Region analysis and
a m-calculus with groups

Silvano Dal Zilio and Andrew D. Gordon

August 2000
Revision of May 2001

Technical Report
MSR-TR-2000-57

Microsoft Research
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052

Abstract

We show that the typed region calculus of Tofte and Talpin can be en-
coded in a typed m-calculus equipped with name groups and a novel effect
analysis. In the region calculus, each boxed value has a statically deter-
mined region in which it is stored. Regions are allocated and de-allocated
according to a stack discipline, thus improving memory management. The
idea of name groups arose in the typed ambient calculus of Cardelli, Ghelli,
and Gordon. There, and in our m-calculus, each name has a statically
determined group to which it belongs. Groups allow for type-checking of
certain mobility properties, as well as effect analyses. Our encoding makes
precise the intuitive correspondence between regions and groups. We pro-
pose a new formulation of the type preservation property of the region
calculus, which avoids Tofte and Talpin’s rather elaborate co-inductive
formulation. We prove the encoding preserves the static and dynamic
semantics of the region calculus. Our proof of the correctness of region
de-allocation shows it to be a specific instance of a general garbage collec-
tion principle for the w-calculus with effects. We propose new equational
laws for letregion, analogous to scope mobility laws in the 7-calculus, and
show them sound in our semantics.

Contents

1 Motivation 1
2 A)M-Calculus with Regions 3
2.1 Syntax e 3
2.2 Dynamic Semantics. o o 4
2.3 Static Semantics oL oL o 6
2.4 Relating the Static and Dynamic Semantics 8

3 A rm-Calculus with Groups 10
3.1 Syntaxo 10
3.2 Dynamic Semantics Lo o 12
3.3 Static Semanticso 14
3.4 Barbed Congruence. Lo oo 18

4 Encoding Regions as Groups 19
4.1 The Encoding 20
4.2 Two Garbage Collection Theorems 22

5 An Equational Theory 23
6 Extensions 26
6.1 An Extended A-Calculus 27
6.2 An Extended 7-Calculus 30
6.3 An Extended Encoding 34

7 Conclusions 35
References 37
A Review of the Untyped n-Calculus 40
Al Syntax oo 40
A.2 Dynamic Semantics Lo oo 41
A.3 Labelled Transition Semantics 42
A4 Barbed Congruence. 43

B Proofs 48
B.1 Subject Reduction for the A-Calculus 49
B.2 Subject Reduction for the 7-Calculus 53
B.3 Correctness of Type Erasure 59
B.4 Properties of Barbed Congruence 64
B.5 Garbage Collection for the 7-Calculus 67
B.6 Properties of the Encoding 70
B.6.1 Proof of Static Adequacy 71

B.6.2 An Auxiliary Small Step Semantics 76

B.6.3 Proof of Dynamic Adequacy 79

B.6.4 Proof of Garbage Collection for the A-Calculus

B.7 An Equational Theory

1 Motivation

This paper reports a new proof of correctness of region-based memory manage-
ment (Tofte and Talpin 1997), and also proofs of new equational laws for the
region calculus.

Tofte and Talpin’s region calculus is a compiler intermediate language that,
remarkably, supports an implementation of Standard ML that has no garbage
collector, the ML Kit compiler (Birkedal, Tofte, and Vejlstrup 1996). The basic
idea of the region calculus is to partition heap memory into a stack of regions.
Each boxed value (that is, a heap-allocated value such as a closure or a cons
cell) is annotated with the particular region into which it is stored. The con-
struct letregion p in b manages the allocation and de-allocation of regions. It
means: “Allocate a fresh, empty region, denoted by the region variable p; eval-
uate the expression b; de-allocate p.” A type and effect system for the region
calculus guarantees the safety of de-allocating the defunct region as the last
step of letregion. The allocation and de-allocation of regions obeys a stack
discipline determined by the nesting of the letregion constructs. A region in-
ference algorithm compiles ML to the region calculus by computing suitable
region annotations for boxed values, and inserting letregion constructs as neces-
sary. In practice, space leaks, where a particular region grows without bound,
are a problem. Still, they can practically always be detected by profiling and
eliminated by simple modifications. The ML Kit efficiently executes an impres-
sive range of benchmarks without a garbage collector and without space leaks.
Region-based memory management facilitates interoperability with languages
like C that have no garbage collector and helps enable realtime applications of
functional programming.

Tofte and Talpin’s semantics of the region calculus is a structural operational
semantics. A map from region names to their contents represents the heap. A
fresh region name is invented on each evaluation of letregion. This semantics
supports a co-inductive proof of type safety, including the safety of de-allocating
the defunct region at the end of each letregion. The proof is complex and
surprisingly subtle, in part because active regions may contain dangling pointers
that refer to de-allocated regions.

The region calculus is a strikingly simple example of a language with type
generativity. A language has type generativity when type equivalence is by
name (that is, when types with different names but the same structure are not
equivalent), and when type names can be generated at run-time. A prominent
example is the core of Standard ML (Milner, Tofte, Harper, and MacQueen
1997), whose datatype construct generates a fresh algebraic type each time it is
evaluated. (The ML module system admits type generativity also, but at link-
time rather than run-time.) The region calculus has type generativity because
the type of a boxed value includes the name of the region where it lives, and
region names are dynamically generated by letregion. The semantics of Standard
ML accounts operationally for type generativity by inventing a fresh type name
on each elaboration of datatype. Various researchers have sought more abstract
accounts of type generativity (Leroy 1996; Russo 1996).

This paper describes a new semantics for a form of the region calculus, ob-
tained by translation to a typed m-calculus equipped with a novel effect system.
The m-calculus (Milner 1999) is a rather parsimonious formalism for describing
the essential semantics of concurrent systems. It serves as a foundation for de-
scribing a variety of imperative, functional, and object-oriented programming
features (Sangiorgi and Walker 2000; Walker 1995), for the design of concurrent
programming languages (Fournet and Gonthier 1996; Pierce and Turner 1997),
and for the study of security protocols (Abadi and Gordon 1999), as well as
other applications. The only data in the w-calculus are atomic names. Names
can model a wide variety of identifiers: communication channels, machine ad-
dresses, pointers, object references, cryptographic keys, and so on. A new-name
construct (vz)P generates names dynamically in the standard w-calculus. It
means: “Invent a fresh name, denoted by z; run process P.” One might hope
to model region names with m-calculus names but unfortunately typings would
not be preserved: a region name may occur in a region-calculus type, but in
standard typed m-calculi (Pierce and Sangiorgi 1996), names may not occur in
types.

We solve the problem of modelling region names by defining a typed =-
calculus equipped with named groups and a new-group construct (Cardelli,
Ghelli, and Gordon 2000a). The idea is that each w-calculus name belongs
to a group, G. The type of a name now includes its group. A new-group con-
struct (vG)P generates groups dynamically. It means: “Invent a fresh group,
denoted by G; run process P.” The basic ideas of the new semantics are that
region names are groups, that pointers into a region p are names of group p,
and that given a continuation channel k the continuation-passing semantics of
letregion p in b is simply the process (vp)[b]k where [b]k is the semantics of
expression b. The semantics of other expressions is much as in earlier m-calculus
semantics of A-calculi (Sangiorgi and Walker 2000). Parallelism allows us to ex-
plain a whole functional computation as an assembly of individual processes that
represent components such as closures, continuations, and function invocations.

This new semantics for regions makes two main contributions.

e First, we give a new proof of the correctness of memory management in
the region calculus. We begin by extending a standard encoding with the
equation [letregion p inb]k = (vp)[b]k. Then the rather subtle correctness
property of de-allocation of defunct regions turns out to be a simple in-
stance of a new abstract principle expressed in the m-calculus. Hence, an
advantage of our m-calculus proof is that it is conceptually simpler than a
direct proof.

e Second, the semantics provides a more abstract account of type genera-
tivity in the region calculus than the standard operational semantics. A
specific benefit is that new equational laws for letregion are corollaries of
its semantics in terms of the new-group construct.

The specific technical results of the paper are:

e A simple proof of type soundness of the region calculus (Theorem 2.1).

e A new semantics of the region calculus in terms of the w-calculus with
groups. The translation preserves types and effects (Theorem 4.1) and
operational behaviour (Theorem 4.2).

e A new garbage collection principle for the m-calculus (Theorem 4.3) whose
corollary (Theorem 4.4) justifies de-allocation of defunct regions in the
region calculus.

e A new equational theory for letregion, inspired and justified (Theorem 5.2)
by the m-calculus model.

We organise the rest of the paper as follows. Section 2 introduces the region
calculus. Section 3 describes the m-calculus with groups and effects. Section 4
gives our new w-calculus semantics for regions. Section 5 describes our new
equations for manipulating letregion. Section 6 considers extensions. Section 7
concludes. Appendix A reviews the untyped m-calculus. Appendix B describes
proofs of all properties stated without proof in the main text.

2 A)-Calculus with Regions

To focus on the encoding of letregion with the new-group construct, we work
with a simplified version of the region calculus of Tofte and Talpin (1997). Our
calculus omits the recursive functions, type polymorphism, and region polymor-
phism present in Tofte and Talpin’s calculus. Section 6 extends our results to
a version of the region calculus of this section extended with recursive func-
tions, finite lists, and region polymorphism. Tofte and Talpin explain that type
polymorphism is not essential for their results. Still, we conjecture that our
framework could easily accommodate type polymorphism.

2.1 Syntax

Our region calculus is a typed call-by-value A-calculus equipped with a letregion
construct and an annotation on each function to indicate its storage region. We
assume an infinite set of names, ranged over by p, ¢, z, y, z. For the sake of
simplicity, names represent both program variables and memory pointers, and
a subset of the names L = {/;,...,{,} represents literals. The following table
defines the syntax of A-calculus expressions, a or b, as well as an auxiliary notion
of boxed value, u or v.

Expressions and Values:

I
z,¥,0,4, f,9 name: variable, pointer, literal
P region variable
a,b = expression
T name
vatp allocation of v at p
z(y) application

letz=ainbd sequencing

letregion p in b region allocation, de-allocation
u,v = boxed value
Az:A)b function

We shall explain the type A later. In both let x = a in b and A(x:A)b,
the name z is bound with scope b. Let fn(a) be the set of names that occur
free in the expression a. We identify expressions and values up to consistent
renaming of bound names. We write P{z<+y} for the outcome of renaming
all free occurrences of = in P to the name y. Our syntax is in a reduced form,
where an application z(y) is of a name to a name. We can regard a conventional
application b(a) as an abbreviation for let f = b in let * = a in f(z), where
f # x and f is not free in a.

We explain the intended meaning of the syntax by example. The following
expression,

ey = letregion p' in
let f = Xa:Lit)x at p' in
let g = My:Lit) f(y) at p in g(5)

means: “Allocate a fresh, empty region, and bind it to p'; allocate A(x:Lit)x
in region p', and bind the pointer to f; allocate A(y:Lit)f(y) in region p (an
already existing region), and bind the pointer to g; call the function at g with
literal argument 5; finally, de-allocate p'.” The function call amounts to calling
Ay:Lit) f(y) with argument 5. So we call A\(x:Lit)x with argument 5, which
immediately returns 5. Hence, the final outcome is the answer 5, and a heap
containing a region p with g pointing to A(y:Lit) f(y). The intermediate region
p' has gone. Any subsequent invocations of the function A\(y:Lit) f(y) would go
wrong, since the target of f has been de-allocated. The type and effect system
of Section 2.3 guarantees there are no subsequent allocations or invocations on
region p', such as invoking A(y:Lit) f (y).

2.2 Dynamic Semantics

Like Tofte and Talpin, we formalize the intuitive semantics via a conventional
structural operational semantics. A heap, h, is a map from region names to re-
gions, and a region, r, is a map from pointers (names) to boxed values (function
closures). In Tofte and Talpin’s semantics, defunct regions are erased from the
heap when they are de-allocated. In our semantics, the heap consists of both
live regions and defunct regions. Our semantics maintains a set S containing
the region names for the live regions. This is the main difference between the
two semantics. Side-conditions on the evaluation rules guarantee that only the
live regions in S are accessed during evaluation. Retaining the defunct regions
simplifies the proof of subject reduction. Semmelroth and Sabry (1999) adopt
a similar technique for the same reason in their semantics of monadic encapsu-
lation.

Regions, Heaps, and Stacks:
I

r = (p; = v;) €L region, p; distinct

h = (p; = r;) €10 heap, p; distinct

Su={p1,...,pn} stack of live regions

L 1
A region r is a finite map of the form p; — vy,...,p, — vy, where the p; are

distinct, which we usually denote by (p; — v;) *€1+". An application, r(p), of
the map r to p denotes v;, if p is p; for some i € 1..n. Otherwise, the application
is undefined. The domain, dom(r), of the map r is the set {p1,...,pn}. We
write @ for the empty map. If r = (p; = v;) *€1" we define the notation h —p
to be p; = v; 1€ =i} if p = p; for some j € 1..n, and otherwise to be simply
r. Then we define the notation r + (p — v) to mean (r — p),p — v.

We use finite maps to represent regions, but also heaps, and various other
structures. The notational conventions defined above for regions apply also to
other finite maps, such as heaps. Additionally, we define doms(h) to be the set
of all pointers defined in h, that is, U ¢ gom(n) dom(h(p))-

The evaluation relation, S - (a,h) § (p,h'), may be read: in an initial heap
h, with live regions S, the expression a evaluates to the name p (a pointer or
literal), leaving an updated heap h', with the same live regions S.

Judgments:
I 1

S-(a,h) | (p,h') evaluation

Evaluation Rules:
I 1

(Eval Var)

(Eval Alloc)
p€S p¢ domy(h)
S+ (vatp,h) | (p,h+ (p= (h(p) + (p—v))))
(Eval Appl)
peS hp)p) = Aw:A)b S (blzeah,h) 4 (', 1)
S (p(q), h) 4 (p', h')

(Eval Let)
S-(a,h) § (@, 1) S-(bf{zep'} b)) U (", 1")
S-(let x=ainbh){ (", 1)

(Eval Letregion)
p ¢ dom(h) SU{p}-(a,h+po @) (1)
S - (letregion p ina,h) Y (p',h')

Recall the example expression ex; from the previous section. Consider an
initial heap h = p — & and a region stack S = {p}, together representing a heap
with a single region p that is live but empty. We can derive S - (ezi, h) § (5,h')
where ' = p — (g — A(y:Lit) f(y)),p' — (f = Ax:Lit)x). Since p € S but
p' ¢S, pislive but p' is defunct.

2.3 Static Semantics

The static semantics of the region calculus is a simple type and effect sys-
tem (Gifford and Lucassen 1986; Talpin and Jouvelot 1992; Wadler 1998). The
central typing judgment of the static semantics is:

EF g prrm} 4

which means that in a typing environment F/, the expression a may yield a result
of type A, while allocating and invoking boxed values stored in regions pq, ...,
pn- The set of regions {p1,...,pn} is the effect of the expression, a bound on
the interactions between the expression and the store. For simplicity, we have
dropped the distinction between allocations, put(p), and invocations, get(p), in
Tofte and Talpin’s effects. This is an inessential simplification; the distinction
could easily be added to our work.

An expression type, A, is either Lit, a type of literal constants, or (4 =
B) at p, the type of a function stored in region p. The effect e is the latent
effect: the effect unleashed by calling the function. An environment E has
entries for the regions and names currently in scope.

Effects, Types, and Environments:
I 1

ex={p1,-.-,pn} effect
A, B ::= type of expressions

Lit type of literals

(AS B)atp type of functions stored in p
FE = environment,

1% empty environment,

E p entry for a region p

E,z:A entry for a name x

Let fr(A) be the set of region variables occurring in the type A. We define
the domain, dom(FE), of an environment, E, by the equations dom (%) = &,
dom(E, p) = dom(E) U {p}, and dom(E,z:A) = dom(E) U {z}.

