Then T =∞η[R] + µη[R] +
∞η[R] + S and T1 = T2 = ∞η[R] +∞η[R] + S. Trivial. Case
(Red Add Repl)-(Red Add Repl) is similar.

(Red Add Edge)-(Red Copy) Then T = µ1η[R]+µ2η[R]+!X.µ2

η[R] + S and T1 = ∞η[R] + !X.µ2η[R] + S and T2 = µ1η[R] +
!X.µ2η[R]+S where µ1 =∞ or µ2 =∞. This case is impossible
since fm(η(R))∩X 6= ?, which conflicts with the side-condition
of rule (Red +).

(Red Add Repl)-(Red Copy) Then T = R+!X.R+!X.R+S and
T1 = R+!X.R+S and T2 = !X.R+!X.R+S, where X1 = ? and
X2 = X. By (Red Copy) and (Red +), X ` T1 → !X.R+S. By
(Red Add Repl) and (Red +), ? ` T2 → !X.R+ S, as required.

(Red Copy)-(Red Copy) Then T = R1 + !X.R + R2 + S and
T1 = !X.R+R2 +S and T2 = R1 + !X.R+S and there exist two
disjoint sets, X1,X2, such that R1{X←X1} = R2{X←X2} = R
and (X1 ∪ X2) ∩ fm(S) = ?. By (Red Copy) and (Red +),
X2 ` T1 → !X.R+ S and X1 ` T2 → !X.R+ S, as required. �

A.2 Exponentiation of Spatial Trees

Proof of Lemma 3.13 If X ` T → S then X ` exp(T)→∗ exp(S).

28

Proof This lemma follows by showing that for all tree R such that fm(R)∩X =
?, if X ` T → S then X ` exp(T +R) →∗ exp(S +R). We proceed by
induction on the derivation of X ` T → S.

(Red Zero) Then T = S + ε and X = ?. In this case, exp(T +R) =
exp(S +R). Trivial.

(Red Add Edge) Then T = ∞η[T ′] + µη[T ′] and S = ∞η[T ′] and X = ?.
Let R be a spatial tree. There are two possible cases:

(1) Either fm(µη[T ′]) = ?. Then T +R has at least two connected com-
ponents and exp(T +R) =∞η[T ′] +∞η[T ′] + exp(R). By (Red Add
Repl), ? ` exp(T +R)→∞η[T ′] + exp(R) = exp(S), as required.

(2) Otherwise, let Y = fm(µη[T ′]). By inspection of the structure of R,
there must exists a partition of R, say (R1, R2), such that fm(R1) ∩
Y 6= ? and fm(R2) ∩ Y = ?. Therefore:

exp(T +R) = !Y.∞η[T ′] + µη[T ′] +R1 + exp(R2)

By (Red Add Edge), (Red +) and (Red Repl):

? ` exp(T +R)→ !Y ′.∞η[T ′] +R1 + exp(R2)

Where Y ′ = Y ∩ fm(∞η[T ′] +R1). Since fm(µη[T ′]) = fm(∞η[T ′]),
we have Y ′ = Y . Hence, ? ` exp(T +R) → !Y.∞η[T ′] +R1 +
exp(R2) = exp(S +R), as required.

Cases (Red Add Repl) and (Red Copy) are similar.

(Red Sub) Then Y ` T → S with Y ⊆ X. Let R be a tree such that
fm(R) ∩ X = ?. Hence, fm(R) ∩ Y = ?. By induction hypothesis,
Y ` exp(T +R) →∗ exp(S +R). By (Red Sub), X ` exp(T +R) →∗
exp(S +R), as required.

(Red η) T = µη[T ′] and S = µη[S′] where X ` T ′ → S′ and η 6∈ X. Let Z be
the free markers of η[T ′]. Let R be a tree such that fm(R) ∩X = ?. By
inspection of the structure of R, there must exists a partition of R, say
(R1, R2), such that fm(R1) ∩ Z 6= ? and fm(R2) ∩ Z = ?. We have two
different cases:

(1) Assume Z 6= ?. Therefore, exp(T +R) = !Z.µη[T ′] +R1 + exp(R2).
By Lemma A.9, X ` T ′ → S′. By (Red Repl), (Red +) and (Red η),
X \ Z ` exp(T +R)→∗ !Z ′.µη[S′] +R1 + exp(R2), where Z ′ = Z ∩
fm(µη[S′] +R1). Therefore, X \ Z ` exp(T +R) →∗ exp(S +R).
By (Red Sub), exp(T +R)→∗X exp(S +R), as required.

