
Region analysis and

a �-alulus with groups

Silvano Dal Zilio and Andrew D. Gordon

August 2000

Revision of May 2001

Tehnial Report

MSR�TR�2000�57

Mirosoft Researh

Mirosoft Corporation

One Mirosoft Way

Redmond, WA 98052

Abstrat

We show that the typed region alulus of Tofte and Talpin an be en-

oded in a typed �-alulus equipped with name groups and a novel e�et

analysis. In the region alulus, eah boxed value has a statially deter-

mined region in whih it is stored. Regions are alloated and de-alloated

aording to a stak disipline, thus improving memory management. The

idea of name groups arose in the typed ambient alulus of Cardelli, Ghelli,

and Gordon. There, and in our �-alulus, eah name has a statially

determined group to whih it belongs. Groups allow for type-heking of

ertain mobility properties, as well as e�et analyses. Our enoding makes

preise the intuitive orrespondene between regions and groups. We pro-

pose a new formulation of the type preservation property of the region

alulus, whih avoids Tofte and Talpin's rather elaborate o-indutive

formulation. We prove the enoding preserves the stati and dynami

semantis of the region alulus. Our proof of the orretness of region

de-alloation shows it to be a spei� instane of a general garbage olle-

tion priniple for the �-alulus with e�ets. We propose new equational

laws for letregion , analogous to sope mobility laws in the �-alulus, and

show them sound in our semantis.

Contents

1 Motivation 1

2 A �-Calulus with Regions 3

2.1 Syntax . 3

2.2 Dynami Semantis . 4

2.3 Stati Semantis . 6

2.4 Relating the Stati and Dynami Semantis 8

3 A �-Calulus with Groups 10

3.1 Syntax . 10

3.2 Dynami Semantis . 12

3.3 Stati Semantis . 14

3.4 Barbed Congruene . 18

4 Enoding Regions as Groups 19

4.1 The Enoding . 20

4.2 Two Garbage Colletion Theorems 22

5 An Equational Theory 23

6 Extensions 26

6.1 An Extended �-Calulus . 27

6.2 An Extended �-Calulus . 30

6.3 An Extended Enoding . 34

7 Conlusions 35

Referenes 37

A Review of the Untyped �-Calulus 40

A.1 Syntax . 40

A.2 Dynami Semantis . 41

A.3 Labelled Transition Semantis . 42

A.4 Barbed Congruene . 43

B Proofs 48

B.1 Subjet Redution for the �-Calulus 49

B.2 Subjet Redution for the �-Calulus 53

B.3 Corretness of Type Erasure . 59

B.4 Properties of Barbed Congruene 64

B.5 Garbage Colletion for the �-Calulus 67

B.6 Properties of the Enoding . 70

B.6.1 Proof of Stati Adequay 71

B.6.2 An Auxiliary Small Step Semantis 76

B.6.3 Proof of Dynami Adequay 79

B.6.4 Proof of Garbage Colletion for the �-Calulus 84

B.7 An Equational Theory . 85

1 Motivation

This paper reports a new proof of orretness of region-based memory manage-

ment (Tofte and Talpin 1997), and also proofs of new equational laws for the

region alulus.

Tofte and Talpin's region alulus is a ompiler intermediate language that,

remarkably, supports an implementation of Standard ML that has no garbage

olletor, the ML Kit ompiler (Birkedal, Tofte, and Vejlstrup 1996). The basi

idea of the region alulus is to partition heap memory into a stak of regions.

Eah boxed value (that is, a heap-alloated value suh as a losure or a ons

ell) is annotated with the partiular region into whih it is stored. The on-

strut letregion � in b manages the alloation and de-alloation of regions. It

means: �Alloate a fresh, empty region, denoted by the region variable �; eval-

uate the expression b; de-alloate �.� A type and e�et system for the region

alulus guarantees the safety of de-alloating the defunt region as the last

step of letregion . The alloation and de-alloation of regions obeys a stak

disipline determined by the nesting of the letregion onstruts. A region in-

ferene algorithm ompiles ML to the region alulus by omputing suitable

region annotations for boxed values, and inserting letregion onstruts as nees-

sary. In pratie, spae leaks, where a partiular region grows without bound,

are a problem. Still, they an pratially always be deteted by pro�ling and

eliminated by simple modi�ations. The ML Kit e�iently exeutes an impres-

sive range of benhmarks without a garbage olletor and without spae leaks.

Region-based memory management failitates interoperability with languages

like C that have no garbage olletor and helps enable realtime appliations of

funtional programming.

Tofte and Talpin's semantis of the region alulus is a strutural operational

semantis. A map from region names to their ontents represents the heap. A

fresh region name is invented on eah evaluation of letregion . This semantis

supports a o-indutive proof of type safety, inluding the safety of de-alloating

the defunt region at the end of eah letregion . The proof is omplex and

surprisingly subtle, in part beause ative regions may ontain dangling pointers

that refer to de-alloated regions.

The region alulus is a strikingly simple example of a language with type

generativity. A language has type generativity when type equivalene is by

name (that is, when types with di�erent names but the same struture are not

equivalent), and when type names an be generated at run-time. A prominent

example is the ore of Standard ML (Milner, Tofte, Harper, and MaQueen

1997), whose datatype onstrut generates a fresh algebrai type eah time it is

evaluated. (The ML module system admits type generativity also, but at link-

time rather than run-time.) The region alulus has type generativity beause

the type of a boxed value inludes the name of the region where it lives, and

region names are dynamially generated by letregion . The semantis of Standard

ML aounts operationally for type generativity by inventing a fresh type name

on eah elaboration of datatype . Various researhers have sought more abstrat

aounts of type generativity (Leroy 1996; Russo 1996).

1

This paper desribes a new semantis for a form of the region alulus, ob-

tained by translation to a typed �-alulus equipped with a novel e�et system.

The �-alulus (Milner 1999) is a rather parsimonious formalism for desribing

the essential semantis of onurrent systems. It serves as a foundation for de-

sribing a variety of imperative, funtional, and objet-oriented programming

features (Sangiorgi and Walker 2000; Walker 1995), for the design of onurrent

programming languages (Fournet and Gonthier 1996; Piere and Turner 1997),

and for the study of seurity protools (Abadi and Gordon 1999), as well as

other appliations. The only data in the �-alulus are atomi names. Names

an model a wide variety of identi�ers: ommuniation hannels, mahine ad-

dresses, pointers, objet referenes, ryptographi keys, and so on. A new-name

onstrut (�x)P generates names dynamially in the standard �-alulus. It

means: �Invent a fresh name, denoted by x; run proess P .� One might hope

to model region names with �-alulus names but unfortunately typings would

not be preserved: a region name may our in a region-alulus type, but in

standard typed �-aluli (Piere and Sangiorgi 1996), names may not our in

types.

We solve the problem of modelling region names by de�ning a typed �-

alulus equipped with named groups and a new-group onstrut (Cardelli,

Ghelli, and Gordon 2000a). The idea is that eah �-alulus name belongs

to a group, G. The type of a name now inludes its group. A new-group on-

strut (�G)P generates groups dynamially. It means: �Invent a fresh group,

denoted by G; run proess P .� The basi ideas of the new semantis are that

region names are groups, that pointers into a region � are names of group �,

and that given a ontinuation hannel k the ontinuation-passing semantis of

letregion � in b is simply the proess (��)[[b℄℄k where [[b℄℄k is the semantis of

expression b. The semantis of other expressions is muh as in earlier �-alulus

semantis of �-aluli (Sangiorgi and Walker 2000). Parallelism allows us to ex-

plain a whole funtional omputation as an assembly of individual proesses that

represent omponents suh as losures, ontinuations, and funtion invoations.

This new semantis for regions makes two main ontributions.

� First, we give a new proof of the orretness of memory management in

the region alulus. We begin by extending a standard enoding with the

equation [[letregion � in b℄℄k = (��)[[b℄℄k. Then the rather subtle orretness

property of de-alloation of defunt regions turns out to be a simple in-

stane of a new abstrat priniple expressed in the �-alulus. Hene, an

advantage of our �-alulus proof is that it is oneptually simpler than a

diret proof.

� Seond, the semantis provides a more abstrat aount of type genera-

tivity in the region alulus than the standard operational semantis. A

spei� bene�t is that new equational laws for letregion are orollaries of

its semantis in terms of the new-group onstrut.

The spei� tehnial results of the paper are:

� A simple proof of type soundness of the region alulus (Theorem 2.1).

2

� A new semantis of the region alulus in terms of the �-alulus with

groups. The translation preserves types and e�ets (Theorem 4.1) and

operational behaviour (Theorem 4.2).

� A new garbage olletion priniple for the �-alulus (Theorem 4.3) whose

orollary (Theorem 4.4) justi�es de-alloation of defunt regions in the

region alulus.

� A new equational theory for letregion , inspired and justi�ed (Theorem 5.2)

by the �-alulus model.

We organise the rest of the paper as follows. Setion 2 introdues the region

alulus. Setion 3 desribes the �-alulus with groups and e�ets. Setion 4

gives our new �-alulus semantis for regions. Setion 5 desribes our new

equations for manipulating letregion . Setion 6 onsiders extensions. Setion 7

onludes. Appendix A reviews the untyped �-alulus. Appendix B desribes

proofs of all properties stated without proof in the main text.

2 A �-Calulus with Regions

To fous on the enoding of letregion with the new-group onstrut, we work

with a simpli�ed version of the region alulus of Tofte and Talpin (1997). Our

alulus omits the reursive funtions, type polymorphism, and region polymor-

phism present in Tofte and Talpin's alulus. Setion 6 extends our results to

a version of the region alulus of this setion extended with reursive fun-

tions, �nite lists, and region polymorphism. Tofte and Talpin explain that type

polymorphism is not essential for their results. Still, we onjeture that our

framework ould easily aommodate type polymorphism.

2.1 Syntax

Our region alulus is a typed all-by-value �-alulus equipped with a letregion

onstrut and an annotation on eah funtion to indiate its storage region. We

assume an in�nite set of names, ranged over by p, q, x, y, z. For the sake of

simpliity, names represent both program variables and memory pointers, and

a subset of the names L = f`

1

; : : : ; `

n

g represents literals. The following table

de�nes the syntax of �-alulus expressions, a or b, as well as an auxiliary notion

of boxed value, u or v.

Expressions and Values:

x; y; p; q; f; g name: variable, pointer, literal

� region variable

a; b ::= expression

x name

v at � alloation of v at �

x(y) appliation

3

let x = a in b sequening

letregion � in b region alloation, de-alloation

u; v ::= boxed value

�(x:A)b funtion

We shall explain the type A later. In both let x = a in b and �(x:A)b,

the name x is bound with sope b. Let fn(a) be the set of names that our

free in the expression a. We identify expressions and values up to onsistent

renaming of bound names. We write Pfx yg for the outome of renaming

all free ourrenes of x in P to the name y. Our syntax is in a redued form,

where an appliation x(y) is of a name to a name. We an regard a onventional

appliation b(a) as an abbreviation for let f = b in let x = a in f(x), where

f 6= x and f is not free in a.

We explain the intended meaning of the syntax by example. The following

expression,

ex

1

�

= letregion �

0

in

let f = �(x:Lit)x at �

0

in

let g = �(y:Lit)f(y) at � in g(5)

means: �Alloate a fresh, empty region, and bind it to �

0

; alloate �(x:Lit)x

in region �

0

, and bind the pointer to f ; alloate �(y:Lit)f(y) in region � (an

already existing region), and bind the pointer to g; all the funtion at g with

literal argument 5; �nally, de-alloate �

0

.� The funtion all amounts to alling

�(y:Lit)f(y) with argument 5. So we all �(x:Lit)x with argument 5, whih

immediately returns 5. Hene, the �nal outome is the answer 5, and a heap

ontaining a region � with g pointing to �(y:Lit)f(y). The intermediate region

�

0

has gone. Any subsequent invoations of the funtion �(y:Lit)f(y) would go

wrong, sine the target of f has been de-alloated. The type and e�et system

of Setion 2.3 guarantees there are no subsequent alloations or invoations on

region �

0

, suh as invoking �(y:Lit)f(y).

2.2 Dynami Semantis

Like Tofte and Talpin, we formalize the intuitive semantis via a onventional

strutural operational semantis. A heap, h, is a map from region names to re-

gions, and a region, r, is a map from pointers (names) to boxed values (funtion

losures). In Tofte and Talpin's semantis, defunt regions are erased from the

heap when they are de-alloated. In our semantis, the heap onsists of both

live regions and defunt regions. Our semantis maintains a set S ontaining

the region names for the live regions. This is the main di�erene between the

two semantis. Side-onditions on the evaluation rules guarantee that only the

live regions in S are aessed during evaluation. Retaining the defunt regions

simpli�es the proof of subjet redution. Semmelroth and Sabry (1999) adopt

a similar tehnique for the same reason in their semantis of monadi enapsu-

lation.

4

Regions, Heaps, and Staks:

r ::= (p

i

7! v

i

)

i21::n

region, p

i

distint

h ::= (�

i

7! r

i

)

i21::n

heap, �

i

distint

S ::= f�

1

; : : : ; �

n

g stak of live regions

A region r is a �nite map of the form p

1

7! v

1

; : : : ; p

n

7! v

n

, where the p

i

are

distint, whih we usually denote by (p

i

7! v

i

)

i21::n

. An appliation, r(p), of

the map r to p denotes v

i

, if p is p

i

for some i 2 1::n. Otherwise, the appliation

is unde�ned. The domain, dom(r), of the map r is the set fp

1

; : : : ; p

n

g. We

write ? for the empty map. If r = (p

i

7! v

i

)

i21::n

, we de�ne the notation h� p

to be p

i

7! v

i

i2(1::n)�fjg

if p = p

j

for some j 2 1::n, and otherwise to be simply

r. Then we de�ne the notation r + (p 7! v) to mean (r � p); p 7! v.

We use �nite maps to represent regions, but also heaps, and various other

strutures. The notational onventions de�ned above for regions apply also to

other �nite maps, suh as heaps. Additionally, we de�ne dom

2

(h) to be the set

of all pointers de�ned in h, that is,

S

�2dom(h)

dom(h(�)).

The evaluation relation, S � (a; h) + (p; h

0

), may be read: in an initial heap

h, with live regions S, the expression a evaluates to the name p (a pointer or

literal), leaving an updated heap h

0

, with the same live regions S.

Judgments:

S � (a; h) + (p; h

0

) evaluation

Evaluation Rules:

(Eval Var)

S � (p; h) + (p; h)

(Eval Allo)

� 2 S p =2 dom

2

(h)

S � (v at �; h) + (p; h+ (� 7! (h(�) + (p 7! v))))

(Eval Appl)

� 2 S h(�)(p) = �(x:A)b S � (bfx qg; h) + (p

0

; h

0

)

S � (p(q); h) + (p

0

; h

0

)

(Eval Let)

S � (a; h) + (p

0

; h

0

) S � (bfx p

0

g; h

0

) + (p

00

; h

00

)

S � (let x = a in b; h) + (p

00

; h

00

)

(Eval Letregion)

� =2 dom(h) S [f�g � (a; h+ � 7! ?) + (p

0

; h

0

)

S � (letregion � in a; h) + (p

0

; h

0

)

5

Reall the example expression ex

1

from the previous setion. Consider an

initial heap h = � 7! ? and a region stak S = f�g, together representing a heap

with a single region � that is live but empty. We an derive S � (ex

1

; h) + (5; h

0

)

where h

0

= � 7! (g 7! �(y:Lit)f(y)); �

0

7! (f 7! �(x:Lit)x). Sine � 2 S but

�

0

=2 S, � is live but �

0

is defunt.

2.3 Stati Semantis

The stati semantis of the region alulus is a simple type and e�et sys-

tem (Gi�ord and Luassen 1986; Talpin and Jouvelot 1992; Wadler 1998). The

entral typing judgment of the stati semantis is:

E ` a :

f�

1

;:::;�

n

g

A

whih means that in a typing environment E, the expression a may yield a result

of type A, while alloating and invoking boxed values stored in regions �

1

, . . . ,

�

n

. The set of regions f�

1

; : : : ; �

n

g is the e�et of the expression, a bound on

the interations between the expression and the store. For simpliity, we have

dropped the distintion between alloations, put(�), and invoations, get(�), in

Tofte and Talpin's e�ets. This is an inessential simpli�ation; the distintion

ould easily be added to our work.

An expression type, A, is either Lit , a type of literal onstants, or (A

e

!

B) at �, the type of a funtion stored in region �. The e�et e is the latent

e�et: the e�et unleashed by alling the funtion. An environment E has

entries for the regions and names urrently in sope.

E�ets, Types, and Environments:

e ::= f�

1

; : : : ; �

n

g e�et

A;B ::= type of expressions

Lit type of literals

(A

e

! B) at � type of funtions stored in �

E ::= environment

? empty environment

E; � entry for a region �

E; x:A entry for a name x

Let fr (A) be the set of region variables ourring in the type A. We de�ne

the domain, dom(E), of an environment, E, by the equations dom(?) = ?,

dom(E; �) = dom(E) [f�g, and dom(E; x:A) = dom(E) [fxg.

The following tables present our type and e�et system as a olletion of

typing judgments de�ned by a set of rules. Tofte and Talpin present their type

and e�et system in terms of onstruting a region-annotated expression from

an unannotated expression. Instead, our main judgment simply expresses the

type and e�et of a single region-annotated expression. Otherwise, our system

is essentially the same as Tofte and Talpin's.

6

Type and E�et Judgments:

E ` � good environment

E ` A good type

E ` a :

e

A good expression, with type A and e�et e

Type and E�et Rules:

(Env ?)

? ` �

(Env x) (reall L is the set of literals)

E ` A x =2 dom(E) [L

E; x:A ` �

(Env �)

E ` � � =2 dom(E)

E; � ` �

(Type Lit)

E ` �

E ` Lit

(Type !)

E ` A � [feg � dom(E) E ` B

E ` (A

e

! B) at �

(Exp x)

E; x:A;E

0

` �

E; x:A;E

0

` x :

?

A

(Exp `)

E ` � ` 2 L

E ` ` :

?

Lit

(Exp Appl)

E ` x :

?

(B

e

! A) at � E ` y :

?

B

E ` x(y) :

f�g[e

A

(Exp Let)

E ` a :

e

A E; x:A ` b :

e

0

B

E ` let x = a in b :

e[e

0

B

(Exp Letregion)

E; � ` a :

e

A � =2 fr(A)

E ` letregion � in a :

e�f�g

A

(Exp Fun)

E; x:A ` b :

e

B e � e

0

f�g [e

0

� dom(E)

E ` �(x:A)b at � :

f�g

(A

e

0

! B) at �

The rules for good environments are standard; they assure that all the names

and region variables in the environment are distint, and that the type of eah

name is good. All the regions in a good type must be delared. The type of a

good expression is heked muh as in the simply typed �-alulus. The e�et

of a good expression is the union of all the regions in whih it alloates or from

whih it invokes a losure. In the rule (Exp Letregion), the ondition � =2 fr(A)

ensures that no funtion with a latent e�et on the region � may be returned.

Calling suh a funtion would be unsafe sine � is de-alloated one the letregion

terminates. In the rule (Exp Fun), the e�et e of the body of a funtion must

be ontained in the latent e�et e

0

of the funtion. For the sake of simpliity we

have no rule of e�et subsumption, but it would be sound to add it: if E ` a :

e

A

and e

0

� dom(E) then E ` a :

e[e

0

A. In the presene of e�et subsumption we

ould simplify (Exp Fun) by taking e = e

0

.

7

Reall the expression ex

1

from Setion 2.1. We an derive the following

judgments:

�; �

0

` (�(x:Lit)x) at �

0

:

f�

0

g

(Lit

?

! Lit) at �

0

�; �

0

; f :(Lit

?

! Lit) at �

0

` (�(x:Lit)f(x)) at � :

f�g

(Lit

f�

0

g

! Lit) at �

�; �

0

; f :(Lit

?

! Lit) at �

0

; g:(Lit

f�

0

g

! Lit) at �

` g(5) :

f�;�

0

g

Lit

Hene, we an derive � ` ex

1

:

f�g

Lit .

For an example of a type error, suppose we replae the appliation g(5) in

ex

1

simply with the identi�er g. Then we annot type-hek the letregion �

0

onstrut, beause �

0

is free in the type of its body. This is just as well, beause

otherwise we ould invoke a funtion in a defunt region.

For an example of how a dangling pointer may be passed around harmlessly,

but not invoked, onsider the following. Let F abbreviate the type (Lit

?

!

Lit) at �

0

. Let ex

2

be the following expression:

ex

2

�

= letregion �

0

in

let f = �(x:Lit)x at �

0

in

let g = �(f :F)5 at � in

let j = �(z:Lit)g(f) at � in j

We have � ` ex

2

:

f�g

(Lit

f�g

! Lit) at �. If S = f�g and h = � 7! ?,

then S � (b; h) + (j; h

0

) where the �nal heap h

0

is � 7! (g 7! �(f :F)5; j 7!

�(z:Lit)g(f)); �

0

7! (f 7! �(x:Lit)x). In the �nal heap, there is a pointer f

from the live region � to the defunt region �

0

. Whenever j is invoked, this

pointer will be passed to g, harmlessly, sine g will not invoke it.

2.4 Relating the Stati and Dynami Semantis

To relate the stati and dynami semantis, we need to de�ne when a on�gura-

tion is well-typed. First, we need notions of region and heap typings. A region

typing R traks the types of boxed values in the region. A heap typing H traks

the region typings of all the regions in a heap. The environment env(H) lists

all the regions in H , followed by types for all the pointers in those regions.

Region and Heap Typings:

R ::= (p

i

:A

i

)

i21::n

region typing

H ::= (�

i

7! R

i

)

i21::n

heap typing

ptr(H)

�

= R

1

; : : : ; R

n

if H = (�

i

7! R

i

)

i21::n

env(H)

�

= dom(H); ptr(H)

The next tables desribe the judgments and rules de�ning well-typed regions,

heaps, and on�gurations. The main judgment H j= S � (a; h) : A means that

8

a on�guration S � (a; h) is well-typed: the heap h onforms to H and the

expression a returns a result of type A, and its e�et is within the live regions

S.

Region, Heap, and Con�guration Judgments:

E ` r at � : R in E, region r, named �, has type R

H j= � the heap typing H is good

H j= h in H , the heap h is good

H j= S � (a; h) : A in H , on�guration S � (a; h) returns A

Region, Heap, and Con�guration Rules:

(Region Good)

E ` v

i

at � :

f�g

A

i

8i 2 1::n

E ` (p

i

7! v

i

)

i21::n

at � : (p

i

:A

i

)

i21::n

(Heap Typing Good)

env(H) ` �

H j= �

(Heap Good) (where dom(H) = dom(h))

env(H) ` h(�) at � : H(�) 8� 2 dom(H)

H j= h

(Con�g Good) (where S � dom(H))

env(H) ` a :

e

A e [fr (A) � S H j= h

H j= S � (a; h) : A

These prediates roughly orrespond to the o-indutively de�ned onsis-

teny prediate of Tofte and Talpin. The retention of defunt regions in our

semantis allows a simple indutive de�nition of these prediates, and a routine

indutive proof of the subjet redution theorem stated below.

We now present a subjet redution result relating the stati and dynami

semantis. Let H � H

0

if and only if the pointers de�ned by H and H

0

are

disjoint, that is, dom

2

(H) \ dom

2

(H

0

) = ?. Assuming that H � H

0

, we write

H+H

0

for the heap onsisting of all the regions in either H or H

0

; if � is in both

heaps, (H +H

0

)(�) is the onatenation of the two regions H(�) and H(�

0

).

Theorem 2.1 If H j= S � (a; h) : A and S � (a; h) + (p

0

; h

0

) there is H

0

suh that

H � H

0

and H +H

0

j= S � (p

0

; h

0

) : A.

Intuitively, the theorem asserts that evaluation of a well-typed on�guration

S �(a; h) leads to another well-typed on�guration S �(p

0

; h

0

), whereH

0

represents

types for the new pointers and regions in h

0

.

The following proposition shows that well-typed on�gurations avoid the

runtime errors of alloation or invoation of a losure in a defunt region.

9

Proposition 2.2

(1) If H j= S � (v at �; h) : A then � 2 S.

(2) If H j= S �(p(q); h) : A then there are � and v suh that � 2 S, h(�)(p) = v,

and v is a funtion of the form �(x:B)b with env(H); x:B ` b :

e

A.

Combining Theorem 2.1 and Proposition 2.2 we may onlude that suh

runtime errors never arise in any intermediate on�guration reahable from an

initial well-typed on�guration. Impliitly, this amounts to asserting the safety

of region-based memory management, that defunt regions make no di�erene

to the behaviour of a well-typed on�guration. Our �-alulus semantis of

regions makes this expliit: we show equationally that diret deletion of defunt

regions makes no di�erene to the semantis of a on�guration.

3 A �-Calulus with Groups

In this setion, we de�ne a typed �-alulus with groups. In the next, we explain

a semantis of our region alulus in this �-alulus. Exatly as in the ambient

alulus with groups (Cardelli, Ghelli, and Gordon 2000a), eah name x has

a type that inludes its group G, and groups may be generated dynamially

by a new-group onstrut, (�G)P . So as to model the type and e�et system

of the region alulus, we equip our �-alulus with a novel group-based e�et

system. In other work (Cardelli, Ghelli, and Gordon 2000b), not onerned with

the region alulus, we onsider a simpler version of this �-alulus, with groups

but without an e�et system, and show that new-group helps keep names seret,

in a ertain formal sense.

3.1 Syntax

The following table gives the syntax of proesses, P . The syntax depends on a

set of atomi names, x, y, z, p, q, and a set of groups, G, H . For onveniene,

we assume that the sets of names and groups are idential to the sets of names

and region names, respetively, of the region alulus. We impose a standard

onstraint (Fournet and Gonthier 1996; Merro and Sangiorgi 1998), usually

known as loality, that reeived names may be used for output but not for

input. This onstraint onfers a riher equational theory on the �-alulus and

is needed for the results of Setion 5. Exept for the addition of type annotations

and the new-group onstrut, and the loality onstraint, the following syntax

and semantis are the same as for the polyadi, hoie-free, asynhronous �-

alulus (Milner 1999).

Expressions and Proesses:

x; y; p; q name: variable, hannel

P;Q;R ::= proess

x(y

1

:T

1

; : : : ; y

n

:T

n

):P input (no y

i

2 inp(P))

10

xhy

1

; : : : ; y

n

i output

(�G)P new-group: group restrition

(�x:T)P new-name: name restrition

P j Q omposition

!P repliation

0 inativity

We explain the set inp(P) below, and the types T , T

1

, . . . , T

n

in Setion 3.3.

In a proess x(y

1

:T

1

; : : : ; y

n

:T

n

):P , the names y

1

, . . . , y

n

are bound; their

sope is P (we explain the types T below). In a group restrition (�G)P , the

group G is bound; its sope is P . In a name restrition (�x:T)P , the name x is

bound; its sope is P . We identify proesses up to the onsistent renaming of

bound groups and names. We let fn(P) and fg(P) be the sets of free names and

free groups, respetively, of a proess P . We write Pfx yg for the outome

of a apture-avoiding substitution of the name y for eah free ourrene of the

name x in the proess P .

Free names, fn(P), of proess P :

fn(x(y

1

:T

1

; : : : ; y

n

:T

n

):P)

�

= fxg [(fn(P)� fy

1

; : : : ; y

n

g)

fn(xhy

1

; : : : ; y

n

i)

�

= fx; y

1

; : : : ; y

n

g

fn((�G)P)

�

= fn(P)

fn((�x:T)P)

�

= fn(P)� fxg

fn(P j Q)

�

= fn(P) [fn(Q)

fn(!P)

�

= fn(P)

fn(0)

�

= ?

Free groups, fg(P), of proess P :

fg(x(y

1

:T

1

; : : : ; y

n

:T

n

):P)

�

= fg(T

1

) [� � � [fg(T

n

) [fg(P)

fg(xhy

1

; : : : ; y

n

i)

�

= ?

fg((�G)P)

�

= fg(P)� fGg

fg((�x:T)P)

�

= fg(T) [fg(P)

fg(P j Q)

�

= fg(P) [fg(Q)

fg(!P)

�

= fg(P)

fg(0)

�

= ?

The set inp(P) onsists of eah name x suh that an input x(y

1

:T

1

; : : : ;

y

n

:T

n

):P

0

ours as a subproess of P , with x not bound.

Names in input position, inp(P), in proess P :

inp(x(y

1

:T

1

; : : : ; y

n

:T

n

):P)

�

= fxg [(inp(P)� fy

1

; : : : ; y

n

g)

inp(xhy

1

; : : : ; y

n

i)

�

= ?

inp((�G)P)

�

= inp(P)

11

inp((�x:T)P)

�

= inp(P)� fxg

inp(P j Q)

�

= inp(P) [inp(Q)

inp(!P)

�

= inp(P)

inp(0)

�

= ?

Next, we explain the semantis of the alulus informally, by example. We

omit type annotations and groups; we shall explain these later.

A proess represents a partiular state in a �-alulus omputation. A state

may redue to a suessor when two subproesses interat by exhanging a tuple

of names on a shared ommuniation hannel, itself identi�ed by a name. For

example, onsider the following proess:

f(x; k

0

):k

0

hxi j g(y; k

0

):fhy; k

0

i j gh5; ki

This is the parallel omposition (denoted by the j operator) of two input

proesses g(y; k

0

):fhy; k

0

i and f(x; k

0

):k

0

hxi, and an output proess gh5; ki. The

whole proess performs two redutions. The �rst is to exhange the tuple h5; ki

on the hannel g. The names 5 and k are bound to the input names y and k,

leaving f(x; k

0

):k

0

hxi j fh5; ki as the next state. This state itself may redue to

the �nal state kh5i via an exhange of h5; ki on the hannel f .

The proess above illustrates how funtions may be enoded as proesses.

Spei�ally, it is a simple enoding of the example ex

1

from Setion 2.1. The

input proesses orrespond to �-abstrations at addresses f and g; the output

proesses orrespond to funtion appliations; the name k is a ontinuation for

the whole expression. The redutions desribed above represent the semantis

of the expression: a short internal omputation returning the result 5 on the

ontinuation k.

The following is a more aurate enoding:

(�f)(�g)(

f 7!�(x)x

z }| {

!f(x; k

0

):k

0

hxi j

g 7!�(y)f(y)

z }| {

!g(y; k

0

):fhy; k

0

i j

g(5)

z }| {

gh5; ki)

A repliation !P is like an in�nite parallel array of replias of P ; we repliate

the inputs above so that they may be invoked arbitrarily often. A name restri-

tion (�x)P invents a fresh name x with sope P ; we restrit the addresses f

and g above to indiate that they are dynamially generated, rather than being

global onstants.

The other �-alulus onstruts are group restrition and inativity. Group

restrition (�G)P invents a fresh group G with sope P ; it is the analogue of

name restrition for groups. Finally, the 0 proess represents inativity.

3.2 Dynami Semantis

We formalize the semantis of our �-alulus using standard tehniques. A

redution relation, P ! Q, means that P evolves in one step to Q. It is de�ned

in terms of an auxiliary strutural ongruene relation, P � Q, that identi�es

proesses we never wish to tell apart.

12

Strutural Congruene: P � Q

P � P (Strut Re�)

Q � P) P � Q (Strut Symm)

P � Q;Q � R) P � R (Strut Trans)

P � Q) x(y

1

:T

1

; : : : ; y

n

:T

n

):P � x(y

1

:T

1

; : : : ; y

n

:T

n

):Q (Strut Input)

P � Q) (�G)P � (�G)Q (Strut GRes)

P � Q) (�x:T)P � (�x:T)Q (Strut Res)

P � Q) P j R � Q j R (Strut Par)

P � Q) !P � !Q (Strut Repl)

P j 0 � P (Strut Par Zero)

P j Q � Q j P (Strut Par Comm)

(P j Q) j R � P j (Q j R) (Strut Par Asso)

!P � P j !P (Strut Repl Par)

x

1

6= x

2

) (�x

1

:T

1

)(�x

2

:T

2

)P � (�x

2

:T

2

)(�x

1

:T

1

)P (Strut Res Res)

x =2 fn(P)) (�x:T)(P j Q) � P j (�x:T)Q (Strut Res Par)

(�G

1

)(�G

2

)P � (�G

2

)(�G

1

)P (Strut GRes GRes)

G =2 fg(T)) (�G)(�x:T)P � (�x:T)(�G)P (Strut GRes Res)

G =2 fg(P)) (�G)(P j Q) � P j (�G)Q (Strut GRes Par)

Redution: P ! Q

xhy

1

; : : : ; y

n

i j x(z

1

:T

1

; : : : ; z

n

:T

n

):P ! Pfz

1

 y

1

g � � � fz

n

 y

n

g (Red Interat)

P ! Q) P j R! Q j R (Red Par)

P ! Q) (�G)P ! (�G)Q (Red GRes)

P ! Q) (�x:T)P ! (�x:T)Q (Red Res)

P

0

� P; P ! Q;Q � Q

0

) P

0

! Q

0

(Red �)

Groups help to type-hek names statially but have no dynami behaviour;

groups are not themselves values. The following proposition demonstrates this

preisely; it asserts that the redution behaviour of a typed proess is equivalent

to the redution behaviour of the untyped proess obtained by erasing all type

and group annotations. (Appendix A reviews the untyped �-alulus.)