The following tables present our type and effect system as a collection of
typing judgments defined by a set of rules. Tofte and Talpin present their type
and effect system in terms of constructing a region-annotated expression from
an unannotated expression. Instead, our main judgment simply expresses the
type and effect of a single region-annotated expression. Otherwise, our system
is essentially the same as Tofte and Talpin’s.

Type and Effect Judgments:
I

Etro good environment

EFA good type

ErFa:*A good expression, with type A and effect e
L

Type and Effect Rules:

(Env @) (Env z) (recall L is the set of literals) (Env p)
E+A z¢dom(E)UL EFo p¢ dom(E)

gFo E,z:AFo E,pko

(Type Lit) (Type —)
Etro Er-A puU{e} Cdom(E) EF B

E: Lit EF(AS B)atp
(Exp) (Exp)
E,x:AE' o Ero (€L
ExAFE+z2:2 A E+(:2 Lit
(Exp Appl) (Exp Let)
Etz:?(B5A)atp EFy?B Era‘*A E,zAFb: B
EF x(y) :lrtve 4 Ebletz=ainb:*V B

(Exp Letregion)
BprasA pdfr(d)
E + letregion p ina =17} A

(Exp Fun)
E,x:AFb:*B eCe {p}Ue Cdom(E)

B+ Xa:A)b at p -7t (A LN B) at p

The rules for good environments are standard; they assure that all the names
and region variables in the environment are distinct, and that the type of each
name is good. All the regions in a good type must be declared. The type of a
good expression is checked much as in the simply typed A-calculus. The effect
of a good expression is the union of all the regions in which it allocates or from
which it invokes a closure. In the rule (Exp Letregion), the condition p ¢ fr(A)
ensures that no function with a latent effect on the region p may be returned.
Calling such a function would be unsafe since p is de-allocated once the letregion
terminates. In the rule (Exp Fun), the effect e of the body of a function must
be contained in the latent effect e’ of the function. For the sake of simplicity we
have no rule of effect subsumption, but it would be sound to add it: if E F a :¢ A
and e’ C dom(E) then E F a :*“¢" A. In the presence of effect subsumption we
could simplify (Exp Fun) by taking e = ¢€’.

Recall the expression er; from Section 2.1. We can derive the following
judgments:

p, o' F (A(z: Lit)) at p' 0 (Lit 3 Lit) at p'
p,p, f:(Lit 2 Lit) at o

)

- (asLit) () at p Ao} (it 12
)
t

= Lit) at p
p,p F:(Lit 3 Lit) at p', g:(Lit ey Lit) at p
Fg(5) : Aod'} g

Hence, we can derive p F ez :1#} Lit.

For an example of a type error, suppose we replace the application g(5) in
er; simply with the identifier g. Then we cannot type-check the letregion p’
construct, because p’ is free in the type of its body. This is just as well, because
otherwise we could invoke a function in a defunct region.

For an example of how a dangling pointer may be passed around harmlessly,
but not invoked, consider the following. Let F' abbreviate the type (Lit 2
Lit) at p'. Let ex, be the following expression:

exr, = letregion p' in

let f = Aa:Lit)x at p' in

let g =A(f:F)5 at p in

let j = Mz:Lit)g(f) at p in j

We have p F exy 17} (Lit o} Lit) at p. If S = {p} and h = p —» &,

then S - (b,h) | (4,h') where the final heap h' is p — (g — A(f:F)5,7 —
Az:Lit)g(f)),p' — (f — A(z:Lit)xz). In the final heap, there is a pointer f
from the live region p to the defunct region p’. Whenever j is invoked, this
pointer will be passed to g, harmlessly, since g will not invoke it.

2.4 Relating the Static and Dynamic Semantics

To relate the static and dynamic semantics, we need to define when a configura-
tion is well-typed. First, we need notions of region and heap typings. A region
typing R tracks the types of boxed values in the region. A heap typing H tracks
the region typings of all the regions in a heap. The environment env(H) lists
all the regions in H, followed by types for all the pointers in those regions.

Region and Heap Typings:

I

R ::= (p;i:Ay) iel“‘” region typing

H == (p; = R;) *€t-n heap typing

ptr(H) = Ry,...,R, if H = (p; — R;) €1-"

env(H) = dom(H), ptr(H)

The next tables describe the judgments and rules defining well-typed regions,
heaps, and configurations. The main judgment H |= S - (a,h) : A means that

a configuration S - (a,h) is well-typed: the heap h conforms to H and the
expression a returns a result of type A, and its effect is within the live regions

S.

Region, Heap, and Configuration Judgments:
I

EFratp:R in E, region r, named p, has type R
HE» the heap typing H is good

HEhQ in H, the heap h is good

HES: (a,h): A in H, configuration S - (a, h) returns A
L

Region, Heap, and Configuration Rules:

(Region Good)
Etuwviatp:r A, Vieln
E& (p; — v;) €11 at p: (pA;) €4

(Heap Typing Good)
env(H) F o
HEo»
(Heap Good) (where dom(H) = dom(h))
env(H) F h(p) at p: H(p) Vp € dom(H)
HEh

(Config Good) (where S C dom(H))
env(H)Fa:*A eUfr(A)CS HE
HE=S (a,h): A

These predicates roughly correspond to the co-inductively defined consis-
tency predicate of Tofte and Talpin. The retention of defunct regions in our
semantics allows a simple inductive definition of these predicates, and a routine
inductive proof of the subject reduction theorem stated below.

We now present a subject reduction result relating the static and dynamic
semantics. Let H =< H' if and only if the pointers defined by H and H' are
disjoint, that is, doms(H) N domy(H') = @. Assuming that H < H', we write
H + H' for the heap consisting of all the regions in either H or H'; if p is in both
heaps, (H + H')(p) is the concatenation of the two regions H(p) and H(p').

Theorem 2.1 IfH |=S-(a,h): A and S-(a,h) | (p',h') there is H' such that
HxH and H+H' E=S- @ ,1): A

Intuitively, the theorem asserts that evaluation of a well-typed configuration
S-(a, h) leads to another well-typed configuration S-(p’, h'), where H' represents
types for the new pointers and regions in h'.

The following proposition shows that well-typed configurations avoid the
runtime errors of allocation or invocation of a closure in a defunct region.

Proposition 2.2
(1) fHES-(vatph): AthenpeS.

(2) If H = S-(p(q), h) : A then there are p and v such that p € S, h(p)(p) = v,
and v is a function of the form A(z:B)b with env(H),z:B b :¢ A.

Combining Theorem 2.1 and Proposition 2.2 we may conclude that such
runtime errors never arise in any intermediate configuration reachable from an
initial well-typed configuration. Implicitly, this amounts to asserting the safety
of region-based memory management, that defunct regions make no difference
to the behaviour of a well-typed configuration. Our 7-calculus semantics of
regions makes this explicit: we show equationally that direct deletion of defunct
regions makes no difference to the semantics of a configuration.

3 A m-Calculus with Groups

In this section, we define a typed m-calculus with groups. In the next, we explain
a semantics of our region calculus in this m-calculus. Exactly as in the ambient
calculus with groups (Cardelli, Ghelli, and Gordon 2000a), each name z has
a type that includes its group G, and groups may be generated dynamically
by a new-group construct, (vG)P. So as to model the type and effect system
of the region calculus, we equip our m-calculus with a novel group-based effect
system. In other work (Cardelli, Ghelli, and Gordon 2000b), not concerned with
the region calculus, we consider a simpler version of this 7w-calculus, with groups
but without an effect system, and show that new-group helps keep names secret,
in a certain formal sense.

3.1 Syntax

The following table gives the syntax of processes, P. The syntax depends on a
set of atomic names, z, y, 2, p, ¢, and a set of groups, G, H. For convenience,
we assume that the sets of names and groups are identical to the sets of names
and region names, respectively, of the region calculus. We impose a standard
constraint (Fournet and Gonthier 1996; Merro and Sangiorgi 1998), usually
known as locality, that received names may be used for output but not for
input. This constraint confers a richer equational theory on the m-calculus and
is needed for the results of Section 5. Except for the addition of type annotations
and the new-group construct, and the locality constraint, the following syntax
and semantics are the same as for the polyadic, choice-free, asynchronous 7-
calculus (Milner 1999).

Expressions and Processes:
I

z,Y,D,q name: variable, channel
P,Q,R = process
x(yi:Th, ..., yn:Tn).P input (no y; € inp(P))

10

(Y1, .-y Yn) output

(vG)P new-group: group restriction
(va:T)P new-name: name restriction
PlQ composition

P replication

0 inactivity

We explain the set inp(P) below, and the types T', T, ..., T}, in Section 3.3.

In a process z(y1:T1,...,Yn:Tyh)-P, the names y1, ..., y, are bound; their
scope is P (we explain the types T below). In a group restriction (vG)P, the
group G is bound; its scope is P. In a name restriction (vz:T)P, the name z is
bound; its scope is P. We identify processes up to the consistent renaming of
bound groups and names. We let fn(P) and fg(P) be the sets of free names and
free groups, respectively, of a process P. We write P{z<+y} for the outcome
of a capture-avoiding substitution of the name y for each free occurrence of the
name z in the process P.

Free names, fn(P), of process P:
I 1

fTL((yl.Tla cy Ynt n))_{I}U(fn() {yl;,yn})
<y17"'7yn>)—{mayla"'ayn}

(vG)P) 2 fn()
(va:T)P) = () = {z}

fg(1T, yniTn).P) = fg(T1) U - U fg(Tn) U fo(P)
fa@E Wy, yn) = @

fa((wG)P) = fg(P) — {G}

fa((vz:T)P) = fg(T) U fg(P)

fa(P Q) = f9(P) U f3(Q)

fa(\P) = fg(P)

9(0) = @

The set inp(P) consists of each name z such that an input z(y::T4,...,
yn:Ty).P' occurs as a subprocess of P, with z not bound.

Names in input position, inp(P), in process P:
I 1

inp(z(y1:Th, .. yn:Tn).P) = {z} U (inp(P) — {y1, ..., yn})
inp(T{yY1,.-.,Yn)) 2y
inp((vG)P)é inp(P)

11

inp((v:T)P) 2 inp(P) — {x}
inp(P | Q) = inp(P) U inp(Q)
inp(IP) = inp(P)

inp(0) = &

Next, we explain the semantics of the calculus informally, by example. We
omit type annotations and groups; we shall explain these later.

A process represents a particular state in a m-calculus computation. A state
may reduce to a successor when two subprocesses interact by exchanging a tuple
of names on a shared communication channel, itself identified by a name. For
example, consider the following process:

fla, k).K () | g(y, k). (y, &) | G(5, k)

This is the parallel composition (denoted by the | operator) of two input
processes g(y, k').f(y, k'Y and f(z,k').k'(z), and an output process §(5, k). The
whole process performs two reductions. The first is to exchange the tuple (5, k)
on the channel g. The names 5 and k are bound to the input names y and k,
leaving f(x,k').k"(z) | f(5,k) as the next state. This state itself may reduce to
the final state k(5) via an exchange of (5,k) on the channel f.

The process above illustrates how functions may be encoded as processes.
Specifically, it is a simple encoding of the example ex; from Section 2.1. The
input processes correspond to A-abstractions at addresses f and g; the output
processes correspond to function applications; the name k is a continuation for
the whole expression. The reductions described above represent the semantics
of the expression: a short internal computation returning the result 5 on the
continuation k.

The following is a more accurate encoding;:

in\fm)m g—=Xy) f(y) g(5)

A

~ ~

— — —
W) (wg)(f (@, k').K () | gy, K').f(y, k') | 9(5, k))

A replication !P is like an infinite parallel array of replicas of P; we replicate
the inputs above so that they may be invoked arbitrarily often. A name restric-
tion (vz)P invents a fresh name = with scope P; we restrict the addresses f
and g above to indicate that they are dynamically generated, rather than being
global constants.

The other 7-calculus constructs are group restriction and inactivity. Group
restriction (¢vG)P invents a fresh group G with scope P; it is the analogue of
name restriction for groups. Finally, the 0 process represents inactivity.

3.2 Dynamic Semantics

We formalize the semantics of our w-calculus using standard techniques. A
reduction relation, P — (), means that P evolves in one step to). It is defined
in terms of an auxiliary structural congruence relation, P = @, that identifies
processes we never wish to tell apart.

12

Structural Congruence: P =

I
P=P

(Struct Refl)
Q=P=P=qQ (Struct Symm)
P=Q,Q=R=P=R (Struct Trans)
P=Q = z(y1:Th,...,yn:Thn).P =x(y1:T1,...,yn:Th).Q (Struct Input)
P=Q= vG)P = vG)Q (Struct GRes)
P=Q= (ve:T)P = (vz:T)Q (Struct Res)
P=Q=P|R=Q|R (Struct Par)
P=Q='P=1Q (Struct Repl)
Pjo=P (Struct Par Zero)
PlQ=Q|P (Struct Par Comm)
PIQ)|R=P|(Q]|R) (Struct Par Assoc)
IP=P|!IP (Struct Repl Par)
x1 # 2 = (ve1:T1)(vee:To)P = (vee:To)(vey:Th) P (Struct Res Res)
z ¢ m(P)= (wvz:T)(P|Q)=P| (veT)Q (Struct Res Par)
(vG1)(vG2)P = (vG2)(vG1) P (Struct GRes GRes)
G ¢ fg(T) = (vG@)(ve:T)P = (va:T)(vG)P (Struct GRes Res)
G¢fg(P)= vG)(P|Q)=P|(¥@Q (Struct GRes Par)

Reduction: P — @

If(yl, cosYn) | 2(z1: T, o 20 Tn) P — P{ziuy1 } - {zn+yn} (Red Interact)
P5Q=P|R—-Q|R (Red Par)
P—- Q= vG)P - (vG)Q (Red GRes)
(
(

P— Q= veT)P - (va:T)Q Red Res)
P=PP—-QQR=Q =P —Q Red =)

Groups help to type-check names statically but have no dynamic behaviour;
groups are not themselves values. The following proposition demonstrates this
precisely; it asserts that the reduction behaviour of a typed process is equivalent
to the reduction behaviour of the untyped process obtained by erasing all type
and group annotations. (Appendix A reviews the untyped m-calculus.)

Erasing type annotations and group restrictions:
I

erase((vGQ)P) = erase(P)
(va:T)P) = (va)erase(P)

erase(z(y1:Th, ..., yn:Tn).P) = x(y1,. .., yn) erase(P)
erase(T(y1, ..., Yn)) = FW1, ...\ Un)

13

Proposition 3.1 (Erasure) For all typed processes P and Q, if P — @Q then
erase(P) — erase(Q). If erase(P) — R then there is a typed process Q such
that P — @ and R = erase(Q).

3.3 Static Semantics

The main judgment E + P : {Gy,...,Gy} of the effect system for the m-calculus
means that the process P uses names according to their types and that all its
external reads and writes are on channels in groups Gy, ...,G,. A channel type
takes the form G[T4,...,T,]\H. This stipulates that the name is in group G
and that it is a channel for the exchange of n-tuples of names with types 77,
..., T. The set of group names H is the hidden effect of the channel. In the
common case when H = &, we abbreviate the type to G[T1,...,T,].

As examples of groups, in our encoding of the region calculus we have groups
Lit and K for literals and continuations, respectively, and each region p is a
group. Names of type Lit[] are in group Lit and exchange empty tuples, and
names of type K[Lit[]] are in group K and exchange names of type Lit[]. In our
running example, we have 5 : Lit[] and k : K[Lit[]]. A pointer to a function in a
region p is a name in group p. In our example, we could have f : p'[Lit[], K[Lit[]]
and g : p[Lit[], K[Lit[]]].

Given these typings for names, we have g(y,k').f(y, k") : {p,p'} because
the reads and writes of the process are on the channels g and f whose groups
are p and p'. Similarly, we have f(z,k').k'(z) : {p/, K} and §(5,k) : {p}.
The composition of these three processes has effect {p, p', K}, the union of the
individual effects.