(2) Assume Z = ?. Therefore, exp(T +R) = ∞η[T ′] + exp(R) and, by
(Red η) and Lemma A.9, X ` exp(T +R) → ∞η[S′] + exp(R) =
exp(S +R), as required.

29

Cases (Red Repl), (Red Input) and (Red Action) are similar.

(Red +) Then T = T1 + T2 and S = S1 + T2 where X ` T1 → S1 and
(fm(T2)∩X = ?). Let R be a tree such that fm(R)∩X = ?. Hence, R+T2

is a tree such that fm(R+ T2) ∩ X = ?. By induction hypothesis, X `
exp(T1 + (T2 +R)) →∗ exp(S1 + (T2 +R)). By associativity of +, X `
exp(T +R) = exp(T1 + T2 +R) →∗ exp(S1 + T2 +R) = exp(S +R), as
required. �

A.3 Relation Between Trees and Processes

Proof of Lemma 4.2 For all processes P we have mean([[P]]) ≡ P .

Proof By induction on the structure of P .

(Zero) Then P = 0. Hence, mean([[0]]) = mean(ε) = 0.

(Par) Then P = P1 | P2. By definition, mean([[P1 | P2]]) = mean([[P1]] + [[P2]]),
where fm([[P1]]) ∩ fm([[P2]]) = ?, and therefore, mean([[P1]] + [[P2]]) =
mean([[P1]]) | mean([[P2]]). By induction hypothesis, Pi ≡ mean([[Pi]])
for each i ∈ {1, 2}. By (Struct Par), mean([[P1]]) | mean([[P2]]) ≡ P1 | P2,
as required.

(Amb) Then P = m[P ′]. Let σ be a bijection from fm([[P]]) to a set of fresh
names and K be the image of σ. Hence, we can assume that m 6∈ K.
Therefore, mean([[m[P ′]]]) = mean(1m[[[P ′]]]) = (νK)m[([[[P ′]]σ])].

By (Struct Res Amb), mean([[m[P ′]]]) ≡ m[mean([[P ′]])]. By induction
hypothesis, mean([[P ′]]) ≡ P ′. By (Struct Amb), m[mean([[P ′]])] ≡ m[P ′].
Hence, mean([[m[P ′]]]) ≡ m[P ′], as required.

(Res) Then P = (νm)P ′. Let σ be a bijection from fm([[P]]) to a set of fresh
names and K be the image of σ. Hence, we can assume m 6∈ K. Let y be
a fresh marker. Therefore:

mean([[(νm)P ′]]) = (νK)([[[(νm)P ′]]])σ
= (νK)(νm)([[[P ′{m←y}]]]){y←m}σ
= (νK)(νm)([[[P ′]]])σ

By induction hypothesis, mean([[P ′]]) ≡ P ′. By (Struct Res) and (Struct
Res Res), (νm)mean([[P ′]]) ≡ (νm)P ′, as required.

(Repl) Then P = !P ′. By induction hypothesis, mean([[P ′]]) ≡ P ′. Let T =
[[P ′]] and {T1, . . . , Tp} be the set conn(T). Hence, [[P ′]] =

∑
i∈1..p Ti,

and [[P]] = exp(T) =
∑

i∈1..p !Yi.Ti, where Yi = fm(Ti). In particular,
fm([[P]]) = ?. Hence, mean([[P]]) =

∑
i∈1..p !(νKi)([Ti])σi, where σi is a

bijection from fm(Ti) to fresh names and Ki is the image of σi. By (Struct

30

Trans) and (Struct Repl Par), mean([[!P ′]]) ≡ !
∑

i∈1..p(νKi)([Ti])σi. By
(Struct Trans), (Struct Repl) and (Struct Res Par):

mean([[!P ′]]) ≡ !(νK1, . . . ,Kp)([
∑

i∈1..p

Tiσi])

Hence, mean([[!P ′]]) ≡ !mean([[P ′]]) ≡ P , as required.

(Action) Then P = M.P ′. The case follows by showing that for any actions
M , M ′, we have (1) mean([[M.P]]) ≡ M.P and (2) mean([[(M.M ′).P]]) ≡
M.(M ′.P). We proceed by induction on the structure of M . Let σ be a
bijection from fm([[P]]) to a set of fresh names and K be the image of σ.