Erasing type annotations and group restritions:

erase((�G)P)

�

= erase(P)

erase((�x:T)P)

�

= (�x)erase(P)

erase(0)

�

= 0

erase(P j Q)

�

= erase(P) j erase(Q)

erase(!P)

�

= !erase(P)

erase(x(y

1

:T

1

; : : : ; y

n

:T

n

):P)

�

= x(y

1

; : : : ; y

n

):erase(P)

erase(xhy

1

; : : : ; y

n

i)

�

= xhy

1

; : : : ; y

n

i

13

Proposition 3.1 (Erasure) For all typed proesses P and Q, if P ! Q then

erase(P) ! erase(Q). If erase(P) ! R then there is a typed proess Q suh

that P ! Q and R � erase(Q).

3.3 Stati Semantis

The main judgment E ` P : fG

1

; : : : ; G

n

g of the e�et system for the �-alulus

means that the proess P uses names aording to their types and that all its

external reads and writes are on hannels in groups G

1

; : : : ; G

n

. A hannel type

takes the form G[T

1

; : : : ; T

n

℄nH. This stipulates that the name is in group G

and that it is a hannel for the exhange of n-tuples of names with types T

1

,

. . . , T

n

. The set of group names H is the hidden e�et of the hannel. In the

ommon ase when H = ?, we abbreviate the type to G[T

1

; : : : ; T

n

℄.

As examples of groups, in our enoding of the region alulus we have groups

Lit and K for literals and ontinuations, respetively, and eah region � is a

group. Names of type Lit [℄ are in group Lit and exhange empty tuples, and

names of type K[Lit [℄℄ are in group K and exhange names of type Lit [℄. In our

running example, we have 5 : Lit [℄ and k : K[Lit [℄℄. A pointer to a funtion in a

region � is a name in group �. In our example, we ould have f : �

0

[Lit [℄;K[Lit [℄℄

and g : �[Lit [℄;K[Lit [℄℄℄.

Given these typings for names, we have g(y; k

0

):fhy; k

0

i : f�; �

0

g beause

the reads and writes of the proess are on the hannels g and f whose groups

are � and �

0

. Similarly, we have f(x; k

0

):k

0

hxi : f�

0

;Kg and gh5; ki : f�g.

The omposition of these three proesses has e�et f�; �

0

;Kg, the union of the

individual e�ets.

The idea motivating hidden e�ets is that an input proess listening on a

hannel may represent a passive resoure (for example, a funtion) that is only

invoked if there is an output on the hannel. The hidden e�et of a hannel is

an e�et that is masked in an input proess, but inurred by an output proess.

In the ontext of our example, our formal translation makes the following type

assignments: f : �

0

[Lit [℄;K[Lit [℄℄℄nfKg and g : �[Lit [℄;K[Lit [℄℄℄nfK; �

0

g. We

then have f(x; k

0

):k

0

hxi : f�

0

g, g(y; k

0

):fhy; k

0

i : f�g, and gh5; ki : f�; �

0

;Kg.

The hidden e�ets are transferred from the funtion bodies to the proess gh5; ki

that invokes the funtions. This transfer is essential in the proof of our main

garbage olletion result, Theorem 4.4.

The e�et of a repliated or name-restrited proess is the same as the orig-

inal proess. For example, abbreviating the types for f and g, we have:

(�f :�

0

)(�g:�)(!f(x; k

0

):k

0

hxi j

!g(y; k

0

):fhy; k

0

i j gh5; ki) : f�; �

0

;Kg

On the other hand, the e�et of a group-restrition (�G)P is the same as

that of P , exept that G is deleted. This is beause there an be no names free

in P of group G; any names of group G in P must be internally introdued by

name-restritions. Therefore, (�G)P has no external reads or writes on hannels

14

of group G. For example,

(��

0

)(�f)(�g)(!f(x; k

0

):k

0

hxi j

!g(y; k

0

):fhy; k

0

i j gh5; ki) : f�;Kg

The following tables desribe the syntax of types and environments, the

judgments and the rules de�ning our e�et system. Let fg(G[T

1

; : : : ; T

n

℄nH)

�

=

fGg [fg(T

1

) [� � � [fg(T

n

) [H.

Group sets, types, environments:

G;H ::= fG

1

; : : : ; G

n

g �nite set of name groups

T ::= hannel type

G[T

1

; : : : ; T

n

℄nH polyadi hannel in group G

with hidden e�et H

E ::= environment

? empty environment

E;G entry for a group G

E; x:T entry for a variable x

Judgments:

E ` � good environment

E ` T good hannel type T

E ` x : T good name x of hannel type T

E ` P : H good proess P with e�et H

Good environments:

(Env ?)

? ` �

(Env x)

E ` T x =2 dom(E)

E; x:T ` �

(Env G)

E ` � G =2 dom(E)

E;G ` �

Good types:

(Type Chan)

E ` � fGg [H � dom(E) E ` T

1

� � � E ` T

n

E ` G[T

1

; : : : ; T

n

℄nH

Good names:

(Exp x)

E

0

; x:T;E

00

` �

E

0

; x:T;E

00

` x : T

15

Good proesses:

(Pro Input)

E ` x : G[T

1

; : : : ; T

n

℄nH E; y

1

:T

1

; : : : ; y

n

:T

n

` P : G

E ` x(y

1

:T

1

; : : : ; y

n

:T

n

):P : fGg [(G�H)

(Pro Output)

E ` x : G[T

1

; : : : ; T

n

℄nH E ` y

1

: T

1

� � � E ` y

n

: T

n

E ` xhy

1

; : : : ; y

n

i : fGg [H

(Pro GRes)

E;G ` P : H

E ` (�G)P : H� fGg

(Pro Res)

E; x:T ` P : H

E ` (�x:T)P : H

(Pro Par)

E ` P : G E ` Q : H

E ` P j Q : G [H

(Pro Repl)

E ` P : H

E ` !P : H

(Pro Zero)

E ` �

E ` 0 : ?

(Pro Subsum)

E ` P : G G � H � dom(E)

E ` P : H

The rules for good environments and good hannel types ensure that delared

names and groups are distint, and that all the names and groups ourring in a

type are delared. The rules for good proesses ensure that names are used for

input and output aording to their types, and ompute an e�et that inludes

the groups of all the free names used for input and output.

In the speial ase when the hidden e�et H is ?, (Pro Input) and (Pro

Output) speialise to the following:

E ` x : G[T

1

; : : : ; T

n

℄n?

E; y

1

:T

1

; : : : ; y

n

:T

n

` P : G

E ` x(y

1

:T

1

; : : : ; y

n

:T

n

):P : fGg [G

E ` x : G[T

1

; : : : ; T

n

℄n?

E ` y

1

: T

1

� � � E ` y

n

: T

n

E ` xhy

1

; : : : ; y

n

i : fGg

In this situation, we attribute all the e�et G of the pre�xed proess P to

the input proess x(y

1

:T

1

; : : : ; y

n

:T

n

):P . The e�et G of P is entirely exluded

from the hidden e�et, sine H = ?.

A dual speial ase is when the e�et of the pre�xed proess P is entirely

inluded in the hidden e�et H. In this ase, (Pro Input) and (Pro Output)

speialise to the following:

E ` x : G[T

1

; : : : ; T

n

℄nH

E; y

1

:T

1

; : : : ; y

n

:T

n

` P : H

E ` x(y

1

:T

1

; : : : ; y

n

:T

n

):P : fGg

16

E ` x : G[T

1

; : : : ; T

n

℄nH

E ` y

1

: T

1

� � � E ` y

n

: T

n

E ` xhy

1

; : : : ; y

n

i : fGg [H

The e�et of P is not attributed to the input x(y

1

:T

1

; : : : ; y

n

:T

n

):P but

instead is transferred to any outputs in the same group as x. If there are no

suh outputs, the proess P will remain bloked, so it is safe to disard its

e�ets.

These two speial ases of (Pro Input) and (Pro Output) are in fat su�-

ient for the enoding of the region alulus presented in Setion 4.2; we need the

�rst speial ase for typing hannels representing ontinuations, and the seond

speial ase for typing hannels representing funtion pointers. For simpliity,

our atual rules (Pro Input) and (Pro Output) ombine both speial ases; an

alternative would be to have two di�erent kinds of hannel types orresponding

to the two speial ases.

The rule (Pro GRes) disards G from the e�et of a new-group proess

(�G)P , sine, in P , there an be no free names of group G (though there may

be restrited names of group G). The rule (Pro Subsum) is a rule of e�et

subsumption. We need this rule to model the e�et subsumption in rule (Exp

Fun) of the region alulus. The other rules for good proesses simply ompute

the e�et of a whole proess in terms of the e�ets of its parts.

We an prove a standard subjet redution result.

Proposition 3.2 If E ` P : H and P ! Q then E ` Q : H.

Next, a standard de�nition of the barbs exhibited by a proess formalizes

the idea of the external reads and writes through whih a proess may interat

with its environment. Let a barb, �, be either a name x or a o-name x.

Exhibition of a barb:

(Barb Input)

x(y

1

:T

1

; : : : ; y

n

:T

n

):P # x

(Barb Output)

xhy

1

; : : : ; y

n

i # x

(Barb GRes)

P # �

(�G)P # �

(Barb Res)

P # � � =2 fx; xg

(�x:T)P # �

(Barb Par)

P # �

P j Q # �

(Barb �)

P � Q Q # �

P # �

The following asserts the soundness of the e�et system. The group of any

barb of a proess is inluded in its e�et.

Proposition 3.3 (E�et Soundness) If E ` P : H and P # � with � 2

fx; xg then there is a type G[T

1

; : : : ; T

n

℄nG suh that E ` x : G[T

1

; : : : ; T

n

℄nG

and G 2 H.

17

3.4 Barbed Congruene

To state equational properties of our enoding of the region alulus in the �-

alulus, we need a notion of operational equivalene. To this end, we use a

typed form (Piere and Sangiorgi 1996) of the barbed ongruene of (Milner

and Sangiorgi 1992), an equivalene with a uniform de�nition for a variety of

proess aluli. What follows is a series of de�nitions leading up to our de�nition

of barbed ongruene.

First, we state a simple prediate for proesses well-de�ned in a spei�

environment:

� We write E ` P to mean there is an e�et G suh that E ` P : G.

Sine we are in a typed alulus, we only wish to ask whether two proesses

are equivalent when they are well-de�ned in the same environment. The notion

of a relation on typed proesses, given next, is that of a family of binary relations

on proesses, indexed by an environment. Barbed ongruene is de�ned as a

relation on typed proesses.

� A relation on typed proesses, S, is a set of triples (E;P;Q) where E is an

environment and P and Q are typed terms suh that E ` P and E ` Q.

We write E ` P S Q to mean (E;P;Q) 2 S.

� A relation on typed proesses, S, is re�exive if and only if E ` P S P

whenever E ` P . It is symmetri if and only if E ` Q S P whenever

E ` P S Q. It is transitive if and only if E ` P S R whenever E ` P S Q

and E ` Q S R.

� For any relation on typed proesses, S, let E ` P �S� Q mean there are

proesses P

0

and Q

0

suh that P � P

0

, E ` P

0

S Q

0

, and Q

0

� Q.

Next, as a standard step towards de�ning barbed ongruene, we de�ne an

auxiliary relation, barbed bisimilarity. It is de�ned o-indutively as the greatest

barbed bisimulation.

� We write P + � to mean there is a proess P

0

suh that P !

�

P

0

and

P

0

�.

� A relation on typed proesses, S, is a barbed bisimulation if and only if it

is symmetri and E ` P S Q implies:

(1) If P # x then Q + x.

(2) If P ! P

0

then there is Q

0

suh that Q!

�

Q

0

and E ` P

0

�S� Q

0

.

� Barbed bisimilarity,

�

�, is the relation on typed proesses suh that E `

P

�

� Q if and only if there is a barbed bisimulation S suh that E ` P S Q.

By de�nition, E ` P

�

� Q, it follows that the operational behaviours of P

and Q are related in that the redutions and the barbs of P are mathed by Q,

18

and vie versa. On the other hand, barbed bisimilarity,

�

�, is not a ongruene

relation, that is, it is not preserved by the syntax formers of our alulus. In

partiular, it is not even losed under parallel omposition. To remedy this, we

extrat a ongruene relation, barbed ongruene, from barbed bisimilarity as

follows.

� A renaming, �, is a substitution fx

1

 x

0

1

g � � � fx

n

 x

0

n

g of names for names

where n � 0 and the names x

1

, . . . , x

n

are pairwise distint. Let dom(�) =

fx

1

; : : : ; x

n

g and ran(�) = fx

0

1

; : : : ; x

0

n

g. If x = x

j

for some j 2 1::n,

let �(x) = x

0

j

. Otherwise, if x =2 dom(�), let �(x) = x. A renaming,

�, is an E-renaming if and only if for all names x; y, if �(x) = �(y)

and E ` x : T and E ` y : T

0

then T = T

0

. For any E-renaming, �,

the environment E� is de�ned as follows: ?�

�

= ?; (E

0

; G)�

�

= E

0

�;G;

(E

0

; x:T)�

�

= E

0

�; �(x):T if �(x) =2 dom(E

0

�), and E

0

� if not.

� Barbed ongruene, �, is the relation on typed proesses suh that E `

P � Q if and only if for all proesses R, all E-renamings � and all type

environments E

0

, if E�;E

0

` R then E�;E

0

` P� j R

�

� Q� j R.

The following are basi properties of barbed ongruene needed for equa-

tional reasoning. It is a ongruene relation that is preserved by well-typed

renamings, inludes strutural ongruene, and satis�es a weakening priniple.

Proposition 3.4

(1) Barbed ongruene is re�exive, transitive, and symmetri.

(2) Barbed ongruene satis�es the ongruene properties:

� If E; y

1

:T

1

; : : : ; y

n

:T

n

` P � Q then

E ` x(y

1

:T

1

; : : : ; y

n

:T

n

):P � x(y

1

:T

1

; : : : ; y

n

:T

n

):Q.

� If E ` P � Q and E ` R then E ` P j R � Q j R.

� If E; x:T ` P � Q then E ` (�x:T)P � (�x:T)Q.

� If E;G ` P � Q then E ` (�G)P � (�G)Q.

� If E ` P � Q then E ` !P � !Q.

(3) If E ` P � Q and � is an E-renaming then E� ` P� � Q�.

(4) If P � Q and E ` P then E ` P � Q.

(5) If E ` P � Q and E;E

0

` � then E;E

0

` P � Q.

4 Enoding Regions as Groups

This setion interprets the region alulus in terms of our �-alulus.

19

4.1 The Enoding

Most of the ideas of the translation are standard, and have already been illus-

trated by example. A funtion value in the heap is represented by a repliated

input proess, awaiting the argument and a ontinuation on whih to return a

result. A funtion is invoked by sending it an argument and a ontinuation.

Region names and letregion � are translated to groups and (��), respetively.

The remaining onstrut of our region alulus is sequening: let x = a in b.

Assuming a ontinuation k, we translate this to the following:

(�k

0

)([[a℄℄k

0

j k

0

(x):[[b℄℄k)

This invents a fresh, intermediate ontinuation k

0

. The proess [[a℄℄k

0

evalu-

ates a returning a result on k

0

. The proess k

0

(x):[[b℄℄k bloks until the result x

is returned on k

0

, then evaluates b, returning its result on k.

The following tables interpret the types, environments, expressions, regions,

and on�gurations of the region alulus in the �-alulus. In partiular, if

S � (a; h) is a on�guration, then [[S � (a; h)℄℄k is its translation, a proess that

returns any eventual result on the ontinuation k. In typing the translation, we

assume two global groups: a group, K, of ontinuations and a group, Lit , of

literals. The environment [[?℄℄ delares these groups and also a typing `

i

:Lit for

eah of the literals `

1

, . . . , `

n

.

Translating of the region alulus to the �-alulus:

[[A℄℄ type modelling the type A

[[E℄℄ environment modelling environment E

[[a℄℄k proess modelling term a, answer on k

[[p 7! v℄℄ proess modelling value v at pointer p

[[r℄℄ proess modelling region r

[[S � (a; h)℄℄k proess modelling on�guration S � (a; h)

In the following equations, where neessary to onstrut type annotations

in the �-alulus, we have added type subsripts to the syntax of the region

alulus. The notation

Q

i2I

P

i

for some �nite indexing set I = fi

1

; : : : ; i

n

g is

short for the omposition P

i

1

j � � � j P

i

n

j 0.

Translation rules:

[[Lit ℄℄

�

= Lit [℄

[[(A

e

! B) at �℄℄

�

= �[[[A℄℄;K[[[B℄℄℄℄n(e [fKg)

[[?℄℄

�

= K;Lit ; `

1

:Lit [℄; : : : ; `

n

:Lit [℄

[[E; �℄℄

�

= [[E℄℄; �

[[E; x:A℄℄

�

= [[E℄℄; x:[[A℄℄

[[x℄℄k

�

= khxi

[[let x = a

A

in b℄℄k

�

= (�k

0

:K[[[A℄℄℄)([[a℄℄k

0

j k

0

(x:[[A℄℄):[[b℄℄k)

20

[[p(q)℄℄k

�

= phq; ki

[[letregion � in a℄℄k

�

= (��)[[a℄℄k

[[(v at �)

A

℄℄k

�

= (�p:[[A℄℄)([[p 7! v℄℄ j khpi)

[[p 7! �(x:A)b

B

℄℄

�

= !p(x:[[A℄℄; k:K[[[B℄℄℄):[[b℄℄k

[[(p

i

7! v

i

)

i21::n

℄℄

�

=

Q

i21::n

[[p

i

7! v

i

℄℄

[[(�

i

7! r

i

)

i21::n

℄℄

�

=

Q

i21::n

[[r

i

℄℄

[[S � (a; h

H

)℄℄k

�

= (�~�

defunt

)(�[[ptr (H)℄℄)([[a℄℄k j [[h℄℄)

where f~�

defunt

g = dom(H)� S

The following theorem asserts that the translation preserves the stati se-

mantis of the region alulus.

Theorem 4.1 (Stati Adequay)

(1) If E ` � then [[E℄℄ ` �.

(2) If E ` A then [[E℄℄ ` [[A℄℄.

(3) If E ` a :

e

A and k =2 dom([[E℄℄) then

[[E℄℄; k:K[[[A℄℄℄ ` [[a℄℄k : e [fKg

(4) If H j= h and � 2 dom(H) then

[[env(H)℄℄ ` [[h(�)℄℄ : f�g

(5) If H j= S � (a; h) : A and k =2 [[env(H)℄℄ then

[[env(H)℄℄; k:K[[[A℄℄℄ ` [[a℄℄k j [[h℄℄ : dom(H) [fKg

and also

[[?℄℄; S; k:K[[[A℄℄℄ ` [[S � (a; h)℄℄k : S [fKg

Next we state that the translation preserves the dynami semantis. Our

theorem states that if one region alulus on�guration evaluates to another,

their �-alulus interpretations are barbed ongruent:

Theorem 4.2 (Dynami Adequay) If H j= S � (a; h) : A and S � (a; h) +

(p

0

; h

0

) then there is H

0

suh that H � H

0

and H +H

0

j= S � (p

0

; h

0

) : A and for

all k =2 dom

2

(H +H

0

) [L, [[?℄℄; S; k:K[[[A℄℄℄ ` [[S � (a; h)℄℄k � [[S � (p

0

; h

0

)℄℄k.

Reall the evaluations of the examples ex

1

and ex

2

given previously. From

Theorem 4.2 we obtain the following equations (in whih we abbreviate envi-

ronments and types for the sake of larity):

[[f�g � (ex

1

; h)℄℄k �

(��

0

)(�f :�

0

)(�g:�)([[f 7! �(x)x℄℄ j [[g 7! �(y)f(y)℄℄ j kh5i)

[[f�g � (ex

2

; h)℄℄k �

(��

0

)(�f :�

0

)(�g:�)(�j:�)

([[f 7! �(x)x℄℄ j [[g 7! �(f)5℄℄ j [[j 7! �(z)g(f)℄℄ j khji)

21

4.2 Two Garbage Colletion Theorems

We present a general �-alulus theorem that has as a orollary a theorem

asserting that defunt regions may be deleted without a�eting the meaning of

a on�guration.

Suppose there are proesses P andR suhR has e�et fGg butG is not in the

e�et of P . So R only interats on names in group G, but P never interats on

names in group G, and therefore there an be no interation between P and R.

Moreover, if P and R are the only soures of inputs or outputs in the sope of G,

then R has no external interations, and therefore makes no di�erene to the be-

haviour of the whole proess. The following makes this idea preise equationally.

We state the theorem in terms of the notation (�E)P de�ned by the equations:

(�?)P

�

= P , (�E; x:T)P

�

= (�E)(�x:T)P , and (�E;G)P

�

= (�E)(�G)P . The

proof proeeds by onstruting a suitable bisimulation relation.

Theorem 4.3 If E;G;E

0

` P : H and E;G;E

0

` R : fGg with G =2 H, then

E ` (�G)(�E

0

)(P j R) � (�G)(�E

0

)P .

Now, by applying this theorem, we an delete the defunt region �

0

from our

two examples. We obtain:

(��

0

)(�f :�

0

)(�g:�)([[f 7! �(x)x℄℄ j [[g 7! �(y)f(y)℄℄ j kh5i)

� (��

0

)(�f :�

0

)(�g:�)([[g 7! �(y)f(y)℄℄ j kh5i)

(��

0

)(�f :�

0

)(�g:�)(�j:�)

([[f 7! �(x)x℄℄ j [[g 7! �(f)5℄℄ j [[j 7! �(z)g(f)℄℄ j khji)

� (��

0

)(�f :�

0

)(�g:�)(�j:�)

([[g 7! �(f)5℄℄ j [[j 7! �(z)g(f)℄℄ j khji)

The �rst equation illustrates the need for hidden e�ets. The hidden e�et

of g is fK; �

0

g, and so the overall e�et of the proess [[g 7! �(y)f(y)℄℄ j kh5i

is simply f�;Kg. This e�et does not ontain �

0

and so the theorem justi�es

deletion of the proess [[f 7! �(x)x℄℄, whose e�et is f�

0

g. In an e�et system for

the �-alulus without hidden e�ets, the e�et of [[g 7! �(y)f(y)℄℄ j kh5i would

inlude �

0

, and so the theorem would not be appliable.

A standard garbage olletion priniple in the �-alulus is that if f does

not our free in P , then (�f)(!f(x; k):R j P) � P . One might hope that this

priniple alone would justify de-alloation of defunt regions. But neither of

our example equations is justi�ed by this priniple; in both ases, the name f

ours in the remainder of the proess. We need an e�et system to determine

that f is not atually invoked by the remainder of the proess.

The two equations displayed above are instanes of our �nal theorem, a

orollary of Theorem 4.3. It asserts that deleting defunt regions makes no

di�erene to the behaviour of a on�guration:

Theorem 4.4 Suppose H j= S � (a; h) : A and k =2 dom

2

(H) [L. Let ~�

defunt

be the sequene of groups in dom(H)� S. Then:

[[?℄℄; S; k:K[[[A℄℄℄ ` [[S � (a; h)℄℄k � (�~�

defunt

)(�[[ptr (H)℄℄)([[a℄℄k j

Q

�2S

[[H(�)℄℄)

22

5 An Equational Theory

The new-group onstrut enjoys various equational properties, suh as our laws

of strutural ongruene. On the other hand, equational properties of letregion

do not appear to have been previously studied. This setion proposes an equa-

tional theory for the region alulus, inluding equations for letregion inspired in

part by equations for new-group. We prove that the equational theory is sound

with respet to the semantis of the previous setion. The equational trans-

formations of Benton and Kennedy (1999) for their ML intermediate language

(without regions) appear to be the only prior work on an expliit equational

theory for a typed alulus with e�ets.

In the following, reall that the onventional syntax for appliation, b(a),

where either b or a is not a name, abbreviates b(a)

�

= let f = b in let x = a inf(x)

where f =2 fxg [fn(a). Given this abbreviation, we an de�ne in the standard

way the substitution bfx ag to be the expression obtained by replaing eah

free ourrene of x in b with the expression a.

Substitution of a term for a name:

xfz g

�

=

�

 if x = z

x otherwise

x(y)fz g

�

= xfz g(yfz g)

(let x = a in b)fz g

�

= let x = afz g in (bfz g) for x =2 fzg [fn()

(�(x:A)b)fz g

�

= �(x:A)(bfz g) for x =2 fzg [fn()

The rules in the following tables indutively de�ne the judgment E ` a $

b : A intended to mean that the terms a and b have the same type, A, and

equivalent observable behaviour, although they may have di�erent e�ets.

The �rst set of rules is essentially the all-by-value �-alulus (Plotkin 1975).

As usual in an equational theory for all-by-value, we restrit the argument a

in the rule (Eq Fun �) to be fully evaluated, either a name, x, or an alloation,

�(x)b at �. This restrition is atually unneessary for the present alulus,

sine there are no non-terminating omputations, but we inlude it so that the

equational theory remains valid when we extend our alulus with reursion. In

rule (Eq Fun �), we also ask for (�(x:A)b at �)(a) and bfx ag to share the

same type, B. This is beause the type of bfx ag an sometimes di�er from

the type of (�(x:A)b at �)(a).

Equational Theory: The Call-by-Value �-Calulus

(Eq Re�)

E ` a :

e

A

E ` a$ a : A

(Eq Symm)

E ` a$ b : A

E ` b$ a : A

(Eq Trans)

E ` a$ b : A E ` b$: A

E ` a$: A

23

(Eq Fun)

E ` (A

e

! B) at � E; x:A ` b

1

$ b

2

: B

E; x:A ` b

i

:

e

i

B e

i

� e 8i 2 1::2

E ` (�(x:A)b

1

) at �$ (�(x:A)b

2

) at � : (A

e

! B) at �

(Eq Fun �) (where a is a name or an alloation)

E ` a :

e

1

A E; x:A ` b :

e

2

B E ` bfx ag :

e

3

B � 2 dom(E)

E ` (�(x:A)b at �)(a)$ bfx ag : B

Next, we have rules for let , inspired by the omputational �-alulus (Moggi

1989).

Equational Theory: let

(Eq Let)

E ` a$ a

0

: A E; x:A ` b$ b

0

: B

E ` let x = a in b$ let x = a

0

in b

0

: B

(Eq Let Asso)

E ` a :

e

1

A E; x:A ` b :

e

2

B E; y:B ` :

e

3

C

E ` let x = a in (let y = b in)

$ let y = (let x = a in b) in : C

(Eq Let �) (where a is a name or an alloation)

E ` a :

e

1

A E; x:A :

e

2

b : B E ` bfx ag :

e

3

B

E ` let x = a in b$ bfx ag : B

Finally, here are the new rules for letregion . For the sake of brevity, we write

(��)a as a shorthand for letregion � in a.

Equational Theory: letregion

(Eq Letregion)

E; � ` a$ a

0

: A � =2 fr(A)

E ` (��)a$ (��)a

0

: A

(Eq Drop)

E ` a :

e

A � =2 dom(E)

E ` (��)a$ a : A

(Eq Swap)

E; �; �

0

` a :

e

A f�; �

0

g \ fr (A) = ?

E ` (��)(��

0

)a$ (��

0

)(��)a : A

(Eq Letregion Let)

E; � ` a :

e

1

A E; x:A; � ` b :

e

2

B � =2 fr (A) [fr(B)

E ` (��)let x = a in b$ let x = (��)a in (��)b : B

The rule (Eq Letregion) is a ongruene rule. The rule (Eq Swap) allows

region sopes to be re-ordered. The rule (Eq Drop) allows unused region sopes

24

to be disarded; we need the ondition � =2 dom(E), rather than the weaker

ondition � =2 e [fr(A), to ensure that both (��)a and a are well-typed. The

rule (Eq Letregion Let) allows a single region to be broken into two.

The following are derivable rules. The �rst is an instane of (Eq Drop). The

seond follows from the �rst, (Eq Letregion Let), and (Eq Trans).

(Eq Appl x(y))

E ` x :

?

(B

e

! A) at �

0

E ` y :

?

B � =2 dom(E)

E ` (��)x(y) $ x(y) : B

(Eq Appl) (where � =2 fr ((A

e

2

! B) at �

0

))

E; � ` b :

e

1

(A

e

2

! B) at �

0

E; � ` a :

e

3

A

E ` (��)(b(a))$ ((��)b)((��)a) : B

Other examples of derivable rules are:

E ` x :

?

A

e

! B at � E ` a :

e

0

A y =2 dom(E)

E ` x(a)$ let y = a in x(y) : B

E ` a :

e

0

A

e

! B at � E ` x :

?

A y =2 dom(E)

E ` a(x)$ let y = a in y(x) : B

E; x:A ` b :

e

1

B E ` a :

e

2

A f =2 dom(E) � 2 dom(E)

E ` let f = �(x:A)b at � in f(a)$ bfx ag : B

E ` a :

e

1

A E; x:A ` b :

e

2

B � 2 dom(E)

E ` let x = a in b$ (�(x:A)b at �)(a) : B

E ` a :

e

1

A E ` b :

e

2

B x =2 dom(E)

E ` let x = a in b$ b : B

E ` a :

e

1

A E; x:A ` b :

e

2

B E ` bfx ag :

e

3

B

E ` let x = a in b$ let x = a in bfx ag : B

E ` a :

e

1

A E; x:A ` b :

e

2

B E; x:A; y : B ` :

e

3

C

E ` let x = a in let y = b in $

let y = (let x = a in b) in (let x = a in) : C

The following are speial ases of (Eq Drop):

E; � ` x :

?

A

E ` (��)x$ x :

?

A

E; � ` v at �

0

:

f�

0

g

(A

e

! B) at �

0

� =2 fr (A

e

! B at �

0

)

E ` (��)(v at �

0

)$ v at �

0

:

f�

0

g

(A

e

! B) at �

0

In the following example, we apply (Eq Let Asso) followed by (Eq Letregion

Let) to optimise a omputation by replaing a single global region � by two

25

smaller loal regions �

1

and �

2

whose lives do not overlap, and hene ould

share storage.

? ` (��)let f = �(x)x at � in let y = f(5)

in let g = �(z)y at � in g(42)

$ (��)let y = (let f = �(x)x at � in f(5))

in let g = �(z)y at � in g(42)

$ let y = (��

1

)(let f = �(x)x at �

1

in f(5))

in (��

2

)let g = �(z)y at �

2

in g(42) : Lit

Although our equations are not deorated with e�ets, for any derivable

equation a

1

$ a

2

there is an e�et e that is an upper bound of the e�ets of

both a

1

and a

2

.

Lemma 5.1 If E ` a

1

$ a

2

: A then there is e � dom(E) suh that for eah

i 2 1::2, there is e

i

� e with E ` a

i

:

e

i

A.

Using standard �-alulus tehniques, we an show that our equational the-

ory is sound with respet to our �-alulus semantis.

Theorem 5.2 Suppose E ` a$ b : A and k =2 dom(E) [L. Then:

[[E℄℄; k:K[[[A℄℄℄ ` [[a℄℄k � [[b℄℄k

Tofte and Talpin proved a result that the operational behaviour of a region-

annotated term (like the terms of our alulus) is the same as its erasure to a

pure term of the �-alulus. We onjeture that our equational theory is sound

for a standard ontextual equivalene for the region alulus, and that this ould

easily be shown by appealing to Tofte and Talpin's result.

6 Extensions

In this setion, we show that the main results of the paper apply not only to

the simple region alulus of Setion 2 but also to that alulus extended with

reursive funtions, lists, and region polymorphism. We desribe this extended

alulus in Setion 6.1. Then in Setion 6.2 we desribe an extended �-alulus.

Its extensions are reursive types, to model lists, and group polymorphism,

to model region polymorphism. In Setion 6.3 we de�ne an enoding of the

extended region alulus in this extended �-alulus. With the exeption of the

results in Setion 5 onerning equational reasoning, all the other theorems in

the paper onerning the unextended aluli an be generalized to the extended

aluli. We omit the statement of these generalized theorems from this setion,

but in Appendix B we state and prove all these theorems. We onjeture that

the material in Setion 5 ould be generalized also, but we have not investigated

this generalization.

26

6.1 An Extended �-Calulus

Here is the extended syntax of expressions and values.