The idea motivating hidden effects is that an input process listening on a
channel may represent a passive resource (for example, a function) that is only
invoked if there is an output on the channel. The hidden effect of a channel is
an effect that is masked in an input process, but incurred by an output process.
In the context of our example, our formal translation makes the following type
assignments: f : p'[Lit[], K[Lit[]]]\{K} and g : p[Lit[], K[Lit[]]]\{K,p'}. We
then have f(x, k)R (x) {p'}, g(y, k') Fly. k') : {p}, and G(5,k) : {p,p, K }.
The hidden effects are transferred from the function bodies to the process g(5, k)
that invokes the functions. This transfer is essential in the proof of our main
garbage collection result, Theorem 4.4.

The effect of a replicated or name-restricted process is the same as the orig-
inal process. For example, abbreviating the types for f and g, we have:

(vF:0) (wgep) (f (o, K') Tz |
lg(y, k')-fy, k') 1 9(5,k)) : {p,p', K'}
On the other hand, the effect of a group-restriction (vG)P is the same as
that of P, except that G is deleted. This is because there can be no names free

in P of group G; any names of group G in P must be internally introduced by
name-restrictions. Therefore, (vG)P has no external reads or writes on channels

14

of group G. For example,
(o) W f)(ve)(f (z, k') k' (z) |
lg(y, k')-fy, k) | 95, k) : {p, K'}

The following tables describe the syntax of types and environments, the
judgments and the rules defining our effect system. Let fg(G[Th,...,T,]\H) =
{GYUfg(Th)U---U fg(T,) UR.

Group sets, types, environments:

I
G,H ::={Gy,...,Gp} finite set of name groups
T ::= channel type

G[Ty,...,T,\H polyadic channel in group G

with hidden effect H

E = environment

1% empty environment,

E.G entry for a group G

E z:T entry for a variable z
L 1
Judgments:
I 1
Ero good environment
E-T good channel type T
Erz:T good name z of channel type T
E-P:H good process P with effect H
L

Good environments:
I 1

(Env @) (Env z) (Env G)
ErT z¢dom(E) ErFo G¢dom(E)
gFo E zTkEo E,GFo
Good types:
(Type Chan)
Ero {GJUHCdom(E) E+T, --- EFT,

E+ G[Ty,...,T,\H

Good names:
I 1
(Exp 2)
E' xT,E"Fo
E ,xT,E'"+xz:T

15

Good processes:
I 1

(Proc Input)
Erz:GT,....,T,\H E,y.:Ti,...,yn T, FP:G

EFa(Ty,...,ynTo).P: {G}U (G — H)

(Proc Output)
Etz:GTy,....,T,)\H Ety:Th -+ Ebtyy,:T,

EFZ(yi,...,yn) : {G}UH

(Proc GRes) (Proc Res)
E,G+-P:H ExTHP:H
E+ (vG)P:H - {G} EF (ve:T)P:H
(Proc Par) (Proc Repl) (Proc Zero)
E+-P:G EFQ:H ErP:H Eto
ErP|Q:GUH ErP:H FEFO0:2

(Proc Subsum)
EFP:G GCHCdom(E)
EFP:H

The rules for good environments and good channel types ensure that declared
names and groups are distinct, and that all the names and groups occurring in a
type are declared. The rules for good processes ensure that names are used for
input and output according to their types, and compute an effect that includes
the groups of all the free names used for input and output.

In the special case when the hidden effect H is &, (Proc Input) and (Proc
Output) specialise to the following:

EFz:G[T,...,T.\@
EyTy,....,uyn T, - P:G
Et z(y:Th,...,yn:Th).P: {GIUG

Etz:GT,...,T,)\@
Ety:Ty -+ Ebry,:T,
E-Z(yi,...,yn) : {G}

In this situation, we attribute all the effect G of the prefixed process P to
the input process z(y1:Th,. .., yn:Tn).P. The effect G of P is entirely excluded
from the hidden effect, since H = &.

A dual special case is when the effect of the prefixed process P is entirely
included in the hidden effect H. In this case, (Proc Input) and (Proc Output)
specialise to the following;:

Etz:G[T,...,T,)\H

Ey:Ty,...,yn T, - P . H

Et z(y:Ty,...,yn:Ty).P: {G}

16

Etz:G[T,...,T,)\H
Ety:Ty -+ Ery,:T,

EFZ{y,...,yn): {G}UH

The effect of P is not attributed to the input z(y;:T%,...,y,:Tn).P but
instead is transferred to any outputs in the same group as z. If there are no
such outputs, the process P will remain blocked, so it is safe to discard its
effects.

These two special cases of (Proc Input) and (Proc Output) are in fact suffi-
cient for the encoding of the region calculus presented in Section 4.2; we need the
first special case for typing channels representing continuations, and the second
special case for typing channels representing function pointers. For simplicity,
our actual rules (Proc Input) and (Proc Output) combine both special cases; an
alternative would be to have two different kinds of channel types corresponding
to the two special cases.

The rule (Proc GRes) discards G from the effect of a new-group process
(vG)P, since, in P, there can be no free names of group G (though there may
be restricted names of group G). The rule (Proc Subsum) is a rule of effect
subsumption. We need this rule to model the effect subsumption in rule (Exp
Fun) of the region calculus. The other rules for good processes simply compute
the effect of a whole process in terms of the effects of its parts.

We can prove a standard subject reduction result.

Proposition 3.2 If EFP:H and P - Q then EF Q : H.

Next, a standard definition of the barbs exhibited by a process formalizes
the idea of the external reads and writes through which a process may interact
with its environment. Let a barb, 3, be either a name z or a co-name =.

Exhibition of a barb:
I

(Barb Input) (Barb Output) (Barb GRes)
Plp
z(yr:Th, . ynTn).Ple Tlyi,...,un) 1 T (vG)P | B
(Barb Res) (Barb Par) (Barb =)
PLB B¢f{w7 PLB_ P=Q QLB
weT)PLB P|QLB PLd

The following asserts the soundness of the effect system. The group of any
barb of a process is included in its effect.

Proposition 3.3 (Effect Soundness) If E+ P : H and P | (with § €
{z,T} then there is a type G[T\,...,Ty]\G such that E+ z : G[T1, ..., T,]\G
and G € H.

17

3.4 Barbed Congruence

To state equational properties of our encoding of the region calculus in the 7-
calculus, we need a notion of operational equivalence. To this end, we use a
typed form (Pierce and Sangiorgi 1996) of the barbed congruence of (Milner
and Sangiorgi 1992), an equivalence with a uniform definition for a variety of
process calculi. What follows is a series of definitions leading up to our definition
of barbed congruence.

First, we state a simple predicate for processes well-defined in a specific
environment,:

e We write E P to mean there is an effect G such that E+ P : G.

Since we are in a typed calculus, we only wish to ask whether two processes
are equivalent when they are well-defined in the same environment. The notion
of a relation on typed processes, given next, is that of a family of binary relations
on processes, indexed by an environment. Barbed congruence is defined as a
relation on typed processes.

e A relation on typed processes, S, is a set of triples (E, P, Q) where F is an
environment and P and @) are typed terms such that £ F P and F + Q.
We write EF P S @ to mean (E,P,Q) € S.

e A relation on typed processes, S, is reflezive if and only if E - P S P
whenever E F P. It is symmetric if and only if E - Q S P whenever
EtF P S Q. Tt is transitive if and only if E - P S R whenever E- P S @
and EFQ S R.

e For any relation on typed processes, S, let £+ P =S= () mean there are
processes P’ and Q' such that P=P', EF P' S @', and Q' = Q.

Next, as a standard step towards defining barbed congruence, we define an
auxiliary relation, barbed bisimilarity. It is defined co-inductively as the greatest
barbed bisimulation.

e We write P | 8 to mean there is a process P’ such that P —* P’ and
Pl B.

e A relation on typed processes, S, is a barbed bisimulation if and only if it
is symmetric and E+ P S @) implies:

(1) If P | 7 then @ | T.
(2) If P — P’ then there is @' such that Q@ —* Q' and E + P' =S= Q'.

e Barbed bisimilarity, é, is the relation on typed processes such that F +
P % @ if and only if there is a barbed bisimulation S such that E + P S Q.

By definition, E + P & Q, it follows that the operational behaviours of P
and () are related in that the reductions and the barbs of P are matched by @,

18

and vice versa. On the other hand, barbed bisimilarity, &, is not a congruence
relation, that is, it is not preserved by the syntax formers of our calculus. In
particular, it is not even closed under parallel composition. To remedy this, we
extract a congruence relation, barbed congruence, from barbed bisimilarity as
follows.

e A renaming, o, is a substitution {z; =z} } - - - {z, <!, } of names for names
where n > 0 and the names 1, .. ., z, are pairwise distinct. Let dom(o) =
{z1,...,2,} and ran(o) = {z,...,2,}. If x = z; for some j € 1..n,
let o(z) = o). Otherwise, if z ¢ dom(0), let o(z) = z. A renaming,
o, is an E-renaming if and only if for all names z,y, if o(z) = o(y)

and EFz:Tand EF y: T then T = T'. For any E-renaming, o,
the environment Eo is defined as follows: @0 = @; (E',G)o = E'0,G;
(E',2:T)o = E'o,0(x):T if o(z) ¢ dom(E'c), and E'c if not.

e Barbed congruence, =, is the relation on typed processes such that E
P =~ @ if and only if for all processes R, all E-renamings o and all type
environments E’, if Eo, E' - R then Fo, E'+ Po | R ~ Qo | R.

The following are basic properties of barbed congruence needed for equa-
tional reasoning. It is a congruence relation that is preserved by well-typed
renamings, includes structural congruence, and satisfies a weakening principle.

Proposition 3.4
(1) Barbed congruence is reflexive, transitive, and symmetric.
(2) Barbed congruence satisfies the congruence properties:

o If E,yi:Th,...,yn: T - P = Q then
Erzx(y:Th,...,ynTh).Prx(y:Th,...,ynTh).Q.
IfEFP=~Qand E-Rthen E-FP|R~Q|R.
IfE,x:THP=~Q then EF (va:T)P =~ (va:T)Q.
IfE,G+F P~ Q then E+ (vG)P =~ (vG)Q.
IfEFP=~Q then EFIP Q.

(3) If EF P~ (Q and o is an E-renaming then Ec + Po ~ Qo.
4) FP=Q and EF P then EF P~ Q.
(3) fEFP~Q and E,E' o then E,E' - P = Q.

4 Encoding Regions as Groups

This section interprets the region calculus in terms of our w-calculus.

19

4.1 The Encoding

Most of the ideas of the translation are standard, and have already been illus-
trated by example. A function value in the heap is represented by a replicated
input process, awaiting the argument and a continuation on which to return a
result. A function is invoked by sending it an argument and a continuation.
Region names and letregion p are translated to groups and (vp), respectively.

The remaining construct of our region calculus is sequencing: let © = a in b.
Assuming a continuation k, we translate this to the following:

(k') ([alk" | K' (x)-[b]F)

This invents a fresh, intermediate continuation k'. The process [a]k’ evalu-
ates a returning a result on k'. The process k'(x).[b]k blocks until the result x
is returned on k', then evaluates b, returning its result on k.

The following tables interpret the types, environments, expressions, regions,
and configurations of the region calculus in the w-calculus. In particular, if
S - (a,h) is a configuration, then [S - (a,h)]k is its translation, a process that
returns any eventual result on the continuation k. In typing the translation, we
assume two global groups: a group, K, of continuations and a group, Lit, of
literals. The environment [&] declares these groups and also a typing ¢;:Lit for
each of the literals ¢q, ..., £,.

Translating of the region calculus to the m-calculus:
I 1

[A] type modelling the type A

[E] environment modelling environment E
[a]k process modelling term a, answer on k
[p — v] process modelling value v at pointer p
Ir] process modelling region r

[S - (a,h)]k process modelling configuration S - (a, h)

In the following equations, where necessary to construct type annotations
in the m-calculus, we have added type subscripts to the syntax of the region
calculus. The notation [[;.; P; for some finite indexing set I = {iy,...,i,} is
short for the composition P;, | --- | P;, | 0.

Translation rules:
I 1

[Lit] = Lit]]
[(A 5 B) at p] = p[[A], K[[BI\(e U {K})

[@] = K, Lit, 0,:Lit]], . .., £,: Lit]]

[E,0] = [E],p
[E,z:A] = [E], z:[A]

o] 2 ()
[let = aq in b]k = (k" K[[A]]))([a]k" | k' (z:[A]).[b]k)

20

[p()Ik = B, k)
[letregion p in alk = (vp)[a]k

[(v at p)alk = (vp:[AD(Ip = v] | K(p))

[p = A(z:4)bs] 2 Ip(a:[A], k:K[[B])).[b]k
[(pi = i) "1 2 [Licr. nlpi = vil
[(pi = 73) zel“n]] 2 Hiel..n[[ri]]

[[S : (a,hH)]]k = (Vﬁdefunct)(V[[ptr(H)]])([[a’]]k | [[h]])
where {pdefunct} = dom(H) — S

The following theorem asserts that the translation preserves the static se-
mantics of the region calculus.

Theorem 4.1 (Static Adequacy)

(1) IFEF o then [E] F .

(2) If E+ A then [E] F [A].

(3) If EFa:® A and k ¢ dom([E]) then
[E], k:K[[A]] * [a]k : e U{K}

(4) If H = h and p € dom(H) then
[env(H)] = [h(p)] - {r}

(5) IfHE=S-(a,h) : A and k ¢ [env(H)] then
[env(H)], k:K[[A]] & [a]k | [h] : dom(H) U{K}

and also

[2], S, k:K[[A F [S - (a,)]k - SULK}

Next we state that the translation preserves the dynamic semantics. Our
theorem states that if one region calculus configuration evaluates to another,
their 7-calculus interpretations are barbed congruent:

Theorem 4.2 (Dynamic Adequacy) If H = S (a,h) : A and S - (a,h) |
(p', h') then there is H' such that H < H' and H+H' =S - (p',1') : A and for
all k ¢ domo(H + HYUL, [2],S,k:K[[A]]F [S - (a,h)]k = [S - (p', h)]k.

Recall the evaluations of the examples ex; and ez» given previously. From
Theorem 4.2 we obtain the following equations (in which we abbreviate envi-
ronments and types for the sake of clarity):

[{r} - (e, W]k ~ _
wpYwf:p) (wgp)(lf = A@)a] | [g = M) F(W)] | £(5))

[{r} - (e, W]k ~
(wp")wf:p')(vg:p)(vi:p) _
([f = M)zl | Tg = MBI T = A=2)g(HT | k(D)

21

4.2 Two Garbage Collection Theorems

We present a general m-calculus theorem that has as a corollary a theorem
asserting that defunct regions may be deleted without affecting the meaning of
a configuration.

Suppose there are processes P and R such R has effect {G} but G is not in the
effect of P. So R only interacts on names in group G, but P never interacts on
names in group G, and therefore there can be no interaction between P and R.
Moreover, if P and R are the only sources of inputs or outputs in the scope of G,
then R has no external interactions, and therefore makes no difference to the be-
haviour of the whole process. The following makes this idea precise equationally.
We state the theorem in terms of the notation (vE)P defined by the equations:
(v@)P = P, (vE,z:T)P = (vE)(va:T)P, and (vE,G)P = (vE)(vG)P. The
proof proceeds by constructing a suitable bisimulation relation.

Theorem 4.3 If E,G,E'+ P :H and E,G,E' - R : {G} with G ¢ H, then
E+ (vG)(vE")(P | R) ~ (vG)(VE")P.

Now, by applying this theorem, we can delete the defunct region p’ from our
two examples. We obtain:

(o)) wg:p)(If = M) | Tg = Aw) F(u)] | K(5))
~ (vp) (v fip) vgin) (g = AW) F)] | B())
(w0 (v f:p') (vg:p) (vi:p))
(If = A@)al | Tg = A(H31] [= A=)g(HT 1 FG)Y)
~ (v0)(vf:p') (vg:p)(viip))
(Ig = AHL | I = A@)g(HT 1 FG))

The first equation illustrates the need for hidden effects. The hidden effect
of g is {K,p'}, and so the overall effect of the process [g — A(y)f(¥)] | k(5)
is simply {p, K'}. This effect does not contain p' and so the theorem justifies
deletion of the process [f — A(z)z], whose effect is {p'}. In an effect system for
the m-calculus without hidden effects, the effect of [g — A(y)f(y)] | k(5) would
include p', and so the theorem would not be applicable.