(ε) For (1), we have mean([[ε.P ′]]) = mean(1ε.[[P ′]]) = (νK)([[[P ′]]σ]). By
induction hypothesis, mean([[P ′]]) ≡ P ′. By (Struct ε), mean([[P ′]]) ≡
ε.P ′. Hence, mean([[ε.P ′]]) ≡ ε.P ′.
For (2), we have mean([[(ε.M ′).P]]) = (νK)([[[ε.(M ′.P ′)]]σ]). By in-
duction hypothesis (1), mean([[M ′.P ′]]) ≡ M ′.P ′. By (Struct ε),
mean([[(ε.M ′).P ′]]) ≡ ε.(M ′.P ′), as required.

(act n) For (1), we have:

mean([[act n.P ′]]) = mean(1act n.[[P ′]])
= (νK)act σ(n).([[[P ′]]σ])

By (Struct Res Action), since n is not a marker, mean([[act n.P ′]]) =
act n.(νK) ([[[P ′]]σ]). By induction hypothesis, mean([[P ′]]) ≡ P ′ and
by (Struct Action), act n.mean([[P ′]]) ≡ act n.P ′. Hence, act n.P ′

and mean([[act n.P ′]]) are spatially congruent, as required. Part (2)
is similar.

(M1.M2) For (1), we have, mean([[(M1.M2).P ′]]) = mean([[M1.(M2.P
′)]]).

By induction hypothesis (2), mean([[M1.(M2.P
′)]]) ≡ M1.(M2.P

′).
By (Struct .), M1.(M2.P

′) ≡ (M1.M2).P ′, as required.
For (2), we have:

mean([[((M1.M2).M ′).P ′]]) = mean([[M1.((M2.M
′).P ′)]])

By induction hypothesis (2):

mean([[M1.((M2.M
′).P ′)]]) ≡M1.((M2.M

′).P ′)

By (Struct .), M1.((M2.M
′).P ′) ≡ (M1.M2).(M ′.P ′), as required.

(Input) Then P = (n).P ′. Let σ be a bijection from fm([[P]]) to a set of fresh
names and K be the image of σ. Hence, we can assume n 6∈ K. Therefore,
mean([[(n).P ′]]) = mean(1(n).[[P ′]]) = (νK)1(n).([[[P ′]]σ]). By (Struct Res
Input), mean(1(n).[[P ′]]) ≡ (n).(νK)([[[P ′]]σ]). By induction hypothesis,
mean([[P ′]]) ≡ P ′. By (Struct Input), (n).mean([[P ′]]) ≡ (n).P ′. Hence,
mean([[(n).P ′]]) ≡ (n).P ′, as required.

31

(Output) Then P = 〈M〉. Hence, fm(P) = ? and therefore mean([[P]]) =
mean(1〈M〉) = P . �

Lemma A.11 If X ` T → S then (νK)([Tσ]) ≡ (νK)([Sσ]), where σ is a
bijection from fm(T) to a set of fresh names and K = σ(fm(T) ∩X).

Proof By induction on the derivation of X ` T → S. Let σ be a bijection from
fm(T) to a set of fresh names and K be the image of (fm(T) ∩X) by σ.

(Red Zero) Then T = S+ε and X = ?. Hence, K = ? and ([Tσ]) = ([Sσ]) | 0.
By (Struct Par Zero), ([Tσ]) ≡ ([Sσ]), as required.

(Red Add Edge) Then T = ∞η[R] + µη[R] and S = ∞η[R] and X = ?.
Hence, K = ?. For convenience, if η is a name we denote it by n. Other-
wise, we denote η by σ(η). There are two possible cases.

(1) Assume µ = ∞. Hence, ([Tσ]) = !n[([Rσ])] | !n[([Rσ])] and ([Sσ]) =
!n[([Rσ])]. By Lemma 2.1, ([Tσ]) ≡ ([Sσ]), as required.

(2) Assume µ = 1. Hence, ([Tσ]) = !n[([Rσ])] | n[([Rσ])] and ([Sσ]) =
!n[([Rσ])]. By (Struct Repl Copy) and (Struct Symm), ([Tσ]) ≡ ([Sσ]),
as required.

Cases (Red Add Output), (Red Add Input) and (Red Add Action) are
similar.

(Red Add Repl) Then T = !X ′.T ′ + !X ′.T ′ and S = !X ′.T ′ and X = ?.
Hence, K = ? and ([Tσ]) = !(νσ(X ′))([T ′σ]) | !(νσ(X ′))([T ′σ]) and ([S]) =
!(νσ(X ′))([T ′σ]). By Lemma 2.1, ([Tσ]) ≡ ([Sσ]), as required.