Expressions and Values:

x; y; p; q; f; g name: variable, pointer, literal

� region variable

a; b ::= expression

x variable or pointer or literal

v at � alloation of v at �

x[�

1

; : : : ; �

n

℄(y) appliation

let x = a in b sequening

letregion � in b region alloation and de-alloation

ase x of nil) b

1

j (y

1

:: y

2

)) b

2

list ase

u; v ::= boxed value

�(f :A)�[�

1

; : : : ; �

n

℄(x)b reursive funtion

nil empty list

x

1

:: x

2

ons ell

Previously, the only kind of value was funtion abstration. In this alulus,

a boxed value an be a reursive, region-polymorphi funtion, an empty list,

or a ons ell.

In a funtion value �(f :A)�[�

1

; : : : ; �

n

℄(x)b, the names f and x and the

region variables �

1

, . . . , �

n

are bound, with sope b. During evaluation, the

name x gets bound to the funtion's argument and the name f gets bound to

the funtion itself, to enable reursive alls. The region parameters �

1

, . . . , �

n

allow the funtion to alloate and read from regions passed in as arguments.

This region polymorphism is essential for e�ient ode generation in the ML

Kit ompiler (Tofte and Talpin 1997). Other kind of boxed values are lists, that

is either the empty list, nil , or a ons ell, x

1

:: x

2

, where the names x

1

and x

2

are heap pointers referring to the head and tail of the list, respetively.

A new expression for funtion appliation, x[�

1

; : : : ; �

n

℄(y), applies the fun-

tion pointed to by x to the region parameters �

1

, . . . , �

n

, and the value param-

eter y. The other new expression, ase x of nil) b

1

j (y

1

:: y

2

)) b

2

, is for list

disrimination. In this expression, the names y

1

and y

2

are bound, with sope

b

2

. When the expression evaluates, if x is the empty list, b

1

runs. Otherwise,

if x is a ons ell x

1

:: x

2

, then b

2

fy

1

 x

1

gfy

2

 x

2

g runs. The other expres-

sions of the extended alulus have the same interpretation as in the unextended

alulus.

The de�nitions of regions, heaps, and staks needed for the dynami seman-

tis are the same as before, though the set of values, v, stored in regions is

extended.

Regions, Heaps and Staks:

r ::= (p

i

7! v

i

)

i21::n

region, p

i

distint

h ::= (�

i

7! r

i

)

i21::n

heap, �

i

distint

27

S ::= f�

1

; : : : ; �

n

g stak of live regions

The evaluation relation, S � (a; h) + (p; h

0

), is de�ned by the rules in the

following table.

Evaluation Rules:

(Eval Var)

S � (p; h) + (p; h)

(Eval Allo)

� 2 S p =2 dom

2

(h)

S � (v at �; h) + (p; h+ (� 7! (h(�) + (p 7! v))))

(Eval Appl) (where � 2 S and h(�)(p) = �(f :A)�[�

1

; : : : ; �

n

℄(x)b)

S � (bff pgf�

1

 �

0

1

g � � � f�

n

 �

0

n

gfx qg; h) + (p

0

; h

0

)

S � (p[�

0

1

; : : : ; �

0

n

℄(q); h) + (p

0

; h

0

)

(Eval Let)

S � (a; h) + (p

0

; h

0

) S � (bfx p

0

g; h

0

) + (p

00

; h

00

)

S � (let x = a in b; h) + (p

00

; h

00

)

(Eval Letregion)

� =2 dom(h) S [f�g � (a; h+ � 7! ?) + (p

0

; h

0

)

S � (letregion � in a; h) + (p

0

; h

0

)

(Eval Case 1)

� 2 S h(�)(p) = nil S � (b

1

; h) + (p

0

; h

0

)

S � (ase p of nil) b

1

j (y

1

:: y

2

)) b

2

; h) + (p

0

; h

0

)

(Eval Case 2)

� 2 S h(�)(p) = q

1

:: q

2

S � (b

2

fy

1

 q

1

gfy

2

 q

2

g; h) + (p

0

; h

0

)

S � (ase p of nil) b

1

j (y

1

:: y

2

)) b

2

; h) + (p

0

; h

0

)

Next, we introdue the e�ets, types, and environments needed for the stati

semantis. The de�nitions of e�ets and environments are unhanged, but we

need to introdue new types for region polymorphi funtions and for lists.

In the extended type system, a funtion value (�(f :F)�[�

1

; : : : ; �

n

℄(x)b) at �,

will have a type F = (8[�

1

; : : : ; �

n

℄A

e

! B) at �, where A is the type of the

funtion argument x, and the regions �

1

; � � � ; �

n

are bound. A list stored at �

will have type [A℄ at �, where A is the type of the elements of the list. Note

that nil is an overloaded onstant, whih inhabits every well-formed type, and

that eah element of a list are stored in the same region than the list itself.

28

E�ets, Types, and Environments:

e ::= f�

1

; : : : ; �

n

g e�et

A;B; F ::= type of expressions

Lit type of literals

V at � type of V values at �

U; V ::= type of boxed values

8[�

1

; : : : ; �

n

℄A

e

! B polymorphi funtion

[A℄ list

E ::= environment

? empty environment

E; � entry for a region �

E; x:A entry for a name x

In the type (8[�

1

; : : : ; �

n

℄A

e

! B) at �, the regions �

1

; : : : ; �

n

are bound with

sope A

e

! B. Let fr(A) be the set of region variables free in the type A. We

have fr(Lit) = ?, and fr ((8[�

1

; : : : ; �

n

℄A

e

! B) at �) = (fr(A) [fr(B) [e) �

f�

1

; : : : ; �

n

g [f�g, and fr([A℄ at �) = fr (A) [f�g. We identify types up to

onsistent renaming of bound regions.

The stati semantis onsists of judgments with the same format as before:

good environments, E ` �, good types, E ` A, and good expressions, E ` a :

e

A.

The rules in the following tables de�ne the stati semantis. For any substitution

� of regions for regions and e�et e = f�

1

; � � � ; �

n

g, the e�et e� is the set of

regions f�(�

1

); � � � ; �(�

n

)g.

Typing Rules:

(Env ?)

? ` �

(Env x)

E ` A x =2 dom(E) [L

E; x:A ` �

(Env �)

E ` � � =2 dom(E)

E; � ` �

(Type Lit)

E ` �

E ` Lit

(Type !) (where E

0

= E; �

1

; : : : ; �

n

)

E

0

` A e � dom(E

0

) E

0

` B � 2 dom(E)

E ` (8[�

1

; : : : ; �

n

℄A

e

! B) at �

(Type List)

E ` A � 2 dom(E)

E ` [A℄ at �

(Exp x)

E; x:A;E

0

` �

E; x:A;E

0

` x :

?

A

(Exp `)

E ` � ` 2 L

E ` ` :

?

Lit

(Exp Appl) (where � = f�

1

 �

0

1

g � � � f�

n

 �

0

n

g and f�

0

1

; : : : ; �

0

n

g � dom(E))

E ` x :

?

(8[�

1

; : : : ; �

n

℄A

e

! B) at � E ` y :

?

A�

E ` x[�

0

1

; : : : ; �

0

n

℄(y) :

f�g[(e�)

B�

(Exp Let)

E ` a :

e

A E; x:A ` b :

e

0

B

E ` let x = a in b :

e[e

0

B

(Exp Letregion)

E; � ` a :

e

A E ` A

E ` letregion � in a :

e�f�g

A

29

(Exp Case)

E ` x :

?

[A℄ at � E ` b

1

:

e

1

B E; y

1

:A; y

2

:[A℄ at � ` b

2

:

e

2

B

E ` ase x of nil) b

1

j (y

1

:: y

2

)) b

2

:

f�g[e

1

[e

2

B

(Exp Fun) (where F = (8[�

1

; : : : ; �

n

℄A

e

! B) at �)

E; f :F; �

1

; : : : ; �

n

; x:A ` b :

e

0

B e

0

� e � dom(E; �

1

; : : : ; �

n

)

E ` (�(f :F)�[�

1

; : : : ; �

n

℄(x)b) at � :

f�g

F

(Exp Nil)

E ` [A℄ at �

E ` nil at � :

f�g

[A℄ at �

(Exp Cons)

E ` x

1

:

?

A E ` x

2

:

?

[A℄ at �

E ` (x

1

:: x

2

) at � :

f�g

[A℄ at �

The de�nitions of region and heap typings, R and H , respetively, and of

the judgments E ` r at � : R, H j= �, H j= h, and H j= S � (a; h) : A are exatly

as in Setion 2.

6.2 An Extended �-Calulus

We enrih our typed �-alulus with group polymorphism and reursive types.

The idea of group polymorphism is that instead of simply exhanging tuples

of names with �xed types on a hannel, we exhange tuples of names together

with tuples of groups, where the types of the names depend on the groups. A-

ordingly, the type of a hannel aquires the formG(G

1

; : : : ; G

m

)[T

1

; : : : ; T

n

℄nH,

where G is the group of the hannel, G

1

, . . . , G

m

are group parameters, T

1

,

. . . , T

n

are the types of the name parameters, and H is the hidden e�et. The

types T

1

, . . . , T

n

and the e�et H may depend on the group parameters G

1

,

. . . , G

m

. An output proess takes the form xhG

1

; : : : ; G

m

; y

1

; : : : ; y

n

i, whereG

1

,

. . . , G

m

are the group parameters, and y

1

, . . . , y

n

are the name parameters. An

input proess takes the form x(G

1

; : : : ; G

m

; y

1

:T

1

; : : : ; y

n

:T

n

):P where G

1

, . . . ,

G

m

reeive the group parameters, and y

1

, . . . , y

n

reeive the name parameters.

This treatment of group polymorphism, where group parameters are transmit-

ted on hannels, is inspired by previous treatments of type polymorphism in the

�-alulus (Turner 1995; Piere and Sangiorgi 1997), where type parameters

are transmitted on hannels. Group polymorphism allows to type-hek riher

behaviour, suh as an enoding of region polymorphism, than previously. Still,

group polymorphism does not introdue any new dynami behaviour: the redu-

tions of any well-typed proess are equivalent to the redutions of its untyped

erasure.

The idea of reursive types is standard. A reursive type takes the form

�(X)T . A name of type �(X)T is deemed also to have the unfolded type

TfX �(X)Tg, and vie versa. However, for the sake of simpliity, we do not

identify a reursive type with its unfolding. A name may be assigned the type

�(X)X , but suh a name annot be used for ommuniation sine we annot

unfold �(X)X to a hannel type.

The extended syntax of our �-alulus is as follows:

30

Types, Expressions, and Proesses:

G;H group

X type variable

T ::= hannel type

X type variable

G(G

1

; : : : ; G

m

)[T

1

; : : : ; T

n

℄nH hannel type

�(X)T reursive type

x; y; p; q name: variable, hannel

P;Q;R ::= proess

x(G

1

; : : : ; G

m

; y

1

:T

1

; : : : ; y

n

:T

n

):P input (no y

i

2 inp(P))

xhG

1

; : : : ; G

m

; y

1

; : : : ; y

n

i output

(�G)P new-group: group restrition

(�x:T)P new-name: name restrition

P j Q omposition

!P repliation

0 inativity

In the type G(G

1

; : : : ; G

m

)[T

1

; : : : ; T

n

℄nH, the groups G

1

; : : : ; G

m

are bound

with sope T

1

; : : : ; T

n

and H. In the type �(X)T , the type variable X is bound

with sope T . In a proess x(G

1

; : : : ; G

m

; y

1

:T

1

; : : : ; y

n

:T

n

):P , the groups G

1

,

. . . , G

m

and the names y

1

; : : : ; y

n

are bound; their sope is P . The other binders,

new-name and new-group, have the same semantis as before. The de�nitions

of free names of a proess, fn(P), free groups of a type, fg(T), and free groups

of a proess, fg(P), are as before, exept for the following hanges:

Free groups, fg(T), of type T :

fg(X)

�

= ?

fg(G(G

1

; : : : ; G

m

)[T

1

; : : : ; T

n

℄nH)

�

=

fGg [((fg(T

1

) [� � � [fg(T

n

) [H)� fG

1

; : : : ; G

m

g)

fg(�(X)T)

�

= fg(T)

Free groups, fg(P), of proess P :

fg(x(G

1

; : : : ; G

m

; y

1

:T

1

; : : : ; y

n

:T

n

):P)

�

= (fg(T

1

) [� � � [fg(T

n

) [fg(P))

�fG

1

; : : : ; G

m

g

fg(xhG

1

; : : : ; G

m

; y

1

; : : : ; y

n

i)

�

= fG

1

; : : : ; G

m

g

fg((�G)P)

�

= fg(P)� fGg

fg((�x:T)P)

�

= fg(T) [fg(P)

fg(P j Q)

�

= fg(P) [fg(Q)

fg(!P)

�

= fg(P)

fg(0)

�

= ?

We identify types and proesses up to onsistent renaming of bound groups,

names, and type variables.

31

We de�ne strutural ongruene P � Q by the same rules as before, exept

that we replae (Strut Input) with the following:

P � Q)

x(G

1

; : : : ; G

m

; y

1

:T

1

; : : : ; y

n

:T

n

):P �

x(G

1

; : : : ; G

m

; y

1

:T

1

; : : : ; y

n

:T

n

):Q

(Strut Input)

We de�ne redution P ! Q by the following rules:

Redution:

xhG

0

1

; : : : ; G

0

m

; y

0

1

; : : : ; y

0

n

i j x(G

1

; : : : ; G

m

; y

1

:T

1

; : : : ; y

n

:T

n

):P

! PfG

1

 G

0

1

g � � � fG

m

 G

0

m

gfy

1

 y

0

1

g � � � fy

n

 y

0

n

g

(Red Interat)

P ! Q) P j R! Q j R (Red Par)

P ! Q) (�G)P ! (�G)Q (Red GRes)

P ! Q) (�x:T)P ! (�x:T)Q (Red Res)

P

0

� P; P ! Q;Q � Q

0

) P

0

! Q

0

(Red �)

To take reursive types into aount, we extend the de�nition of type environ-

ment to inlude type variables, X . The de�nition of the domain, dom(E), of an

environment, E, is also extended and is de�ned by the equations dom(?) = ?,

dom(E; �) = dom(E) [f�g, dom(E; x:A) = dom(E) [fxg and dom(E;X) =

dom(E) [fXg.

Environments:

E ::= environment

? empty environment

E;X entry for a type variable X

E;G entry for a group G

E; x:T entry for a variable x

The judgments of the type system have the same format as previously: good

environment E ` �, good type E ` T , good name E ` x : T , and good proess

E ` P : H. Their meaning is given indutively by the rules in the following

tables.

Good environments:

(Env ?)

? ` �

(Env x)

E ` T x =2 dom(E)

E; x:T ` �

(Env G)

E ` � G =2 dom(E)

E;G ` �

(Env X)

E ` � X =2 dom(E)

E;X ` �

32

Good types:

(Type Chan) (where E

0

= E;G

1

; : : : ; G

m

)

E

0

` � G 2 dom(E) H � dom(E

0

) E

0

` T

i

8i 2 1::n

E ` G(G

1

; : : : ; G

m

)[T

1

; : : : ; T

n

℄nH

(Type X)

E

0

; X;E

00

` �

E

0

; X;E

00

` X

(Type Re)

E;X ` T

E ` �(X)T

Good names:

(Exp x)

E

0

; x:T;E

00

` �

E

0

; x:T;E

00

` x : T

(Exp Unfold)

E ` x : �(X)T

E ` x : TfX �(X)Tg

(Exp Fold)

E ` x : TfX �(X)Tg

E ` x : �(X)T

Good proesses:

(Pro Input) (where (G�H) \ fG

1

; : : : ; G

m

g = ?)

E ` x : G(G

1

; : : : ; G

m

)[T

1

; : : : ; T

n

℄nH

E;G

1

; : : : ; G

m

; y

1

:T

1

; : : : ; y

n

:T

n

` P : G

E ` x(G

1

; : : : ; G

m

; y

1

:T

1

; : : : ; y

n

:T

n

):P : fGg [(G�H)

(Pro Output) (where � = fG

1

 G

0

1

g � � � fG

m

 G

0

m

g)

E ` x : G(G

1

; : : : ; G

m

)[T

1

; : : : ; T

n

℄nH

fG

0

1

; : : : ; G

0

m

g � dom(E) E ` y

0

i

: T

i

� 8i 2 1::n

E ` xhG

0

1

; : : : ; G

0

m

; y

0

1

; : : : ; y

0

n

i : fGg [H�

(Pro GRes)

E;G ` P : H

E ` (�G)P : H� fGg

(Pro Res)

E; x:T ` P : H

E ` (�x:T)P : H

(Pro Par)

E ` P : G E ` Q : H

E ` P j Q : G [H

(Pro Repl)

E ` P : H

E ` !P : H

(Pro Zero)

E ` �

E ` 0 : ?

(Pro Subsum)

E ` P : G G � H � dom(E)

E ` P : H

The standard rule (Type Re) for heking goodness of a reursive types

�(X)T reords the name of the reursively bound variable X by inserting it

into the environment used to hek goodness of the body T . This is the only

irumstane in whih we are interested in having type variables in an envi-

ronment. We are only interested in the behaviour of proesses type-heked in

proper environments, those in whih no type variables our.

33

Proper environments:

Let E be proper if and only if E ` � but there is no X suh that E ` X .

The relation P # � where the barb � 2 fx; xg, is de�ned muh as before.

Exhibition of a barb:

(Barb Input)

x(G

1

; : : : ; G

m

; y

1

:T

1

; : : : ; y

n

:T

n

):P # x

(Barb Output)

xhG

1

; : : : ; G

m

; y

1

; : : : ; y

n

i # x

(Barb GRes)

P # �

(�G)P # �

(Barb Res)

P # � � =2 fx; xg

(�x:T)P # �

(Barb Par)

P # �

P j Q # �

(Barb �)

P � Q Q # �

P # �

The de�nition of a relation on typed proesses is the same as before, exept

we restrit attention to proper environments:

� A relation on typed proesses (of the extended �-alulus), S, is a set of

triples (E;P;Q) where E is a proper environment and P and Q are typed

terms suh that E ` P and E ` Q.

The de�nition of barbed ongruene, and the auxiliary notions inluding

barbed bisimulation and barbed bisimilarity, are exatly as before.

6.3 An Extended Enoding

We translate the extended region alulus into the extended �-alulus as fol-

lows. In this enoding, the type of a boxed value loated at region � is of the

kind �(�

1

; : : : ; �

m

)[T

1

; : : : ; T

n

℄nH. In the ommon ase when m = 0, that is,

the value is monomorphi, and has no hidden e�et, we abbreviate the type to

�[T

1

; : : : ; T

n

℄.

Translating of the region alulus to the �-alulus:

[[A℄℄ type modelling the type A

[[E℄℄ environment modelling proper environment E

[[a℄℄k proess modelling term a, answer on k

[[p 7! v℄℄ proess modelling value v at pointer p

[[r℄℄ proess modelling region r

[[S � (a; h)℄℄k proess modelling on�guration S � (a; h)

Translation rules:

[[Lit ℄℄

�

= Lit [℄

[[(8[�

1

; : : : ; �

n

℄A

e

! B) at �℄℄

�

= �(�

1

; : : : ; �

n

)[[[A℄℄;K[[[B℄℄℄℄n(e [fKg)

[[[A℄ at �℄℄

�

= �(X)�[�[℄; �[[[A℄℄; X ℄℄

34

[[?℄℄

�

= K;Lit ; `

1

:Lit [℄; : : : ; `

n

:Lit [℄

[[E; �℄℄

�

= [[E℄℄; �

[[E; x:A℄℄

�

= [[E℄℄; x:[[A℄℄

[[x℄℄k

�

= khxi

[[let x = a

A

in b℄℄k

�

= (�k

0

:K[[[A℄℄℄)([[a℄℄k

0

j k

0

(x:[[A℄℄):[[b℄℄k)

[[p[�

1

; : : : ; �

n

℄(q)℄℄k

�

= ph�

1

; : : : ; �

n

; q; ki

[[(v at �)

A

℄℄k

�

= (�p:[[A℄℄)([[p 7! v℄℄ j khpi)

[[letregion � in a℄℄k

�

= (��)[[a℄℄k

[[ase p

[A℄at�

of nil) b

1

j (y

1

:: y

2

)) b

2

℄℄k

�

= (�z

1

:�[℄)(�z

2

:�[[[A℄℄; [[[A℄ at �℄℄℄)

(phz

1

; z

2

i j z

1

():[[b

1

℄℄k j z

2

(y

1

:[[A℄℄; y

2

:[[[A℄ at �℄℄):[[b

2

℄℄k)

[[p 7! �(f :F)�[�

1

; : : : ; �

n

℄(x)b℄℄

�

= !p(�

1

; : : : ; �

n

; x:[[A℄℄; k:K[[[B℄℄℄):[[bff pg℄℄k

where F = (8[�

1

; : : : ; �

n

℄A

e

! B) at �

[[p 7! nil

[A℄at�

℄℄

�

= !p(z

1

:�[℄; z

2

:�[[[A℄℄; [[[A℄ at �℄℄℄):z

1

hi

[[p 7! (x

1

:: x

2

)

[A℄at�

℄℄

�

= !p(z

1

:�[℄; z

2

:�[[[A℄℄; [[[A℄ at �℄℄℄):z

2

hx

1

; x

2

i

[[(p

i

7! v

i

)

i21::n

℄℄

�

=

Q

i21::n

[[p

i

7! v

i

℄℄

[[(�

i

7! r

i

)

i21::n

℄℄

�

=

Q

i21::n

[[r

i

℄℄

[[S � (a; h

H

)℄℄k

�

= (�~�

defunt

)(�[[ptr (H)℄℄)([[a℄℄k j [[h℄℄)

where f~�

defunt

g = dom(H)� S

The translation of the extended region alulus is an extension of the en-

oding given in Setion 4. In partiular, the enodings of type environments,

regions, heaps and on�gurations are unhanged.

The enoding of lists and the ase expression are standard (Milner 1999).

A polymorphi reursive funtion is modelled as a repliated input proess,

awaiting the argument of the funtion, a ontinuation on whih to return a result

and for group parameters representing the region parameters to the funtion.

A funtion is invoked by sending it the argument and a ontinuation hannel.

Appendix B states and proves reformulations of all the results stated in

Setions 2, 3, and 4 in terms of the extended aluli of this setion.

7 Conlusions

We showed that the stati and dynami semantis of Tofte and Talpin's region

alulus are preserved by a translation into a typed �-alulus. The letregion

onstrut is modelled by a new-group onstrut originally introdued into pro-

ess aluli by Cardelli, Ghelli, and Gordon (2000a). We showed that the rather

subtle orretness of memory de-alloation in the region alulus is an instane

of Theorem 4.3, a new garbage olletion priniple for the �-alulus. The

translation is an example of how the new-group onstrut aounts for the type

generativity introdued by letregion , just as the standard new-name onstrut

of the �-alulus aounts for dynami generation of values.

35

Banerjee, Heintze, and Rieke (1999) give an alternative proof of the sound-

ness of region-based memory management. Theirs is obtained by interpreting

the region alulus in a polymorphi �-alulus equipped with a new binary type

onstrutor # that behaves like a union or intersetion type. Their tehniques

are those of denotational semantis, ompletely di�erent from the operational

tehniques of this paper. The formal onnetions between the two approahes

are not obvious but would be intriguing to investigate. A possible advantage

of our semantis in the �-alulus is that it ould easily be extended to inter-

pret a region alulus with onurreny, but that remains future work. Another

line of future work is to onsider the semantis of other region aluli (Aiken,

Faehndrih, and Levien 1995; Crary, Walker, and Morrisett 1999; Hughes and

Pareto 1999) in terms of the �-alulus. Finally, various researhers (Moggi

and Palumbo 1999; Semmelroth and Sabry 1999) have noted a onnetion be-

tween the monadi enapsulation of state in Haskell (Launhbury and Peyton

Jones 1995) and regions; hene it would be illuminating to interpret monadi

enapsulation in the �-alulus.

Aknowledgements

Lua Cardelli partiipated in the initial disussions that led to this paper. We

had useful onversations with Giorgio Ghelli, Cédri Fournet and Mads Tofte

on the onnetions between groups and regions. Thanks to Simon Helsen for

pointing out a problem with the rules (Eq Fun �) and (Eq Let �) in the original

version of this tehnial report. Lua Cardelli, Tony Hoare, and Andy Moran

ommented on a draft.

36

Referenes

Abadi, M. and A. D. Gordon (1999). A alulus for ryptographi protools:

The spi alulus. Information and Computation 148, 1�70. An extended

version appears as Researh Report 149, Digital Equipment Corporation

Systems Researh Center, January 1998.

Aiken, A., M. Faehndrih, and R. Levien (1995). Better stati memory

management: Improvements to region-based analysis of higher-order lan-

guages. In Proeedings PLDI'95, pp. 174�185.

Banerjee, A., N. Heintze, and J. Rieke (1999). Region analysis and the poly-

morphi lambda alulus. In Proeedings LICS'99.

Benton, N. and A. Kennedy (1999). Monads, e�ets and transformations.

In Proeedings HOOTS99, Volume 26 of Eletroni Notes in Theoretial

Computer Siene, pp. 1�18. Elsevier.

Birkedal, L., M. Tofte, and M. Vejlstrup (1996). From region inferene to

von Neumann mahines via region representation inferene. In Proeedings

POPL'96, pp. 171�183. ACM.

Boudol, G. (1992). Asynhrony and the �-alulus. Tehnial Report 1702,

INRIA.

Cardelli, L., G. Ghelli, and A. D. Gordon (2000a). Ambient groups and mo-

bility types. In Proeedings of IFIP TCS2000. to appear.

Cardelli, L., G. Ghelli, and A. D. Gordon (2000b). Group reation and serey.

Submitted for publiation.

Crary, K., D. Walker, and G. Morrisett (1999). Typed memory management

in a alulus of apabilities. In Proeedings POPL'99, pp. 262�275.

Dal Zilio, S. (1999). A bisimulation for the blue alulus. Tehnial Report

3664, INRIA.

Fournet, C. and G. Gonthier (1996). The re�exive CHAM and the Join-

alulus. In Proeedings POPL'96, pp. 372�385.

Gi�ord, D. K. and J. M. Luassen (1986). Integrating funtional and imper-

ative programming. In Proeedings L&FP'86, pp. 28�38.

Honda, K. (1992). Two bisimilarities for the �-alulus. Tehnial Report 92-

002, Department of Computer Siene, Keio University.

Hughes, J. and L. Pareto (1999). Reursion and dynami data-strutures

in bounded spae: Towards embedded ML programming. In Proeedings

ICFP'99, pp. 70�81.

Launhbury, J. and S. Peyton Jones (1995). State in Haskell. Lisp and Sym-

boli Computation 8 (4), 293�341.

Leroy, X. (1996). A syntati theory of type generativity and sharing. Journal

of Funtional Programming 6 (5), 667�698.

37

Merro, M. and D. Sangiorgi (1998). On asynhrony in name-passing aluli.

In Proeedings ICALP'98, Volume 1443 of Leture Notes in Computer

Siene, pp. 856�867. Springer.

Milner, R. (1999). Communiating and Mobile Systems: the �-Calulus. CUP.

Milner, R., J. Parrow, and D. Walker (1992). A alulus of mobile proesses,

parts i and ii. Journal of Information and Computation 100, 1�77.

Milner, R. and D. Sangiorgi (1992). Barbed bisimulation. In Proeedings

ICALP'92, Volume 623 of Leture Notes in Computer Siene, pp. 685�

695. Springer.

Milner, R., M. Tofte, R. Harper, and D. MaQueen (1997). The De�nition of

Standard ML (Revised). MIT Press.

Moggi, E. (1989). Notions of omputations and monads.Theoretial Computer

Siene 93, 55�92.

Moggi, E. and F. Palumbo (1999). Monadi enapsulation of e�ets: a revised

approah. In Proeedings HOOTS99, Volume 26 of Eletroni Notes in

Theoretial Computer Siene, pp. 119�136. Elsevier.

Piere, B. and D. Sangiorgi (1996). Typing and subtyping for mobile pro-

esses. Mathematial Strutures in Computer Siene 6 (5), 409�454.

Piere, B. and D. Sangiorgi (1997). Behavioral equivalene in the polymor-

phi pi-alulus. In Priniples of Programming Languages (POPL). Full

version to appear in Journal of the Assoiation for Computing Mahinery

(JACM). Also available as INRIA-Sophia Antipolis Rapport de Reherhe

No. 3042 and as Indiana University Computer Siene Tehnial Report

468.

Piere, B. C. and D. N. Turner (1997). Pit: A programming language based

on the pi-alulus. Tehnial Report CSCI 476, Computer Siene Depart-

ment, Indiana University. To appear in Proof, Language and Interation:

Essays in Honour of Robin Milner, G. Plotkin, C. Stirling, and M. Tofte,

editors, MIT Press, 2000.

Plotkin, G. D. (1975). Call-by-name, all-by-value and the �-alulus. Theo-

retial Computer Siene 1, 125�159.

Russo, C. V. (1996). Standard ML type generativity as existential quanti�-

ation. Tehnial Report ECS�LFCS�96�344, LFCS, University of Edin-

burgh.

Sangiorgi, D. and D. Walker (2000). The pi-alulus: a theory of mobile pro-

esses. Cambridge University Press. (forthoming).

Semmelroth, M. and A. Sabry (1999). Monadi enapsulation in ML. In Pro-

eedings ICFP'99, pp. 8�17.

Talpin, J.-P. and P. Jouvelot (1992). Polymorphi type, region and e�et

inferene. Journal of Funtional Programming 2 (3), 245�271.

38

Tofte, M. and J.-P. Talpin (1997). Region-based memory management. Infor-

mation and Computation 132 (2), 109�176.

Turner, D. N. (1995). The polymorphi pi-alulus: theory and implementa-

tion. Ph. D. thesis, University of Edinburgh.

Wadler, P. (1998). The marriage of e�ets and monads. In Proeedings

ICFP'98, pp. 63�74.

Walker, D. (1995). Objets in the pi-alulus. Information and Computa-

tion 116 (2), 253�271.

39

A Review of the Untyped �-Calulus

In this setion, we review the syntax and semantis of the untyped, polyadi,

hoie-free, asynhronous �-alulus (Milner 1999; Boudol 1992; Honda 1992).

We impose two additional (standard) simpli�ations, that are: (1) the reipient

of a name may only use it in output ations; (2) there are no operators for

testing the equality (or inequality) of names. Intuitively, only the apability to

output on a named hannel may be transmitted.

The �-alulus fragment de�ned by these restritions, also known as the lo-

al �-alulus (Merro and Sangiorgi 1998), has a riher equational theory than

the full �-alulus, and an be regarded as a basis for some proposals of onur-

rent programming languages (Fournet and Gonthier 1996; Piere and Turner

1997). The additional algebrai laws obtained in the loal variant of �, suh

as, for example, the repliation laws listed subsequently in Proposition A.8, are

required in the proof of Theorem 5.2, the orretness of our proposed equational

theory for the region alulus.

The syntax and dynami semantis of the untyped �-alulus are de�ned

in Appendixes A.1 and A.2, respetively. In Appendix A.3 we de�ne an alter-

native semantis for the alulus based on a labelled transition system, that

makes it easier to reason about possible redutions of a proess. We also for-

mulate Proposition A.1, whih relates the redution and transition semantis.

In Appendix A.4 we de�ne barbed ongruene for the untyped alulus and we

prove several algebrai laws that are useful in Appendix B.

A.1 Syntax

Proesses of this alulus are those obtained from the typed �-alulus proesses

de�ned in Setion 3 by erasing all type and group annotations.

Proesses:

x; y; p; q names

P;Q;R ::= proess

x(y

1

; : : : ; y

n

):P input (no y

i

2 inp(P))

xhy

1

; : : : ; y

n

i output

(�x)P restrition

P j Q omposition

!P repliation

0 inativity

The loality property is ensured using a syntati restrition on the de�nition

of inputs, x(y

1

; : : : ; y

n

):P , namely that no parameter y

i

is in inp(P), where

inp(P) is the set of names x suh that an input x(z

1

; : : : ; z

m

):P

0

ours as a

subproess of P , with x not bound.

We write Pfx x

0

g for the outome of a apture-avoiding substitution of x

0

for eah free ourrene of the variable x in the proess P . We identify proesses

40

up to renaming of bound variables. We write P = Q to mean that P and Q are

the same up to renaming of bound variables.

A.2 Dynami Semantis

We formalize the semantis of the untyped �-alulus using tehniques idential

to those applied in Setion 2.2. In partiular, a redution relation between pro-

esses, P ! Q, is de�ned on top of an auxiliary strutural ongruene relation,

P � Q, that identi�es proesses up to simple rearrangements.