A standard garbage collection principle in the m-calculus is that if f does
not occur free in P, then (vf)(!f(z,k).R | P) =~ P. One might hope that this
principle alone would justify de-allocation of defunct regions. But neither of
our example equations is justified by this principle; in both cases, the name f
occurs in the remainder of the process. We need an effect system to determine
that f is not actually invoked by the remainder of the process.

The two equations displayed above are instances of our final theorem, a
corollary of Theorem 4.3. It asserts that deleting defunct regions makes no
difference to the behaviour of a configuration:

Theorem 4.4 Suppose H |= S - (a,h) : A and k ¢ domo(H) U L. Let paetunct
be the sequence of groups in dom(H) — S. Then:

[2], S, k:K[[A]) F [S - (a,)]k ~ (vpaetunct) (v[ptr (H)]) ([alk | TT,es1H (0)])

22

5 An Equational Theory

The new-group construct enjoys various equational properties, such as our laws
of structural congruence. On the other hand, equational properties of letregion
do not appear to have been previously studied. This section proposes an equa-
tional theory for the region calculus, including equations for letregion inspired in
part by equations for new-group. We prove that the equational theory is sound
with respect to the semantics of the previous section. The equational trans-
formations of Benton and Kennedy (1999) for their ML intermediate language
(without regions) appear to be the only prior work on an explicit equational
theory for a typed calculus with effects.

In the following, recall that the conventional syntax for application, b(a),
where either b or a is not a name, abbreviates b(a) = let f = b inlet & = a inf(x)
where f ¢ {z} U fn(a). Given this abbreviation, we can define in the standard
way the substitution b{z<a} to be the expression obtained by replacing each
free occurrence of z in b with the expression a.

Substitution of a term for a name:
I 1

p{zec} 2 c ifrx==z
| = otherwise

z(y){z¢-c} = a{zecH(y{z¢c})
(let = a in b){z¢c} = let x = a{zc} in (b{z<c}) for z ¢ {z} U fn(c)
I(/\(:EZA)b){Z(—C} = \(z:A) (b{z+c¢}) for z ¢ {z} U fn(c)

The rules in the following tables inductively define the judgment E F a <
b : A intended to mean that the terms a and b have the same type, A, and
equivalent observable behaviour, although they may have different effects.

The first set of rules is essentially the call-by-value A-calculus (Plotkin 1975).
As usual in an equational theory for call-by-value, we restrict the argument a
in the rule (Eq Fun) to be fully evaluated, either a name, z, or an allocation,
A(z)b at p. This restriction is actually unnecessary for the present calculus,
since there are no non-terminating computations, but we include it so that the
equational theory remains valid when we extend our calculus with recursion. In
rule (Eq Fun f), we also ask for (A(z:A)b at p)(a) and b{x<+a} to share the
same type, B. This is because the type of b{z<a} can sometimes differ from
the type of (A(z:A)b at p)(a).

Equational Theory: The Call-by-Value A-Calculus

(Eq Refl) (Eq Symm) (Eq Trans)
EtFa:*A Etrasb:A FEraob:A EFboc: A
ErFa+a: A ErFbea: A EFavc: A

23

(Eq Fun)
Er(ASB)atp E,x:AFb < by:B
E,z:AFb;:** B ¢e;Ce Viel.2

EF (Mz:A)by) at p < (AN(z:A)by) at p: (A S B) at p

(Eq Fun) (where a is a name or an allocation)
Eta:** A Exz:Atb:2B EFb{z+a}:®®* B pe dom(E)

EF (A(z:A)b at p)(a) + b{z<+a}: B

Next, we have rules for let, inspired by the computational A-calculus (Moggi
1989).

Equational Theory: [et

I
(Eq Let)

Etawa:A E,z:A-bs b B
Erletz=ainboletz=a inb:B

(Eq Let Assoc)
Etra:**A Exz:Arb:*B E,y:BtFc¢:®(C
Etbletx=ain(let y=>binc)
lety=(Ietx=aindb)inc:C

(Eq Let 3) (where a is a name or an allocation)
Eta:®* A E,x:A:*b:B EFb{z+a}:**B

Etletx=ainb <+ b{r+<a}:B

Finally, here are the new rules for letregion. For the sake of brevity, we write
(vp)a as a shorthand for letregion p in a.

Equational Theory: letregion
I

(Eq Letregion) (Eq Drop)
Eptawd: A pé¢fr(4) Era:*A p¢dom(E)
EtF (vp)a > (vp)a' : A EF (vp)a+ra: A

(Eq Swap)

EpptaA {pp}nfr(d)=0
EF (vp)(wp')a < (vp')(vp)a: A

(Eq Letregion Let)
E,pta:®* A Ex:Apkb:2B p¢fr(A)Ufr(B)

EF (vp)let x =a inb <+ let x = (vp)a in (vp)b: B

The rule (Eq Letregion) is a congruence rule. The rule (Eq Swap) allows
region scopes to be re-ordered. The rule (Eq Drop) allows unused region scopes

24

to be discarded; we need the condition p ¢ dom(E), rather than the weaker
condition p ¢ e U fr(A), to ensure that both (vp)a and a are well-typed. The
rule (Eq Letregion Let) allows a single region to be broken into two.

The following are derivable rules. The first is an instance of (Eq Drop). The
second follows from the first, (Eq Letregion Let), and (Eq Trans).

(Eq Appl z(y))
Erz?(BS Aatp EFy:?B p¢ dom(E)
E+ (vp)a(y) ¢ z(y) : B

(Eq Appl) (where p ¢ fr((A 3 B) at p'))
Eptb: (A3 B)atp E,pka:* A
E+ (vp)(b(a)) < ((vp)b)((vp)a) : B
Other examples of derivable rules are:
Erz?AS5Batp Eta:® A y¢ dom(E)
Erz(a) ©lety=ainz(y): B

Etaf® ASBatp EFxz:? A yd¢ dom(E)
Etra(z) < lety=ainy(x): B

E,x:AFb:* B Eta:*A f¢&dom(E) péedom(E)
Etlet f=XNa:A)b at p in f(a) & b{z+a}: B

Eta:** A Ez:Atb:2B pée dom(E)
Etrlet x=ainb<+ (A(z:A)bat p)(a) : B

Eta:**A EFb:2B z¢ dom(E)
Erletx=ainb<b: B

Eta:®* A Ex:AFb:*> B EF b{a+a}:**B
Erletx=ainb<+ let x =ainb{r+<a}: B

Etra:* A Ex:Abb:2B E,x:Ajy:BFc:®(C

Etrletx=ainlety=>binc+
let y=(let x=aind)in(let x=ainc):C

The following are special cases of (Eq Drop):

E,pkz:? A
EF (vp)x <> x:? A

Eptuvatp Y (ASB)atp pé¢fr(AS Batp)
Et+ (vp)(w at p') <> v at p/ 1Py (AS B) at p'

In the following example, we apply (Eq Let Assoc) followed by (Eq Letregion
Let) to optimise a computation by replacing a single global region p by two

25

smaller local regions p; and p; whose lives do not overlap, and hence could
share storage.

@t (vp)let f=Nax)z at p inlet y = f(5)
inlet g = X(2)y at p in g(42)
< (vp)let y = (let f = Xz)x at p in f(5))
inlet g = \(2)y at p in g(42)
< et y = (vpr)(let f=Xx)z at p1 in f(5))
in (vpa)let g = A(2)y at p2 in g(42) : Lit

Although our equations are not decorated with effects, for any derivable
equation a; <> as there is an effect e that is an upper bound of the effects of
both a; and a».

Lemma 5.1 If EF a; ¢ az : A then there is e C dom(E) such that for each
i €1..2, there is e; C e with E + a; :¢ A.

Using standard m-calculus techniques, we can show that our equational the-
ory is sound with respect to our 7-calculus semantics.

Theorem 5.2 Suppose EFa+ b: A and k ¢ dom(E) U L. Then:
[E], k:K[[A]l + [alk ~ [b]k

Tofte and Talpin proved a result that the operational behaviour of a region-
annotated term (like the terms of our calculus) is the same as its erasure to a
pure term of the A-calculus. We conjecture that our equational theory is sound
for a standard contextual equivalence for the region calculus, and that this could
easily be shown by appealing to Tofte and Talpin’s result.

6 Extensions

In this section, we show that the main results of the paper apply not only to
the simple region calculus of Section 2 but also to that calculus extended with
recursive functions, lists, and region polymorphism. We describe this extended
calculus in Section 6.1. Then in Section 6.2 we describe an extended m-calculus.
Its extensions are recursive types, to model lists, and group polymorphism,
to model region polymorphism. In Section 6.3 we define an encoding of the
extended region calculus in this extended m-calculus. With the exception of the
results in Section 5 concerning equational reasoning, all the other theorems in
the paper concerning the unextended calculi can be generalized to the extended
calculi. We omit the statement of these generalized theorems from this section,
but in Appendix B we state and prove all these theorems. We conjecture that
the material in Section 5 could be generalized also, but we have not investigated
this generalization.

26

6.1 An Extended)\-Calculus

Here is the extended syntax of expressions and values.

Expressions and Values:
I

z,Y,0,4, f,g name: variable, pointer, literal
p region variable
a,b = expression
x variable or pointer or literal
vatp allocation of v at p
z[p1y - pn)(y) application
let x=ainb sequencing
letregion p in b region allocation and de-allocation
case z of nil = by | (y1 :: y2) = ba list case
U,V = boxed value
p(f:A)Ap1, ..., pn](x)b recursive function
nil empty list
T1 T cons cell

Previously, the only kind of value was function abstraction. In this calculus,
a boxed value can be a recursive, region-polymorphic function, an empty list,
or a cons cell.

In a function value p(f:A)A[p1,...,pn](z)b, the names f and z and the
region variables py1, ..., p, are bound, with scope b. During evaluation, the
name z gets bound to the function’s argument and the name f gets bound to
the function itself, to enable recursive calls. The region parameters pq, ..., pn
allow the function to allocate and read from regions passed in as arguments.
This region polymorphism is essential for efficient code generation in the ML
Kit compiler (Tofte and Talpin 1997). Other kind of boxed values are lists, that
is either the empty list, nil, or a cons cell, z; :: 2, where the names z; and z»
are heap pointers referring to the head and tail of the list, respectively.

A new expression for function application, z[p1, ..., pn](y), applies the func-
tion pointed to by x to the region parameters p1, ..., pn, and the value param-
eter y. The other new expression, case x of nil = by | (y1 :: y2) = be, is for list
discrimination. In this expression, the names y; and y» are bound, with scope
b>. When the expression evaluates, if = is the empty list, by runs. Otherwise,
if = is a cons cell zy :: 9, then ba{yi<x1}{ya¢x2} runs. The other expres-
sions of the extended calculus have the same interpretation as in the unextended
calculus.

The definitions of regions, heaps, and stacks needed for the dynamic seman-
tics are the same as before, though the set of values, v, stored in regions is
extended.

Regions, Heaps and Stacks:
I

r = (p; = v;) €0 region, p; distinct

h:= (p; = r;) €1 heap, p; distinct

27

S:a={p1,.--,pn} stack of live regions

The evaluation relation, S - (a,h) | (p,h’), is defined by the rules in the
following table.

Evaluation Rules:
I 1

(Eval Var)

(Eval Alloc)

p€S p¢ domy(h)
S-(vatp,h) § (p,h+ (p— (h(p) + (p = v))))
(Eval Appl) (where p € S and h(p)(p) = u(f:A)Ap1, ..., pn](z)b)
S ({fepH{pepi}--Apnpp{zqt,h) 4 (¥, 1)
S (plph,-- - pul(a)) 4 (0, 1)

(Eval Let)
S-(a,h) § (p',h) S-({zep'}, hY) ¥ (P, ")
S-(let x=ainbh){ (", 1)

(Eval Letregion)
p ¢ dom(h) SU{p}: (ah+po 2) (&, h)
S - (letregion p ina,h) Y (p',h')

(Eval Case 1)
peS h(p)p)=nil_S-(by,h) b (1)
S - (case p of nil = by | (y1 1 y2) = ba, h) Y (p', h')

(Eval Case 2)
peS hlp)p)=a:q¢ S (bfyeal{yeae}h) I @ 1H)
S - (case p of mil = by | (y1 ::y2) = ba, h) Y (p', 1)

Next, we introduce the effects, types, and environments needed for the static
semantics. The definitions of effects and environments are unchanged, but we
need to introduce new types for region polymorphic functions and for lists.

In the extended type system, a function value (u(f:F)\[p1, ..., pn](x)b) at p,
will have a type F = (V[p1,...,pn]A = B) at p, where A is the type of the
function argument 2z, and the regions pi,-- -, p, are bound. A list stored at p
will have type [A] at p, where A is the type of the elements of the list. Note
that nil is an overloaded constant, which inhabits every well-formed type, and
that each element of a list are stored in the same region than the list itself.

28

Effects, Types, and Environments:
I 1

ex={p1,-.-,pn} effect

A,B,F ::= type of expressions
Lit type of literals
Voatp type of V values at p

U,V = type of boxed values
Y[pi,-..,pn]A > B polymorphic function
[A] list

E = environment
o empty environment,
E p entry for a region p
E,x:A entry for a name x

In the type (V[p1,...,pn]A = B) at p, the regions py, ..., p, are bound with
scope A 5 B. Let fr(A) be the set of region variables free in the type A. We
have fr(Lit) = @, and fr((¥[p1,...,pn]A = B) at p) = (fr(A) U fr(B) Ue) —
{p1,---,pn} U {p}, and fr([4] at p) = fr(4) U {p}. We identify types up to
consistent renaming of bound regions.

The static semantics consists of judgments with the same format as before:
good environments, F F ¢, good types, E - A, and good expressions, E - a :¢ A.
The rules in the following tables define the static semantics. For any substitution
o of regions for regions and effect e = {p1,---,pn}, the effect ec is the set of

regions {o(p1), -+, o(pn)}-

Typing Rules:
I

(Env @) (Env z) (Env p) (Type Lit)
E+A z¢dom(E)YUL EkFo p¢dom(E) Etro
Tk E,z:AFo E,pko E Lit
(Type —) (where E' = E,p1,...,pn) (Type List)
E'tA eCdom(E'Y E'-B pedom(E) EFA pe dom(E)
Et+ (¥[p1,...,pn]A S B) at p EtF[Al atp

(Exp) (Exp ¢)

E,x:AE' o Ero lelL
E A EFz:? A EF{¢:° Lit

(Exp Appl) (where 0 = {p1<pi}---{pns=p} and {py,..., p,} C dom(E))
Erz:? (Vp,....,;n]A S B)atp EFy:® Ao

Eralp),...p)(y) 119 Bg

(Exp Let) (Exp Letregion)
Eta*A E,z:A-b:* B E,pFa:*A EFA
Erletz=ainb e B E & letregion p ina =17} A4

29

(Exp Case)
Erx:?[Alatp EFb * B E,y;:A,ys:[A] at pF by 2 B

E b case z of nil = by | (y1 :: y2) = bo Ap}ueive: p

(Exp Fun) (where F' = (V[p1,...,pa]A > B) at p)
E,f:Fp1,....pn,5:AFb:* B € CeC dom(E, py,...,pn)

EF (u(fF)Ap1, - pal(2)) at p i) F

(Exp Nil) (Exp Cons)
Er[A] atp Erx A Erxy:@[Alatp
E+ nil at p 10} [A] at p E & (z = 29) at p:10} [A] at p

The definitions of region and heap typings, R and H, respectively, and of
the judgments E+-rat p: R, H E=o, H |=h,and H = S-(a,h) : A are exactly
as in Section 2.

6.2 An Extended w-Calculus

We enrich our typed m-calculus with group polymorphism and recursive types.