(Red Sub) we have X ′ ` T → S and X ′ ⊆ X. Let K ′ = σ(fm(T) ∩ L′).
Hence, K ′ ⊆ K. By induction hypothesis, (νK ′)([Tσ]) ≡ (νK ′)([Sσ]). By
(Struct Res), (νK)([Tσ]) ≡ (νK)([Sσ]), as required.

(Red Copy) Then T = !X.T ′ + T ′ and S = !X.T . Hence, (νK)([Tσ]) =
(νK)(!(νK)([T ′σ]) | ([T ′σ])). By (Struct Res Par), (νK)(!(νK)([T ′σ]) |
([T ′σ])) ≡ !(νK)([T ′σ]) | (νK)(([T ′σ])), and therefore, by (Struct Repl
Copy), (νK)([Tσ]) = (νK)([Sσ]).

(Red η) Then T = µη[T ′] and S = µη[S′] where X ` T ′ → S′ and η 6∈
X. For convenience, if η is a name we denote it by n. Otherwise,
we denote it by σ(η). We also assume that µ = 1. The case µ =
∞ is similar. Hence, n 6∈ K, and (νK)([Tσ]) = (νK)n[([T ′σ])]. By
(Struct Res Amb), (νK)([Tσ]) ≡ n[(νK)([T ′σ])]. By induction hypothe-
sis, (νK)([T ′σ]) = (νK)([S′σ]). Therefore, by (Struct Amb) and (Struct
Res Amb), (νK)([Tσ]) ≡ (νK)n[([S′σ])] = (νK)([Sσ]), as required. Cases
(Red +), (Red Repl), (Red Input) and (Red Action) are similar. �

Proof of Theorem 4.1 If P ≡ Q then [[P]] ≈ [[Q]].

32

Proof By induction on the derivation of P ≡ Q.

(Struct Refl) Trivial.

(Struct Symm) Then Q ≡ P . By induction hypothesis, [[Q]] ≈ [[P]], as re-
quired.

(Struct Trans) Then there exists R such that P ≡ R and R ≡ Q. By induc-
tion hypothesis, [[P]] ≈ [[R]]. Again, by induction hypothesis, [[R]] ≈ [[Q]].
Hence, [[P]] ≈ [[R]].

(Struct Res) Then P = (νn)P ′ and Q ≡ (νn)Q′ for some P ′, Q′ with P ′ ≡
Q′. Hence, [[(νn)P ′]] = [[P ′]]{n←x} and [[(νn)Q′]] = [[Q′]]{n←x} for some
fresh marker x. By induction hypothesis, [[P ′]] ≈ [[Q′]]. By Corollary 3.8,
[[P]] ≈ [[Q]], as required.

(Struct Par) Then P = P ′ | R and Q = Q′ | R with P ′ ⇒ Q′. Hence,
[[P]] = [[P ′]] + [[R]] and [[Q]] = [[Q′]] + [[R]], with the side condition that
fm([[P ′]]) ∩ fm([[R]]) = fm([[Q′]]) ∩ fm([[R]]) = ?. By induction hypothesis,
[[P ′]] ≈ [[Q′]]. By Proposition 3.5, [[P]] = [[P ′]] + [[R]] ≈ [[Q′]] + [[R]] = [[Q]],
as required.

(Struct Repl) Then P = !P ′ and Q = !Q′ where P ′ ≡ Q′. Hence, [[P]] =
exp([[P ′]]) and [[Q]] = exp([[Q′]]). By induction hypothesis, [[P ′]] ≈ [[Q′]].
By Theorem 3.14, exp([[P ′]]) ≈ exp([[Q′]]), as required.

(Struct Amb) Then P = n[P ′] and Q = n[Q′] where P ′ ≡ Q′. Hence, [[P]] =
1n[[[P ′]]] and [[Q]] = 1n[[[Q′]]]. By induction hypothesis, [[P ′]] ≈ [[Q′]]. By
Proposition 3.5, 1n[[[P ′]]] ≈ 1n[[[Q′]]], as required.

(Struct Action) Then P = M.P ′ and Q = M.Q′ where P ′ ≡ Q′. Hence,
[[P]] = 1M.[[P ′]] and [[Q]] = 1M.[[Q′]]. By induction hypothesis, [[P ′]] ≈
[[Q′]]. By Proposition 3.5, 1M.[[P ′]] ≈ 1M.[[Q′]], as required.