Strutural Congruene:

P � P (Strut Re�)

Q � P) P � Q (Strut Symm)

P � Q;Q � R) P � R (Strut Trans)

P � Q) (�x)P � (�x)Q (Strut Res)

P � Q) P j R � Q j R (Strut Par)

P � Q) !P � !Q (Strut Repl)

P � Q) x(y

1

; : : : ; y

n

):P � x(y

1

; : : : ; y

n

):Q (Strut Input)

P j 0 � P (Strut Par Zero)

P j Q � Q j P (Strut Par Comm)

(P j Q) j R � P j (Q j R) (Strut Par Asso)

!P � P j !P (Strut Repl Par)

(�x)(�y)P � (�y)(�x)P (Strut Res Res)

x =2 fn(P)) (�x)(P j Q) � P j (�x)Q (Strut Res Par)

Redution:

xhy

1

; : : : ; y

n

i j x(z

1

; : : : ; z

n

):P ! Pfz

1

 y

1

g � � � fz

n

 y

n

g (Red Interat)

P ! Q) P j R! Q j R (Red Par)

P ! Q) (�x)P ! (�x)Q (Red Res)

P

0

� P; P ! Q;Q � Q

0

) P

0

! Q

0

(Red �)

This presentation of the �-alulus semantis allows for a simple and om-

pat de�nition of the redution rules in whih the sub-proesses having to in-

terat �the redexes in �-alulus terminology� appear in ontiguous position.

Nonetheless, the operational semantis of onurrent systems are ommonly de-

�ned using labelled transition systems and, whereas a redution semantis may

be muh more enlightening and simple than a transition semantis, the latter

makes it easier to reason about the possible redutions of a proess. For in-

stane, it will be di�ult to prove Lemma A.2, given in Appendix A.3, without

the help of a labelled transition system.

41

A.3 Labelled Transition Semantis

The de�nitions in this setion are adapted from the presentation of the labelled

transition system of the spi alulus (Abadi and Gordon 1999). In order to

de�ne the labelled transition semantis, we need some new syntati forms:

abstrations, onretions, and agents.

� An abstration is an expression of the form (~x)P , where P is a proess

and ~x is a sequene of variables x

1

; : : : ; x

n

suh that n � 0 and x

1

, . . . ,

x

n

are pairwise distint and bound in P .

� A onretion is an expression of the form (�~z)h~yiQ, where Q is a proess

and ~z and ~y are sequenes of variables z

1

, . . . , z

m

, and y

1

, . . . , y

n

, respe-

tively, suh that m;n � 0, and f~zg � f~yg, and z

1

, . . . , z

m

are pairwise

distint and bound in h~yiQ.

� An agent is either a proess, an abstration, or a onretion. We use the

metavariables A and B to stand for arbitrary agents.

For any abstration, (~x)P , let its arity, j(~x)P j, be the length of the sequene

~x. Similarly, for any onretion, (�~z)h~yiQ, let its arity, j(�~z)h~yiQj, be the length

of the sequene ~y.

Let fv(A) be the sets of free variables of an agent A. Like proesses, both

abstrations and onretions are identi�ed up to onsistent renaming of bound

variables.

We extend the restrition and omposition operators to arbitrary agents, as

follows. For an abstration, (~x)P , we set:

(�y)(~x)P

�

= (~x)(�y)P

R j (~x)P

�

= (~x)(R j P)

where we assume that the bound variables ~x are disjoint from fyg [fv (R).

For a onretion, (�~z)h~yiQ, we set:

(�x)(�~z)h~yiQ

�

=

�

(�x; ~z)h~yiQ if x 2 f~yg

(�~z)h~yi(�x)Q otherwise

R j (�~z)h~yiQ

�

= (�~z)h~yi(R j Q)

assuming that x 62 f~zg and that f~zg \ fv(R) = ?.

We de�ne the dual omposition A j R symmetrially.

Next, we de�ne proesses obtained by ombining abstrations and onre-

tions of equal arity. If F is the abstration (~x)P where ~x = x

1

; : : : ; x

n

and C is

the onretion (�~z)h~yiQ where ~y = y

1

; : : : ; y

n

and f~zg \ fv (P) = ?, we de�ne

the interations F�C and C�F to be the proesses given by:

F�C

�

= (�~z)(Pfx

1

 y

1

g � � � fx

n

 y

n

g j Q)

C�F

�

= (�~z)(Q j Pfx

1

 y

1

g � � � fx

n

 y

n

g)

42

An ation is either a barb or the distinguished silent ation � . The labelled

transition system is written P

�

�! A, where P is a proess, � is an ation, and

A is an agent. We de�ne this relation indutively, by the following rules:

The Labelled Transition System:

(Trans In)

x(y

1

; : : : ; y

n

):P

x

�! (y

1

; : : : ; y

n

)P

(Trans Out)

xhy

1

; : : : ; y

n

i

x

�! (�)hy

1

; : : : ; y

n

i0

(Trans Inter 1) (with jF j = jCj)

P

x

�! F Q

x

�! C

P j Q

�

�! F�C

(Trans Inter 2) (with jF j = jCj)

P

x

�! C Q

x

�! F

P j Q

�

�! C�F

(Trans Par 1)

P

�

�! A

P j Q

�

�! A j Q

(Trans Par 2)

Q

�

�! A

P j Q

�

�! P j A

(Trans Res)

P

�

�! A � =2 fx; xg

(�x)P

�

�! (�x)A

(Trans Repl)

P j !P

�

�! A

!P

�

�! A

The following is a basi result that states that modulo strutural ongru-

ene, the redution relation exatly represents the silent ation of the transition

semantis. A proof of this property an be obtained by adapting the detailed

proof of an equivalent result found in the extended version of Abadi and Gordon

(1999) paper on the spi alulus.

Proposition A.1 P ! Q if and only if there is a proess R suh that P

�

�! R

and R � Q.

Lemma A.2 (�x)P ! Q if and only if there is a proess P

0

suh that P ! P

0

and Q � (�x)P

0

.

Proof Assume (�x)P ! Q. By Proposition A.1, there is a proess R suh

that (�x)P

�

�! R and R � Q. The judgment (�x)P

�

�! R must have been

derived by (Trans Res) with R = (�x)P

0

and P

�

�! P

0

. By Proposition A.1,

P ! P

0

. 2

A.4 Barbed Congruene

The notion of equivalene between untyped terms that we onsider in this pa-

per is barbed ongruene (Milner and Sangiorgi 1992), a bisimulation-based

behavioural equivalene that preserves a notion of observation, alled barbs.

A barb, �, is either a name x or a o-name x. We write P + � if there

exists P

0

suh that P !

�

P

0

and P

0

�, where the relation # is de�ned in the

following table.

43

Exhibition of a barb:

(Barb Input)

x(y

1

; : : : ; y

n

):P # x

(Barb Output)

xhy

1

; : : : ; y

n

i # x

(Barb Res)

P # � � =2 fx; xg

(�x)P # �

(Barb Par)

P # �

P j Q # �

(Barb �)

P � Q Q # �

P # �

The barbs exhibited by a proess, P , are related to the labelled transitions

that P an perform, that is, to the external ommuniations through whih a

proess may interat with an outer ontext. We an formalize this idea using

the following proposition.

Proposition A.3 P # � if and only if there is an agent A suh that P

�

�! A.

What follows is a series of de�nitions leading up to our de�nition of barbed

ongruene for the untyped �-alulus.

� For any relation on proesses S, let P �S� Q mean there are proesses

P

0

and Q

0

suh that P � P

0

, P

0

S Q

0

, and Q

0

� Q.

� A symmetri relation S is a barbed bisimulation if and only if P S Q

implies:

(1) If P # x then Q + x.

(2) If P ! P

0

then there is Q

0

suh that Q!

�

Q

0

and P

0

�S� Q

0

.

� A renaming, �, is a substitution fx

1

 x

0

1

g � � � fx

n

 x

0

n

g of names for names

where n � 0 and the names x

1

, . . . , x

n

are pairwise distint. Let dom(�) =

fx

1

; : : : ; x

n

g and ran(�) = fx

0

1

; : : : ; x

0

n

g. If x = x

j

for some j 2 1::n, let

�(x) = x

0

j

. Otherwise, if x =2 dom(�), let �(x) = x.

� Barbed bisimilarity,

�

�, is the relation on proesses suh that P

�

� Q if and

only if there is a barbed bisimulation S suh that P S Q.

� Barbed ongruene, �, is the relation on proesses suh that P � Q if and

only if for all proesses R and renamings � we have that P� j R

�

� Q� j R.

The following are basi properties of barbed ongruene for the untyped

�-alulus. As in the typed ase, barbed ongruene is a ongruene relation

preserved by renamings that inludes strutural ongruene.

Proposition A.4

(1) Barbed ongruene is re�exive, transitive, and symmetri.

(2) Barbed ongruene satis�es the ongruene properties.

44

� If P � Q then x(y

1

; : : : ; y

n

):P � x(y

1

; : : : ; y

n

):Q.

� If P � Q then P j R � Q j R.

� If P � Q then (�x)P � (�x)Q.

� If P � Q then !P � !Q.

(3) If P � Q then P� � Q� for any arbitrary substitution � from names to

names.

(4) If P � Q then P � Q.

(5) If x =2 fv (P) then (�x)P � P .

Next, we prove an non-interferene property for ommuniations over a re-

strited hannel. This property plays an important role in the soundness proof

of the equational theory developped in Setion 5.

Lemma A.5 (Non-Interferene) If k =2 fzg [fv (P), then:

(�k)(khzi j k(x):P) � Pfx zg

Proof Let S be the smallest re�exive and symmetri relation suh that:

(�k)(khzi j k(x):P) j R S (�k)(Pfx zg) j R

for all proesses P and R suh that k =2 fzg [fv (P). We show S is a barbed

bisimulation. Assume P

1

SP

2

. Then either P

1

equals P

2

, whih is a trivial ase,

or P

1

= (�k)(Pfx zg) j R and P

2

= (�k)(khzi j k(x):P) j R, or we have the

symmetri ase, P

1

= (�k)(khzi j k(x):P) j R and P

2

= (�k)(Pfx zg) j R.

Assume we are in the latter ase.

(1) Assume P

1

x. By Proposition A.3, it must be the ase that R # x.

Hene, P

2

x.

(2) Assume P

2

x. Sine P

1

! P

2

, we have P

2

+ x.

(3) Assume P

1

! Q

1

. By Proposition A.1 and inspetion of the possible

transitions, either Q

1

� P

2

, or there is a proess R

0

suh that R ! R

0

and Q

1

� P

1

j R

0

. In the former ase, sine S is re�exive, we get that

Q

1

�S� P

2

. In the latter ase, let Q

2

be the proess (�k)(Pfx zg) j R

0

.

Sine P

1

! Q

2

, we get that P

2

! Q

2

and Q

1

�S� Q

2

, as required.

(4) Assume P

2

! Q

2

. Sine P

1

! P

2

, we get that P

1

!

�

Q

1

and, by S

re�exive, we get that Q

1

�S� Q

1

, as required.

Sine S is a barbed bisimulation, we get that

(�k)(khzi j k(x):P) j R

�

� (�k)(Pfx zg) j R

for all proesses P and R suh that k =2 fzg [fv (P).

45

Let R be an arbitrary proess and � be an arbitrary renaming. We an

assume that the bound names of (�k)(Pfx zg) are not in dom(�) [ran(�).

Therefore:

(�k)(khzi j k(x):P)� j R � (�k)(kh�(z)i j k(x):(P�)) j R

�

� (�k)(P�fx �(z)g) j R

= (�k)(Pfx zg�) j R

Hene, (�k)(khzi j k(x):P) � (�k)(Pfx zg). By Proposition A.4 (5), we get

that (�k)(khzi j k(x):P) � Pfx zg. 2

We an prove the following algebrai laws by a similar method.

Lemma A.6 If k =2 fx; y

1

; : : : ; y

n

g then:

x(y

1

; : : : ; y

n

):(�k)P � (�k)x(y

1

; : : : ; y

n

):P

Lemma A.7 (Garbage Colletion) If k =2 fv (Q) then:

(1) (�k)(k(x

1

; : : : ; x

n

):P j Q) � Q

(2) (�k)(!k(x

1

; : : : ; x

n

):P j Q) � Q.

Assume p does not appear free in input position in P , Q, that is, p =2

inp(P) [inp(Q), let the operator def p(x; k) = P in Q denote the proess

(�p)(!p(x; k):P j Q). Suh proesses are found in enodings of the �-alulus

in the �-alulus and also in our enoding of the region alulus. For example,

erase([[�(x:A)b at �℄℄k) an be rewritten def p(x; k) = [[b℄℄k in khpi.

Repliated Resoures:

For all proesses P and Q, suh that x =2 inp(P) [inp(Q), we de�ne the

proess def x(y

1

; : : : ; y

n

) = P in Q to be (�x)(!x(y

1

; : : : ; y

n

):P j Q).

One of the algebrai laws valid in the loal �-alulus and not in the full �-

alulus is the repliation theorem of Milner that, intuitively, states that private

resoures an be safely dupliated, that is, for example:

def x(y

1

; : : : ; y

n

) = P in (Q j R) �

(def x(y

1

; : : : ; y

n

) = P in Q) j (def x(y

1

; : : : ; y

n

) = P in R)

We state below Proposition A.8, whih lists a more omplete set of repli-

ation laws. An equivalent of this property has been proved for the full �-

alulus (Milner 1999), where the equivalene used is strong ground ongru-

ene (Milner, Parrow, and Walker 1992). But this equality holds only with the

side ondition that the link to the resoure (the hannel x in this example)

may not be emitted, that is, does not appear in objet position of an output.

Only reently, Merro and Sangiorgi (Merro and Sangiorgi 1998) proved the same

equation, without the �rst side ondition, for barbed ongruene in the loal �-

alulus. The same laws have also been proved for a loal variant of the blue

alulus (Dal Zilio 1999).

46

Proposition A.8 (Repliation Laws)

(1) If p 62 fv(P) then def p(~y) = R in P � P

(2) def p(~y) = R in (P j Q) � (def p(~y) = R in P) j (def p(~y) = R in Q)

(3) If p 6= q and q 62 fv (R) then:

def p(~y) = R in (def q(~z) = S in P)

� def q(~z) = (def p(~y) = R in S) in (def p(~y) = R in P)

(4) If f~zg \ fv (p(~y):R) = ? then:

x(~z):(def p(~y) = R in P) � def p(~y) = R in x(~z):P

(5) def p(y

1

; : : : ; y

n

) = P in (phz

1

; : : : ; z

n

i j Q)

� def p(y

1

; : : : ; y

n

) = P in (Pfy

1

 z

1

g � � � fy

n

 z

n

g j Q)

We also prove another useful property of barbed ongruene.

Lemma A.9 If x =2 fv (k

0

(y):Q) then:

(�k

0

)(k(x):(P j k

0

(y):Q)) � (�k

0

)(k(x):P j k

0

(y):Q)

Proof To show that (�k

0

)(k(x):(P j k

0

(y):Q)) and (�k

0

)(k(x):P j k

0

(y):Q)

are barbed ongruent, we de�ne a barbed bisimulation, S, suh that:

(�~z)(�k

0

)(k(x):(P j k

0

(y):Q)) j R S (�~z)(�k

0

)(k(x):P j k

0

(y):Q) j R (1)

Let S be the smallest re�exive and symmetri relation suh that (1) holds for

all untyped proesses P;Q;R and sequenes of names ~z where x =2 fv(k

0

(y):Q).

We show that S is a barbed bisimulation. Assume P

1

S P

2

. Then either P

1

equals P

2

, whih is a trivial ase, or P

1

= (�~z)((�k

0

)(k(x):P j k

0

(y):Q) j R) and

P

2

= (�~z)((�k

0

)k(x):(P j k

0

(y):Q) j R), or we have the symmetri ase, P

1

=

(�~z)((�k

0

)k(x):(P j k

0

(y):Q) j R) and P

2

= (�~z)((�k

0

)(k(x):P j k

0

(y):Q) j R).

Assume we are in the latter ase.

(1) Suppose P

1

p. By Proposition A.3, R # p with p =2 f~zg. By (Barb Par)

and (Barb Res) several times, P

2

p, as required.

(2) Suppose P

2

p. By Proposition A.3, R # p with p =2 f~zg. By (Barb Par)

and (Barb Res) several times, P

1

p, as required.

(3) Suppose P

1

! S. By Proposition A.1 and inspetion of the possible

transitions, there is a sequene of names, ~w, suh that R � (� ~w)(khpi j R

0

)

and S � (�~z; ~w)((�k

0

)(Pfx pg j k

0

(y):Q) j R

0

). By (Red �) and (Red

Interat), P

2

! S. Sine S is re�exive, we get that S S S, as required.

47

(4) Suppose P

2

! S. By Proposition A.1 and inspetion of the possible

transitions, there is a sequene of names, ~w, suh that R � (� ~w)(khpi j R

0

)

and S � (�~z; ~w)((�k

0

)(Pfx pg j k

0

(y):Q) j R

0

). By (Red �) and (Red

Interat), and sine x =2 fv(k

0

(y):Q), we get that P

1

! S. Sine S is

re�exive, we get that S S S, as required.

Sine S is a barbed bisimulation, we get that (�k

0

)k(x):(P j k

0

(y):Q) j R

�

�

(�k

0

)(k(x):P j k

0

(y):Q) j R, for all untyped proesses P;Q;R suh that x =2

fv(k

0

(y):Q). Let � be an arbitrary substitution of names for names. We an

assume that (dom(�) [ran(�)) \ fk

0

; x; yg = ?, and therefore:

((�k

0

)k(x):(P j k

0

(y):Q))� j R � (�k

0

)k(x):(P� j k

0

(y):Q�) j R

((�k

0

)(k(x):P j k

0

(y):Q))� j R � (�k

0

)(k(x):P� j k

0

(y):Q�) j R

where x =2 fv(k

0

(y):Q�). Hene, (�k

0

)(k(x):(P j k

0

(y):Q)) � (�k

0

)(k(x):P j

k

0

(y):Q), as required. 2

B Proofs

In this appendix, we prove all the propositions stated without proof in the main

body of the paper. We split the appendix into several setions. Throughout,

with the exeption of Appendix B.7, we work with the extended aluli of Se-

tion 6. Proofs of all the orresponding theorems for the unextended aluli may

be obtained by simplifying the proofs for the extended aluli.

(1) In Appendix B.1 we prove Theorem B.13, the subjet redution prop-

erty for the extended region alulus, and Proposition B.14, the property

that well-typed on�gurations do not lead to runtime errors. These fats

orrespond to Theorem 2.1 and Proposition 2.2, respetively, for the un-

extended region alulus.

(2) In Appendix B.2, we prove Proposition B.31, the subjet redution prop-

erty for our extended �-alulus, and Proposition B.32, e�et soundness,

the property that the group of any barb of a proess is inluded in its

e�et. These fats orrespond to Proposition 3.2 and Proposition 3.3,

respetively, for the unextended �-alulus.

(3) In Appendix B.3, we prove Proposition B.38, whih asserts that the re-

dutions of a typed proess aording to the typed operational semantis

are equivalent to the redutions of the untyped erasure of the proess a-

ording to the untyped operational semantis. This fat orresponds to

Proposition 3.1 for the unextended �-alulus.

(4) In Appendix B.4, we prove Proposition B.46, that barbed ongruene

for the extended �-alulus satis�es the ongruene properties. This fat

orresponds to Proposition 3.4 (2), for the unextended �-alulus.

48

(5) In Appendix B.5, we prove Theorem B.53, the garbage olletion priniple

for our extended �-alulus. This fat orresponds to Theorem 4.3 for the

unextended �-alulus.

(6) In Appendix B.6 we prove various properties of the enoding of the region

alulus in the �-alulus.

Appendix B.6.1 proves Theorem B.59, whih asserts that the enoding

preserves the stati semantis.

Appendix B.6.2 introdues an auxiliary small-step semantis for the region

alulus.

Appendix B.6.3 exploits the auxiliary small-step semantis in order to

prove Theorem B.67, whih asserts that the enoding preserves the dy-

nami semantis.

Appendix B.6.4 proves Theorem B.68, whih asserts that defunt regions

make no di�erene to the behaviour of a program.

The three theorems proved in this appendix orrespond to Theorem 4.1,

Theorem 4.2, and Theorem 4.4, respetively, for the unextended aluli.

(7) In Appendix B.7, we prove the auxiliary lemma, Lemma 5.1, and the

soundness of the equational theory for the unextended region alulus,

Theorem 5.2, as stated in Setion 5.

B.1 Subjet Redution for the �-Calulus

In this setion, we prove Theorem B.13, that in the extended region alulus

redution preserves types. We also prove Proposition B.14, that well-typed

values are alloated in lived regions and that well-typed funtion appliations

invoke losures stored in lived regions. These two properties ombined imply

that a well-typed expressions annot yield a runtime errors.

The proof of these properties use a series of simple intermediate results,

Lemmas B.1 to B.12, that are lassi in proof of subjet redution. For example,

Lemma B.3, that is an example of so-alled exhange lemma, Lemma B.6, that

is an example of weakening lemma, or Lemmas B.11 and B.12, that are examples

of substitutions lemmas. For the sake of brevity, we omit the proofs of these

intermediate properties.

In the type and e�et system introdued in Setions 2.3 and 6.1, eah judg-

ment has the form E ` J , where E is a typing judgment and J is an assertion

that is either �, for well-formed environments, or a type A, for well-formed types,

or a :

e

A, for good expressions a with type A and e�et e. In the rest of this

paper, we use the symbol J to denote an assertion.

Lemma B.1 If E ` J then E ` �.

Lemma B.2 If E;E

0

` J then dom(E) \ dom(E

0

) = ? and E ` �.

Lemma B.3 If E; x:A; �;E

0

` J then E; �; x:A;E

0

` J .

49

Lemma B.4 If E;E

0

` J , x =2 dom(E;E

0

)[L and E ` A then E; x:A;E

0

` J .

Lemma B.5 If E;E

0

` J and � =2 dom(E;E

0

) then E; �;E

0

` J .

Lemma B.6 If E ` J and E;E

0

` � then E;E

0

` J .

Lemma B.7 Let (p

i

:A

i

)

i21::n

be the environment ptr(H). If H j= � then

dom(H) ` A

i

for eah i 2 1::n.

Lemma B.8 If H j= � and H � H

0

and H

0

j= � then H +H

0

j= �.

Lemma B.9 If env(H) ` J and H � H

0

and H

0

j= � then env(H +H

0

) ` J .

Lemma B.10 If E ` x :

e

A and E ` x :

e

0

B then e = e

0

= ? and A = B.

Lemma B.11 If E; x:A;E

0

` J and E ` p :

?

A then E;E

0

` J fx pg.

Lemma B.12 If E; �;E

0

` J and �

0

is a region de�ned in dom(E) then

E;E

0

f� �

0

g ` J f� �

0

g.

The following is the subjet redution theorem for our extended region al-

ulus. A proof of Theorem 2.1, subjet redution for the unextended region

alulus, an be obtained by simplifying the following proof.

Theorem B.13 If H j= S � (a; h) : A and S � (a; h) + (p

0

; h

0

) there is H

0

suh

that H � H

0

and H +H

0

j= S � (p

0

; h

0

) : A.

Proof By indution on the derivation of S � (a; h) + (p

0

; h

0

).

(Eval Var) Then S � (p; h) + (p; h), and we have H j= S � (p; h) : A by assump-

tion. Take H

0

= ? and we trivially have H � H

0

and H+H

0

j= S � (p; h) :

A.

(Eval Allo) Then S � (v at �; h) + (p; h+ (� 7! (h(�) + (p 7! v))) with � 2 S

and p =2 dom

2

(h).

By (Con�g Good), H j= S �(v at �; h) : A means that env(H) ` v at � :

e

A

for some e � S, and that H j= h and S � dom(H). Sine only (Exp Nil),

(Exp Cons) or (Exp Fun) an derive env(H) ` v at � :

e

A, we have

A = V at �, for some V , and e = f�g.

Let H

0

be the heap typing � 7! (p:A). Sine p =2 dom

2

(H) = dom

2

(h),

we have env(H + H

0

) ` �. Hene, env(H + H

0

) ` p :

?

A. Moreover

S � dom(H +H

0

).

By (Heap Good), H j= h and � 2 S imply that env(H) ` h(�) at � : H(�).

Therefore, env(H +H

0

) ` h(�) at �+(p 7! v at �) : H(�)+ (p:A). Hene,

H +H

0

j= h+ � 7! (h(�) + p 7! v).

We have env(H +H

0

) ` p at � : A and S � dom(H +H

0

) and H +H

0

j=

h+� 7! (h(�)+p 7! v). Hene, by (Con�g Good), H+H

0

j= S � (p; h) : A,

as required.

50

(Eval Appl) Then S � (p[�

0

1

; : : : ; �

0

n

℄(q); h) + (p

0

; h

0

) derives from S � (bff pg

fx qg�; h) + (p

0

; h

0

) where � 2 S and h(�)(p) is the funtion �(f :F)�[�

1

;

: : : ; �

n

℄(x)b and � = f�

1

 �

0

1

g � � � f�

n

 �

0

n

g and F = 8[�

1

; : : : ; �

n

℄(B

1

e

0

!

B

2

) at �.

By (Con�g Good), H j= S � (p[�

0

1

; : : : ; �

0

n

℄(q); h) : A means that env(H) `

p[�

0

1

; : : : ; �

0

n

℄(q) :

e

A for some e � S, and that H j= h and S � dom(H).

Only (Exp Appl) an derive env(H) ` p[�

0

1

; : : : ; �

0

n

℄(q) :

e

A and so we

have env(H) ` p :

?

F and env(H) ` q :

?

B

1

� and A = B

2

�, where

e = f�g[e

0

� and f�

0

1

; : : : ; �

0

n

g � dom(H). Sine H j= h and � 2 dom(H),

we have that env(H) ` h(�) at � : H(�), and in partiular, env(H) `

�(f :F)�[�

1

; : : : ; �

n

℄(x)b at � :

f�g

F .

Only (Exp Fun) an derive env(H) ` �(f :F)�[�

1

; : : : ; �

n

℄(x)b at � :

f�g

F , and so env(H); f :F; �

1

; : : : ; �

n

; x:B

1

` b :

e

00

B

2

where e

00

� e

0

�

dom(E; �

1

; : : : ; �

n

). By Lemma B.11 and B.12, sine env(H) ` q :

?

B

1

�

and env(H) ` p :

?

F , we get that env(H) ` bff pgfx qg� :

e

00

�

B

2

�.

By (Con�g Good), H j= S � (bff pgfx qg�; h) : A.

By indution hypothesis, sine S � (bff pgfx qg�; h) + (p

0

; h

0

), we get

that there is H

0

with H � H

0

and H +H

0

j= S � (p

0

; h

0

) : A, as required.

(Eval Let) Then S �(let x = b in a; h) + (p

00

; h

00

) derives from S �(b; h) + (p

0

; h

0

)

and S � (afx p

0

g; h

0

) + (p

00

; h

00

).

By (Con�g Good), H j= S � (let x = b in a; h) : A means that env(H) `

let x = b in a :

e

A for some e � S, and that H j= h and S � dom(H).

Only (Exp Let) an derive env(H) ` let x = b in a :

e

A and so we have

env(H) ` b :

e

b

B and env(H); x:B ` a :

e

a

A for some e

b

, e

a

and B, suh

that e = e

a

[e

b

. By (Con�g Good), env(H) ` b :

e

b

B and e

b

� S and

H j= h and S � dom(H) imply that H j= S � (b; h) : B.

By indution hypothesis, sine S � (b; h) + (p

0

; h

0

), we get that there is H

0

with H � H

0

and H+H

0

j= S � (p

0

; h

0

) : B. By (Con�g Good), this means

that env(H +H

0

) ` p

0

:

e

0

B for some e

0

� S, and that H +H

0

j= h

0

and

S � dom(H+H

0

). Only (Exp x) or (Exp l) an derive this and so it must

be that e

0

= ?.

By Lemma B.9, sine env(H); x:B ` a :

e

a

A, we get that env(H +

H

0

); x:B ` a :

e

a

A. By Lemma B.11, sine env(H + H

0

) ` p

0

:

?

B,

we get that env(H +H

0

) ` afx p

0

g :

e

a

A. Therefore, by (Con�g Good),

env(H +H

0

) j= S � (afx p

0

g; h

0

) : A.

By indution hypothesis, sine S � (afx p

0

g; h

0

) + (p

00

; h

00

), we get that

there is H

00

suh that H+H

0

� H

00

and (H +H

0

)+H

00

j= S � (p

00

; h

00

) : A.

To omplete the ase, note that H � H

0

+ H

00

and H + (H

0

+ H

00

) j=

S � (p

00

; h

00

) : A.

(Eval Letregion) Then S � (letregion � in a; h) + (p

0

; h

0

) derives from S [f�g �

(a; h+ � 7! ?) + (p

0

; h

0

) with � =2 dom(h).

51

By (Con�g Good), H j= S � (letregion � in a; h) : A means that env(H) `

letregion � in a :

e

A and H j= h for some e � S.

Only (Exp Letregion) an derive this and so we have env(H); � ` a :

e

0

A

with env(H) ` A and e = e

0

� f�g. In partiular � =2 dom(H).

Let H

0

be the heap typing (� 7! ?). We have H � H

0

and env(H+H

0

) =

env(H); �. By (Con�g Good), env(H +H

0

) ` a :

e

0

A, and e

0

� S [f�g

and S [f�g � dom(H + H

0

) and H + H

0

j= h + � 7! ? imply that

H +H

0

j= (S [f�g) � (a; h+ � 7! ?) : A.

By indution hypothesis, sine (S [f�g) � (a; h + � 7! ?) + (p

0

; h

0

), we

get that there is H

00

with H + H

0

� H

00

and (H + H

0

) + H

00

j= (S [

f�g) � (p

0

; h

0

) : A. To omplete the ase, note that H � H

0

+ H

00

and

H + (H

0

+H

00

) j= S � (p

0

; h

0

) : A.

(Eval Case 1) Then S � (ase p of nil) b

1

j (y

1

:: y

2

)) b

2

; h) + (p

0

; h

0

). This

derives from S � (b

1

; h) + (p

0

; h

0

) with � 2 S and h(�)(p) = nil .

By (Con�g Good), H j= S � (ase p of nil) b

1

j (y

1

:: y

2

)) b

2

; h) : A

means that env(H) ` ase p of nil) b

1

j (y

1

:: y

2

)) b

2

:

e

A and H j= h

for some e � S.

Only (Exp Case) an derive this and so we have env(H) ` p :

?

[B℄ at �

and env(H) ` b

1

:

e

1

A and env(H); y

1

:B; y

2

:[B℄ at � ` b

2

:

e

2

A.

By indution hypothesis, sine S � (b

1

; h) + (p

0

; h

0

), we get that there is H

0

with H � H

0

and H +H

0

j= S � (p

0

; h

0

) : A, as required.

(Eval Case 2) Then S � (ase p of nil) b

1

j (y

1

:: y

2

)) b

2

; h) + (p

0

; h

0

). This

derives from S �(b

2

fy

1

 q

1

gfy

2

 q

2

g; h) + (p

0

; h

0

) with � 2 S and h(�)(p) =

q

1

:: q

2

.

By (Con�g Good), H j= S � (ase p of nil) b

1

j (y

1

:: y

2

)) b

2

; h) : A

means that env(H) ` ase p of nil) b

1

j (y

1

:: y

2

)) b

2

:

e

A and H j= h

for some e � S.

Only (Exp Case) an derive this and so we have env(H) ` p :

?

[B℄ at �

and env(H) ` b

1

:

e

1

A and env(H); y

1

:B; y

2

:[B℄ at � ` b

2

:

e

2

A.

Therefore, by hypothesis, h(�)(p) = q

1

:: q

2

and env(H) ` p :

?

[B℄ at �.

Hene, by (Con�g Good), env(H) ` (q

1

:: q

2

) at � :

f�g

[B℄ at �. Only

(Exp Cons) an derive this and so we have E ` q

1

:

?

B and E ` q

2

:

?

[B℄ at �.

By Lemma B.11, sine env(H); y

1

:B; y

2

:[B℄ at � ` b

2

:

e

2

A, we get that

env(H) ` b

2

fy

1

 q

1

gfy

2

 q

2

g :

e

2

A.

By indution hypothesis, sine S �(b

2

fy

1

 q

1

gfy

2

 q

2

g; h) + (p

0

; h

0

), we get

that there is H

0

with H � H

0

and H +H

0

j= S � (p

0

; h

0

) : A, as required.2

Next, we show that well-typed on�gurations avoid the runtime errors of

alloation or invoation of a losure in a defunt region. A proof of Propo-

sition 2.2, an equivalent property for the unextended region alulus, an be

obtained by simplifying the following proof.

52

Proposition B.14

(1) If H j= S � (v at �; h) : A then � 2 S.

(2) If H j= S � (p[�

0

1

; : : : ; �

0

n

℄(q); h) : A then there are � and v suh that � 2 S,

h(�)(p) = v, and v is a funtion of the form �(f :F)�[�

1

; : : : ; �

n

℄(x)b,

where F is the type (8[�

1

; : : : ; �

n

℄B

e

! A) at � and there is e

0

suh that

e

0

� e � dom(E; �

1

; : : : ; �

n

) and env(H); f :F; �

1

; : : : ; �

n

; x:B ` b :

e

0

A.