The idea of group polymorphism is that instead of simply exchanging tuples
of names with fixed types on a channel, we exchange tuples of names together
with tuples of groups, where the types of the names depend on the groups. Ac-
cordingly, the type of a channel acquires the form G(G4,...,Gn)[T1,- .., Tx]\H,
where G is the group of the channel, Gy, ..., G, are group parameters, 77,
..., Ty, are the types of the name parameters, and H is the hidden effect. The
types T4, ..., T, and the effect H may depend on the group parameters G,
..+, Gpy. An output process takes the form Z(G1,...,Gm,y1,...,Yn), where Gy,
..., G, are the group parameters, and yq, ..., y, are the name parameters. An
input process takes the form z(G1,...,Gm,y1:T1, ..., yn:Ty).P where G4, ...,
G, receive the group parameters, and y1, . .., y, receive the name parameters.
This treatment of group polymorphism, where group parameters are transmit-
ted on channels, is inspired by previous treatments of type polymorphism in the
m-calculus (Turner 1995; Pierce and Sangiorgi 1997), where type parameters
are transmitted on channels. Group polymorphism allows to type-check richer
behaviour, such as an encoding of region polymorphism, than previously. Still,
group polymorphism does not introduce any new dynamic behaviour: the reduc-
tions of any well-typed process are equivalent to the reductions of its untyped
erasure.

The idea of recursive types is standard. A recursive type takes the form
w(X)T. A name of type u(X)T is deemed also to have the unfolded type
T{X<+u(X)T}, and vice versa. However, for the sake of simplicity, we do not
identify a recursive type with its unfolding. A name may be assigned the type
w(X)X, but such a name cannot be used for communication since we cannot
unfold x(X)X to a channel type.

The extended syntax of our w-calculus is as follows:

30

Types, Expressions, and Processes:
I

G,H group
X type variable
= channel type
X type variable
G(Gy,...,Gp)[T, ..., T,]\H channel type
w(X)T recursive type
P, q name: variable, channel
P,Q,R ::= process
yeo s Gy 11, - oo yn:Ty).P input (no y; € inp(P))
ey Gy Yy oo o5 Yn) output
)P new-group: group restriction
TP new-name: name restriction
P|Q composition
P replication
0 inactivity
L 1
In the type G(G1,...,Gm)[Th, ..., Tu]\H, the groups Gy, ..., G, are bound
with scope T1,...,T, and H. In the type u(X)T, the type variable X is bound
with scope T. In a process (G1,-..,Gm,y1:T1,-..,yn:Tn).P, the groups Gy,
..., G and the names yq, . . ., ¥, are bound; their scope is P. The other binders,
new-name and new-group, have the same semantics as before. The definitions
of free names of a process, fn(P), free groups of a type, fg(T'), and free groups
of a process, fg(P), are as before, except for the following changes:

Free groups, fg(T), of type T
I

foX)2 @

f9(G(Gh,...,Gp)[T1,..., T,]\H) 2
{GYU((fe(Th)U---U fg(T) UH) — {G1,...,Gn})

fo((X)T) = fo(T)

Free groups, fg(P), of process P:
I

fo(@(G,...,Gryyr:Te, ooy Tn).P) = (fg(T1) U -+~ U fg(Ty) U fg(P))
—{Gy,...,Gn}

9@ (G, . Gy rs -) = {Gh,. .., G}
fa((vG)P) = fg(P) — {G}

fo((va:T)P) = fg(T) U fg(P)

fa(P1Q) = fg(P)Ufy(Q)

fa(IP) 2 fq(P)

f9(0) = o

We identify types and processes up to consistent renaming of bound groups,
names, and type variables.

31

We define structural congruence P =) by the same rules as before, except
that we replace (Struct Input) with the following:

P=Q=> (Struct Input)
(G, Gy y1 Ty yn:Th).P =
(G, Gy Ty - yniTh).Q

We define reduction P — @ by the following rules:

Reduction:

(G, .. Gyt | 2(Gey e Gy T - yniTy) . P (Red Interact)
S PIG G} GG Hinewi} -+ {m eyl)
P5Q=P|R—-Q|R (Red Par)
P—- Q= vG)P - (vG)Q (Red GRes)
P—> Q= veT)P - (va:T)Q (Red Res)
PP=PP—-Q,Q=Q" =P —Q (Red =)

To take recursive types into account, we extend the definition of type environ-
ment to include type variables, X. The definition of the domain, dom(E), of an
environment, E, is also extended and is defined by the equations dom (&) = &,
dom(E, p) = dom(E) U {p}, dom(E,z:A) = dom(E) U {z} and dom(FE,X) =
dom(E) U {X}.

Environments:
I 1
E .= environment,

o empty environment,

E X entry for a type variable X

E.G entry for a group G

E z:T entry for a variable z

The judgments of the type system have the same format as previously: good
environment E - ¢, good type E + T, good name E F z : T, and good process
E F P : H. Their meaning is given inductively by the rules in the following
tables.

Good environments:

I(Env &) (Env z)
EFT z¢dom(E)

ahko E,zTFo

(Env G) (Env X)

EFo G ¢ dom(E) EFo X ¢ dom(E)
E,GFo E,XFo

32

Good types:

(Type Chan) (where E' = E,G,...,Gy)
E'to Gedom(E) HCdom(E') E'FT; Viel.n
EFG(Gy,...,Gp)[T,..., T \H

(Type X) (Type Rec)
E',X,E"F o E,XFT
E'X,E"+ X E+F u(X)T

L

Good names:
I 1

(Exp) (Exp Unfold) (Exp Fold)
E',x:T,E"}F o EtFz:pu(X)T Ebaz:T{X+uX)T}
E',vT)E'"tz:T Ebz:T{X+uX)T} Erz:uw(X)T

Good processes:
I 1

(Proc Input) (where (G —H)N {Gy,...,Gn} = 9)
Etrzx: G(Gl,,Gm)[Tl,,Tn]\H
E,Gl,...,Gm,yliTl,...,yniTn FP:G

Et+ $(G1,...,Gm,yliTl,...,yniTn).P : {G} U (G - H)

(Proc Output) (where 0 = {G1+G'}- - {Gn+GL.})
Erx: G(Gl,,Gm)[Tl,,Tn]\H
{G},...,G),} Cdom(E) Ety,:Tic Viel.mn
Erz(G,...,G Ly, -y {G}UHe

(Proc GRes) (Proc Res)

E,GFP:H E,zT+P:H
E-(wG)P:H—{G} Er (waT)P:H
(Proc Par) (Proc Repl) (Proc Zero)
EFP:G EFQ:H EFP:H Etro
E+-P|Q:GUH E-P:H EF0:2

(Proc Subsum)
EFP:G G CHC dom(E)
EFP:H

The standard rule (Type Rec) for checking goodness of a recursive types
w(X)T records the name of the recursively bound variable X by inserting it
into the environment used to check goodness of the body T'. This is the only
circumstance in which we are interested in having type variables in an envi-
ronment. We are only interested in the behaviour of processes type-checked in
proper environments, those in which no type variables occur.

33

Proper environments:

I
Let E be proper if and only if E - ¢ but there is no X such that F + X.
L

The relation P | § where the barb 8 € {z, T}, is defined much as before.
Exhibition of a barb:

(Barb Input) (Barb Output)

(G, -, G,y Ty o yniTh). Pl x TG, .Gy Y1y Yn) L T

(Barb GRes) (Barb Res) (Barb Par) (Barb =)
PLB PLB B¢{e® Pl P=Q QLf
WGPLB waD)PLB P|QLB P1g

The definition of a relation on typed processes is the same as before, except
we restrict attention to proper environments:

e A relation on typed processes (of the extended w-calculus), S, is a set of
triples (E, P, @) where E is a proper environment and P and @) are typed
terms such that £+ P and E + Q.

The definition of barbed congruence, and the auxiliary notions including
barbed bisimulation and barbed bisimilarity, are exactly as before.

6.3 An Extended Encoding

We translate the extended region calculus into the extended mw-calculus as fol-
lows. In this encoding, the type of a boxed value located at region p is of the
kind p(p1,-..,pm)[T1,---,Tu]\H. In the common case when m = 0, that is,
the value is monomorphic, and has no hidden effect, we abbreviate the type to
p[Tl, . ,Tn]

Translating of the region calculus to the m-calculus:
I

[4] type modelling the type A

[E] environment modelling proper environment E
[a]k process modelling term a, answer on k

[p — v] process modelling value v at pointer p

Ir] process modelling region r

[S - (a,h)]k process modelling configuration S - (a, h)

Translation rules:
I 1

[Lit] = Lit[]
[(V[p1, ..., pn]A 5 B) at p] = p(p1, ..., pa)[A] K[[B]]\(e U{K})
[[4] at p] = u(X)plpll, PI[A], X]]

34

[2] = K, Lit, 01:Lit]], . . ., £n:Lit]]

[E,p] = [E],p
[2,:4] 2 [E], 2] 4]

[2]k = k(z)

[et = au in bk 2 (k" K[[A])([al¥' | ¥ (z:[A]).[]%)

[plor,- - ol @Ik = B{p1, -, pn 0, k)

[(v at p)alk = (p:[AD([p = o] | k(p))

[letregion p in a]k = (vp)[a]k

[case plajay of il = b | (y1 2 y2) = ba]lk = (v21:p[)) (vz2:p[[ALL [[A] at p]])
(P(z1, 22) | 210)-[01]k | 22 (y1:[Al y2:[[A] at p]).[b2]F)

[p = u(f:F)Ap1, ..., pul(@)b] = 1p(p1, . - ., pn, 2:[AL, k:K[[B])).[b{ f P}k
where F' = (V[p1,...,pu]A 5 B) at p

[p = nil{ajaso] = (21200, 22:p[[AL [[A] at p]]).Z1()

[p = (21 2 22)[ajaep] = (21000, 22:p[[AL [[A] at p]]) Z2 (1, 22)

[(pi = vi) Zjel"n]] 2 [Lici nlpi = vi]

[(pi = 7i) €51 = [Ty plri]

[S - (a, he)lk = (Vfaetunet) (v[ptr (H)])([alk | [B])
where {pdefunct} = dom(H) — S

The translation of the extended region calculus is an extension of the en-
coding given in Section 4. In particular, the encodings of type environments,
regions, heaps and configurations are unchanged.

The encoding of lists and the case expression are standard (Milner 1999).
A polymorphic recursive function is modelled as a replicated input process,
awaiting the argument of the function, a continuation on which to return a result
and for group parameters representing the region parameters to the function.
A function is invoked by sending it the argument and a continuation channel.

Appendix B states and proves reformulations of all the results stated in
Sections 2, 3, and 4 in terms of the extended calculi of this section.

7 Conclusions

We showed that the static and dynamic semantics of Tofte and Talpin’s region
calculus are preserved by a translation into a typed m-calculus. The letregion
construct is modelled by a new-group construct originally introduced into pro-
cess calculi by Cardelli, Ghelli, and Gordon (2000a). We showed that the rather
subtle correctness of memory de-allocation in the region calculus is an instance
of Theorem 4.3, a new garbage collection principle for the m-calculus. The
translation is an example of how the new-group construct accounts for the type
generativity introduced by letregion, just as the standard new-name construct
of the m-calculus accounts for dynamic generation of values.

35

Banerjee, Heintze, and Riecke (1999) give an alternative proof of the sound-
ness of region-based memory management. Theirs is obtained by interpreting
the region calculus in a polymorphic A-calculus equipped with a new binary type
constructor # that behaves like a union or intersection type. Their techniques
are those of denotational semantics, completely different from the operational
techniques of this paper. The formal connections between the two approaches
are not obvious but would be intriguing to investigate. A possible advantage
of our semantics in the w-calculus is that it could easily be extended to inter-
pret a region calculus with concurrency, but that remains future work. Another
line of future work is to consider the semantics of other region calculi (Aiken,
Faehndrich, and Levien 1995; Crary, Walker, and Morrisett 1999; Hughes and
Pareto 1999) in terms of the m-calculus. Finally, various researchers (Moggi
and Palumbo 1999; Semmelroth and Sabry 1999) have noted a connection be-
tween the monadic encapsulation of state in Haskell (Launchbury and Peyton
Jones 1995) and regions; hence it would be illuminating to interpret monadic
encapsulation in the w-calculus.

Acknowledgements

Luca Cardelli participated in the initial discussions that led to this paper. We
had useful conversations with Giorgio Ghelli, Cédric Fournet and Mads Tofte
on the connections between groups and regions. Thanks to Simon Helsen for
pointing out a problem with the rules (Eq Fun $) and (Eq Let §) in the original
version of this technical report. Luca Cardelli, Tony Hoare, and Andy Moran
commented on a draft.

36

References

Abadi, M. and A. D. Gordon (1999). A calculus for cryptographic protocols:
The spi calculus. Information and Computation 148, 1-70. An extended
version appears as Research Report 149, Digital Equipment Corporation
Systems Research Center, January 1998.

Aiken, A., M. Faehndrich, and R. Levien (1995). Better static memory
management: Improvements to region-based analysis of higher-order lan-
guages. In Proceedings PLDI’95, pp. 174-185.

Banerjee, A., N. Heintze, and J. Riecke (1999). Region analysis and the poly-
morphic lambda calculus. In Proceedings LICS’99.

Benton, N. and A. Kennedy (1999). Monads, effects and transformations.
In Proceedings HOOTS99, Volume 26 of FElectronic Notes in Theoretical
Computer Science, pp. 1-18. Elsevier.

Birkedal, L., M. Tofte, and M. Vejlstrup (1996). From region inference to
von Neumann machines via region representation inference. In Proceedings
POPL’96, pp. 171-183. ACM.

Boudol, G. (1992). Asynchrony and the w-calculus. Technical Report 1702,
INRIA.

Cardelli, L., G. Ghelli, and A. D. Gordon (2000a). Ambient, groups and mo-
bility types. In Proceedings of IFIP TCS2000. to appear.

Cardelli, L., G. Ghelli, and A. D. Gordon (2000b). Group creation and secrecy.
Submitted for publication.

Crary, K., D. Walker, and G. Morrisett (1999). Typed memory management
in a calculus of capabilities. In Proceedings POPL’99, pp. 262-275.

Dal Zilio, S. (1999). A bisimulation for the blue calculus. Technical Report
3664, INRIA.

Fournet, C. and G. Gonthier (1996). The reflexive CHAM and the Join-
calculus. In Proceedings POPL’96, pp. 372-385.

Gifford, D. K. and J. M. Lucassen (1986). Integrating functional and imper-
ative programming. In Proceedings LEFP’86, pp. 28—-38.

Honda, K. (1992). Two bisimilarities for the v-calculus. Technical Report 92-
002, Department of Computer Science, Keio University.

Hughes, J. and L. Pareto (1999). Recursion and dynamic data-structures
in bounded space: Towards embedded ML programming. In Proceedings
ICFP’99, pp. 70-81.

Launchbury, J. and S. Peyton Jones (1995). State in Haskell. Lisp and Sym-
bolic Computation 8(4), 293-341.

Leroy, X. (1996). A syntactic theory of type generativity and sharing. Journal
of Functional Programming 6(5), 667-698.

37

Merro, M. and D. Sangiorgi (1998). On asynchrony in name-passing calculi.
In Proceedings ICALP’98, Volume 1443 of Lecture Notes in Computer
Science, pp.- 856-867. Springer.

Milner, R. (1999). Communicating and Mobile Systems: the 7-Calculus. CUP.

Milner, R., J. Parrow, and D. Walker (1992). A calculus of mobile processes,
parts i and ii. Journal of Information and Computation 100, 1-77.

Milner, R. and D. Sangiorgi (1992). Barbed bisimulation. In Proceedings
ICALP’92, Volume 623 of Lecture Notes in Computer Science, pp. 685—
695. Springer.

Milner, R., M. Tofte, R. Harper, and D. MacQueen (1997). The Definition of
Standard ML (Revised). MIT Press.

Moggi, E. (1989). Notions of computations and monads. Theoretical Computer
Science 93, 55-92.