(Struct Input) Then P = (n).P ′ and Q = (n).Q′ where P ′ ≡ Q′. Hence,
[[P]] = 1(n).[[P ′]] and [[Q]] = 1(n).[[Q′]]. By induction hypothesis, [[P ′]] ≈
[[Q′]]. By Proposition 3.5, 1(n).[[P ′]] ≈ 1(n).[[Q′]], as required.

(Struct Par Comm) Then P = P1 | P2 and Q = P2 | P1. For, we have
[[P]] = [[P1]] + [[P2]] and, by commutativity of +, [[P]] = [[P2]] + [[P1]], as
required.

(Struct Par Assoc) Then P = (P1 | P2) | P3 and Q = P1 | (P2 | P3). For,
we have [[P]] = ([[P1]] + [[P2]]) + [[P3]] and, by commutativity of +, [[P]] =
[[P1]] + ([[P2]] + [[P3]]), as required.

(Struct Par Zero) Then P = Q | 0. For, we have [[P]] = [[Q]] + ε ≈ [[Q]].

(Struct Repl Par) Then P = !(P1 | P2) and Q = !P1 | !P2. Hence, [[P]] =
exp([[P1]] + [[P2]]), with the side condition that fm([[P1]]) ∩ fm([[P2]]) = ?.
Moreover, for all tree T , fm(exp(T)) = ?. Therefore, [[P]] = exp([[P1]]) +
exp([[P2]]) = [[!P1 + !P2]], as required.

33

(Struct Repl Zero) Then P = !0 and Q = 0. Hence, [[P]] = exp([[0]]) = ε, as
required.

(Struct Repl Copy) Then P = !P ′ and Q = !P ′ | P ′. By definition, [[Q]]
is equal to exp([[P ′]]) + [[P ′]]. By Proposition 3.15, [[P]] = exp([[P ′]]) ≈
exp([[P ′]]) + [[P ′]], as required.

(Struct Repl Repl) Then P = !!P ′ and Q = !P ′. By definition, [[P]] is
equal to exp(exp([[P ′]])) and [[Q]] = exp([[P ′]]). For all trees T we have
exp(exp(T)) = exp(T). Therefore, [[P]] ≈ [[Q]], as required.

(Struct Res Res) Then P = (νn)(νm)P ′ and Q = (νm)(νn)P ′. Since the
spatial trees [[(νn)(νm)P]] and [[(νm)(νn)P]] are equal up to renaming of
their free markers, we have [[P]] ≈ [[Q]], as required.

(Struct Res Par) Then P = (νn)(P1 | P2) and Q = P1 | (νn)P2 where n 6∈
fn(P1). Hence, [[P]] = ([[P1]] + [[P2]]){n←x} for some fresh marker x. By
definition of the substitution function, [[P]] ≈ [[Q]], as required.

(Struct Res Amb) Then P = (νn)m[P ′] and Q = m[(νn)P ′] where n 6= m.
Hence, [[P]] = (1m[[[P ′]]]){n←x} for some fresh marker x. By definition of
the substitution function, we get that [[P]] ≈ [[Q]], as required.

(Struct Res Zero) Then P = (νn)0 and Q = 0. Hence, [[P]] = ε{n←x} = ε.
Therefore, [[P]] ≈ [[Q]], as required.

(Struct Res Action) Then P = (νn)M.P ′ and Q = M.(νn)P ′ where n 6∈
fn(M). Hence, [[P]] = (1M.[[P ′]]){n←x} = [[Q]], as required.

(Struct Res Input) Then P = (νn)(m).P ′ and Q = (m).(νn)P ′ where n 6=
m. Hence, [[P]] = (1(m).[[P ′]]){n←x} = [[Q]], as required.

(Struct ε) Then P = ε.Q. By definition, [[P]] = [[Q]]. Trivial.

(Struct .) Then P = (M.M ′).P ′ and Q = M.(M ′.P ′). By definition, [[P]] =
[[Q]]. Trivial. �

34

	Introduction
	The Ambient Calculus
	Dynamic Semantics
	Static Semantics

	Spatial Trees
	Equality Between Spatial Trees
	Exponentiation of Spatial Trees

	Relation Between Trees and Processes
	Applications of Normal Form
	Summary
	Proofs
	Equality Between Spatial Trees
	Exponentiation of Spatial Trees
	Relation Between Trees and Processes