Proof For part (1), assume H j= S � (v at �; h) : A. By (Con�g Good) we get

that env(H) ` (v at �) :

e

A for some e�et e, with e [fg(A) � S. Only (Exp

Nil), (Exp Cons) or (Exp Fun) an derive this and so we have e = f�g. Hene,

� 2 S.

For part (2), assume H j= S � (p[�

0

1

; : : : ; �

0

n

℄(q); h) : A. By (Con�g Good)

we get that H j= h and that env(H) ` p[�

0

1

; : : : ; �

0

n

℄(q) :

e

A for some e�ets e,

with e [fg(A) � S. Only (Exp Appl) an derive this and so we have env(H) `

p :

?

F for some region �, with F = (8[�

1

; : : : ; �

n

℄(B

e

0

! A)) at � and e =

f�g [e

0

f�

1

 �

0

1

g � � � f�

n

 �

0

n

g. Only (Exp x) an derive env(H) ` p :

?

F and

so there is a region �

0

suh that H(�

0

)(p) = F . By (Heap Good), �

0

= �

and � 2 dom(H) and there is a value v suh that H(�)(p) = v. By (Region

Good), env(H) ` v at � :

f�g

F . Only (Exp Fun) an derive this. Hene,

v is a funtion of the form �(f :F)�[�

1

; : : : ; �

n

℄(x)b and there is e

00

suh that

e

00

� e

0

� dom(E; �

1

; : : : ; �

n

) and env(H); f :F; �

1

; : : : ; �

n

; x:B ` b :

e

00

A. 2

B.2 Subjet Redution for the �-Calulus

We show that redution in the �-alulus preserves types and e�ets. Like in

the previous setion on subjet redution for the �-alulus, we use intermediate

results whose proofs are omitted for the sake of brevity. We will also use the

symbol J to denote an assertion, that is either �, a type T , a hannel typing

x : T , or a proess typing P : H.

Lemma B.15 If E ` P : H then H � dom(E).

Lemma B.16 If E ` J then E ` �.

Lemma B.17 If E;E

0

` J then dom(E) \ dom(E

0

) = ? and E ` �.

Lemma B.18 If E; x:T;E

0

` J then E ` T .

Lemma B.19 If E ` J then fg(J) � dom(E).

Lemma B.20 If E ` x : T

1

and E ` x : T

2

, where T

1

and T

2

are hannel types

of the form G(H

1

; : : : ; H

m

)[T

0

1

; : : : ; T

0

n

℄nH, then T

1

= T

2

.

Lemma B.21 If E; x

1

:T

1

; x

2

:T

2

; E

0

` J then E; x

2

:T

2

; x

1

:T

1

; E

0

` J .

Lemma B.22 If E;G;H;E

0

` J then E;H;G;E

0

` J .

53

Lemma B.23 If E;G; x:T;E

0

` J and G =2 fg(T) then E; x:T;G;E

0

` J .

Lemma B.24 If E; x:T;G;E

0

` J then E;G; x:T;E

0

` J .

Lemma B.25 If E; x:T;E

0

` J and x =2 fn(J) then E;E

0

` J .

Lemma B.26 If E;G;E

0

` J and G =2 fg(J) [dom(E

0

) then E;E

0

` J .

Lemma B.27 If E ` J and E;E

0

` � then E;E

0

` J .

Lemma B.28 If E; x:T;E

0

` J and E ` y : T then E;E

0

` J fx yg.

Lemma B.29 If E;G;E

0

` J and H is a group de�ned in dom(E) then

E;E

0

fG Hg ` J fG Hg.

Lemma B.30 If E ` P : H and P � Q then E ` Q : H.

Proof The lemma follows by showing that P � Q implies:

(1) If E ` P : H then E ` Q : H.

(2) If E ` Q : H then E ` P : H.

We proeed by indution on the derivation of P � Q.

(Strut Re�) Trivial.

(Strut Symm) Then Q � P . For (1), assume E ` P : H. By indution

hypothesis (2), Q � P implies that E ` Q : H. Part (2) is symmetri.

(Strut Trans) Then there is R suh that P � R and R � Q. For (1), assume

E ` P : H. By indution hypothesis (1), E ` R : H. Again, by indution

hypothesis (1), E ` Q : H. Part (2) is symmetri.

(Strut Res) Then P = (�x:T)P

0

and Q = (�x:T)Q

0

for some P

0

; Q

0

, with

P

0

� Q

0

. For (1), assume E ` P : H. This must have been derived

from (Pro Res), with E; x:T ` P

0

: H. By indution hypothesis (1),

E; x:T ` Q

0

: H. By (Pro Res), E ` Q : H. Part (2) is symmetri.

(Strut GRes) Then P = (�G)P

0

and Q = (�G)Q

0

for some P

0

; Q

0

, with

P

0

� Q

0

. For (1), assume E ` P : H. This must have been derived from

(Pro GRes), with E;G ` P

0

: G where H = G � fGg. By indution

hypothesis (1), E;G ` Q

0

: G. By (Pro GRes), E ` Q : H. Part (2) is

symmetri.

(Strut Par) Then P = P

0

j R and Q = Q

0

j R for some P

0

; Q

0

; R, with

P

0

� Q

0

. For (1), assume E ` P : H. This must have been derived from

(Pro Par), with E ` P

0

: H

0

and E ` R : H

00

, where H = H

0

[H

00

. By

indution hypothesis (1), E ` Q

0

: H

0

. By (Pro Par), E ` Q : H. Part

(2) is symmetri.

54

(Strut Repl) Then P = !P

0

and Q = !Q

0

for some P

0

; Q

0

, with P

0

� Q

0

. For

(1), assume E ` P : H. This must have been derived from (Pro Repl),

with E ` P

0

: H. By indution hypothesis (1), E ` Q

0

: H. By (Pro

Repl), E ` Q : H. Part (2) is symmetri.

(Strut Input) Then P = x(G

1

; : : : ; G

m

; y

1

:T

1

; : : : ; y

n

:T

n

):P

0

and Q = x(G

1

;

: : : ; G

m

; y

1

:T

1

; : : : ; y

n

:T

n

):Q

0

for some P

0

; Q

0

, with P

0

� Q

0

. For (1), as-

sume E ` P : H. This must have been derived from (Pro Input), with:

E ` x : G(G

1

; : : : ; G

m

)[T

1

; : : : ; T

n

℄nH

0

E;G

1

; : : : ; G

m

; y

1

:T

1

; : : : ; y

n

:T

n

` P

0

: G

where H = fGg [(G � H

0

) and (G � H

0

) \ fG

1

; : : : ; G

m

g = ?. By

indution hypothesis (1), E;G

1

; : : : ; G

m

; y

1

:T

1

; : : : ; y

n

:T

n

` Q

0

: G. By

(Pro Input), E ` Q : H. Part (2) is symmetri.

(Strut Par Zero) Then P = Q j 0.

For (1), assume E ` P : H. This must have been derived from (Pro Par),

with E ` Q : H and E ` 0 : ?. Hene, E ` Q : H.

For (2), assume E ` Q : H. By Lemma B.16, E ` �. By (Pro Zero),

E ` 0 : ?. By (Pro Par), E ` Q j 0 : H, that is, E ` P : H.

(Strut Par Comm) Then P = P

0

j P

00

and Q = P

00

j P

0

for some P

0

; P

00

.

For (1), assume E ` P

0

j P

00

: H. This must have been derived from (Pro

Par), with E ` P

0

: H

0

and E ` P

00

: H

00

where H = H

0

[H

00

. By (Pro

Par), E ` P

00

j P

0

: H. Hene, E ` Q : H. Part (2) is symmetri.

(Strut Par Asso) Then P = (P

0

j P

00

) j P

000

and Q = P

0

j (P

00

j P

000

) for

some P

0

; P

00

; P

000

. For (1), assume E ` (P

0

j P

00

) j P

000

: H. This must have

been derived from (Pro Par), with E ` (P

0

j P

00

) : H

1

and E ` P

000

: H

2

,

where (H

1

[H

2

) =H, followed by a number of subsumption steps implying

E ` (P

0

j P

00

) : H

3

, where H

3

�H

1

by transitivity, and followed by (Pro

Par), with E ` P

0

: H

4

, and E ` P

00

: H

5

where (H

4

[H

5

) = H

3

. By

(Pro Par) twie, E ` P

0

j (P

00

j P

000

) : H

4

[(H

5

[H

2

). By (Pro Subsum)

and Lemma B.15, and sineH

4

[(H

5

[H

2

) = (H

3

[H

2

) � (H

1

[H

2

) =H,

we get that E ` Q : H. Part (2) is symmetri.

(Strut Repl Par) Then P = !R and Q = R j !R for some R.

For (1), assume E ` !R : H. This must have been derived from (Pro

Repl), with E ` R : H. By (Pro Par), E ` R j !R : H [H. Hene,

E ` Q : H.

For (2), assume E ` R j !R : H. This must have been derived from (Pro

Par), with E ` R : H

0

and E ` !R : H

00

where H = H

0

[H

00

. Hene,

H

00

� H. By (Pro Subsum) and Lemma B.15, E ` !R : H. Hene,

E ` P : H.

55

(Strut Res Res) Then P = (�x

1

:T

1

)(�x

2

:T

2

)R and Q = (�x

2

:T

2

)(�x

1

:T

1

)R

for some R, with x

1

6= x

2

. For (1), assume E ` (�x

1

:T

1

)(�x

2

:T

2

)R : H.

This must have been derived from (Pro Res), with E; x

1

:T

1

` (�x

2

:T

2

)R :

H, followed by a number of subsumption steps implying E ` (�x

2

:T

2

)R :

H

0

, where H

0

� H by transitivity, and followed by (Pro Res), with

E; x

1

:T

1

; x

2

:T

2

` R : H

0

. By Lemma B.21, E; x

2

:T

2

; x

1

:T

1

` R : H

0

. By

(Pro Res) twie, (Pro Subsum) and Lemma B.15 we have E ` (�x

2

:T

2

)

(�x

1

:T

1

)R : H. Hene, E ` Q : H. Part (2) is symmetri.

(Strut Res Par) Then P = (�x:T)(P

0

j P

00

) and Q = P

0

j (�x:T)P

00

for

some P

0

; P

00

, with x =2 fn(P

0

).

For (1), assume E ` P : H. This must have been derived from (Pro

Res) with E; x:T ` P

0

j P

00

: H, followed by a number of subsumption

steps implying E; x:T ` P

0

j P

00

: G, where G � H by transitivity, and

followed by (Pro Par), with E; x:T ` P

0

: G

0

and E; x:T ` P

00

: G

00

,

where G = G

0

[G

00

. By Lemma B.25, sine x =2 fn(P

0

), we have E `

P

0

: G

0

. By (Pro Res), E ` (�x:T)P

00

: G

00

. By (Pro Par) we have

E ` P

0

j (�x:T)P

00

: G. By (Pro Subsum) and Lemma B.15, we get that

E ` Q : H.

For (2), assume E ` Q : H. This must have been derived from (Pro Par),

with E ` P

0

: H

0

, E ` (�x:T)P

00

: H

00

and H = H

0

[H

00

, followed by a

number of subsumption steps implying E ` (�x:T)P

00

: G, whereG � H

00

by transitivity, and followed by (Pro Res), with E; x:T ` P

00

: G. By

Lemma B.17 and B.18 we have x =2 dom(E) and E ` T . By Lemma B.27,

E; x:T ` P

0

: H

0

. By (Pro Par), E; x:T ` P

0

j P

00

: (H

0

[G) where

(H

0

[G) � H. By (Pro Res), (Pro Subsum) and Lemma B.15, we get

that E ` (�x:T)(P

0

j P

00

) : H. Hene, E ` P : H.

(Strut GRes GRes) Then P = (�G

1

)(�G

2

)R and Q = (�G

2

)(�G

1

)R for

some R. We an onsider that G

1

6= G

2

.

For (1), assume E ` (�G

1

)(�G

2

)R : H. This must have been derived from

(Pro GRes), with E;G

1

` (�G

2

)R : H

0

and H = H

0

� fG

1

g, followed

by a number of subsumption steps implying E;G

1

` (�G

2

)R : H

00

, where

H

00

� H

0

by transitivity, and followed by (Pro GRes), with E;G

1

; G

2

`

R : H

000

and H

00

= H

000

� fG

2

g. By Lemma B.22, E;G

2

; G

1

` R : H

000

,

where H

000

� fG

1

; G

2

g � H. By (Pro Subsum) and (Pro GRes) twie

we have E ` (�G

2

)(�G

1

)R : H. Hene, E ` Q : H. Part (2) is symmetri.

(Strut GRes Res) Then P = (�G)(�x:T)R and Q = (�x:T)(�G)R for some

R, with G =2 fg(T) For (1), assume E ` (�G)(�x:T)R : H. This must

have been derived from (Pro GRes), with E;G ` (�x:T)R : H

0

and

H = H

0

� fGg, followed by a number of subsumption steps implying

E;G ` (�x:T)R : H

00

, where H

00

� H

0

by transitivity, and followed by

(Pro Res), with E;G; x:T ` R : H

00

. By Lemma B.23, E; x:T;G ` R :

H

00

. By (Pro GRes), (Pro Res), (Pro Subsum) and Lemma B.15, we

get that E ` Q : H. Part (2) is symmetri.

56

(Strut GRes Par) Then P = (�G)(P

0

j P

00

) and Q = P

0

j (�G)P

00

for some

P

0

; P

00

, with G =2 fg(P

0

).

For (1), assume E ` P : H. This must have been derived from (Pro

GRes) with E;G ` P

0

j P

00

: H

0

and H = H

0

� fGg, followed by a

number of subsumption steps implying E;G ` P

0

j P

00

: G, whereG � H

0

by transitivity, and followed by (Pro Par) with E;G ` P

0

: G

0

and

E;G ` P

00

: G

00

, where G = G

0

[G

00

. By Lemma B.26, sine x =2 fg(P

0

),

we have E ` P

0

: G

0

. By (Pro GRes), E ` (�G)P

00

: G

00

� fGg. By

(Pro Par) we have E ` P

0

j (�G)P

00

: G� fGg. By (Pro Subsum) and

Lemma B.15, we get that E ` Q : H.

For (2), assume E ` Q : H. This must have been derived from (Pro Par),

with E ` P

0

: H

0

, E ` (�G)P

00

: H

00

and H = H

0

[H

00

, followed by a

number of subsumption steps implying E ` (�G)P

00

: G, where G � H

00

by transitivity, and followed by (Pro GRes), with E;G ` P

00

: G

0

, where

G = G

0

�fGg. By Lemma B.17 we have G =2 dom(E) and by Lemma B.19

G =2 H

0

. By Lemma B.27, E;G ` P

0

: H

0

. By (Pro Par), E;G ` P

0

j

P

00

: (H

0

[G

0

). By (Pro GRes), (Pro Subsum) and Lemma B.15, we

get that E ` (�G)(P

0

j P

00

) : H. Hene, E ` P : H. 2

The following is the subjet redution property for our extended �-alulus.

A proof of Proposition 3.2, subjet redution for the unextended �-alulus, an

be obtained by simplifying the following proof.

Proposition B.31 If E ` P : H and P ! Q then E ` Q : H.

Proof By indution on the derivation of P ! Q.

(Red Interat) Then P = xhG

0

1

; : : : ; G

0

m

; y

0

1

; : : : ; y

0

n

i j x(G

1

; . . . , G

m

; y

1

:T

1

;

. . . , y

n

:T

n

):P

0

and Q = P

0

�fy

1

 y

0

1

g � � � fy

n

 y

0

n

g where � is the substi-

tution fG

1

 G

0

1

g � � � fG

m

 G

0

m

g.

Assume E ` P : H. By Lemma B.15, H � dom(E). The judgment

E ` P : H must have been derived from (Pro Par), with E ` xhG

0

1

; . . . ,

G

0

m

; y

0

1

; . . . , y

0

n

i : H

1

, and E ` x(G

1

; : : : ; G

m

; y

1

:T

1

; : : : ; y

n

:T

n

):P

0

: H

2

where H =H

1

[H

2

. The former must have been derived from a number

of subsumption steps implying E ` xhG

0

1

; : : : ; G

0

m

; y

0

1

; : : : ; y

0

n

i : H

3

, where

H

3

� H

1

, followed by (Pro Output), with E ` y

0

1

: T

1

�; � � � ; E ` y

0

n

: T

n

�,

and E ` x : G(G

1

; : : : ; G

m

)[T

1

; : : : ; T

n

℄nG, and:

fGg [G� = H

3

(2)

By Lemma B.20, the latter must have been derived from (Pro Input),

with E;G

1

; : : : ; G

m

; y

1

:T

1

, . . . , y

n

:T

n

` P

0

: H

4

and (H

4

�G)\ fG

1

; : : : ;

G

m

g = ?, followed by a number of subsumption steps implying fGg [

(H

4

�G) � H

2

� dom(E) by transitivity. In partiular, we have that:

(H

4

�G)� = (H

4

�G) � H

2

(3)

57

By Lemma B.19, sine E ` xhG

0

1

; . . . , G

0

m

; y

0

1

; . . . , y

0

n

i, we have that

fG

0

1

; : : : ; G

0

m

g � dom(E). Then, by Lemma B.29 several times, it follows

that E; y

1

:T

1

�; : : : ; y

n

:T

n

� ` P

0

� : H

4

�. By Lemma B.28, E ` P

0

�

fy

1

 y

0

1

g � � � fy

n

 y

0

n

g : H

4

�.

By de�nition of set di�erene, H

4

� = (H

4

� G)� [G�, and therefore

H

4

� = (fGg [(H

4

�G)�) [(fGg [G)�. Using the di�erent inlusions

obtained in this item, and espeially equations 2 and 3, we get thatH

4

� �

(fGg[(H

4

�G)�)[(fGg[G�) � (H

2

[H

3

) � (H

2

[H

1

) = H � dom(E).

Then E ` Q : H.

(Red Par) Then P = P

0

j R and Q = Q

0

j R for some P

0

; Q

0

; R suh that

P

0

! Q

0

. Assume E ` P : H. This must have been derived from (Pro

Par), with E ` P

0

: H

0

and E ` R : H

00

whereH = H

0

[H

00

. By indution

hypothesis E ` Q

0

: H

0

. By (Pro Par), E ` Q

0

j R : H

0

[H

00

. Hene,

E ` Q : H.

(Red GRes) Then P = (�G)P

0

and Q = (�G)Q

0

for some P

0

; Q

0

suh that

P

0

! Q

0

. Assume E ` P : H. This must have been derived from (Pro

GRes), with E;G ` P

0

: H

0

and H = H

0

�fGg. By indution hypothesis,

E;G ` Q

0

: H

0

. By (Pro GRes), E ` Q : H.

(Red Res) Then P = (�x:T)P

0

and Q = (�x:T)Q

0

for some P

0

; Q

0

suh that

P

0

! Q

0

. Assume E ` P : H. This must have been derived from (Pro

Res), with E; x:T ` P

0

: H. By indution hypothesis, E; x:T ` Q

0

: H.

By (Pro Res), E ` Q : H.

(Red �) Then P � P

0

and Q � Q

0

for some P

0

; Q

0

suh that P

0

! Q

0

. Assume

E ` P : H. By Lemma B.30, E ` P

0

: H. By indution hypothesis,

E ` Q

0

: H. By Lemma B.30, E ` Q : H. 2

Next, we prove e�et soundness for our extended �-alulus, the property

that the group of any barb of a proess is inluded in its e�et. This fat

orrespond to Proposition 3.3 for the unextended �-alulus.

Proposition B.32 If E ` P : H and P # � with � 2 fx; xg then there is a type

G(G

1

; : : : ; G

m

)[T

1

; : : : ; T

n

℄nG suh that E ` x : G(G

1

; : : : ; G

m

)[T

1

; : : : ; T

n

℄nG

and G 2 H.

Proof By indution on the derivation of P # �.

(Barb Input) Then P = x(G

1

; : : : ; G

m

; y

1

:T

1

; : : : ; y

n

:T

n

):P

0

and � = x. As-

sume E ` P : H. This must have been derived from (Pro Input) with

E ` P : H

1

and E ` x : G(G

1

; : : : ; G

m

)[T

1

; : : : ; T

n

℄nG and G 2 H

1

followed by a number of subsumption steps implying H

1

� H. Hene

G 2 H.

(Barb Output) Then P = xhG

0

1

; : : : ; G

0

m

; y

0

1

; : : : ; y

0

n

i and � = x. Assume E `

P : H. This must have been derived from (Pro Output) with E ` P : H

1

58

and E ` x : G(G

1

; : : : ; G

m

)[T

1

; : : : ; T

n

℄nG and H

1

= fGg [G�, where

� is the substitution fG

1

 G

0

1

g � � � fG

m

 G

0

m

g, followed by a number of

subsumption steps implying H

1

� H. Hene, G 2 H.

(Barb GRes) Then P = (�G

0

)P

0

for some P

0

suh that P

0

�. Assume

E ` P : H. This must have been derived from (Pro GRes) with E `

P : H

1

and E;G

0

` P

0

: H

2

and H

1

= H

2

� fG

0

g, followed by a number

of subsumption steps implying H

1

� H. By indution hypothesis, there

is a type W

�

= G(G

1

; : : : ; G

m

)[T

1

; : : : ; T

n

℄nG suh that E ` x : W and

G 2 H

2

. Hene, G 2 H.

(Barb Res) Then P = (�y:T)P

0

for some y, P

0

suh that x 6= y and P

0

�.

Assume E ` P : H. This must have been derived from (Pro Res) with

E ` P : H

1

and E; y:T ` P

0

: H

1

, followed by a number of subsumption

steps implying H

1

� H. By indution hypothesis, there is a type W

�

=

G(G

1

; : : : ; G

m

) [T

1

; : : : ; T

n

℄nG suh that E; y:T ` x : W and G 2 H

1

.

Hene G 2 H. By Lemma B.25, E ` x : W .

(Barb Par) Then P = (P

0

j P

00

) with P

0

�. Assume E ` P : H. This must

have been derived from (Pro Par) with E ` P : H

1

, and E ` P

0

: H

0

, and

E ` P

00

: H

00

, and H

1

= H

0

[H

00

, followed by a number of subsumption

steps implying H

1

� H. By indution hypothesis, there is a type W

�

=

G(G

1

; : : : ; G

m

) [T

1

; : : : ; T

n

℄nG suh that E ` x : W and G 2 H

0

. Hene,

G 2 H.

(Barb �) Then P � P

0

for some P

0

suh that P

0

�. Assume E ` P : H.

By Lemma B.30, E ` P

0

: H. By indution hypothesis, there is a type

W

�

= G(G

1

; : : : ; G

m

) [T

1

; : : : ; T

n

℄nG suh that E ` x : W and G 2 H. 2

B.3 Corretness of Type Erasure

In this setion, we study the relations between the typed and untyped version

of the �-alulus de�ned in this paper. We prove Proposition B.38, whih gives

a simple orrespondene between the redutions of a typed term, say P , and

the redutions of the untyped proess obtained by erasing all type informa-

tions from P . The bene�t of this result is that it allows us to use the labelled

transtion semantis given in Appendix A.3 to reason about typed proess. This

is partiularly useful beause, in ontrast with a labelled transition, a redution

tells us nothing about the possible interations of a proess with an arbitrary

environment. Moreover, it is simpler to enumerate the possible transitions of a

proess than its possible redutions.

Lemma B.33 For all typed proesses P and Q, if P � Q then erase(P) �

erase(Q).

Proof An easy indution on the derivation of P � Q. 2

Lemma B.34 For all typed proesses P , P # � if and only if erase(P) # �.

59

Proof An easy indution on the derivations of P # � and erase(P) # �. 2

If

~

G is a sequene G

1

; : : : ; G

n

of groups, let (�

~

G)P = (�G

1

) � � � (�G

n

)P . In

partiular, if n = 0, then (�

~

G)P = P .

Lemma B.35 Assume E ` P .

(1) If erase(P) = Q j R then there exist two typed proesses, Q

0

, R

0

, and a

sequene of groups,

~

G, suh that P = (�

~

G)(Q

0

j R

0

), and erase(Q

0

) = Q,

and erase(R

0

) = R.

(2) If E ` x : G(H

1

; : : : ; H

m

)[T

1

; : : : ; T

n

℄nH and erase(P) = xhy

1

; : : : ; y

n

i

then there exist two sequenes of groups,

~

G and G

0

1

; : : : ; G

0

m

, suh that

P = (�

~

G)xhG

0

1

; : : : ; G

0

m

; y

1

; : : : ; y

n

i and fG

0

1

; : : : ; G

0

m

g � dom(E) [f

~

Gg.

(3) If E ` x : G(H

1

; : : : ; H

m

)[T

1

; : : : ; T

n

℄nH and erase(P) = x(y

1

; : : : ; y

n

):R

then there exist a typed proess, Q, and a sequene of groups,

~

G, suh that

erase(Q) = R and P = (�

~

G)x(H

1

; : : : ; H

m

; y

1

:T

1

; : : : ; y

n

:T

n

):Q.

(4) If erase(P) = (�x)R then there exist a typed proess, Q, a sequene,

~

G,

and a type, T , suh that P = (�

~

G)(�x:T)Q, and erase(Q) = R.

(5) If erase(P) = !R then there exist a typed proess, Q, and a sequene,

~

G,

suh that P = (�

~

G)!Q, and erase(Q) = R.

(6) If erase(P) = 0 then there exists a sequene,

~

G, suh that P = (�

~

G)0.

Proof An easy indution on the struture of P . 2

Lemma B.36 For all typed proesses, P , we have fn(erase(P)) = fn(P).

Proof An easy indution on the struture of P . 2

Lemma B.37 If E ` P and erase(P)

�

�! R then there exists a typed proess,

Q, suh that P ! Q and erase(Q) = R.

Proof Assume E ` P . The lemma follows by showing that:

(1) If erase(P)

x

�! A and E ` x : G(H

1

; : : : ; H

m

)[T

1

; : : : ; T

n

℄nH, where A =

(y

1

; : : : ; y

n

)R, then there exist a typed proess, Q, and a sequene,

~

G, suh

that erase(Q) = R and P j xhG

0

1

; : : : ; G

0

m

; y

0

1

; : : : ; y

0

n

i ! (�

~

G)Q�fy

1

 y

0

1

g

� � � fy

n

 y

0

n

g for any sequenes y

0

1

; . . . , y

0

n

, G

0

1

, . . . , G

0

m

, where E ` y

0

i

: T

i

�

for eah i 2 1::n and � = fH

1

 G

0

1

g � � � fH

m

 G

0

m

g.

(2) If erase(P)

x

�! A and E ` x : G(H

1

; : : : ; H

m

)[T

1

; : : : ; T

n

℄nH, where A =

(�~z)hy

1

; : : : ; y

n

iR, then there exist a typed proess, Q, and two sequenes

of groups,

~

G and G

0

1

; : : : ; G

0

m

, and types,

~

T , suh that erase(Q) = R and

P � (�

~

G)(�~z:

~

T)(xhG

0

1

; : : : ; G

0

m

; y

1

; : : : ; y

n

i j Q) and E;

~

G;~z:

~

T ` y

i

: T

i

�

for eah i 2 1::n, where � = fH

1

 G

0

1

g � � � fH

m

 G

0

m

g.

60

(3) If erase(P)

�

�! A then there exists a typed proess, Q, suh that P ! Q

and erase(Q) = A.

We proeed by indution on the derivation of erase(P)

�

�! A.

(Trans In) Then � = x, erase(P) = x(z

1

; : : : ; z

n

):R and A = (z

1

; : : : ; z

n

)R.

Assume E ` x : G(H

1

; : : : ; H

m

)[T

1

; : : : ; T

n

℄nH. By Lemma B.35, there ex-

ist a typed proess, Q, and a sequene,

~

G, suh that P = (�

~

G)x(H

1

; : : : ;

H

m

; z

1

:T

1

; : : : ; z

n

:T

n

):Q, and erase(Q) = R. By (Red Interat) and (Red

�), P j xhG

0

1

; : : : ; G

0

m

; y

0

1

; : : : ; y

0

n

i ! (�

~

G)Qfz

1

 y

0

1

g � � � fz

n

 y

0

n

g, as re-

quired.

(Trans Out) Then � = x, erase(P) = xhy

1

; : : : ; y

n

i and A = (�)hy

1

; : : : ; y

n

i0,

that is R = 0. Assume E ` x : G(H

1

; : : : ; H

m

)[T

1

; : : : ; T

n

℄nH. By

Lemma B.35, there exists sequenes,

~

G and G

0

1

; : : : ; G

0

m

, suh that P =

(�

~

G)xhG

0

1

; : : : ; G

0

m

; y

1

; : : : ; y

n

i. Let Q be the typed proess 0. Hene,

erase(Q) = 0 and, by (Strut Par Zero) and (Strut GRes), P is stru-

turally equivalent to (�

~

G)(xhG

0

1

; : : : ; G

0

m

; y

1

; : : : ; y

n

i j 0), as required.

(Trans Inter 1) Then � = � and erase(P) = (R

1

j R

2

), where R

1

x

�!

(z

1

; : : : ; z

n

)R

0

1

and R

2

x

�! (�~z)hy

1

; : : : ; y

n

iR

0

2

, and A = (�~z)(R

0

1

fz

1

 y

1

g

� � � fz

n

 y

n

g j R

0

2

). By Lemma B.35, there exist two typed proesses, P

1

,

P

2

, and a sequene,

~

G, suh that P = (�

~

G)(P

1

j P

2

) and erase(P

i

) = R

i

for eah i 2 f1; 2g. Assume E ` x : G(H

1

; : : : ; H

m

)[T

1

; : : : ; T

n

℄nH.

By indution hypothesis (1), there is a typed proess, Q

1

, and a sequene,

~

G

1

, suh that P

1

j xhG

0

1

; : : : ; G

0

m

; y

1

; : : : ; y

n

i ! (�

~

G

1

)Q

1

fH

1

 G

0

1

g � � �

fH

m

 G

0

m

gfz

1

 y

1

g � � � fz

n

 y

n

g and erase(Q

1

) = R

0

1

for any well-typed

sequenes y

1

; : : : ; y

n

.

By indution hypothesis (2), there is a typed proess, Q

2

, sequenes,

~

G

2

and G

0

1

; : : : ; G

0

m

, and types

~

T , suh that P

2

� (�

~

G

2

)(�~z:

~

T)(xhG

0

1

; : : : ;

G

0

m

; y

1

; : : : ; y

n

i j Q

2

) and erase(Q

2

) = R

0

2

and E;

~

G;~z:

~

T ` y

i

: T

i

� for

eah i 2 1::n, where � = fH

1

 G

0

1

g � � � fH

m

 G

0

m

g.

Sine the names

~

G

2

and ~z are bound, we may assume f

~

G

2

g \ fg(P

1

) =

? and f~zg \ fn(P

1

) = ?. By (Strut GRes Par), (Strut Res Par),

(Strut GRes Res), and (Strut Par Asso), P

1

j P

2

� (�

~

G

2

)(�~z:

~

T)((P

1

j

xhG

0

1

; : : : ; G

0

m

; y

1

; : : : ; y

n

i) j Q

2

). By (Red �), (Red Par), (Red Res) and

(Red GRes), P

1

j P

2

! (�

~

G

2

)(�~z:

~

T)((�

~

G

1

)Q

1

�fz

1

 y

1

g � � � fz

n

 y

n

g j

Q

2

). Let Q be the typed proess (�

~

G)(�

~

G

2

)(�~z:

~

T)((�

~

G

1

)Q

1

�fz

1

 y

1

g

� � � fz

n

 y

n

g j Q

2

). By (Red GRes), P ! Q. By de�nition of the erasure

funtion, erase(Q) = (�~z)(erase(Q

1

)fz

1

 y

1

g � � � fz

n

 y

n

g j erase(Q

2

)).

Hene erase(Q) = A, as required.

Case (Trans Inter 2) is symmetri.

(Trans Par 1) Then erase(P) = R

1

j R

2

, where R

1

�

�! A

1

and A = A

1

j R

2

.

By Lemma B.35, there exist two typed proesses, P

1

, P

2

, and a sequene,

61

~

G, suh that P = (�

~

G)(P

1

j P

2

) and erase(P

i

) = R

i

for eah i 2 f1; 2g.

We proeed by ase analysis on the ation �.