Moggi, E. and F. Palumbo (1999). Monadic encapsulation of effects: a revised
approach. In Proceedings HOOTS99, Volume 26 of FElectronic Notes in
Theoretical Computer Science, pp. 119-136. Elsevier.

Pierce, B. and D. Sangiorgi (1996). Typing and subtyping for mobile pro-
cesses. Mathematical Structures in Computer Science 6(5), 409-454.

Pierce, B. and D. Sangiorgi (1997). Behavioral equivalence in the polymor-
phic pi-calculus. In Principles of Programming Languages (POPL). Full
version to appear in Journal of the Association for Computing Machinery
(JACM). Also available as INRIA-Sophia Antipolis Rapport de Recherche
No. 3042 and as Indiana University Computer Science Technical Report
468.

Pierce, B. C. and D. N. Turner (1997). Pict: A programming language based
on the pi-calculus. Technical Report CSCI 476, Computer Science Depart-
ment, Indiana University. To appear in Proof, Language and Interaction:
Essays in Honour of Robin Milner, G. Plotkin, C. Stirling, and M. Tofte,
editors, MIT Press, 2000.

Plotkin, G. D. (1975). Call-by-name, call-by-value and the A-calculus. Theo-
retical Computer Science 1, 125-159.

Russo, C. V. (1996). Standard ML type generativity as existential quantifi-
cation. Technical Report ECS-LFCS-96-344, LFCS, University of Edin-
burgh.

Sangiorgi, D. and D. Walker (2000). The pi-calculus: a theory of mobile pro-
cesses. Cambridge University Press. (forthcoming).

Semmelroth, M. and A. Sabry (1999). Monadic encapsulation in ML. In Pro-
ceedings ICFP’99, pp. 8-17.

Talpin, J.-P. and P. Jouvelot (1992). Polymorphic type, region and effect
inference. Journal of Functional Programming 2(3), 245-271.

38

Tofte, M. and J.-P. Talpin (1997). Region-based memory management. Infor-
mation and Computation 132(2), 109-176.

Turner, D. N. (1995). The polymorphic pi-calculus: theory and implementa-
tion. Ph. D. thesis, University of Edinburgh.

Wadler, P. (1998). The marriage of effects and monads. In Proceedings
ICFP’98, pp. 63-74.

Walker, D. (1995). Objects in the pi-calculus. Information and Computa-
tion 116(2), 253-271.

39

A Review of the Untyped m-Calculus

In this section, we review the syntax and semantics of the untyped, polyadic,
choice-free, asynchronous m-calculus (Milner 1999; Boudol 1992; Honda 1992).
We impose two additional (standard) simplifications, that are: (1) the recipient
of a name may only use it in output actions; (2) there are no operators for
testing the equality (or inequality) of names. Intuitively, only the capability to
output on a named channel may be transmitted.

The m-calculus fragment defined by these restrictions, also known as the lo-
cal m-calculus (Merro and Sangiorgi 1998), has a richer equational theory than
the full w-calculus, and can be regarded as a basis for some proposals of concur-
rent programming languages (Fournet and Gonthier 1996; Pierce and Turner
1997). The additional algebraic laws obtained in the local variant of 7, such
as, for example, the replication laws listed subsequently in Proposition A.8, are
required in the proof of Theorem 5.2, the correctness of our proposed equational
theory for the region calculus.

The syntax and dynamic semantics of the untyped m-calculus are defined
in Appendixes A.1 and A.2, respectively. In Appendix A.3 we define an alter-
native semantics for the calculus based on a labelled transition system, that
makes it easier to reason about possible reductions of a process. We also for-
mulate Proposition A.1, which relates the reduction and transition semantics.
In Appendix A.4 we define barbed congruence for the untyped calculus and we
prove several algebraic laws that are useful in Appendix B.

A.1 Syntax

Processes of this calculus are those obtained from the typed m-calculus processes
defined in Section 3 by erasing all type and group annotations.

Processes:
I 1
T,Y,D,q names
PQ,R:= process
(Y1, Yn)-P input (no y; € inp(P))
T(Y1, - Yn) output
(vz)P restriction
P|Q composition
P replication
0 inactivity

The locality property is ensured using a syntactic restriction on the definition
of inputs, z(y1,-..,yn).P, namely that no parameter y; is in inp(P), where
inp(P) is the set of names x such that an input z(z1,...,2ny).P' occurs as a
subprocess of P, with z not bound.

We write P{xz<z'} for the outcome of a capture-avoiding substitution of =’
for each free occurrence of the variable z in the process P. We identify processes

40

up to renaming of bound variables. We write P = Q to mean that P and @ are
the same up to renaming of bound variables.

A.2 Dynamic Semantics

We formalize the semantics of the untyped w-calculus using techniques identical
to those applied in Section 2.2. In particular, a reduction relation between pro-
cesses, P — @, is defined on top of an auxiliary structural congruence relation,
P = @, that identifies processes up to simple rearrangements.

Structural Congruence:

IPEP
Q=P=P=Q
P=Q,Q=R=P=R

Q = (vz)P = (vz)Q
Q=P|R=Q|R

Q='P=1Q

Q=zy1, . ,Yn).P=z(y1,...,yn).Q

e B Ria)
HEE e

=
=
P
Q
R

P

I §5€

P
=P|(QIR)

S
v

(vy)(vz)P
(vz)(P | Q) = P | (vr)Q

8
mE
=

S
w\./
_/'w
4

Struct Refl)
Struct Symm)
Struct Trans)

(

(

(

(Struct Res)
(Struct Par)
(Struct Repl)
(Struct Input)
(Struct Par Zero)
(Struct Par Comm)
(
(
(
(

Struct Par Assoc)
Struct Repl Par)

Struct Res Res)
Struct Res Par)

Reduction:

5(y1,---,yn> |$(Z1a---azn)-P_) P{Zlel}"'{ZnHyn}

P5Q=P|R—-Q|R
P Q= (ve)P - (vx)Q
P =PP-Q,Q=Q =P = Q'

Red Interact)
Red Par)
Red Res)
Red =)

NN SN N

This presentation of the m-calculus semantics allows for a simple and com-

pact definition of the reduction rules in which the sub-processes having to in-
teract —the redexes in A-calculus terminology— appear in contiguous position.
Nonetheless, the operational semantics of concurrent systems are commonly de-
fined using labelled transition systems and, whereas a reduction semantics may
be much more enlightening and simple than a transition semantics, the latter
makes it easier to reason about the possible reductions of a process. For in-
stance, it will be difficult to prove Lemma A.2, given in Appendix A.3, without
the help of a labelled transition system.

41

A.3 Labelled Transition Semantics

The definitions in this section are adapted from the presentation of the labelled
transition system of the spi calculus (Abadi and Gordon 1999). In order to
define the labelled transition semantics, we need some new syntactic forms:
abstractions, concretions, and agents.

e An abstraction is an expression of the form (#)P, where P is a process
and Z is a sequence of variables zy,...,z, such that n > 0 and 1, ...,
z, are pairwise distinct and bound in P.

e A concretion is an expression of the form (v2)(¥)Q, where @ is a process
and 7 and ¢ are sequences of variables z1, ..., zm, and y1, ..., yn, respec-
tively, such that m,n > 0, and {Z} C {g}, and 21, ..., 2z, are pairwise
distinct and bound in (7)@Q.

e An agent is either a process, an abstraction, or a concretion. We use the
metavariables A and B to stand for arbitrary agents.

For any abstraction, (Z)P, let its arity, |(Z)P|, be the length of the sequence
#. Similarly, for any concretion, (v2)(§)Q, let its arity, |(vZ)(¥)Q|, be the length
of the sequence 7.

Let fu(A) be the sets of free variables of an agent A. Like processes, both
abstractions and concretions are identified up to consistent renaming of bound
variables.

We extend the restriction and composition operators to arbitrary agents, as
follows. For an abstraction, ()P, we set:

(vy)(&)P (@) (vy) P
R|(@®P = (H)(R|P)

where we assume that the bound variables & are disjoint from {y} U fu(R).
For a concretion, (v2)(7)Q, we set:

- a (va, 2)()Q if x € {y}
va)(w)MeQ = { (0B P ra)Q otherwise
R|(w)((HQ = @HH(R|Q)

assuming that z ¢ {Z} and that {Z} N fu(R) = @.

We define the dual composition A | R symmetrically.

Next, we define processes obtained by combining abstractions and concre-
tions of equal arity. If F' is the abstraction (¥)P where ¥ = z1,...,z, and C is
the concretion (v2)(§)Q where § = y1,...,y, and {Z} N fu(P) = @, we define
the interactions FQC and CQF to be the processes given by:

w2)(P{zieyi}--{znyn} | Q)
@2)(Q | Plziy1}- - {zntyn})

li2

Fac
Car

>

42

An action is either a barb or the distinguished silent action 7. The labelled
transition system is written P — A, where P is a process, a is an action, and
A is an agent. We define this relation inductively, by the following rules:

The Labelled Transition System:
I

(Trans In) (Trans Out)
2(yise o yn) P = Gy P E e yn) = ()@ ya)0
(Trans Inter 1) (with |F| = |C)) (Trans Inter 2) (with |F| = |C|)
PSS F Q-5C P5C Q-5F

P|Q -5 FaC P|Q -5 CQF
(Trans Par 1) (Trans Par 2)

P-% A Q-5 A

PlQ-4|Q PlQ-=5P|A
(Trans Res) (Trans Repl)
P A a¢{x,7} PP A

(ve)P -2 (v)A P A

The following is a basic result that states that modulo structural congru-
ence, the reduction relation exactly represents the silent action of the transition
semantics. A proof of this property can be obtained by adapting the detailed
proof of an equivalent result found in the extended version of Abadi and Gordon
(1999) paper on the spi calculus.

Proposition A.1 P — Q if and only if there is a process R such that P — R
and R = Q.

Lemma A.2 (vz)P — Q if and only if there is a process P’ such that P — P’
and Q = (vx)P'.

Proof Assume (vz)P — (. By Proposition A.1, there is a process R such
that (v2)P - R and R = Q. The judgment (vz)P —— R must have been
derived by (Trans Res) with R = (vz)P' and P - P’. By Proposition A.1,
P P. O

A.4 Barbed Congruence

The notion of equivalence between untyped terms that we consider in this pa-
per is barbed congruence (Milner and Sangiorgi 1992), a bisimulation-based
behavioural equivalence that preserves a notion of observation, called barbs.

A barb, B, is either a name z or a co-name T. We write P |} 3 if there
exists P’ such that P —* P’ and P’ | 3, where the relation | is defined in the
following table.

43

Exhibition of a barb:

(Barb Input) (Barb Output)

x(ylaayn)Pix f<ylaayn>*lrf

(Barb Res) (Barb Par) (Barb =)
PLB B¢f{wz PLB P=Q QLB

(vz)P | PlQLB Plp

The barbs exhibited by a process, P, are related to the labelled transitions
that P can perform, that is, to the external communications through which a
process may interact with an outer context. We can formalize this idea using
the following proposition.

Proposition A.3 P | 8 if and only if there is an agent A such that P =Ny

What follows is a series of definitions leading up to our definition of barbed
congruence for the untyped m-calculus.

For any relation on processes S, let P =S= () mean there are processes
P" and Q' such that P=P', P’ S @', and Q' = Q.

A symmetric relation S is a barbed bisimulation if and only if P S @
implies:

(1) If P | % then Q | T.

(2) If P — P’ then there is Q' such that Q@ —* Q' and P' =S= Q'.

A renaming, o, is a substitution {z1+z{} - - {z,]} of names for names
where n > 0 and the names 1, ..., z, are pairwise distinct. Let dom(o) =
{z1,...,2,} and ran(o) = {z},...,2,}. If z = 2; for some j € 1..n, let
o(z) = z;. Otherwise, if z ¢ dom(0), let o(z) = =.

Barbed bisimilarity, é, is the relation on processes such that P ~ Q if and
only if there is a barbed bisimulation S such that P S Q.

Barbed congruence, /2, is the relation on processes such that P ~ @ if and
only if for all processes R and renamings o we have that Po | R~ Qo | R.

The following are basic properties of barbed congruence for the untyped
m-calculus. As in the typed case, barbed congruence is a congruence relation
preserved by renamings that includes structural congruence.

Proposition A.4

(1)
(2)

Barbed congruence is reflexive, transitive, and symmetric.

Barbed congruence satisfies the congruence properties.

44

If P~ Q then x(y1,...,yn). P = x(y1,...,Yn)-Q.
IfP=~(Q then P| R~ Q| R.

If P~ Q then (vz)P =~ (vz)Q.

If P~ @ then 'P =~ Q).

(3) If P =~ Q then Po =~ Qo for any arbitrary substitution o from names to
names.

(4) If P=(Q then P~ Q.
(5) If x ¢ fu(P) then (vz)P =~ P.

Next, we prove an non-interference property for communications over a re-
stricted channel. This property plays an important role in the soundness proof
of the equational theory developped in Section 5.

Lemma A.5 (Non-Interference) If k ¢ {z} U fu(P), then:
(vk)(k(2) | k(z).P) ~ P{x<z}

Proof Let S be the smallest reflexive and symmetric relation such that:
(vEk)(k(z) | k(z).P) | R S (vk)(P{z+=z})| R

for all processes P and R such that k ¢ {z} U fu(P). We show S is a barbed
bisimulation. Assume P;SP>. Then either P; equals P>, which is a trivial case,
or P, = (vk)(P{z+2}) | R and P, = (vk)(k(z) | k(z).P) | R, or we have the
symmetric case, P, = (vk)(k(z) | k(z).P) | R and P, = (vk)(P{z+z2}) | R.
Assume we are in the latter case.

(1) Assume P; | T. By Proposition A.3, it must be the case that R | T.
Hence, P | 7.

(2) Assume P, | T. Since P; — P», we have P, || T.

(3) Assume P, — Q. By Proposition A.1 and inspection of the possible
transitions, either Q; = P», or there is a process R' such that R — R’
and Q; = P, | R'. In the former case, since S is reflexive, we get that
Q1 =S= P,. In the latter case, let Q2 be the process (vk)(P{z+z}) | R'.
Since P, — @2, we get that P, — Q2 and @)1 =S= @2, as required.

(4) Assume P, — Q2. Since P, — P, we get that P, —* @ and, by S
reflexive, we get that Q1 =S= @1, as required.

Since S is a barbed bisimulation, we get that
(vk)(k(z) | k(z).P) | R ~ (vk)(P{z<+=z}) | R
for all processes P and R such that k ¢ {z} U fo(P).

45

Let R be an arbitrary process and o be an arbitrary renaming. We can
assume that the bound names of (vk)(P{z¢z}) are not in dom(o) U ran(o).
Therefore:

(vk)(k(z) | k(2).P)o | R (vk)(k(o(2)) | k(z).(Po)) | R
(vk)(Po{z+o(z)}) | R

(vk)(P{z+=z}o) | R

el

Hence, (l/k_)(E(z) | k(z).P) ~ (vk)(P{z<z}). By Proposition A.4 (5), we get
that (vk)(k(z) | k(x).P) =~ P{x+z}. |
We can prove the following algebraic laws by a similar method.
Lemma A.6 Ifk ¢ {z,y1,...,yn} then:
x(Y1,-..,yn)-(VE)P = (VK)x(y1,...,yn)-P

Lemma A.7 (Garbage Collection) If k ¢ fu(Q) then:

(1) (vk)(k(z1,...,2,).P | Q)= Q

(2) (vk)(k(z1,...,2,).P| Q) = Q.

Assume p does not appear free in input position in P, @, that is, p ¢
inp(P) U inp(Q), let the operator def p(z,k) = P in @) denote the process
(vp)(!p(x,k).P | Q). Such processes are found in encodings of the A-calculus
in the m-calculus and also in our encoding of the region calculus. For example,
erase([\(z:A)b at p]k) can be rewritten def p(x, k) = [b]k in k(p).