(In) We have � = x and A

1

= (z

1

; : : : ; z

n

)R

0

1

. Assume E ` x : G(H

1

; : : : ;

H

m

)[T

1

; : : : ; T

n

℄nH. Sine the names z

1

; : : : ; z

n

are bound, we may

assume fz

1

; : : : ; z

n

g\ fv (R

2

) = ?. Hene, A = (z

1

; : : : ; z

n

)(R

0

1

j R

2

),

that is, R = R

0

1

j R

2

. By indution hypothesis (1), there is a typed

proess, Q

1

, and a sequene,

~

G

1

, suh that erase(Q

1

) = R

0

1

and

P

1

j xhG

0

1

; : : : ; G

0

m

; y

0

1

; : : : ; y

0

n

i ! (�

~

G

1

)Q

1

�fz

1

 y

0

1

g � � � fz

n

 y

0

n

g for

any sequenes G

0

1

; : : : ; G

0

m

; y

0

1

; : : : ; y

0

n

, where E ` y

0

i

: T

i

� for eah

i 2 1::n and � = fH

1

 G

0

1

g � � � fH

m

 G

0

m

g. Sine the groups

~

G

1

are

bound, we may assume f

~

G

1

g \ fv(R

2

) = ?. Let Q = Q

1

j P

2

. By

(Strut GRes Par), (Strut Par Asso) and (Strut Par Comm), P j

xhG

0

1

; : : : ; G

0

m

; y

1

; : : : ; y

n

i � (�

~

G)((P

1

j xhG

0

1

; : : : ; G

0

m

; y

1

; : : : ; y

n

i) j

P

2

). By (Red �), (Red Par) and (Red GRes), P j xhG

0

1

; : : : ; G

0

m

; y

1

;

: : : ; y

n

i ! (�

~

G;

~

G

1

)Q�fz

1

 y

1

g � � � fz

n

 y

n

g. Moreover, erase(Q) =

erase(Q

1

) j erase(P

2

) = erase(R), as required.

(Out) We have � = x and A

1

= (�~z)hy

1

; : : : ; y

n

iR

0

1

. Assume E ` x :

G(H

1

; : : : ; H

m

)[T

1

; : : : ; T

n

℄nH. Sine the names ~z are bound, we

may assume f~zg \ fv (R

2

) = ?. Hene, A = (�~z)hy

1

; : : : ; y

n

i(R

0

1

j

R

2

), that is, R = R

0

1

j R

2

. By indution hypothesis (2), there is

a typed proess, Q

1

, sequenes,

~

G

1

and G

0

1

; : : : ; G

0

m

, and types

~

T

suh that erase(Q

1

) = R

0

1

and P

1

� (�

~

G

1

)(�~z:

~

T)(xhG

0

1

; : : : ; G

0

m

;

y

1

; : : : ; y

n

i j Q

1

) and E;

~

G;~z:

~

T ` y

i

: T

i

� for eah i 2 1::n, where

� = fH

1

 G

0

1

g � � � fH

m

 G

0

m

g. Sine the groups

~

G

1

are bound, we

may assume f

~

G

1

g\fv (R

2

) = ?. Let Q = Q

1

j P

2

. By (Strut GRes),

(Strut GRes Par), (Strut Res Par), (Strut Par Asso) and (Strut

Par Comm), P � (�

~

G;

~

G

1

)(�~z:

~

T)(xhG

0

1

; : : : ; G

0

m

; y

1

; : : : ; y

n

i j Q).

Moreover, erase(Q) = erase(Q

1

) j erase(P

2

) = erase(R), as required.

(Tau) We have � = � . By indution hypothesis (3), there is a typed

proess, Q

1

, suh that erase(Q

1

) = A

1

and P

1

! Q

1

. Let Q =

Q

1

j P

2

. By (Red Par), P ! Q. Moreover, erase(Q) = erase(Q

1

) j

erase(P

2

) = erase(A), as required.

Cases (Trans Par 2) and (Trans Res) are similar.

(Trans Repl) Then erase(P) = !S where S j !S

�

�! A. By Lemma B.35, there

exist a typed proess, P

0

and a sequene,

~

G

0

, suh that P = (�

~

G

0

)!P

0

and erase(P

0

) = S. Therefore, we have a derivation of erase((�

~

G

0

)(P

0

j

!P

0

))

�

�! A and, by (Strut Repl Par) and (Strut GRes), (�

~

G

0

)(P

0

j

!P

0

) � P . We proeed by ase analysis on the ation �.

(In) We have � = x and A = (z

1

; : : : ; z

n

)R. Assume E ` x : G(H

1

; : : : ;

H

m

)[T

1

; : : : ; T

n

℄nH. By indution hypothesis (1), there is a typed

proess,Q, and a sequene,

~

G, suh that erase(Q) = R and (�

~

G

0

)(P

0

j

62

!P

0

) j xhG

0

1

; : : : ; G

0

m

; y

1

; : : : ; y

n

i ! (�

~

G)Q�fz

1

 y

1

g � � � fz

n

 y

n

g for

any well-typed sequenes G

0

1

; : : : ; G

0

m

; y

1

; : : : ; y

n

with � = fH

1

 G

0

1

g

� � � fH

m

 G

0

m

g. By (Strut Par) and (�

~

G

0

)(P

0

j !P

0

) � P , we get that

P j xhG

0

1

; : : : ; G

0

m

; y

1

; : : : ; y

n

i ! (�

~

G)Q� fz

1

 y

1

g � � � fz

n

 y

n

g, as

required.

(Out) We have � = x and A = (�~z)hy

1

; : : : ; y

n

iR. Assume E ` x :

G(H

1

; : : : ; H

m

)[T

1

; : : : ; T

n

℄nH. By indution hypothesis (2), there

is a typed proess, Q, sequenes,

~

G and G

0

1

; : : : ; G

0

m

, and types

~

T ,

suh that erase(Q) = R and (�

~

G

0

)(P

0

j !P

0

) � (�

~

G)(�~z:

~

T)(xhG

0

1

;

: : : ; G

0

m

; y

1

; : : : ; y

n

i j Q) and y

1

; : : : ; y

n

are well-typed. Hene, By

(Strut Trans) and (�

~

G

0

)(P

0

j !P

0

) � P , we get that P � (�

~

G)(�~z:

~

T)

(xhG

0

1

; : : : ; G

0

m

; y

1

; : : : ; y

n

i j Q), as required.

(Tau) We have � = � . By indution hypothesis (3), there is a typed

proess, Q, suh that erase(Q) = R and (�

~

G

0

)(P

0

j !P

0

) ! Q. By

(Red �) and (�

~

G

0

)(P

0

j !P

0

) � P , we get that P ! Q. 2

The following asserts that the redutions of a typed proess, of our extend-

ing �-alulus, aording to the typed operational semantis are equivalent to

the redutions of the untyped erasure of the proess aording to the untyped

operational semantis. A proof of Proposition 3.1, a similar property for the

unextended �-alulus, an be obtained by simplifying the following proof.

Proposition B.38 For all typed proesses P and Q, if P ! Q then erase(P)!

erase(Q). If E ` P and erase(P)! R then there is a typed proess Q suh that

P ! Q and R � erase(Q).

Proof The �rst impliation is proved by a simple indution on the derivation

of P ! Q, with appeal to Lemma B.33.

Assume E ` P and erase(P)! R. By Proposition A.1, there is an untyped

proess S suh that erase(P)

�

�! S and S � R. By Lemma B.37, there exists

a typed proess Q suh that P ! Q and erase(Q) = S. By (Strut Trans),

erase(Q) � R, as required. 2

Next, we show that if the erasure of two typed proesses are equivalent,

aording to the untyped barbed ongruene de�ned in Appendix A.4, then

these proesses are barbed ongruent.

Proposition B.39 If E ` P and E ` Q and erase(P) � erase(Q) then E `

P � Q.

Proof Let S be the relation on typed proesses suh that E ` P S Q if and

only if E ` P and E ` Q and erase(P) � erase(Q). We prove that S is a

bisimulation.

(1) Assume E ` P S Q. By de�nition, we get that E ` P and E ` Q

and erase(P) � erase(Q). By Proposition A.4 (1), erase(Q) � erase(P).

Hene, E ` Q S P .

63

(2) Assume E ` P S Q and P # x. By Lemma B.34, erase(P) # x. Sine

erase(P) � erase(Q), we get that erase(Q) + x. By Lemma B.37 several

times, there is a typed proess R suh that Q!

�

R and erase(R) # x. By

Lemma B.34, Q + x, as required.

(3) Assume E ` P S Q and P ! P

0

. By Proposition 3.1, erase(P) !

erase(P

0

). Sine erase(P) � erase(Q), we get that erase(Q) !

�

R

for some untyped proess R suh that R � erase(P

0

). By Proposi-

tion 3.1 several times, there is a typed proess Q

0

suh that Q !

�

Q

0

and erase(Q

0

) � R. By Propositions A.4 (1) and A.4 (4), we get that

erase(Q

0

) � erase(P

0

). By Proposition 3.2, E ` P

0

and E ` Q

0

. Hene,

E ` P

0

S Q

0

, as required.

Sine S is a bisimulation, we get that E ` P and E ` Q and erase(P) �

erase(Q) implies E ` P

�

� Q.

Assume E ` P and E ` Q and erase(P) � erase(Q). Let R be an arbitrary

proess and � be an arbitrary E-renaming and E

0

be an environment suh that

E�;E

0

` R. In partiular, by Lemma B.16, it must be the ase that E�;E

0

` �.

By Lemmas B.27 and B.28, E�;E

0

` P�. By (Pro Par), E�;E

0

` (P� j R)

and E�;E

0

` (Q� j R). Moreover, erase(P� j R) = erase(P)� j erase(R) and

erase(Q� j R) = erase(Q)� j erase(R). Sine the untyped barbed ongruene,

�, is losed by substitution and parallel omposition (see Propositions A.4 (2)

and A.4 (3)), we get that erase(P� j R) � erase(Q� j R). Hene, E�;E

0

`

(P� j R)

�

� (Q� j R), as required. 2

B.4 Properties of Barbed Congruene

In this setion we study some properties of typed barbed ongruene. We prove

Lemma B.40, that struturally equivalent proesses of the extended �-alulus

are barbed ongruent. This fat orresponds to Proposition 3.4 (4), for the un-

extended �-alulus. We also prove Proposition B.46, that barbed ongruene

is indeed a ompositional equivalene relation. The proof of this property relies

on Lemma B.45, that barbed ongruene is preserved by arbitrary substitutions

of groups for groups. It also relies on the fat that, by de�nition, barbed on-

gruene is preserved by E-renamings, that is substitution of names for names

that annot identify names with di�erent types.

Lemma B.40 If P � Q and E ` P then E ` P � Q

Proof Let S be the smallest relation on typed proesses that ontains � and

suh that E ` P S Q if P � Q and E ` P . The relation S is a well-de�ned

relation on typed proesses sine � is a relation on typed proesses and if P � Q

and E ` P then, by Proposition B.31, E ` Q. Note that S is symmetri. We

prove that S is a barbed bisimulation. The only interesting ase is when E ` P

and P � Q.

(1) Assume P # �. By rule (Barb �), Q # �, as required.

64

(2) Assume P ! P

0

. By (Red �), Q! P

0

and, sine � is re�exive, P

0

S P

0

,

as required.

Therefore S is a barbed bisimulation and for all proesses P;Q suh that E ` P

and P � Q, we get that E ` P

�

� Q.

Assume E ` P and P � Q. Let R be an arbitrary typed proess, � be

an arbitrary E-renaming and E

0

be an environment suh that E;E

0

` R. By

Lemma B.28 several times and rule (Strut Par), E�;E

0

` P� j R and P� j

R � Q� j R. Therefore, E�;E

0

` P� j R

�

� Q� j R. Hene, E ` P � Q, as

required. 2

We show that barbed ongruene for the extended �-alulus is losed by

E-renamings, that is substitutions of names for names that respet types. This

fat orresponds to Proposition 3.4 (3), for the unextended �-alulus.

Lemma B.41 If E ` P � Q and � is an E-renaming then E� ` P� � Q�.

Proof Assume E ` P � Q and � is an E-renaming. By de�nition, E�;E

0

`

P� j R � Q� j R for any proess R suh that E�;E

0

` R. Sine E� ` 0, we

get that E� ` P� j 0 � Q� j 0. By Lemma B.40 and transitivity of �, sine

P� j 0 � P� and Q� j 0 � Q, we get that E� ` P� � Q�. 2

Next, we prove Lemmas B.42 and B.43, that strutural equivalene and

redution are preserved by arbitrary substitution of groups for groups. These

properties are used in the proof of Lemma B.44, that barbed ongruene is

preserved by substitutions of groups for groups.

Lemma B.42 If P � P

0

then PfG G

0

g � P

0

fG G

0

g.

Proof An easy indution on the derivation of P � P

0

. 2

Lemma B.43 If P ! P

0

then PfG G

0

g ! P

0

fG G

0

g.

Proof An easy indution on the derivation of P ! P

0

, with appeal to

Lemma B.42. 2

The following shows that barbed ongruene is preserved by substitution

of groups. This fat agrees with our previous observation that types do not

interfere with the operational behaviour of proesses, see Proposition B.38.

Lemma B.44 If E;G;E

0

` P � Q and G

0

2 dom(E) then E;E

0

fG G

0

g `

PfG G

0

g � QfG G

0

g.

Proof Let S be the smallest relation on typed proesses that ontains �

and suh that E;E

0

fG G

0

g ` PfG G

0

g S QfG G

0

g if E;G;E

0

` P � Q

and G

0

2 dom(E). Assume E;G;E

0

` P and G

0

2 dom(E). By Lemma B.29,

E;E

0

fG G

0

g ` PfG G

0

g. Therefore, if E;G;E

0

` P � Q then the proesses

PfG G

0

g and QfG G

0

g are well-typed in the environment E;E

0

fG G

0

g.

Hene, S is a relation on typed proesses. Next, we prove that S is a barbed

bisimulation. The only interesting ase is when E;E

0

fG G

0

g ` PfG G

0

g S

QfG G

0

g, where E;G;E

0

` P � Q. Note that S is symmetri.

65

(1) Assume PfG G

0

g # x. By Lemma B.34, erase(PfG G

0

g) # x, that

is, erase(P) # x. By Lemma B.34 again, P # x. Sine P and Q are

barbed ongruent, Q + x. By Lemma B.34 several times, sine erase(Q) =

erase(Q)fG G

0

g, we get that QfG G

0

g + x.

(2) Assume PfG G

0

g ! P

0

. By Lemma B.43, P ! P

0

fG

0

 Gg. Sine P

and Q are barbed ongruent, Q!

�

Q

0

with E;G;E

0

` Q

0

� P

0

fG

0

 Gg.

By Lemma B.43 several times, QfG G

0

g !

�

Q

0

fG G

0

g. By de�nition,

E;E

0

fG G

0

g ` Q

0

fG G

0

g S P

0

, as required.

Therefore S is a barbed bisimulation and if E;G;E

0

` P � Q and G

0

2 dom(E)

then E;E

0

fG G

0

g ` PfG G

0

g

�

� QfG G

0

g. Let R be an arbitrary typed

proess, � be an arbitrary (E;E

0

fG G

0

g)-renaming and E

00

be an environ-

ment suh that E;E

0

fG G

0

g; E

00

` R. Assume E;G;E

0

` P � Q. By

Lemma B.29 and (Pro Par), E;G;E

0

; E

00

fG

0

 Gg ` P� j RfG

0

 Gg � Q� j

RfG

0

 Gg. Then E;E

0

fG G

0

g; E

00

` PfG G

0

g� j R � QfG G

0

g� j R.

Hene, E;E

0

fG G

0

g ` PfG G

0

g � QfG G

0

g. 2

We introdue some new notations to simplify the presentation of the fol-

lowing properties. If E is a type environment G

1

; : : : ; G

m

; y

1

:T

1

; : : : ; y

n

:T

n

,

let x(E):P be the proess x(G

1

; : : : ; G

m

; y

1

:T

1

; : : : ; y

n

:T

n

):P . In partiular,

x(?):P = x():P . If � is a substitution of groups for groups, the environment E�

is de�ned as follows: ?�

�

= ?; (E

0

; x:T)�

�

= E

0

�; x:T�; (E

0

; G)�

�

= E

0

�; �(G) if

�(G) =2 dom(E

0

�), and E

0

� otherwise.

A orollary of Lemma B.44 is the following property.

Lemma B.45 If E ` P � Q and � is a substitution of groups for groups then

E� ` P� � Q�.

Next, we prove that barbed ongruene for the extended �-alulus satis�es

the ongruene property. This fat orresponds to Proposition 3.4 (2), for the

unextended �-alulus.

Proposition B.46

(1) Let E

0

be the environment G

1

; : : : ; G

m

; y

1

:T

1

; : : : ; y

n

:T

n

. If E;E

0

` P � Q

then E ` x(E

0

):P � x(E

0

):Q.

(2) If E ` P � Q and E ` R then E ` P j R � Q j R.

(3) If E; x:T ` P � Q then E ` (�x:T)P � (�x:T)Q.

(4) If E;G ` P � Q then E ` (�G)P � (�G)Q.

(5) If E ` P � Q then E ` !P � !Q.

Proof For the sake of brevity, we only prove the ase for input pre�x, whih

is the most di�ult ase. The proofs for the other ases are similar. As in

the proof of Lemma B.40, the property follows by de�ning a andidate barbed

66

bisimulation, S, that is losed by renamings and parallel omposition. Let

S be the smallest relation on typed proesses that ontains � and suh that

E ` x(E

0

):P j R S x(E

0

):Q j R for all proesses P;Q;R suh that E;E

0

`

P � Q and E ` R. Note that S is a symmetri relation on typed proesses.

We prove that S is a barbed bisimulation. The only interesting ase is when

E ` x(E

0

):P j R S x(E

0

):Q j R, where E;E

0

` P � Q.

(1) Assume x(E

0

):P j R # x. By Lemma B.34, Proposition A.3 and inspetion

of the possible transitions, it must be the ase that R # x. By (Barb Par)

and (Barb �), sine R # x, we get that x(E

0

):Q j R # x, as required.

(2) Assume x(E

0

):P j R ! P

0

. Suppose E

0

is the type environment G

1

; : : : ;

G

m

; y

1

:T

1

; : : : ; y

n

:T

n

. By Propositions B.38 and A.1 and inspetion of the

possible transitions, either (1) R ! R

0

and P

0

� x(E

0

):P j R

0

, or (2)

R � (�E

00

)(xhH

1

; : : : ; H

m

; z

1

; : : : ; z

n

i j R

0

) and P

0

� (�E

00

)(P�

G

�

y

j R

0

)

with �

G

= fG

1

 H

1

g � � � fG

m

 H

m

g and �

y

= fy

1

 z

1

g � � � fy

n

 z

n

g.

For (1), by (Red Par), x(E

0

):Q j R! x(E

0

):Q j R

0

. By Proposition B.31,

E ` R

0

. Hene, E ` x(E

0

):P j R

0

S x(E

0

):Q j R

0

, as required.

For (2), let Q

0

be the proess (�E

00

)(Q�

G

�

y

j R

0

). By (Red Interat),

(Red Par) and (Red �), x(E

0

):Q j R ! Q

0

. By Lemma B.45, sine

E;E

0

` P � Q, we get that (E;E

0

)�

G

` P�

G

� Q�

G

. Sine the names in

E

0

and E

00

are bound, we an assume that dom(E

0

) \ dom(E

00

) = ?. By

Lemma B.27 several times and sine E;E

00

` xhH

1

; : : : ; H

m

; z

1

; : : : ; z

n

i j

R

0

, we get that E

000

` P�

G

� Q�

G

, where E

000

is the type environment

E;E

00

; y

1

:T

1

�

G

; : : : ; y

n

:T

n

�

G

. Sine E ` x(E

0

):P j R, E ` x(E

0

):Q j R

and E;E

00

` xhH

1

; : : : ; H

m

; z

1

; : : : ; z

n

i j R

0

, the substitution �

y

is an

E

000

-renaming. By Lemma B.41, sine (E;E

0

)�

G

` P�

G

� Q�

G

and

z

i

2 dom(E;E

00

) for eah i 2 1::n, we get that E;E

00

` P�

G

�

y

� Q�

G

�

y

.

Therefore, using laws (2), (3) and (4), we get that E ` (�E

00

)(P�

G

�

y

j

R

0

) � (�E

00

)(Q�

G

�

y

j R

0

). Hene, sine the relation � (and then also �)

is in S, we get that E ` P

0

S Q

0

, as required.

Therefore S is a barbed bisimulation and if E;E

0

` P � Q then E ` x(E

0

):P j

R

�

� x(E

0

):Q j R for any proess R suh that E ` R. Assume E;E

0

` P � Q.

Let R be an arbitrary typed proess, � be an arbitrary E-renaming and E

00

be

an environment suh that E;E

00

` R. Sine the names in E

0

are bound we an

assume that dom(E

0

) \ dom(E

00

) = ?. Therefore, by Lemmas B.27 and B.28,

E�;E

00

; E

0

` P� � Q�, and then E�;E

00

` x(E

0

):P� j R

�

� x(E

0

):Q� j R.

Hene, E ` x(E

0

):P � x(E

0

):Q, as desired. 2

B.5 Garbage Colletion for the �-Calulus

In this setion we prove Theorem B.53, the garbage olletion priniple used

to prove the soundness of the region analysis. This property follows from sev-

eral intermediate lemmas that prove that proesses with non-interseting e�ets

annot interat. For example, Lemma B.50 shows that these proesses annot

67

synhronize. In the sense that their parallel omposition do not introdue new

silent transitions.

Next, we give three properties of barbs that will prove useful in the proof of

Lemma B.52.

Lemma B.47 For any proess P , if (�G)P # � then P # �. If (�y:T)P # �

then P # � with � 2 fx; xg and x 6= y.

Lemma B.48 For any proesses P;Q, if (P j Q) # � then P # � or Q # �.

Lemma B.49 For any proesses R, if E;G;E

0

` R : fGg and R # � and

� 2 fx; xg then x 2 dom(E

0

).

Proof Assume E;G;E

0

` R : fGg and R # � and � 2 fx; xg. By Proposi-

tion B.32, there is a type T = G(G

1

; : : : ; G

m

)[T

1

; : : : ; T

n

℄nG suh that E ` x : T .

Sine E;G;E

0

` R : fGg, we have E;G;E

0

` �. Therefore, we get that

G =2 dom(E). Hene, x 2 dom(E

0

). 2

Lemma B.50 For any proesses P and R suh that E;G;E

0

` P : H and

E;G;E

0

` R : fGg and G =2 H, if erase(P j R)

�

�! A then there is an agent A

0

suh that erase(P)

�

�! A

0

and A = A

0

j erase(R), or suh that erase(R)

�

�! A

0

and A = erase(P) j A

0

.

Proof Assume E;G;E

0

` P : H and E;G;E

0

` R : fGg and G =2 H and

erase(P) j erase(R)

�

�! A. We proeed by ase analysis on the last rule used

to derived this redution. We prove that the only possible rules are (Trans Par

1) and (Trans Par 2).

(Trans Par 1) Then erase(P)

�

�! A

0

with A = A

0

j erase(R).

(Trans Par 2) Then erase(R)

�

�! A

0

with A = erase(P) j A

0

.

(Trans Inter 1) Then � = � and erase(P)

x

�! F and erase(R)

x

�! C and

A = F�C. By Proposition A.3 and Lemma B.34, and sine erase(R)

x

�!

C, it must be the ase that R # x. Therefore, by Proposition B.32, there

is a type T = G(G

1

; : : : ; G

m

)[T

1

; : : : ; T

n

℄nG suh that E;G;E

0

` x : T .

Symmetrially, using Proposition A.3, Lemma B.34, and the transition

erase(P)

x

�! F , we prove that P # x. Therefore, by Proposition B.32,

there is a type T

0

= G

0

(G

0

1

; : : : ; G

0

m

0

)[T

0

1

; : : : ; T

0

n

0

℄nG

0

suh that G

0

2 H.

By Lemma B.20, it must be the ase that G equals G

0

, whih ontradits

G =2 H. Case (Trans Inter 2) is symmetri. 2

Lemma B.51 For any proesses P and R suh that E;G;E

0

` P : H and

E;G;E

0

` R : fGg and G =2 H, if P j R ! Q then there is a proess P

0

suh

that P ! P

0

and Q � P

0

j R, or there is a proess R

0

suh that R ! R

0

and

Q � P j R

0

.

68

Proof Assume P j R ! Q. By Proposition A.1, there is a proess S suh

that erase(P) j erase(R)

�

�! S and erase(Q) � S. By Lemma B.50, there is

an agent A

0

suh that erase(P)

�

�! A

0

and S = A

0

j erase(R), or suh that

erase(R)

�

�! A

0

and S = erase(P) j A

0

. By Propositions A.1 and 3.1 we get

that, in the �rst ase, there exists P

0

suh that P ! P

0

and Q � P

0

j R and, in

the latter ase, there is R

0

suh that R! R

0

and Q � P j R

0

. 2

Lemma B.52 For any proesses P , R suh that E;G;E

0

` R : fGg and

E;G;E

0

` P : H and G =2 H, we have: E ` (�G)(�E

0

)(P j R)

�

� (�G)(�E

0

)P .

Proof To show that (�G)(�E

0

)(P j R) and (�G)(�E

0

)P are barbed bisimilar,

and hene prove the lemma, we de�ne a barbed bisimulation, S, suh that

E ` (�G)(�E

0

)(P j R) S (�G)(�E

0

)P . Let S be the smallest symmetri relation

on typed proesses suh that E ` (�G)(�E

0

)(P j R) S (�G)(�E

0

)P for all

proesses P;R suh that E;G;E

0

` P : H and E;G;E

0

` R : fGg and G =2 H.

We prove that S is a barbed bisimulation.

Consider any proesses P and R suh that E;G;E

0

` P : H and E;G;E

0

`

R : fGg and G =2 H.

(1) By (Pro Par), (Pro GRes) and (Pro Res), E ` (�G)(�E

0

)(P j R) :

(H [fGg)� dom(G;E

0

) and E ` (�G)(�E

0

)P : H� dom(G;E

0

). Hene,

E ` (�G)(�E

0

)(P j R) and E ` (�G)(�E

0

)P .

(2) Suppose (�G)(�E

0

)(P j R) # x. By Lemma B.47, (P j R) # x with

x =2 dom(E

0

). By Lemma B.48, P # x or R # x. In the seond ase,

by Lemma B.49, we get that x 2 dom(E

0

), whih ontradits the fat

that x =2 dom(E

0

). Hene, P # x and, by (Barb Res) several times,

(�G)(�E

0

)P # x, as required.

(3) Suppose (�G)(�E

0

)P # x. By Lemma B.47, P # x with x =2 dom(E

0

). By

(Barb Par) and (Barb Res), (�G)(�E

0

)(P j R) # x, as required.

(4) Suppose (�G)(�E

0

)(P j R) ! Q. By Lemma A.2, there is a proess Q

0

suh that (P j R) ! Q

0

and Q � (�G)(�E

0

)Q

0

. By Lemma B.51, there

is a proess P

0

suh that P ! P

0

and Q

0

� P

0

j R, or there is a typed

proess R

0

suh that R! R

0

and Q

0

� P j R

0

. We onsider �rst the ase

where the redution omes from P .

� Assume P ! P

0

and Q

0

� P

0

j R. By (Red Res) and (Red GRes),

(�G)(�E

0

)P ! (�G)(�E

0

)P

0

andQ � (�G)(�E

0

)(P

0

j R). By Propo-

sition 3.2, E;G;E

0

` P

0

: H. Hene, E ` Q �S� (�G)(�E

0

)P

0

, as

required.

We onsider now the ase where the redution omes from R.

� Assume R ! R

0

and Q

0

� P j R

0

. By (Red Res) and (Red GRes),

Q � (�G)(�E

0

)Q

0

� (�G)(�E

0

)(P j R

0

). By Proposition 3.2, we get

that E;G;E

0

` R

0

: fGg. Therefore E ` Q �S� (�G)(�E

0

)P , as

required.

69

(5) Suppose (�G)(�E

0

)P ! Q. By Lemma A.2, there is a proess P

0

suh

that P ! P

0

and Q � (�G)(�E

0

)P

0

. By (Red Par), (Red Res) and (Red

GRes), (�G)(�E

0

)(P j R) ! (�G)(�E

0

)(P

0

j R). By Proposition 3.2,

E;G;E

0

` P

0

: H. Hene, E ` Q �S� (�G)(�E

0

)(P

0

j R), as required.

Hene, S is a barbed bisimulation and E ` (�G)(�E

0

)(P j R)

�

� (�G)(�E

0

)P .

2

The following is the garbage olletion priniple for our extended �-alulus.

A proof of Theorem 4.3, garbage olletion for the unextended �-alulus, an

be obtained by simplifying the following proof.

Theorem B.53 Suppose E;G;E

0

` P : H and E;G;E

0

` R : fGg where

G =2 H. Then E ` (�G)(�E

0

)(P j R) � (�G)(�E

0

)P .

Proof To show that (�G)(�E

0

)(P j R) and (�G)(�E

0

)P are barbed ongru-

ent, and hene prove the theorem, we onsider an arbitrary proess Q, type

environment E

00

and E-renaming � suh that E�;E

00

` Q, and show that

E�;E

00

` (�G)(�E

0

)(P j R)� j Q

�

� ((�G)(�E

0

)P)� j Q.

Assume E�;E

00

` Q : G. Sine the names in dom(G;E

0

) are bound, we

may assume that dom(G;E

0

)\ (dom(E

00

)[dom(�)[ran(�)) = ?. Hene, sine

fv(Q) � dom(E�;E

00

) andG � dom(E�;E

00

), we get that fv(Q)\dom(G;E

0

) =

G \ dom(G;E

0

) = ? and G =2 G. By Lemma B.28 several times, and sine

E;G;E

0

` P : H, we get that E�;E

00

; G;E

0

` P� : H. By Lemma B.27,

E�;E

00

; G;E

0

` Q : G. By (Pro Par), E�;E

00

; G;E

0

` (P� j Q) : G [H with

G =2 G[H. Sine dom(G;E

0

)\ (dom(E

00

)[dom(�)[ran(�)) = ?, we get that:

(�G)(�E

0

)(P j R)� j Q � (�G)(�E

0

)(P� j Q j R�)

((�G)(�E

0

)P)� j Q � (�G)(�E

0

)(P� j Q)

By Lemma B.52, E�;E

0

` (�G)(�E

0

)(P j R)� j Q

�

� ((�G)(�E

0

)P)� j Q, as

required. 2

B.6 Properties of the Enoding

In this setion we prove the soundness of the region analysis for the extended

region alulus. For the sake of larity, this proof is divided into simpler goals

as follows.

In Setion B.6.1, we prove that our enoding of the extended region alulus

in the extended �-alulus preserves the stati semantis given in Setions 6.1.

In Setion B.6.3, we prove Theorem B.67, a similar result for the dynami

semantis. Results of dynami adequay are often di�ult to prove diretly

when the soure alulus is de�ned with a big-step semantis. To irumvent

this di�ulty, we follow a standard method and de�ne an equivalent small-step

semantis for the region alulus. This semantis is given in Setion B.6.2 where

we also prove Theorem B.62, whih relates small-steps and big-steps redutions.

In Setion B.6.4, we prove that defunt regions make no di�erene to the be-

haviour of a vell-typed program. This result is essentially based on the garbage

70

olletion theorem proved in Setion B.5, whih is used to prove that the en-

oding of a well-typed on�guration is behaviourally equivalent to the proess

obtained by erasing from the memory heap all the referenes stored in defunt

regions.

B.6.1 Proof of Stati Adequay

We prove a series of properties, Lemma B.54 to B.58, that orrespond to the

properties listed in Theorem 4.1 for the unextended aluli.

Lemma B.54

(1) If E ` � then [[E℄℄ ` �.

(2) If E ` A then [[E℄℄ ` [[A℄℄.

Proof Part (1) follows easily by indution on the derivation of E ` �. We

prove part (2) by indution on the derivation of E ` A.

(Type Lit) Then A = Lit , and [[A℄℄ = Lit [℄. By de�nition, Lit 2 dom([[?℄℄).

By part (1), [[E℄℄ ` �. By (Type Chan), [[E℄℄ ` Lit [℄.

(Type !) Then A = (8[�

1

; : : : ; �

n

℄B

1

e

! B

2

) at �, where E

0

= E; �

1

; : : : ; �

n

,

and E

0

` B

1

, and e � dom(E

0

), and E

0

` B

2

, and � 2 dom(E).

By indution hypothesis, [[E℄℄; �

1

; : : : ; �

n

` [[B

i

℄℄ for eah i 2 f1; 2g. By

(Type Chan), sine � 2 dom([[E℄℄), we get that [[E℄℄ ` �(�

1

; : : : ; �

n

)[[[B

1

℄℄;

K[[[B

2

℄℄℄℄n(e [fKg), as required.

(Type List) Then A = [B℄ at �, where E ` B and � 2 dom(E). By in-

dution hypothesis, [[E℄℄ ` [[B℄℄. By de�nition, [[A℄℄ is the reursive type

�(X)[�[℄; �[[[B℄℄; X ℄℄. Sine the name X is bound, we may assume that

X =2 dom(E). By Lemma B.27, [[E℄℄; X ` [[B℄℄. By (Type Chan), sine

� 2 dom([[E℄℄), [[E℄℄; X ` �[[[B℄℄; X ℄. By (Type Chan) and (Type Re),

[[E℄℄ ` [[A℄℄, as required. 2

Lemma B.55

(1) If E ` x :

?

A then [[E℄℄ ` x : [[A℄℄.

(2) If E ` a :

e

A and k =2 L [dom(E) then [[E℄℄; k:K[[[A℄℄℄ ` [[a℄℄k : e [fKg.

Proof Part (1) follows easily by indution on the struture of E. We prove

part (2) by indution on the derivation of E ` a :

e

A. Reall that G[T

1

; : : : ; T

n

℄

is a shorthand for the type G()[T

1

; : : : ; T

n

℄n?.

(Exp x) Then a = x and E = E

1

; x:A;E

2

and e = ?. Assume k =2 L [

dom(E). By part (1), [[E℄℄ ` x : [[A℄℄. By (Pro Output) and Lemma B.27,

[[E℄℄; k:K[[[A℄℄℄ ` khxi : fKg, as required.

71

(Exp l) Then a = l, where l 2 L and A = Lit . By de�nition, [[E℄℄ ` l :

Lit [℄. Assume k =2 L [dom(E). By (Pro Output) and Lemma B.27,

[[E℄℄; k:K[[[A℄℄℄ ` khli : fKg, as required.

(Exp Appl) Then a = x[�

0

1

; : : : ; �

0

n

℄(y) and e = f�g [e

0

�, with E ` x :

?

F

and E ` y :

?

B

1

� and F = (8[�

1

; : : : ; �

n

℄B

1

e

0

! B

2

) at � and � =

f�

1

 �

0

1

g � � � f�

n

 �

0

n

g and A = B

2

� and f�

0

1

; : : : ; �

0

n

g � dom(E). By

part (1), [[E℄℄ ` x : [[F ℄℄ and [[E℄℄ ` y : [[B

1

�℄℄. Assume k =2 L[dom(E). By

(Exp Unfold) and Lemma B.27:

[[E℄℄; k:K[[[A℄℄℄ ` x : �(�

1

; : : : ; �

n

)[[[B

1

℄℄;K[[[B

2

℄℄℄℄n(e

0

[fKg)

By (Pro Output), [[E℄℄; k:K[[[A℄℄℄ ` xh�

0

1

; : : : ; �

0

n

; y; ki : e

0

� [fKg, as re-

quired.

(Exp Let) Then a = (let x = b

B

in) and e = e

0

[e

00

, with E ` b :

e

0

B and

E; x:B ` :

e

00

A. Assume k =2 L [dom(E). By indution hypothesis:

(

[[E℄℄; k

0

:K[[[B℄℄℄ ` [[b℄℄k

0

: e

0

[fKg

[[E℄℄; x:[[B℄℄; k:K[[[A℄℄℄ ` [[℄℄k : e

00

[fKg

By (Pro Input) and Lemmas B.25 and B.21:

[[E℄℄; k:K[[[A℄℄℄; k

0

:K[[[B℄℄℄ ` k

0

(x:[[B℄℄):[[℄℄k : fKg [(e

00

[fKg)

By (Pro Par) and (Pro Res):

[[E℄℄; k:K[[[A℄℄℄ ` (�k

0

:K[[[B℄℄℄)([[b℄℄k

0

j

k

0

(x:[[B℄℄):[[℄℄k) : (e

0

[fKg) [(e

00

[fKg)

Hene, [[E℄℄; k:K[[[A℄℄℄ ` [[a℄℄k : e [fKg, as required.

(Exp Letregion) Then a = letregion � in b and e = e

0

� f�g, with E; � `

b :

e

0

A and E ` A. Assume k =2 L [dom(E). By indution hypothesis,

[[E℄℄; �; k:K[[[A℄℄℄ ` [[b℄℄k : e

0

[fKg. By Lemma B.54 (2), [[E℄℄ ` [[A℄℄.

Therefore, sine � =2 dom(E), we have that � =2 fg(K[[[A℄℄℄) and, by

Lemma B.24, [[E℄℄; k:K[[[A℄℄℄; � ` [[b℄℄k : e

0

[fKg. By (Pro GRes), [[E℄℄,

k:K[[[A℄℄℄ ` (��)[[b℄℄k : (e

0

[fKg)� f�g, as required.

(Exp Case) Then a = ase x

[B℄at�

of nil) b

1

j (y

1

:: y

2

)) b

2

and e =

f�g[e

1

[e

2

, with E ` x :

?

[B℄ at � and E ` b

1

:

e

1

A and E; y

1

:B; y

2

:[B℄ at

� ` b

2

:

e

2

A. Assume k =2 L [dom(E). By part (1) and indution

hypothesis:

8

>

>

>

<

>

>

>

:

[[E℄℄ ` x : [[[B℄ at �℄℄

[[E℄℄; k:K[[[A℄℄℄ ` [[b

1

℄℄k : e

1

[fKg

[[E℄℄; y

1

:[[B℄℄; y

2

:[[[B℄ at �℄℄; k:K[[[A℄℄℄ ` [[b

2

℄℄k : e

2

[fKg

72

By (Exp Unfold), [[E℄℄ ` x : �[�[℄; �[[[B℄℄; [[[B℄ at �℄℄℄℄. By Lemma B.27 and

(Pro Output):

8

>

>

>

>

>

<

>

>

>

>

>

:

[[E℄℄; k:K[[[A℄℄℄; z

1

:�[℄; z

2

:�[[[B℄℄; [[[B℄ at �℄℄℄ ` xhz

1

; z

2

i : f�g

[[E℄℄; k:K[[[A℄℄℄; z

1

:�[℄; z

2

:�[[[B℄℄; [[[B℄ at �℄℄℄ ` z

1

():[[b

1

℄℄k : e

1

[fKg

[[E℄℄; k:K[[[A℄℄℄; z

1

:�[℄; z

2

:�[[[B℄℄; [[[B℄ at �℄℄℄ `

z

2

(y

1

:[[B℄℄; y

2

:[[[B℄ at �℄℄):[[b

2

℄℄k : e

2

[fKg

By (Pro Par) and (Pro Res), [[E℄℄; k:K[[[A℄℄℄ ` [[a℄℄k : f�g [(e

1

[fKg) [

(e

2

[fKg), as required.

(Exp Fun) Then a = v at � and e = f�g and A = (8[�

1

; : : : ; �

n

℄B

1

e

!

B

2

) at �, where v is the funtion (�(f :A)�[�

1

; : : : ; �

n

℄(x)b) and E; f :A;

�

1

; : : : ; �

n

; x:B

1

` b :

e

0

B

2

and e

0

� e � dom(E; �

1

; : : : ; �

n

). Assume

k =2 L [dom(E) [fpg. Sine f and p are bound names, we an also

assume that k =2 ff; pg. By indution hypothesis and Lemma B.27:

[[E℄℄; p:[[A℄℄; f :[[A℄℄; �

1

; : : : ; �

n

; x:[[B

1

℄℄; k:K[[[B

2

℄℄℄ ` [[b℄℄k : e

0

[fKg

By Lemma B.28:

[[E℄℄; p:[[A℄℄; �

1

; : : : ; �

n

; x:[[B

1

℄℄; k:K[[[B

2

℄℄℄ ` [[bff pg℄℄k : e

0

[fKg

By (Exp x) and (Exp Unfold):

[[E℄℄; p:[[A℄℄ ` p : �(�

1

; : : : ; �

n

)[[[B

1

℄℄;K[[[B

2

℄℄℄℄n(e [fKg)

By (Pro Input), [[E℄℄; p:[[A℄℄ ` [[p 7! v℄℄ : f�g. By (Pro Output) and

Lemma B.27, [[E℄℄; k:K[[[A℄℄℄; p:[[A℄℄ ` khpi : fKg. By (Pro Par) and (Pro

Res), [[E℄℄; k:K[[[A℄℄℄ ` (�p:[[A℄℄) ([[p 7! v℄℄ j khpi) : fK; �g, as required.

(Exp Nil) Then a = nil at � and e = f�g and A = [B℄ at �, where E ` [B℄ at

�. By Lemma B.54 (2), [[E℄℄ ` [[[B℄ at �℄℄. By Lemma B.27:

[[E℄℄; p:[[A℄℄; z

1

:�[℄; z

2

:�[[[B℄℄; [[[B℄ at �℄℄℄ ` z

1

hi : f�g

By (Exp x) and (Exp Unfold):

[[E℄℄; p:[[A℄℄; z

1

:�[℄; z

2

:�[[[B℄℄; [[[B℄ at �℄℄℄ ` p : �[�[℄; �[[[B℄℄; [[[B℄ at �℄℄℄℄

By (Pro Input), [[E℄℄; p:[[A℄℄ ` [[p 7! nil

[B℄at�

℄℄ : f�g. Assume k =2 L [

dom(E)[fpg. By (Pro Output) and Lemma B.27, [[E℄℄; k:K[[[A℄℄℄; p:[[A℄℄ `

khpi : fKg. By (Pro Par) and (Pro Res), [[E℄℄; k:K[[[A℄℄℄ ` (�p:[[A℄℄)([[p 7!

nil

A

℄℄ j khpi) : fK; �g, as required.

73

(Exp Cons) Then a = (x

1

:: x

2

) at � and e = f�g and A = [B℄ at �, where

E ` x

1

:

?

B and E ` x

2

:

?

[B℄ at �. By part (1), [[E℄℄ ` x

1

: [[B℄℄ and

[[E℄℄ ` x

2

: [[[B℄ at �℄℄. By (Exp x), (Exp Unfold) and Lemma B.27:

[[E℄℄; p:[[A℄℄; z

1

:�[℄; z

2

:�[[[B℄℄; [[[B℄ at �℄℄℄ ` p : �[�[℄; �[[[B℄℄; [[[B℄ at �℄℄℄℄

By (Pro Output):

[[E℄℄; p:[[A℄℄; z

1

:�[℄; z

2

:�[[[B℄℄; [[[B℄ at �℄℄℄ ` z

2

hx

1

; x

2

i : f�g

By (Pro Input), [[E℄℄; p:[[A℄℄ ` [[p 7! (x

1

:: x

2

)

A

℄℄ : f�g. Assume k =2

L [dom(E) [fpg. By (Pro Output) and Lemma B.27, [[E℄℄; k:K[[[A℄℄℄;

p:[[A℄℄ ` khpi : fKg. By (Pro Par) and (Pro Res), [[E℄℄; k:K[[[A℄℄℄ `

(�p:[[A℄℄)([[p 7! (x

1

:: x

2

)

A

℄℄ j khpi) : fK; �g, as required. 2

Lemma B.56 If H j= h and h(�)(p) = v then [[env(H)℄℄ ` [[p 7! v℄℄ : f�g.

Proof AssumeH j= h and h(�)(p) = v. By (Heap Good) and (Region Good),

there is a type, A, suh that H(�)(p) = A. By (Exp x), env(H) ` p :

?

A. By

Lemma B.55 (1), [[env (H)℄℄ ` p : [[A℄℄.

By (Heap Good), sine � 2 dom(h), we get that env(H) ` h(�) at � : H(�).

This must have been derived from (Region Good) with env(H) ` v at � :

f�g

A.

Only (Exp Fun), (Exp Nil) and (Exp Cons) an derive this judgment and so we

have three possible ases.

(Exp Fun) Then v is the funtion (�(f :A)�[�

1

; : : : ; �

n

℄(x)b) and A is the type

(8[�

1

; : : : ; �

n

℄B

1

e

! B

2

) at �, with env(H); f :A; �

1

; : : : ; �

n

; x:B

1

` b :

e

0

B

2

and e

0

� e � dom(E; �

1

; : : : ; �

n

). Assume k =2 L [dom(E) [ff; p; xg. By

Lemma B.55 (2):

[[env(H)℄℄; f :[[A℄℄; �

1

; : : : ; �

n

; x:[[B

1

℄℄; k:K[[[B

2

℄℄℄ ` [[b℄℄k : e

0

[fKg

By Lemma B.28, sine [[env(H)℄℄ ` p : [[A℄℄:

[[env(H)℄℄; �

1

; : : : ; �

n

; x:[[B

1

℄℄; k:K[[[B

2

℄℄℄ ` [[bff pg℄℄k : e

0

[fKg

By (Exp Unfold), sine [[env(H)℄℄ ` p : [[A℄℄:

[[env(H)℄℄ ` p : �(�

1

; : : : ; �

n

)[[[B

1

℄℄;K[[[B

2

℄℄℄℄n(e [fKg)

By (Pro Input), [[env(H)℄℄ ` [[p 7! v℄℄ : f�g, as required.

(Exp Nil) Then v = nil and A = [B℄ at �, where env(H) ` [B℄ at � and e =

f�g. Assume z

1

; z

2

are fresh names. By (Pro Output) and Lemma B.27:

[[env(H)℄℄; z

1

:�[℄; z

2

:�[[[B℄℄; [[[B℄ at �℄℄℄ ` z

1

hi : f�g

By (Exp Unfold), sine [[env(H)℄℄ ` p : [[A℄℄:

[[env(H)℄℄ ` p : �[�[℄; �[[[B℄℄; [[[B℄ at �℄℄℄℄

By (Pro Input), [[env(H)℄℄ ` [[p 7! nil

[B℄at�

℄℄ : f�g, as required.

74

(Exp Cons) Then v = (x

1

:: x

2

) and A = [B℄ at �, where env(H) ` x

1

:

?

B

and env(H) ` x

2

:

?

[B℄ at �. By Lemma B.55 (1), [[env(H)℄℄ ` x

1

: [[B℄℄

and [[env(H)℄℄ ` x

2

: [[[B℄ at �℄℄. Assume z

1

; z

2

are fresh names. By (Pro

Output) and Lemma B.27:

[[env(H)℄℄; z

1

:�[℄; z

2

:�[[[B℄℄; [[[B℄ at �℄℄℄ ` z

2

hx

1

; x

2

i : f�g

By (Exp Unfold), sine [[env(H)℄℄ ` p : [[A℄℄:

[[env(H)℄℄ ` p : �[�[℄; �[[[B℄℄; [[[B℄ at �℄℄℄℄

By (Pro Input), [[env(H)℄℄ ` [[p 7! (x

1

:: x

2

)

A

℄℄ : f�g, as required. 2

Lemma B.57 If H j= h and � 2 dom(H) then [[env (H)℄℄ ` [[h(�)℄℄ : f�g.

Proof Assume H j= h and � 2 dom(H). The judgment H j= h must have

been derived from (Heap Good) with env(H) ` h(�) at � : H(�). This must

have been derived from (Region Good) with h(�) = (p

i

7! v

i

)

i21::n

and H(�) =

(p

i

:A

i

)

i21::n

and env(H) ` v

i

at � :

f�g

A

i

for all i 2 1::n. By (Exp x), sine

H(�) = (p

i

:A

i

)

i21::n

, we get that env(H) ` p

i

:

?

A

i

for eah i 2 1::n. By

Lemma B.55 (1), [[env(H)℄℄ ` p

i

: [[A

i

℄℄. By Lemma B.56, [[env (H)℄℄ ` [[p

i

7!

v

i

℄℄ : f�g for eah i 2 1::n. By (Pro Par), [[env(H)℄℄ `

Q

i21::n

[[p

i

7! v

i

℄℄ : f�g.

Hene, [[env (H)℄℄ ` [[h(�)℄℄ : f�g. 2

Lemma B.58 If H j= S � (a; h) : A and k =2 dom

2

(H) [L then:

[[env (H)℄℄; k:K[[[A℄℄℄ ` [[a℄℄k j [[h℄℄ : dom(H) [fKg

and also [[?℄℄; S; k:K[[[A℄℄℄ ` [[S � (a; h

H

)℄℄k : S [fKg.

Proof Assume H j= S � (a; h) : A and k =2 dom

2

(H)[L. Only (Con�g Good)

an derive this judgment and so env(H) ` a :

e

A, e [fg(A) � S, H j= h, and

S � dom(H). By Lemma B.55 (2), [[env(H)℄℄; k:K[[[A℄℄℄ ` [[a℄℄k : e [fKg. By

Lemma B.57 and (Pro Par), [[env(H)℄℄ ` [[h℄℄ :

S

�2dom(H)

f�g. By (Pro Par)

and Lemma B.27, [[env (H)℄℄; k:K[[[A℄℄℄ ` [[a℄℄k j [[h℄℄ : dom(H) [e [fKg. Sine

e � dom(H), we get that [[env(H)℄℄; k:K[[[A℄℄℄ ` [[a℄℄k j [[h℄℄ : dom(H) [fKg, as

desired.

By (Pro Res) and (Pro GRes), sine env(H) = dom(H); ptr(H), we get

that [[?℄℄; S; k:K[[[A℄℄℄ ` (�(dom(H)�S))(�[[ptr (H)℄℄)([[a℄℄k j [[h℄℄) : S [fKg, that

is, [[?℄℄; S; k:K[[[A℄℄℄ ` [[S � (a; h

H

)℄℄k : S [fKg. 2

The following asserts that the enoding of the extended region alulus in

our extended �-alulus preserves the stati semantis. This fat orresponds

to Theorem 4.1 for the unextended aluli.

Theorem B.59 (Stati Adequay)

(1) If E ` � then [[E℄℄ ` �.

75

(2) If E ` A then [[E℄℄ ` [[A℄℄.

(3) If E ` a :

e

A and k =2 dom([[E℄℄) then

[[E℄℄; k:K[[[A℄℄℄ ` [[a℄℄k : e [fKg

(4) If H j= h and � 2 dom(H) then

[[env(H)℄℄ ` [[h(�)℄℄ : f�g

(5) If H j= S � (a; h) : A and k =2 [[env(H)℄℄ then

[[env(H)℄℄; k:K[[[A℄℄℄ ` [[a℄℄k j [[h℄℄ : dom(H) [fKg

and also

[[?℄℄; S; k:K[[[A℄℄℄ ` [[S � (a; h)℄℄k : S [fKg

Proof Combine Lemmas B.54, B.55, B.57 and B.58. 2

B.6.2 An Auxiliary Small Step Semantis

This setion de�nes an auxiliary small step semantis for the region alulus.

We prove Theorem B.62, that relates small step redutions to evaluations in the

big step semantis.

Continuations and Control stak:

 ::= ontinuations

popregion � marker to dealloate region �

(x:A)b ontinuation with argument x

C ::= [

1

; : : : ;

n

℄ stak of ontinuations

The redution relation, S � (a; h; C) ! S

0

� (a

0

; h

0

; C

0

), may be read: in an

initial heap h, with ontrol stak C and live regions S, the expression a redues

to a

0

with updated heap h

0

, ontrol stak C

0

, and live regions S

0

.

Redution: S � (a; h; C)! S

0

� (a

0

; h

0

; C

0

)

(Red Allo)

� 2 S p =2 dom

2

(h)

S � (v at �; h; C)! S � (p; h+ (� 7! (h(�) + (p 7! v))); C)

(Red Appl)

� 2 S h(�)(p) = �(f :A)�[�

1

; : : : ; �

n

℄(x)b

S � (p[�

0

1

; : : : ; �

0

n

℄(q); h; C)! S � (bff pgf�

1

 �

0

1

g � � � f�

n

 �

0

n

gfx qg; h; C)

76

(Red Let)

S � (let x = a

A

in b; h; C)! S � (a; h; (x:A)b :: C)

(Red Pop Let)

S � (p; h; (x:A)b :: C)! S � (bfx pg; h; C)

(Red Letregion)

� =2 (S [dom(h))

S � (letregion � in a; h; C)! (S [f�g) � (a; h+ � 7! ?; C)

(Red Pop Letregion)

� 2 S

S � (p; h; popregion � :: C)! (S � f�g) � (p; h; C)

(Red Case 1)

� 2 S h(�)(p) = nil

S � (ase p of nil) b

1

j (y

1

:: y

2

)) b

2

; h)! S � (b

1

; h; C)

(Red Case 2)

� 2 S h(�)(p) = q

1

:: q

2

S � (ase p of nil) b

1

j (y

1

:: y

2

)) b

2

; h)! S � (b

2

fy

1

 q

1

gfy

2

 q

2

g; h; C)

The stati semantis de�nes new heap judgments used to type the elements

in the ontrol stak.

Heap Judgments:

~

B ::= [A

1

; : : : ; A

n

℄ stak of types

H j= S � C :

~

B the ontrol stak C has type

~

B

H j= S � (a; h; C) : A in H , the on�guration (a; h; C) returns A

Region and Heap Rules:

(Control Good Empty)

env(H) ` A fg(A) � S

H j= S � [℄ : [A℄

(Control Good Mark)

H j= S � C :

~

B � =2 S

H j= (S [f�g) � (popregion � :: C) :

~

B

(Control Good Cont)

env(H); x:A ` b :

e

B fg(A) [e � S H j= S � C : (B ::

~

B)

H j= S � ((x:A)b :: C) : (A :: B ::

~

B)

77

(Small Con�g Good)

H j= S � (a; h) : A H j= S � C : (A ::

~

B)

H j= S � (a; h; C) : last(A ::

~

B)

Lemma B.60 If H j= S �(a; h; C) : A and S �(a; h) + (p

0

; h

0

) then S �(a; h; C)!

�

S � (p

0

; h

0

; C).

Proof An easy indution on the derivation of S � (a; h) + (p

0

; h

0

). 2

Lemma B.61 If H j= S � (a; h; [℄) : A and S � (a; h; [℄) !

�

S

0

� (p

0

; h

0

; [℄) then

S � (a; h) + (p

0

; h

0

).

Proof Assume H j= S � (a; h; C) : A and S � (a; h; C)!

�

S

0

� (p

0

; h

0

; [℄). The

lemma follows by showing that:

(1) If C = [℄ then S � (a; h) + (p

0

; h

0

).

(2) If C = (popregion � :: C

0

) then � 2 S and there is p

0

; h

0

suh that S �(a; h) +

(p

0

; h

0

) and S � (p

0

; h

0

; C

0

)!

�

S

0

� (p

0

; h

0

; [℄).

(3) If C = ((x:B)b :: C

0

) then there is �; p

0

; h

0

suh that S � (a; h) + (p

0

; h

0

)

and � =2 (S [dom(h

0

)) and S = S

0

[f�g and S

0

� (bfx p

0

g; h

0

; C

0

) !

�

S

0

� (p

0

; h

0

; [℄).

We proeed by indution on the derivation of S � (a; h; C)!

�

S

0

� (p

0

; h

0

; [℄).

The base ase is for an empty redution sequene, that is, a = p

0

and h = h

0

and C = [℄. By (Eval Var), S � (a; h) + (p

0

; h

0

), as required.

In the general ase, there is S

0

; a

0

; h

0

; C

0

suh that S�(a; h; C)! S

0

�(a

0

; h

0

; C

0

)

and S

0

� (a

0

; h

0

; C

0

) !

�

S

0

� (p

0

; h

0

; [℄). We proeed by ase analysis on the

derivation of S � (a; h; C)! S

0

� (a

0

; h

0

; C

0

).

(Red Allo) Then a = (v at �), and a

0

= p, and h

0

= h+ (� 7! (h(�) + (p 7!

v))), and S

0

= S, and C

0

= C, where � 2 S and p =2 dom

2

(h). For part

(1), by indution hypothesis (1), we get S � (p; h) + (p

0

; h

0

). This must

have been derived from (Eval Var) with p = p

0

and h

0

= h

0

. By (Eval

Allo), S � (a; h) + (p

0

; h

0

). Parts (2) and (3) are similar.

(Red Appl) Then a = p[�

0

1

; : : : ; �

0

n

℄(q), and a

0

= bff pgfx qg�, and h

0

=

h, and S

0

= S, and C

0

= C, where � 2 S, h(�)(p) is the funtion

�(f :A)�[�

1

; : : : ; �

n

℄(x)b and � is the substitution f�

1

 �

0

1

g � � � f�

n

 �

0

n

g.

For part (1), by indution hypothesis (1), we get that S

0

�(a

0

; h

0

) + (p

0

; h

0

).

By (Eval Appl), S � (a; h) + (p

0

; h

0

). Parts (2) and (3) are similar.

(Red Let) Then a = (let x = a

0

A

0

in b), and C

0

= (x:A

0

)b :: C, and h

0

= h, and

S

0

= S. By indution hypothesis (3), there is p

00

; h

00

suh that S

0

�(a

0

; h

0

) +

(p

00

; h

00

) and S

0

� (bfx p

00

g; h

00

) + (p

0

; h

0

). For part (1), by (Eval Let), we

get that S � (a; h) + (p

0

; h

0

). Parts (2) and (3) are similar.

78

(Red Pop Let) Then a = p, and a

0

= bfx pg, and C = (x:A

0

)b :: C

0

, and

h

0

= h, and S

0

= S, and S � (bfx pg; h; C

0

) !

�

S

0

� (p

0

; h

0

; [℄). We only

have to onsider part (3). By (Eval Var), S � (a; h) + (p; h), as required.

(Red Letregion) Then a = (letregion � in a

0

), and h

0

= h + � 7! ?, and

S

0

= S [f�g, where � =2 (S [dom(h)), and C = C

0

. For part (1), by

indution hypothesis (1), we get that (S [f�g) � (a

0

; h

0

) + (p

0

; h

0

). By

(Eval Letregion), S � (a; h) + (p

0

; h

0

). Parts (2) and (3) are similar.

(Red Pop Letregion) Then a = a

0

= p, and h = h

0

, and there is � 2 S

suh that S

0

= S n f�g, and C = (popregion � :: C

0

), and S

0

� (p; h; C

0

)!

�

S

0

�(p

0

; h

0

; [℄). We only have to onsider part (2). By (Eval Var), S �(a; h) +

(p; h), as required.

(Red Case 1) Then a = ase p of nil) a

0

j (y

1

:: y

2

)) b

2

, and h = h

0

,

and C = C

0

, where � 2 S and h(�)(p) = nil . For part (1), by indution

hypothesis (1), we get that S � (a

0

; h) + (p

0

; h

0

). By (Eval Case 1), S �

(a; h) + (p

0

; h

0

). Parts (2) and (3) are similar.

(Red Case 2) Then a = ase p of nil) b

1

j (y

1

:: y

2

)) b

2

, and a

0

=

b

2

fy

1

 q

1

gfy

2

 q

2

g, and h = h

0

, and C = C

0

, where � 2 S and h(�)(p) =

q

1

:: q

2

. For part (1), by indution hypothesis (1), we get that S � (a

0

; h) +

(p

0

; h

0

). By (Eval Case 2), S � (a; h) + (p

0

; h

0

). Parts (2) and (3) are

similar. 2

Theorem B.62 Suppose H j= S � (a; h) : A. Then S � (a; h) + (p

0

; h

0

) if and

only if S � (a; h; [℄)!

�

S � (p

0

; h

0

; [℄).

Proof Assume H j= S � (a; h) : A. By (Small Con�g Good) and (Control

Good Empty), H j= S � (a; h; [℄) : A. If S � (a; h) + (p

0

; h

0

) then, by Lemma B.60,

S �(a; h; [℄)!

�

S �(p

0

; h

0

; [℄). If S �(a; h; [℄)!

�

S �(p

0

; h

0

; [℄) then, by Lemma B.61,

S � (a; h) + (p

0

; h

0

). 2

B.6.3 Proof of Dynami Adequay

� The length of a ontrol stak, length(C), is the number of ontinuations

ontained in C, that is, length([℄) = 0, and length(popregion � :: C) =

length(C), and length((x:A)b :: C) = length(C) + 1.

� The types of a ontrol stak, types(C), is the sequene of types indutively

de�ned from C by the following rules, types([℄) is the empty sequene, and

types(popregion � :: C) = types(C), and types((x:A)b :: C) = A; types(C).

Translation rules:

Let

~

k be a stak, [k

1

; : : : ; k

n

℄, of n pairwise distint names.

[[(x:A)b :: C℄℄

~

k

�

= k

1

(x:K[[[A℄℄℄):[[b℄℄k

2

j [[C℄℄[k

2

; : : : ; k

n

℄

[[popregion � :: C℄℄

~

k

�

= [[C℄℄

~

k

[[[℄℄℄

~

k

�

= 0

79

Let f~�g = dom(H)� S, and n = length(C), and [A

1

,. . . ,A

n

℄ = types(C),

and k

1

; : : : ; k

n+1

be a sequene of n+ 1 pairwise distint names.

[[S � (a; h

H

; C)℄℄k

n+1

�

= (�~�)(�[[ptr (H)℄℄)(�k

1

:K[[[A

1

℄℄℄) � � � (�k

n

:K[[[A

n

℄℄℄)

([[a℄℄k

1

j [[h℄℄ j [[C℄℄[k

1

; : : : ; k

n+1

℄)

In the ase of an empty ontrol stak, C = [℄, the translation of a small-step

on�guration, S � (a; h

H

; C), equals the translation of the big-step on�guration

S � (a; h

H

). That is, we have the following property:

Lemma B.63 [[S � (a; h

H

; [℄)℄℄k = [[S � (a; h

H

)℄℄k.

Lemma B.64 If H j= S � C : [A

1

; : : : ; A

n+1

℄ then [[env (H)℄℄; k

1

:K[[[A

1

℄℄℄; : : : ;

k

n+1

:K[[[A

n+1

℄℄℄ ` [[C℄℄[k

1

; : : : ; k

n+1

℄ : dom(H) [fKg.

Proof By indution on the struture of C. Let

~

B be the stak of types

[A

1

; : : : ; A

n+1

℄.

(Empty) Then C = [℄ and n = 0. The judgment H j= S � C :

~

B must have

been derived by (Control Good Empty) with

~

B = [A

1

℄ and env(H) ` A

1

.

By Lemma B.54, [[env (H)℄℄ ` [[A

1

℄℄. By (Pro Zero) and Lemma B.27,

[[env (H)℄℄; k

1

:K[[[A

1

℄℄℄ ` 0 : ?. By (Pro Subsum), [[env(H)℄℄; k

1

:K[[[A

1

℄℄℄ `

[[[℄℄℄[k

1

℄ : dom(H) [fKg.

(Cont) Then C = (x:A

1

)b :: C

0

. The judgment H j= S � C :

~

B must have been

derived by (Control Good Cont) with env(H); x:A

1

` b :

e

A

2

and H j=

S � C

0

: (A

2

; : : : ; A

n+1

). By Lemma B.55, [[env(H)℄℄; x:[[A

1

℄℄; k

2

:K[[[A

2

℄℄℄ `

[[b℄℄k

2

: e[fKg. Therefore, by (Pro Input) and Lemma B.27, we get that

[[env (H)℄℄; k

1

:K[[[A

1

℄℄℄; k

2

:K[[[A

2

℄℄℄ ` k

1

(x:[[A

1

℄℄):[[b℄℄k

2

: e [fKg. By in-

dution hypothesis, [[env(H)℄℄; k

2

:K[[[A

2

℄℄℄; : : : ; k

n+1

:K[[[A

n+1

℄℄℄ ` [[C

0

℄℄[k

2

;

: : : ; k

n+1

℄ : dom(H)[fKg. By (Pro Par) and Lemma B.27, we �nally ob-

tain that [[env(H)℄℄; k

1

:K[[[A

1

℄℄℄; : : : ; k

n+1

:K[[[A

n+1

℄℄℄ ` [[C℄℄[k

1

; : : : ; k

n+1

℄ :

dom(H) [fKg, as required.

(Pop) Then C = popregion � :: C

0

and [[C℄℄

~

k = [[C

0

℄℄

~

k. The judgment H j=

S �C :

~

B must have been derived by (Control Good Mark) withH j= S �C

0

:

~

B. By indution hypothesis, [[env (H)℄℄; k

1

:K[[[A

℄

℄℄; : : : ; k

n+1

:K[[[A

n+1

℄℄℄ `

[[C

0

℄℄[k

2

; : : : ; k

n+1

℄ : dom(H) [fKg, as required. 2

Proposition B.65 If H j= S � (a; h; C) : A then:

[[?℄℄; S; k:K[[[A℄℄℄ ` [[S � (a; h

H

; C)℄℄k : S [fKg

Proof Assume H j= S � (a; h; C) : A and k =2 dom

2

(H) [L. Only (Small

Con�g Good) an derive this judgment and so H j= S � (a; h) : A

1

and H j=

S � C : [A

1

; : : : ; A

n+1

℄ with n = length(C) and A = A

n+1

. Let

~

k be the stak

[k

1

; : : : ; k

n+1

℄ and

~

T be the sequene K[[[A

1

℄℄℄; : : : ;K[[[A

n+1

℄℄℄.

80

By Lemma B.58, [[env(H)℄℄; k

1

:T

1

` [[a℄℄k

1

j [[h℄℄ : dom(H) [fKg. By

Lemma B.64, [[env (H)℄℄;

~

k:

~

T ` [[C℄℄

~

k : dom(H) [fKg. By (Pro Par) and

Lemma B.27, [[env(H)℄℄;

~

k:

~

T ` [[a℄℄k

1

j [[h℄℄ j [[C℄℄

~

k : dom(H) [fKg.