Replicated Resources:

IFor all processes P and @, such that = ¢ inp(P) U inp(Q), we define the
process def x(y1,...,yn) = P in Q to be (vz)('z(y1,...,yn)-P | Q).
L

One of the algebraic laws valid in the local 7w-calculus and not in the full 7-
calculus is the replication theorem of Milner that, intuitively, states that private
resources can be safely duplicated, that is, for example:

def (y1,...,yn) =P in (Q | R) =~

We state below Proposition A.8, which lists a more complete set of repli-
cation laws. An equivalent of this property has been proved for the full 7-
calculus (Milner 1999), where the equivalence used is strong ground congru-
ence (Milner, Parrow, and Walker 1992). But this equality holds only with the
side condition that the link to the resource (the channel z in this example)
may not be emitted, that is, does not appear in object position of an output.
Only recently, Merro and Sangiorgi (Merro and Sangiorgi 1998) proved the same
equation, without the first side condition, for barbed congruence in the local 7-
calculus. The same laws have also been proved for a local variant of the blue
calculus (Dal Zilio 1999).

46

Proposition A.8 (Replication Laws)
(1) If p & fo(P) then def p(j) = R in P ~ P
(2) def p(§) = R in (P | Q) ~ (def p(§) = R in P) | (def p(§) = R in Q)
(3) If p# q and q & fo(R) then:

def p(y) = R in (def q(2) = S in P)
~ def q(%) = (def p(y) = R in S) in (def p(§) = R in P)

(4) If {Z} N fu(p(§).R) = & then:
z(2).(def p(§) = R in P) = def p(§) = R in z(Z).P

~ def p(yr,---,yn) = P in (P{y1=21} - {yne2n} | Q)

We also prove another useful property of barbed congruence.

Lemma A.9 Ifx ¢ fu(k'(y).Q) then:
Wk (k(2).(P | K (y).Q)) & WK') (k(2).P | K (y).Q)

Proof To show that (vk')(k(z).(P | k'(y).Q)) and (vk')(k(z).P | k'(y).Q)
are barbed congruent, we define a barbed bisimulation, S, such that:

@2) (k') (k(x).(P [K (y).Q) | R S (wZ)(wk)(k(z).P | K (y).Q) | R (1)

Let S be the smallest reflexive and symmetric relation such that (1) holds for
all untyped processes P, @, R and sequences of names Z where z ¢ fo(k'(y).Q).
We show that S is a barbed bisimulation. Assume P; S P,. Then either P;
equals P, which is a trivial case, or P, = (v2)((vk')(k(z).P | ¥'(y).Q) | R) and
Py, = (v2)((vk)k(z).(P | k¥'(y).Q) | R), or we have the symmetric case, P, =
w2)((vE')k(2).(P | K'(y).Q) | R) and P> = (v2)((vk')(k(z).P | k'(y).Q) | R).

Assume we are in the latter case.

(1) Suppose P; | p. By Proposition A.3, R | p with p ¢ {Z}. By (Barb Par)
and (Barb Res) several times, P, | B, as required.

(2) Suppose P» | p. By Proposition A.3, R | p with p ¢ {Z}. By (Barb Par)
and (Barb Res) several times, P; | p, as required.

(3) Suppose P, — S. By Proposition A.1 and inspection of the possible
transitions, there is a sequence of names, o, such that R = (vw)(k(p) | R)
and S = (vZ, @) ((vk")(P{z+p} | ¥'(y).Q) | R'). By (Red =) and (Red

Interact), P» — S. Since S is reflexive, we get that S S S, as required.

47

(4) Suppose P, — S. By Proposition A.1 and inspection of the possible

transitions, there is a sequence of names, o, such that R = (v)(k(p) | R)
and S = (vZ, @) ((vk')(P{z<p} | ¥'(y).Q) | R'). By (Red =) and (Red
Interact), and since = ¢ fu(k'(y).Q), we get that P, — S. Since S is
reflexive, we get that S S S, as required.

Since S is a barbed bisimulation, we get that (vk')k(z).(P | k' (y).Q) | R ~
(vk")(k(z).P | k'(y).Q) | R, for all untyped processes P,Q, R such that z ¢
fo(k'(y).Q). Let o be an arbitrary substitution of names for names. We can
assume that (dom (o) U ran(o)) N{k',z,y} = @, and therefore:

((Wk")k(z).(P | K'(y)-Q))o | R
(k") (k(z).P | K'(y)-Q))o | R

where z ¢ fu(k'(y).Qo). Hence, (vk')(k(z).(P | k'(y).Q)) ~ (vk')(k(z).P |
k' (y).Q), as required. O

(vk")k(z).(Po | K'(y).Qo) | B
(k") (k(z).Po | K'(y)-Qo) | B

B Proofs

In this appendix, we prove all the propositions stated without proof in the main
body of the paper. We split the appendix into several sections. Throughout,
with the exception of Appendix B.7, we work with the extended calculi of Sec-
tion 6. Proofs of all the corresponding theorems for the unextended calculi may
be obtained by simplifying the proofs for the extended calculi.

(1) In Appendix B.1 we prove Theorem B.13, the subject reduction prop-
erty for the extended region calculus, and Proposition B.14, the property
that well-typed configurations do not lead to runtime errors. These facts
correspond to Theorem 2.1 and Proposition 2.2, respectively, for the un-
extended region calculus.

(2) In Appendix B.2, we prove Proposition B.31, the subject reduction prop-
erty for our extended m-calculus, and Proposition B.32, effect soundness,
the property that the group of any barb of a process is included in its
effect. These facts correspond to Proposition 3.2 and Proposition 3.3,
respectively, for the unextended 7w-calculus.

(3) In Appendix B.3, we prove Proposition B.38, which asserts that the re-
ductions of a typed process according to the typed operational semantics
are equivalent to the reductions of the untyped erasure of the process ac-
cording to the untyped operational semantics. This fact corresponds to
Proposition 3.1 for the unextended 7-calculus.

(4) In Appendix B.4, we prove Proposition B.46, that barbed congruence
for the extended w-calculus satisfies the congruence properties. This fact
corresponds to Proposition 3.4 (2), for the unextended w-calculus.

48

(5) In Appendix B.5, we prove Theorem B.53, the garbage collection principle
for our extended m-calculus. This fact corresponds to Theorem 4.3 for the
unextended m-calculus.

(6) In Appendix B.6 we prove various properties of the encoding of the region
calculus in the m-calculus.

Appendix B.6.1 proves Theorem B.59, which asserts that the encoding
preserves the static semantics.

Appendix B.6.2 introduces an auxiliary small-step semantics for the region
calculus.

Appendix B.6.3 exploits the auxiliary small-step semantics in order to
prove Theorem B.67, which asserts that the encoding preserves the dy-
namic semantics.

Appendix B.6.4 proves Theorem B.68, which asserts that defunct regions
make no difference to the behaviour of a program.

The three theorems proved in this appendix correspond to Theorem 4.1,
Theorem 4.2, and Theorem 4.4, respectively, for the unextended calculi.

(7) In Appendix B.7, we prove the auxiliary lemma, Lemma 5.1, and the
soundness of the equational theory for the unextended region calculus,
Theorem 5.2, as stated in Section 5.

B.1 Subject Reduction for the A-Calculus

In this section, we prove Theorem B.13, that in the extended region calculus
reduction preserves types. We also prove Proposition B.14, that well-typed
values are allocated in lived regions and that well-typed function applications
invoke closures stored in lived regions. These two properties combined imply
that a well-typed expressions cannot yield a runtime errors.

The proof of these properties use a series of simple intermediate results,
Lemmas B.1 to B.12, that are classic in proof of subject reduction. For example,
Lemma B.3, that is an example of so-called exchange lemma, Lemma B.6, that
is an example of weakening lemma, or Lemmas B.11 and B.12, that are examples
of substitutions lemmas. For the sake of brevity, we omit the proofs of these
intermediate properties.

In the type and effect system introduced in Sections 2.3 and 6.1, each judg-
ment has the form E F J, where E is a typing judgment and 7 is an assertion
that is either o, for well-formed environments, or a type A, for well-formed types,
or a :¢ A, for good expressions a with type A and effect e. In the rest of this
paper, we use the symbol 7 to denote an assertion.

Lemma B.1 If E+- J then EF o.
Lemma B.2 If E,E'+ J then dom(E) Ndom(E') = @ and E \- o.

Lemma B.3 If E,z:A,p,E' - J then E,p,z:A,E'+ 7.

49

Lemma B4 IfE,E'+ 7,z ¢ dom(E,E')UL and E*+ A then E,x:A,E'+ J.
Lemma B.5 IfE,E'+ J and p ¢ dom(E,E'") then E,p,E' + J.
Lemma B.6 If E+ 7 and E,E'+ ¢ then E,E' + 7.

Lemma B.7 Let (p;:A;) €™ be the environment ptr(H). If H &= o then
dom(H) & A; for each i € 1..n.

Lemma B.8 If HE=¢ and H < H' and H' |=¢ then H+ H' = o.

Lemma B.9 If env(H)F J and H < H' and H' |= o then env(H + H') F J.
Lemma B.10 IfE+2:* Aand E+- 2 : B thene=¢' =@ and A = B.
Lemma B.11 If E,2:AE' =7 and E+ p:? A then E,E' + J{x+p}.

Lemma B.12 If E,p,E' = J and p' is a region defined in dom(E) then
E,E'{p<p'} F T{pp'}.

The following is the subject reduction theorem for our extended region cal-
culus. A proof of Theorem 2.1, subject reduction for the unextended region
calculus, can be obtained by simplifying the following proof.

Theorem B.13 If H = S - (a,h) : A and S - (a,h) |} (p',h') there is H' such
that H<H and H+ H' = S-(p',h) : A.

Proof By induction on the derivation of S - (a,h) | (p', h').

(Eval Var) Then S (p,h) | (p,h), and we have H =S - (p,h) : A by assump-
tion. Take H' = @ and we trivially have H < H' and H+ H' =S (p,h) :
A.

(Eval Alloc) Then S - (v at p,h) J (p,h+ (p— (h(p) + (p— v))) with p € S
and p ¢ domso(h).
By (Config Good), H = S-(v at p,h) : A means that env(H) F v at p:¢ A
for some e C S, and that H = h and S C dom(H). Since only (Exp Nil),
(Exp Cons) or (Exp Fun) can derive env(H) F v at p :* A, we have
A=V at p, for some V, and e = {p}.
Let H' be the heap typing p — (p:A). Since p ¢ domy(H) = domz(h),
we have env(H + H') F o. Hence, env(H + H') + p :? A. Moreover
S C dom(H + H").
By (Heap Good), H |= h and p € S imply that env(H) F h(p) at p: H(p).
Therefore, env(H + H') - h(p) at p+ (p = v at p) : H(p) + (p:A). Hence,
H+H Eh+pw- (hip) +p—v).
We have env(H+ H')Fpat p: Aand S C dom(H + H') and H+ H' |=
h+p+— (h(p)+p — v). Hence, by (Config Good), H+H' = S-(p,h) : A,
as required.

50

(Eval Appl) Then S - (p[p},-.-,0,]1(q),h) U (p',h') derives from S - (b{f<+p}
{z<+q}o,h) | (p',h') where p € S and h(p)(p) is the function u(f:F)\p1,

-5 pn)(@)b and 0 = {p1=pi}---{pnpl} and F = Vp1,...,pa](B1 =
Bs) at p.
By (Config Good), H = S - (p[p},-.-,ph](q),h) : A means that env(H) F
oY, -, PL](q) ¢ A for some e C S, and that H |= h and S C dom(H).

Only (Exp Appl) can derive env(H) F plp},...,p\]1(q) :¢ A and so we
have env(H) + p :° F and env(H) F ¢ :° Bio and A = Bsyo, where
e={p}Ue'oand {p},...,p,} C dom(H). Since H = h and p € dom(H),
we have that env(H) F h(p) at p : H(p), and in particular, env(H) +
w(f:F)Npr,. .., pal(z)b at p :1°} F.

Only (Exp Fun) can derive env(H) = p(f:F)Xpi,...,pn)(x)b at p :10}
F, and so env(H), f:F,p1,...,pn,x:B1 F b :*" B, where ¢ C ¢ C
dom(E, p1,...,pn). By Lemma B.11 and B.12, since env(H) F q :? Byo
and env(H) F p :? F, we get that env(H) F b{f«p}{zq}o ¢ 7 Byo.
By (Config Good), H = S - (b{f+p}{zq}o,h): A.

By induction hypothesis, since S - (b{f+p}{z+q}lo,h) | (p',h'), we get
that there is H' with H x H' and H+ H' =S - (p/,h') : A, as required.

(Eval Let) Then S-(let x = bina,h) | (p',h'") derives from S-(b,h) § (p', h')
and S - (a{z<p'}, 1) U (p",1").

By (Config Good), H |= S - (let x = b in a,h) : A means that env(H) F
let x="0ina:® A for some e C S, and that H = h and S C dom(H).

Only (Exp Let) can derive env(H) - let x = b in a :°* A and so we have
env(H) F b:® B and env(H),z:B F a :*+ A for some ey, e, and B, such
that e = e, U ep. By (Config Good), env(H) - b :* B and e, C S and
H |=hand S C dom(H) imply that H = S - (b,h) : B.

By induction hypothesis, since S - (b, h) | (p’, h'), we get that there is H'
with H < H' and H+ H' |=S-(p',h') : B. By (Config Good), this means
that env(H + H') F p' " B for some ¢ C S, and that H + H' E h' and
S C dom(H + H'"). Only (Exp z) or (Exp [) can derive this and so it must
be that ' = &.

By Lemma B.9, since env(H),z:B F a :*= A, we get that env(H +
H'),z:B F a :° A. By Lemma B.11, since env(H + H') + p' :? B,
we get that env(H + H') - a{z«p'} :°» A. Therefore, by (Config Good),
env(H+ H') =S - (a{z<p'},h') : A.

By induction hypothesis, since S - (a{z+p'},h") U (p”, "), we get that
there is H" such that H+ H' < H" and (H+ H')+ H" |=S-(p",h") : A.
To complete the case, note that H < H' + H" and H + (H' + H") =
S-(",n"): A

(Eval Letregion) Then S - (letregion p ina,h) | (p',h') derives from SU{p}-
(a,h+p—) (p',h') with p & dom(h).

51

By (Config Good), H = S - (letregion p in a,h) : A means that env(H) F
letregion p ina :* A and H |= h for some e C S.

Only (Exp Letregion) can derive this and so we have env(H),p F a :¢ A
with env(H) F A and e = ¢’ — {p}. In particular p ¢ dom(H).

Let H' be the heap typing (p — &). We have H < H' and env(H+ H') =
env(H), p. By (Config Good), env(H + H') F a :* A, and ¢/ C S U {p}
and SU {p} C dom(H + H') and H+ H' = h + p — @& imply that
H+H E(SU{p}) - -(a,h+p— 2): A

By induction hypothesis, since (S U {p}) - (a,h + p — &) | (p', '), we
get that there is H” with H + H' < H"” and (H + H')+ H" = (SU
{p}) - (¥',h') : A. To complete the case, note that H < H' + H" and
H+H +H"YES-(,h): A

(Eval Case 1) Then S - (case p of nil = b1 | (y1 :: y2) = b2, h) U (p', h’). This
derives from S - (b1, h) | (p',h') with p € S and h(p)(p) = nil.
By (Config Good), H = S - (case p of nil = by | (y1 :: ya) = ba,h) : A
means that env(H) F case p of nil = by | (y1 = y2) = by :* Aand H = h
for some e C S.
Only (Exp Case) can derive this and so we have env(H) + p : [B] at p
and env(H) F by :** A and env(H),y1:B,y2:[B] at p - by :°2 A.
By induction hypothesis, since S - (by, h) { (p', h'), we get that there is H'
with H < H and H+ H' =S - (p',h') : A, as required.