By (Pro Res) and (Pro GRes), [[?℄℄; S; k

n+1

:K[[[A℄℄℄ ` [[S � (a; h

H

; C)℄℄k :

S [fKg. 2

Lemma B.66 If H j= S � (a; h; C) : A and S � (a; h; C) ! S

0

� (a

0

; h

0

; C

0

), then

there is a heap typing H

0

, with H � H

0

, suh that H +H

0

j= S

0

� (a

0

; h

0

; C

0

) : A

and that, for all hannel k with k =2 (dom

2

(H +H

0

) [L), we have:

[[?℄℄; S; k:K[[[A℄℄℄ ` [[S � (a; h

H

; C)℄℄k � [[S

0

� (a

0

; h

0

H+H

0

; C

0

)℄℄k

Proof By indution on the derivation of S �(a; h; C)! S

0

�(a

0

; h

0

; C

0

). Assume

H j= S �(a; h; C) : A. Let ~� = dom(H)�S, and H = [[ptr(H)℄℄, and

~

k be a stak,

[k

1

; : : : ; k

n

℄, made of pairwise distint variables suh that f

~

kg\ (dom

2

(H)[L[

fkg) = ?. Let A

1

,. . . ,A

n

be the sequene types(C) and let T

i

denote the �-

alulus type K[[[A

i

℄℄℄ for eah i 2 1::n. In the remainder of this proof, we

will use the notation (�

~

k:

~

T)P for the proess (�k

1

:T

1

) � � � (�k

n

:T

n

)P and we

will sometimes use k

n+1

and A

n+1

instead of k and A. We will also omit

type annotations when they an be easily inferred from the environment. Let

E

�

= [[?℄℄; S; k:K[[[B℄℄℄.

(Red Allo) We have a = (v at �) and a

0

= p, where � 2 S and p =2 dom

2

(h),

and h

0

= h+(� 7! (h(�) + (p 7! v))), and C

0

= C. By (Con�g Good) and

(Region Good), sine H j= S � (a; h; C) : A, there is a type B suh that

env(H) ` a :

f�g

B. Take H

0

= (� 7! [p 7! v℄). Then:

H +H

0

j= S

0

� (a

0

; h

0

; C

0

) : A

[[S � (a; h

H

; C)℄℄k = (�~�)(�H)(�

~

k:

~

T)

((�p:[[A℄℄)([[p 7! v℄℄ j k

1

hpi) j [[h℄℄ j [[C℄℄[

~

k; k℄)

[[S

0

� (a

0

; h

0

H+H

0

; C

0

)℄℄k � (�~�)(�H)(�p:[[A℄℄)(�

~

k:

~

T)

(k

1

hpi j ([[h℄℄ j [[p 7! v℄℄) j [[C℄℄[

~

k; k℄)

Therefore [[S � (a; h

H

; C)℄℄k � [[S

0

� (a

0

; h

0

H+H

0

; C

0

)℄℄k. By Lemma B.40 and

Proposition B.65, E ` [[S � (a; h

H

; C)℄℄k � [[S

0

� (a

0

; h

0

H+H

0

; C

0

)℄℄k.

(Red Appl) We have a = p[�

0

1

; : : : ; �

0

n

℄(q) and a

0

= bff pgfx qg�, where

h(�)(p) is a funtion v = �(f :F)�[�

1

; : : : ; �

n

℄(x)b, S = S

0

, h = h

0

, C =

C

0

and � is the substitution f�

1

 �

0

1

g � � � f�

n

 �

0

n

g. Take H

0

= ?. By

Lemma B.11 and (Small Con�g Good), sine H j= S � (a; h; C) : A, we get

that H +H

0

j= S

0

� (a

0

; h

0

; C

0

) : A. Moreover:

[[S � (a; h

H

; C)℄℄k = (�~�)(�H)(�

~

k:

~

T)

(ph�

1

; : : : ; �

n

; q; k

1

i j [[h℄℄ j [[C℄℄[

~

k; k℄)

81

where [[h℄℄ � ([[(p 7! v)℄℄ j Q), for some Q suh that p =2 inp(Q). By

Proposition A.8 (5):

E ` [[S � (a; h

H

; C)℄℄k � (�~�)(�H)(�

~

k:

~

T)

([[bff pg℄℄k

1

f�

1

 �

0

1

g � � � f�

n

 �

0

n

gfx qg j [[h℄℄ j [[C℄℄[

~

k; k℄)

Hene, E ` [[S � (a; h

H

; C)℄℄k � [[S

0

� (a

0

; h

0

H+H

0

; C

0

)℄℄k.

(Red Let) We have a = (let x = a

0

A

0

in b), and C

0

= ((x:A

0

)b :: C), and

S = S

0

, and h = h

0

. Take H

0

= ?. By (Control Good Cont) and (Small

Con�g Good), H +H

0

j= S

0

� (a

0

; h

0

; C

0

) : A. Moreover:

[[S � (a; h

H

; C)℄℄k = (�~�)(�H)(�

~

k:

~

T)((�k

0

:K[[[A℄℄℄)([[a

0

℄℄k

0

j

k

0

(x:[[A

0

℄℄):[[b℄℄k

1

) j [[h℄℄ j [[C℄℄[

~

k; k℄)

� (�~�)(�H)(�k

0

: K[[[A

0

℄℄℄)(�

~

k:

~

T)

([[a

0

℄℄k

0

j [[h℄℄ j (k

0

(x:[[A℄℄):[[b℄℄k

1

j [[C℄℄[

~

k; k℄))

If T

0

= K[[[A

0

℄℄℄ then:

[[S

0

� (a

0

; h

0

H+H

0

; C

0

)℄℄k = (�~�)(�H)(�k

0

:T

0

;

~

k:

~

T)

([[a

0

℄℄k

0

j [[h℄℄ j [[(x:A

0

)b :: C℄℄[k

0

;

~

k; k℄)

Therefore, [[S � (a; h

H

; C)℄℄k � [[S

0

� (a

0

; h

0

H+H

0

; C

0

)℄℄k. By Lemma B.40,

E ` [[S � (a; h

H

; C)℄℄k � [[S

0

� (a

0

; h

0

H+H

0

; C

0

)℄℄k.

(Red Pop Let) We have a = p, and a

0

= bfx pg, and C = (x:A

1

)b :: C

0

,

and S = S

0

, and h = h

0

. Take H

0

= ?. By Lemma B.11, we get that

H +H

0

j= S

0

� (a

0

; h

0

; C

0

) : A. Let

~

k

0

be the sequene [k

2

; : : : ; k

n

℄.

[[S � (a; h

H

; C)℄℄k = (�~�)(�H)(�

~

k:

~

T)

(k

1

hpi j [[h℄℄ j (k

1

(x:[[A

1

℄℄):([[b℄℄k

2

) j [[C℄℄[

~

k

0

; k℄))

Let

~

T

0

denote the sequene T

2

, . . . , T

n

. By Lemma A.5:

E ` [[S � (a; h

H

; C)℄℄k � (�~�)(�H)(�

~

k

0

:

~

T

0

)

([[bfx pg℄℄k

2

j [[h℄℄ j [[C℄℄(

~

k

0

; k))

Hene, E ` [[S � (a; h

H

; C)℄℄k � [[S

0

� (a

0

; h

0

H+H

0

; C

0

)℄℄k.

(Red Letregion) We have a = (letregion � in a

0

), where � =2 (S [dom(h)),

and S

0

= S [f�g, and h

0

= h+ � 7! ?, and C = C

0

. Take H

0

= (� 7! ?).

Then:

[[S � (a; h

H

; C)℄℄k = (�~�)(�H)(�

~

k:

~

T)

(((��)[[a

0

℄℄k

1

) j [[h℄℄ j [[C℄℄[

~

k; k℄)

[[S

0

� (a

0

; h

0

H+H

0

; C

0

)℄℄k = (��)(�~�)(�H)(�

~

k:

~

T)

([[a

0

℄℄k

1

j [[h℄℄ j [[C℄℄[

~

k; k℄)

82

Sine the name � is bound, we may assume that it is di�erent from the

names in H and

~

k. Therefore [[S � (a; h

H

; C)℄℄k � [[S

0

� (a

0

; h

0

H+H

0

; C

0

)℄℄k.

By Lemma B.40, E ` [[S � (a; h

H

; C)℄℄k � [[S

0

� (a

0

; h

0

H+H

0

; C

0

)℄℄k.

(Red Pop Letregion) We have a = a

0

= p, and C = popregion � :: C

0

, and

� 2 S, and S

0

= S n f�g, and h = h

0

. Take H

0

= ?. Then H + H

0

j=

S

0

� (a

0

; h

0

; C

0

) : A, and:

[[S � (a; h

H

; C)℄℄k = (�~�)(�H)(�

~

k:

~

T)(k

1

hpi j [[h℄℄ j [[C℄℄[

~

k; k℄)

where [[C℄℄[

~

k; k℄ = [[C

0

℄℄[

~

k; k℄. Therefore, [[S �(a; h

H

; C)℄℄k � [[S

0

�(a

0

; h

0

H+H

0

;

C

0

)℄℄k. By Lemma B.40, E ` [[S � (a; h

H

; C)℄℄k � [[S

0

� (a

0

; h

0

H+H

0

; C

0

)℄℄k.

(Red Case 1) Then a = ase p of nil) b

1

j (y

1

:: y

2

)) b

2

and a

0

= b

1

where

� 2 S and h(�)(p) = nil and S = S

0

and h = h

0

. Take H

0

= ?. Therefore

H +H

0

j= S

0

� (a

0

; h

0

; C

0

) : A and:

[[S � (a; h

H

; C)℄℄k = (�~�)(�H)(�

~

k:

~

T)

((�z

1

)(�z

2

)(phz

1

; z

2

i j z

1

():[[b

1

℄℄k j z

2

(y

1

; y

2

):[[b

2

℄℄k)

j [[h℄℄ j [[C℄℄[

~

k; k℄)

where [[h℄℄ � ([[p 7! [[nil ℄℄℄℄ j Q) for some Q suh that p =2 inp(Q). By

Proposition A.8 (5):

E ` [[S � (a; h

H

; C)℄℄k � (�~�)(�H)(�

~

k:

~

T)

((�z

1

)(�z

2

)(z

1

hi j z

1

():[[b

1

℄℄k j z

2

(y

1

; y

2

):[[b

2

℄℄k) j [[h℄℄ j [[C℄℄[

~

k; k℄)

By Lemma A.5,

E ` [[S � (a; h

H

; C)℄℄k � (�~�)(�H)(�

~

k:

~

T)

((�z

2

)(z

2

(y

1

; y

2

):[[b

2

℄℄k) j [[b

1

℄℄k j [[h℄℄ j [[C℄℄[

~

k; k℄)

By Lemma A.7, E ` [[S � (a; h

H

; C)℄℄k � [[S

0

� (a

0

; h

0

H+H

0

; C

0

)℄℄k.

(Red Case 2) Then a = ase p of nil) b

1

j (y

1

:: y

2

)) b

2

and a

0

=

b

2

fy

1

 q

1

gfy

2

 q

2

g where � 2 S and h(�)(p) = q

1

:: q

2

and S = S

0

and h = h

0

. Take H

0

= ?. Therefore H +H

0

j= S

0

� (a

0

; h

0

; C

0

) : A and:

[[S � (a; h

H

; C)℄℄k = (�~�)(�H)(�

~

k:

~

T)

((�z

1

)(�z

2

)(phz

1

; z

2

i j z

1

():[[b

1

℄℄k j z

2

(y

1

; y

2

):[[b

2

℄℄k)

j [[h℄℄ j [[C℄℄[

~

k; k℄)

where [[h℄℄ � ([[p 7! [[q

1

:: q

2

℄℄℄℄ j Q) for some Q suh that p =2 inp(Q). By

Proposition A.8 (5):

E ` [[S � (a; h

H

; C)℄℄k � (�~�)(�H)(�

~

k:

~

T)(�z

1

)(�z

2

)

(z

2

hq

1

; q

2

i j z

1

():[[b

1

℄℄k j z

2

(y

1

; y

2

):[[b

2

℄℄k j [[h℄℄ j [[C℄℄[

~

k; k℄)

83

By Lemma A.5,

E ` [[S � (a; h

H

; C)℄℄k � (�~�)(�H)(�

~

k:

~

T)(�z

1

)

(z

1

():[[b

1

℄℄k) j [[b

2

℄℄kfy

1

 q

1

gfy

2

 q

2

g j [[h℄℄ j [[C℄℄[

~

k; k℄

By Lemma A.7, E ` [[S � (a; h

H

; C)℄℄k � [[S

0

� (a

0

; h

0

H+H

0

; C

0

)℄℄k. 2

The following asserts that the enoding of the extended region alulus pre-

serves the dynami semantis. A proof of Theorem 4.2, dynami adequay for

the unextended aluli, an be obtained by de�ning an auxiliary (unextended)

small-step semantis for the region alulus and simplifying the following proof.

Theorem B.67 If H j= S � (a; h) : A and S � (a; h) + (p

0

; h

0

) then there is H

0

suh that H � H

0

and H+H

0

j= S �(p

0

; h

0

) : A and for all k =2 dom

2

(H+H

0

)[L,

[[?℄℄; S; k:K[[[A℄℄℄ ` [[S � (a; h

H

)℄℄k � [[S � (p

0

; h

0

H+H

0

)℄℄k.

Proof Assume H j= S � (a; h) : A and S � (a; h) + (p

0

; h

0

). By Theorem B.62,

we have S � (a; h; [℄)!

�

S � (p

0

; h

0

; [℄). By rule (Control Good Empty) and (Small

Con�g Good), we have H j= S � (a; h; [℄) : A. By Lemma B.66, there is a heap

typing H

0

, with H � H

0

, suh that H +H

0

j= S � (p

0

; h

0

; [℄) : A and that, for all

hannel k with k =2 (dom

2

(H +H

0

) [L), we have:

[[?℄℄; S; k:K[[[A℄℄℄ ` [[(H;S; a; h; [℄)℄℄k � [[(H +H

0

; S; p

0

; h

0

; [℄)℄℄k

By Lemma B.63, [[?℄℄; S; k:K[[[A℄℄℄ ` [[S � (a; h

H

)℄℄k � [[(S;H+H

0

; p

0

; h

0

)℄℄k. 2

B.6.4 Proof of Garbage Colletion for the �-Calulus

The following property asserts that defunt regions make no di�erene to the

behaviour of a program. It orresponds to Theorem 4.4 for the unextended

aluli.

Theorem B.68 Suppose H j= S � (a; h) : A and k =2 dom

2

(H) [L. Let

f~�

defunt

g = dom(H)� S. Then:

[[?℄℄; S; k:K[[[A℄℄℄ ` [[S � (a; h)℄℄k

� (�~�

defunt

)(�[[ptr (H)℄℄)([[a℄℄k j

Q

�2S

[[H(�)℄℄)

Proof Let ~� be a sequene of groups, �

1

, . . . , �

m

, suh that f~�g = S. Let

~�

defunt

be a sequene of groups, �

0

1

, . . . , �

0

n

, suh that f~�

defunt

g = dom(H)�S.

For the sake of brevity, we use the symbol ~�

�

instead of ~�

defunt

in the remainder

of this proof. In partiular (f~�g [fKg) \ f~�

�

g = ?. Let:

h = ~� 7! ~r; ~�

�

7! ~r

�

H = ~� 7!

~

R; ~�

�

7!

~

R

�

env(H) = ~�; ~�

�

; ~r at ~�;~r

�

at ~�

�

84

By (Con�g Good), H j= S � (a; h) : A implies env(H) ` a :

e

A and e[fg(A) � S

and H j= S � h. By Theorem 4.1, we have that:

[[?℄℄; ~�; ~�

�

; [[~r at ~�℄℄; [[~r

�

at ~�

�

℄℄; k:K[[[A℄℄℄ ` [[a℄℄k : e [fKg

[[?℄℄; ~�; ~�

�

; [[~r at ~�℄℄; [[~r

�

at ~�

�

℄℄; k:K[[[A℄℄℄ ` [[~� 7! ~r℄℄ : f~�g

[[?℄℄; ~�; ~�

�

; [[~r at ~�℄℄; [[~r

�

at ~�

�

℄℄; k:K[[[A℄℄℄ ` [[~�

�

7! ~r

�

℄℄ : f~�

�

g

Let P = [[a℄℄k j [[~� 7! ~r℄℄. By an exhange lemma, we get:

[[?℄℄; ~�; k:K[[[A℄℄℄; ~�

�

; [[~r at ~�℄℄; [[~r

�

at ~�

�

℄℄ ` P : f~�;Kg

[[?℄℄; ~�; k:K[[[A℄℄℄; ~�

�

; [[~r at ~�℄℄; [[~r

�

at ~�

�

℄℄ ` [[~�

�

7! ~r

�

℄℄ : f~�

�

g

By Theorem B.53 sevral times, we get:

[[?℄℄; S; k:K[[[A℄℄℄ ` (�~�

�

)(�[[~r at ~�℄℄)(�[[~r

�

at ~�

�

℄℄)

(P j [[~�

�

7! ~r

�

℄℄) � (�~�

�

)(�[[~r at ~�℄℄)(�[[~r

�

at ~�

�

℄℄)P

But this is:

[[?℄℄; S; k:K[[[A℄℄℄ ` [[S � (a; h)℄℄k

� (�~�

defunt

)(�[[ptr (H)℄℄)([[a℄℄k j

Q

�2S

[[H(�)℄℄)

2

B.7 An Equational Theory

We now prove that the equational theory for the region alulus is sound with

respet to our enoding in the �-alulus with groups. This property is given by

Theorem 5.2, that the enoding of equivalent expressions are (barbed) equivalent

proesses. In this appendix we onsider the simple region alulus introdued

in Setion 2. For the sake of brevity we have not onsidered the details of how

to extend this theory to the polymorphi region alulus.

We start by proving Lemma B.69, that the enoding of a term obtained by

substituting an alloation v at �, to a variable x, in a term b, is equivalent to the

proess obtained by substituting to x in [[b℄℄, a private link to a repliated opy

of the proess [[v℄℄. This property is used in the proof of Theorem 5.2. More

preisely, it is needed in the proof that the enoding of �-equivalent terms are

equivalent proesses.

Note that this is the only result of this paper that relies on the loality

restrition imposed on the �-alulus.

Lemma B.69 Consider two expressions a and b suh that a is an alloation,

v at �, with E ` a :

f�g

A and E; x:A ` b :

e

B and E ` bfx ag :

e

0

B. If

p =2 fv (v) [fv(b) and k =2 dom(E) [L then:

[[E℄℄; k:K[[[B℄℄℄ ` [[bfx ag℄℄k � (�p:[[A℄℄)([[p 7! v℄℄ j [[bfx pg℄℄k)

Proof By indution on the struture of b. Let a be an alloation, v at �.

Assume E ` a :

f�g

A and E; x:A ` b :

e

B and E ` bfx ag :

e

0

B. Let

k =2 dom(E) [L. By Theorem 4.1 (3), [[E℄℄; x:[[A℄℄; k:K[[[B℄℄℄ ` [[b℄℄k : e [fKg

85

and [[E℄℄; k:K[[[B℄℄℄ ` [[bfx ag℄℄k : e

0

[fKg. By Lemma B.56, [[E℄℄; p:[[A℄℄ `

[[p 7! v℄℄ : f�g. By (Pro Par), (Pro Res) and Lemma B.28, [[E℄℄; k:K[[[B℄℄℄ `

(�p:[[A℄℄)([[p 7! v℄℄ j [[bfx pg℄℄k). Hene [[E℄℄; k:K[[[B℄℄℄ ` [[bfx ag℄℄k and [[E℄℄;

k:K[[[B℄℄℄ ` (�p:[[A℄℄)([[p 7! v℄℄ j [[bfx pg℄℄k).

For the sake of brevity, we omit the type annotations in the enoding of

region alulus terms in the remainder of this proof.

(Variable) Then b

�

= y. If y = x then [[bfx ag℄℄k = [[v at �℄℄k = (�p)([[p 7! v℄℄ j

[[p℄℄k), as required. If y 6= x then [[bfx ag℄℄k = [[y℄℄k. By Lemma A.7, sine

p =2 fv([[y℄℄k), we get that [[E℄℄; k:K[[[B℄℄℄ ` (�p)([[p 7! v℄℄ j [[y℄℄k) � [[y℄℄k, as

required.

(Alloation) Then b

�

= (�(y) at �

0

) and [[bfx ag℄℄k is the repliated resoure

def q(y; k) = [[fx ag℄℄k in khqi. By indution hypothesis, and sine �

is a ongruene, we get that:

[[E℄℄; k:K[[[B℄℄℄ ` [[bfx ag℄℄k �

def q(y; k) = (�p)([[p 7! v℄℄ j [[fx pg℄℄k) in khqi)

By Propositions A.8 (1) and A.8 (3), we get that

[[E℄℄; k:K[[[B℄℄℄ ` [[bfx ag℄℄k � (�p)([[p 7! v℄℄ j [[bfx pg℄℄k)

(Appliation) Then b

�

= y(z). Assume y = x. Sine the term b is well-typed,

it must be the ase that z 6= x. Hene, [[bfx ag℄℄k = (�k

0

; p)([[p 7! v℄℄ j

k

0

hpi j k

0

(x

0

):[[x

0

(z)℄℄k). By Lemma A.5, [[E℄℄; k:K[[[B℄℄℄ ` [[bfx ag℄℄k �

(�p)([[p 7! v℄℄ j [[p(z)℄℄k), as required. Assume z = x. Sine the term

b is well-typed, it must be the ase that y 6= x. Hene, [[bfx ag℄℄k =

(�k

0

; p)([[p 7! v℄℄ j k

0

hpi j k

0

(x

0

):[[y(x

0

)℄℄k). By Lemma A.5, [[E℄℄; k:K[[[B℄℄℄ `

[[bfx ag℄℄k � (�p)([[p 7! v℄℄ j [[y(p)℄℄k), as required.

(Sequening) Then b

�

= let y =

1

in

2

and [[bfx ag℄℄k is the proess

(�k

0

)([[

1

fx ag℄℄k

0

j k

0

(y):[[

2

fx ag℄℄k). By indution hypothesis, Propo-

sition A.8 (4), and sine � is a ongruene, we get that:

[[E℄℄; k:K[[[B℄℄℄ ` [[bfx ag℄℄k � (�k

0

)((�p

1

)([[p

1

7! v℄℄ j

[[

1

fx p

1

g℄℄k

0

) j

(�p

2

)([[p

2

7! v℄℄ j

k

0

(y):[[

2

fx p

2

g℄℄k))

Assume p =2 fv (v) [fv(b). Sine p

1

; p

2

=2 fv(v), we get that:

[[E℄℄; k:K[[[B℄℄℄ ` [[bfx ag℄℄k � (�k

0

)((�p)([[p 7! v℄℄ j [[

1

fx pg℄℄k

0

) j

(�p)([[p 7! v℄℄ j k

0

(y):[[

2

fx pg℄℄k))

By Proposition A.8 (2), [[E℄℄; k:K[[[B℄℄℄ ` [[bfx ag℄℄k � (�p)([[p 7! v℄℄ j

(�k

0

) ([[

1

fx pg℄℄k

0

j k

0

(y):[[

2

fx pg℄℄k)), as required

86

(Letregion) Then b

�

= letregion �

0

in . Hene, [[bfx ag℄℄k = (��

0

)[[fx ag℄℄k.

Assume p =2 fv (v) [fv (b). By indution hypothesis, and sine � is a

ongruene, we get that: [[E℄℄; k:K[[[B℄℄℄ ` [[bfx ag℄℄k � (��

0

)(�p)([[p 7!

v℄℄ j [[fx pg℄℄k). By Proposition 3.4 (4), sine �

0

=2 fr (a) and fg([[v℄℄k) =

fr (a) [fKg, we get that [[E℄℄; k:K[[[B℄℄℄ ` [[bfx ag℄℄k � (�p)([[p 7! v℄℄ j

(��

0

)[[fx pg℄℄k), as required. 2

Proof of Lemma 5.1 If E ` a

1

$ a

2

: A then there is e � dom(E) suh

that for eah i 2 1::2, there is e

i

� e with E ` a

i

:

e

i

A.

Proof By indution on the derivation of E ` a

1

$ a

2

: A.

(Eq Re�) and (Eq Symm) Trivial.

(Eq Trans) Then E ` a

1

$ b : A and E ` b $ a

2

: A. By indution

hypothesis, there are e�ets f

1

; f

2

� dom(E) suh that E ` a

1

:

f

1

1

A,

E ` b :

f

1

2

A, E ` a

2

:

f

2

1

A and E ` b :

f

2

2

A, where for eah i; j 2 1::2,

f

i

j

� f

i

. Take e = f

1

[f

2

and e

i

= f

i

1

for eah i 2 1::2.

(Eq Fun) Then E; x : A

0

` b

i

:

e

i

B

0

for eah i 2 1::2 and A

�

= (A

0

e

0

! B

0

) at �),

where a

i

�

= (�(x:A

0

)b

i

at �) and e

i

� e

0

and E ` A. Take e = f�g.

By (Type !), sine E ` A, we get that e � dom(E). By (Exp Fun),

E ` a

i

:

e

A for eah i 2 1::2, as required.

(Eq Fun �) and (Eq Let �) Then a

1

�

= let y = (�(x:B)b at �) in y(a) and

a

2

�

= bfx ag where a is a name or an alloation, and y =2 fv (a), and

E ` a :

e

1

B, and E; x:B ` b :

e

2

A, and E ` bfx ag :

e

3

A (that is,

E ` a

2

:

e

3

A), and � 2 dom(E). Take e = f�g [e

1

[e

2

. By (Exp Appl)

and (Exp Let), we get that E ` a

1

:

e

A, as required. The ase for (Eq Let

�) is similar.

(Eq Let) and (Eq Letregion Let) Then a

1

�

= let x = a in b and a

2

�

=

let x = a

0

in b

0

where E ` a $ a

0

: B and E; x : B ` b $ b

0

: A. By

indution hypothesis, there is e

1

; e

2

� dom(E) suh that for eah i; j 2 1::2

there is e

j

i

� e

j

with E ` a :

e

1

1

B, E ` a

0

:

e

1

2

B, E; x : B ` b :

e

2

1

A and

E; x : B ` b

0

:

e

2

2

A. Take e

i

= e

i

1

[e

i

2

for eah i 2 1::2 and e = e

1

[e

2

.

By (Exp Let), we get that E ` a

i

:

e

i

A and e

i

� e for eah i 2 1::2, as

required. The ase for (Eq Letregion Let) is similar.

(Eq Let Asso) Then a

1

�

= let x = a in (let y = b in) and a

2

�

= let y =

(let x = a in b) in where E ` a :

e

a

A and E; x : A ` b :

e

b

B and

E; y : B ` :

e

C. In partiular, sine x =2 dom(E; y : B), we get that

x =2 fv () and E; y:B; x:A ` �. Take e = e

1

= e

2

= e

a

[e

b

[e

. By

(Exp Let) and Lemma B.6, we get that E ` a

i

:

e

i

C for eah i 2 1::2, as

required.

87

(Eq Letregion) and (Eq Swap) Then a

i

= (��)b

i

for eah i 2 1::2 where

E; � ` b

1

$ b

2

: A and � =2 fr (A). By indution hypothesis, there is f �

dom(E; �) suh that for eah i 2 1::2, there is f

i

� f with E; � ` b

i

:

f

i

A.

Take e = f �f�g and e

i

= f

i

�f�g for eah i 2 1::2. By (Exp Letregion),

E ` a

i

:

e

i

A for eah i 2 1::2, as required. Case (Eq Swap) is similar.

(Eq Drop) Then a

1

= (��)a

2

where E ` a :

e

A and � =2 dom(E). Take

e

1

= e

2

= e. Sine e � dom(E), we get that e = e� f�g and � =2 fr(A).

By (Exp Letregion), E ` a

1

:

e

A, as required. 2

Proof of Theorem 5.2 Suppose E ` a$ b : A and k =2 dom(E) [L. Then

[[E℄℄; k:K[[[A℄℄℄ ` [[a℄℄k � [[b℄℄k.

Proof By indution on the derivation of E ` a$ b : A. By Lemma 5.1, there

is e � dom(E) and e

1

; e

2

suh that e

i

� e for eah i 2 1::2 with E ` a :

e

1

A and

E ` b :

e

2

A. Let k =2 dom(E) [L. By Theorem 4.1 (3), [[E℄℄; k:K[[[A℄℄℄ ` [[a℄℄k :

e

1

[fKg and [[E℄℄; k:K[[[A℄℄℄ ` [[b℄℄k : e

2

[fKg. Hene, [[E℄℄; k:K[[[A℄℄℄ ` [[a℄℄k; [[b℄℄k.

For the sake of brevity, we omit the type annotations in the enoding of

region alulus terms in the remainder of this proof.

(Eq Re�), (Eq Symm) and (Eq Trans) Trivial, sine � is an equivalene

relation.

(Eq Fun), (Eq Let) and (Eq Letregion) Trivial, sine � is a ongruene.

(Eq Fun �) and (Eq Let �) Then a

�

= let y = (�(x:B)b

0

at �) in y(a

0

) and

b

�

= b

0

fx a

0

g where a

0

is a name or an alloation, and y =2 fv (a

0

). Hene,

[[a℄℄k

�

= (�k

0

)def p(x; k) = [[b

0

℄℄k in (k

0

hpi j k

0

(y):[[y(a

0

)℄℄k) where k

0

and p

are fresh names. By Lemma A.5, [[E℄℄; k:K[[[A℄℄℄ ` [[a℄℄k � def p(x; k) =

[[b

0

℄℄k in [[p(a

0

)℄℄k. We have two possible ases depending on the shape of

a

0

.

Assume a

0

is a name, say q. Hene, [[E℄℄; k:K[[[A℄℄℄ ` [[a℄℄k � def p(x; k) =

[[b

0

℄℄k in phq; ki. By Proposition A.8 (5):

[[E℄℄; k:K[[[A℄℄℄ ` [[a℄℄k � def p(x; k) = [[b

0

℄℄k in [[b

0

fx a

0

g℄℄k

By Proposition A.8 (1), sine p =2 fv (bfx a

0

g), we get that:

[[E℄℄; k:K[[[A℄℄℄ ` [[a℄℄k � [[b

0

fx a

0

g℄℄k

88

Assume a

0

is an alloation, say (�(y) at �

0

). Hene:

[[E℄℄; k:K[[[A℄℄℄ ` [[a℄℄k � def p(x; k) = [[b

0

℄℄k in

(�k

0

)(def q(y; k) = [[℄℄k in

(k

0

hqi j k

0

(y):phy; ki))

(By Lemma A.5)

� def p(x; k) = [[b

0

℄℄k in

(def q(y; k) = [[℄℄k in phq; ki)

(By Proposition A.8 (5))

� def p(x; k) = [[b

0

℄℄k in

(def q(y; k) = [[℄℄k in [[b

0

fx qg℄℄k)

(By Lemma B.69)

� def p(x; k) = [[b

0

℄℄k in [[b

0

fx a

0

g℄℄k

Case (Eq Let �) is similar.

(Eq Let Asso) Then a

�

= let x = a

0

in (let y = b

0

in

0

) and b

�

= let y =

(let x = a

0

in b

0

) in

0

where E ` a

0

:

e

1

A and E; x : A ` b

0

:

e

2

B

and E; y : B `

0

:

e

3

C. In partiular, sine x =2 dom(E; y : B), we

get that x =2 fv (

0

). Hene, [[a℄℄k

�

= (�k

1

)([[a

0

℄℄k

1

j k

1

(x):(�k

2

)([[b

0

℄℄k

2

j

k

2

(y):[[

0

℄℄k)) and [[b℄℄k � (�k

1

)([[a

0

℄℄k

1

j (�k

2

)(k

1

(x):[[b

0

℄℄k

2

j k

2

(y):[[

0

℄℄k)),

where k

1

; k

2

are two fresh names. By Lemma A.6, [[E℄℄; k:K[[[A℄℄℄ ` [[a℄℄k �

(�k

1

)([[a

0

℄℄k

1

j (�k

2

)k

1

(x):([[b

0

℄℄k

2

j k

2

(y):[[

0

℄℄k)). By Lemma A.9, we get

that [[E℄℄; k:K[[[A℄℄℄ ` [[a℄℄k � [[b℄℄k, as desired.

(Eq Drop), (Eq Swap) and (Eq Letregion Let) In eah of this ases we

have erase([[a℄℄k) = erase([[b℄℄k), [[E℄℄; k:K[[[A℄℄℄ ` [[a℄℄k and [[E℄℄; k:K[[[A℄℄℄ `

[[b℄℄k. By Proposition B.39, [[E℄℄; k:K[[[A℄℄℄ ` [[a℄℄k � [[b℄℄k. 2

89