(Eval Case 2) Then S - (case p of nil = b1 | (y1 :: y2) = b2, h) U (p', h’). This
derives from S- (b2 {y1 @1 H{y2¢-a2},h) I (', h') with p € S and h(p)(p) =
a1 - q2-

By (Config Good), H = S - (case p of nil = by | (y1 :: ya) = ba,h) : A
means that env(H) F casep of nil = by | (y1 2 y2) = by :* Aand H |=h
for some e C S.

Only (Exp Case) can derive this and so we have env(H) + p :? [B] at p
and env(H) F by :** A and env(H),y1:B,y2:[B] at p F by 2 A.

Therefore, by hypothesis, h(p)(p) = ¢1 :: ¢2 and env(H) + p :? [B] at p.
Hence, by (Config Good), env(H) F (q1 :: ¢2) at p :1?t [B] at p. Only
(Exp Cons) can derive this and so we have E - q; :? B and E ¢ :©
[B] at p.

By Lemma B.11, since env(H),y1:B,y2:[B] at p F by :*> A, we get that
env(H) b bo{y1¢—q1 }H{y24-q2} =2 A.

By induction hypothesis, since S-(ba{y1q1 }{y24q2},h) J (p', h'), we get
that there is H' with H < H' and H+ H' |=S- (p',h’) : A, as required.O

Next, we show that well-typed configurations avoid the runtime errors of
allocation or invocation of a closure in a defunct region. A proof of Propo-
sition 2.2, an equivalent property for the unextended region calculus, can be
obtained by simplifying the following proof.

52

Proposition B.14
(1) fHES-(vatph): AthenpeS.

(2) If H = S-(plp},---,0L)(q), h) : A then there are p and v such that p € S,
h(p)(p) = v, and v is a function of the form p(f:F)Np1,...,pn](x)b,
where F is the type (V[p1,...,pn]B = A) at p and there is €' such that
e CeCdom(E,p1,...,pn) and env(H), f:F,p1,...,pn,z:BFb:¢ A.

Proof For part (1), assume H =S (v at p,h) : A. By (Config Good) we get
that env(H) F (v at p) :© A for some effect e, with e U fg(A) C S. Only (Exp
Nil), (Exp Cons) or (Exp Fun) can derive this and so we have e = {p}. Hence,
peES.

For part (2), assume H = S - (p[p},...,p,](q),h) : A. By (Config Good)
we get that H | h and that env(H) F plpl,...,p}](q) :¢ A for some effects e,
with e U fg(A) C S. Only (Exp Appl) can derive this and so we have env(H)

p 2 F for some region p, with F' = (V[p1,...,pn](B S A)) at p and e =
{p}Ue{pi<pi} - {pn<pl}. Only (Exp z) can derive env(H) b p :? F and
so there is a region p' such that H(p')(p) = F. By (Heap Good), p' = p
and p € dom(H) and there is a value v such that H(p)(p) = v. By (Region
Good), env(H) + v at p :%#} F. Only (Exp Fun) can derive this. Hence,
v is a function of the form u(f:F)Ap1,...,pn](z)b and there is e such that
e" Ce Cdom(E, py,...,pn) and env(H), f:F,p1,..., pn,z:BFb:¢" A |

B.2 Subject Reduction for the 7-Calculus

We show that reduction in the w-calculus preserves types and effects. Like in
the previous section on subject reduction for the A-calculus, we use intermediate
results whose proofs are omitted for the sake of brevity. We will also use the
symbol 7 to denote an assertion, that is either ¢, a type T', a channel typing
xz: T, or a process typing P : H.

Lemma B.15 If E+ P: H then H C dom(E).

Lemma B.16 If E+ 7 then E F o.

Lemma B.17 If E,E' + J then dom(E) N dom(E') = & and E F o.
Lemma B.18 If E,xz:T,E'+ 7 then E+T.

Lemma B.19 If E+ J then fg(J) C dom(E).

Lemma B.20 If E+F x: T and E+ x : Ty, where Ty and Ts are channel types
of the form G(Hu,...,Hp)[T},...,T)]\H, then Ty = T5.

Lemma B.21 If E,z,:Ty,22:T>, E' = J then E,x5:Ts, z1:T1, E' - 7.

Lemma B.22 If E,G,H,E'+ 7 then E,H,G,E' 7.

53

Lemma B.23 If E,G,z:T,E'+ 7 and G ¢ fg(T) then E,z:T,G,E'+ J.
Lemma B.24 If E,z:T,G,E' + J then E,G,z:T,E'+ 7.

Lemma B.25 If E,:T,E' - J and « ¢ fn(J) then E,E' + J.

Lemma B.26 If E,G,E'+ 7 and G ¢ fg(J) U dom(E') then E,E'+ 7.
Lemma B.27 If E+ 7 and E,E'+ o then E,E' + 7.

Lemma B.28 If E,x:T,E'+J and E+ y: T then E,E'+ J{z+y}.

Lemma B.29 If E,G,E' + J and H is a group defined in dom(E) then
E,E'{G+H}+ J{G+H}.

Lemma B.30 If EFP:H and P=(Q then E+ Q : H.

Proof The lemma follows by showing that P = @ implies:
(1) TEF P:H then EF Q: H.
(2) TEFQ:H then EF P : H.
We proceed by induction on the derivation of P = Q.
(Struct Refl) Trivial.

(Struct Symm) Then @ = P. For (1), assume E - P : H. By induction
hypothesis (2), @ = P implies that E - @ : H. Part (2) is symmetric.

(Struct Trans) Then there is R such that P = R and R = Q. For (1), assume
E - P : H. By induction hypothesis (1), E + R : H. Again, by induction
hypothesis (1), E+ @ : H. Part (2) is symmetric.

(Struct Res) Then P = (vz:T)P' and Q = (vx:T)Q' for some P’,Q’, with
P' = Q. For (1), assume E + P : H. This must have been derived
from (Proc Res), with E,z:T + P' : H. By induction hypothesis (1),
E,z:TF Q' :H. By (Proc Res), E+ @ : H. Part (2) is symmetric.

(Struct GRes) Then P = (vG)P' and Q = (vG)Q' for some P',Q’, with
P'=Q'. For (1), assume E - P : H. This must have been derived from
(Proc GRes), with E,G + P’ : G where H = G — {G}. By induction
hypothesis (1), E,G + Q" : G. By (Proc GRes), E+ @ : H. Part (2) is
symmetric.

(Struct Par) Then P = P' | R and Q = Q' | R for some P',Q', R, with
P'=Q'. For (1), assume E - P : H. This must have been derived from
(Proc Par), with E+ P': H and E+ R: H”, where H = H UH". By
induction hypothesis (1), E + Q' : H'. By (Proc Par), E + @ : H. Part
(2) is symmetric.

o4

(Struct Repl) Then P =!P" and Q = !Q’ for some P’,Q’, with P’ = Q'. For
(1), assume E F P : H. This must have been derived from (Proc Repl),
with £ + P' : H. By induction hypothesis (1), E - Q' : H. By (Proc
Repl), E F @ : H. Part (2) is symmetric.

(Struct Input) Then P = z(G1,...,Gm,y1:T1,...,yn:Ty).P' and Q = z(Gy,
e s Gy T, oy TR).Q' for some P/, Q') with PP = Q'. For (1), as-
sume E F P : H. This must have been derived from (Proc Input), with:

Etz:G(Gy,....,G)[T,..., T \H'
E,Gi,....,Gn,y1:T1,...,ynTp F P : G

where H = {G} U (G — H') and (G — H') N {G1,...,G} = @. By
induction hypothesis (1), E,G1,...,Gum,y1:T1,...,yn:Tn F Q' : G. By
(Proc Input), E + @ : H. Part (2) is symmetric.

(Struct Par Zero) Then P =(Q | 0.

For (1), assume E F P : H. This must have been derived from (Proc Par),
with EFQ :Hand EFO0: 2. Hence, EF Q@ : H.

For (2), assume E + @ : H. By Lemma B.16, E ¢. By (Proc Zero),
EFO0:@. By (Proc Par), EF Q| 0: H, that is, E+ P : H.

(Struct Par Comm) Then P = P’ | P” and Q = P" | P' for some P', P".
For (1), assume E + P’ | P" : H. This must have been derived from (Proc
Par), with EF P' : H and E + P"” : H' where H = H UH". By (Proc
Par), E+ P" | P': H. Hence, E - @ : H. Part (2) is symmetric.

(Struct Par Assoc) Then P = (P' | P") | P" and Q = P' | (P" | P") for
some P', P" P". For (1), assume E + (P’ | P") | P"" : H. This must have
been derived from (Proc Par), with E+ (P' | P") : H; and E + P" : H,
where (H;UH,) = H, followed by a number of subsumption steps implying
EF (P'"| P"): Hs, where H3 C H; by transitivity, and followed by (Proc
Par), with £+ P' : Hy, and E + P" : Hs where (H4, U H5) = H3. By
(Proc Par) twice, E+ P | (P" | P"") : H4U(H5UH,). By (Proc Subsum)
and Lemma B.15, and since H4U(H5;UH,) = (H;UH-) C (H;UH,) = H,
we get that £+ @ : H. Part (2) is symmetric.

(Struct Repl Par) Then P =!R and @ = R | IR for some R.

For (1), assume E + IR : H. This must have been derived from (Proc
Repl), with E - R : H. By (Proc Par), E+ R | 'R : HU H. Hence,
Er+Q:H.

For (2), assume E + R | !R : H. This must have been derived from (Proc
Par), with E - R : H and E + R : H" where H = H' UH". Hence,
H"” C H. By (Proc Subsum) and Lemma B.15, E + !R : H. Hence,
E+P:H.

35

(Struct Res Res) Then P = (vxy:Ty)(vea:T2)R and Q = (v Ts)(va:Ti)R
for some R, with z; # z2. For (1), assume E & (vz1:11) (v T2)R : H.
This must have been derived from (Proc Res), with E, z1:Ty F (va2:T5)R :
H, followed by a number of subsumption steps implying E t (va2:T5)R :
H', where H C H by transitivity, and followed by (Proc Res), with
E,$1ZT1,1‘2:T2 FR: H'. By Lemma B21, E,$2:T2,I1:T1 FR: H'. By
(Proc Res) twice, (Proc Subsum) and Lemma B.15 we have E F (vao:T3)
(ve1:Ty)R : H. Hence, E + @ : H. Part (2) is symmetric.

(Struct Res Par) Then P = (va:T)(P' | P") and Q = P' | (va:T)P" for
some P', P" with « ¢ fn(P’).

For (1), assume E + P : H. This must have been derived from (Proc
Res) with E,z:T + P’ | P" : H, followed by a number of subsumption
steps implying E,z:T F P’ | P" : G, where G C H by transitivity, and
followed by (Proc Par), with E,2:T + P' : G’ and E,z:T + P" : G",
where G = G' U G”. By Lemma B.25, since z ¢ fn(P'), we have E +
P’ : G'. By (Proc Res), E + (va:T)P" : G". By (Proc Par) we have
Etr P'| (ve:T)P" : G. By (Proc Subsum) and Lemma B.15, we get that
EFQ:H.

For (2), assume E F @ : H. This must have been derived from (Proc Par),
with E+ P': H') E+ (va:T)P" : H" and H = H' U H", followed by a
number of subsumption steps implying E + (vx:T)P" : G, where G C H"
by transitivity, and followed by (Proc Res), with E,z:T - P" : G. By
Lemma B.17 and B.18 we have z ¢ dom(F) and E - T. By Lemma B.27,
E,x:T + P' : H. By (Proc Par), E,2:T - P' | P" : (H U G) where
(H'UG) C H. By (Proc Res), (Proc Subsum) and Lemma B.15, we get
that E + (ve:T)(P' | P") : H. Hence, E + P : H.

(Struct GRes GRes) Then P = (vG;1)(vG2)R and Q = (vG2)(vG1)R for
some R. We can consider that G1 # Gs.

For (1), assume E - (vG1)(vG2)R : H. This must have been derived from
(Proc GRes), with E,G; + (vG2)R : H and H = H' — {G}, followed
by a number of subsumption steps implying E,G; + (vG2)R : H”, where
H" C H’' by transitivity, and followed by (Proc GRes), with E,G1,Gs
R:H" and H' = H" — {G>}. By Lemma B.22, E,G2,G1 + R : H"|
where H" — {G1,G>} C H. By (Proc Subsum) and (Proc GRes) twice
we have E F (vG2)(vG1)R : H. Hence, E + @ : H. Part (2) is symmetric.

(Struct GRes Res) Then P = (vG)(v2:T)R and Q = (v2:T)(vG)R for some
R, with G ¢ fg(T) For (1), assume E + (vG)(va:T)R : H. This must
have been derived from (Proc GRes), with E,G F (va&:T)R : H' and
H = H' — {G}, followed by a number of subsumption steps implying
E,GF (vz:T)R : H", where H" C H’' by transitivity, and followed by
(Proc Res), with E,G,z:T + R : H". By Lemma B.23, E,z:T,G + R :
H". By (Proc GRes), (Proc Res), (Proc Subsum) and Lemma B.15, we
get that £+ @ : H. Part (2) is symmetric.

56

(Struct GRes Par) Then P = (vG)(P' | P") and Q = P' | (vG)P" for some
P P", with G ¢ fq(P').
For (1), assume E + P : H. This must have been derived from (Proc
GRes) with E,G + P' | P" : H and H = H' — {G}, followed by a
number of subsumption steps implying E,G + P' | P" : G, where G C H'
by transitivity, and followed by (Proc Par) with E,;G + P’ : G’ and
E,GF P":G", where G = G'UG". By Lemma B.26, since z ¢ fg(P'),
we have E + P’ : G'. By (Proc GRes), E - (vG)P" : G" — {G}. By
(Proc Par) we have E + P' | (vG)P" : G — {G}. By (Proc Subsum) and
Lemma B.15, we get that £+ @ : H.

For (2), assume E - @ : H. This must have been derived from (Proc Par),
with E - P': H', E+ (vG)P" : H" and H = H' U H", followed by a
number of subsumption steps implying E F (vG)P" : G, where G C H"
by transitivity, and followed by (Proc GRes), with E,G F P" : G', where
G = G'—{G}. By Lemma B.17 we have G ¢ dom(E) and by Lemma B.19
G ¢ H'. By Lemma B.27, E,G + P’ : H'. By (Proc Par), E,G + P’ |
P" : (H'UG'). By (Proc GRes), (Proc Subsum) and Lemma B.15, we
get that £+ (vG)(P' | P") : H. Hence, E+ P : H. i

The following is the subject reduction property for our extended m-calculus.
A proof of Proposition 3.2, subject reduction for the unextended m-calculus, can
be obtained by simplifying the following proof.

Proposition B.31 If EFP:H and P - Q then EF Q : H.

Proof By induction on the derivation of P — Q.

(Red Interact) Then P = Z(G,,...,G,, 1, - un) | (G1, -y G, y1:T1,

cooy YniTn). P and @ = P'o{y1+yi}-- - {yn<vy),} where o is the substi-
tution {G1+G'}---{Gm+Gl,}.
Assume E + P : H. By Lemma B.15, H C dom(E). The judgment
E + P : H must have been derived from (Proc Par), with E +Z(G, ...,
Gl ¥, -y yn) s Hy,and EF 2(Gy, ..., Goyy1: T, oo, yn D). P Hy
where H = H; U H,. The former must have been derived from a number
of subsumption steps implying F - Z(G,,..., G, v1,-..,yh) : H3, where
H; C Hy, followed by (Proc Output), with E + y] : Tho, -, E+F yl, : Tyo,
and B+ z:G(Gy,...,Gp)[T1,...,Tx]\G, and:

{G}UGo =H; (2)
By Lemma B.20, the latter must have been derived from (Proc Input),
with E,G1,...,Gm, y1:T1, ..., yn:Tp b P' : Hy and (Hy — G)N{G,...,
Gn} = @, followed by a number of subsumption steps implying {G} U
(Hy — G) C H, C dom(E) by transitivity. In particular, we have that:

(Hys — G)o = (Hys — G) C H, (3)

o7

By Lemma B.19, since E + Z(GY, ..., G),, Y1, ---, Y,), we have that
{G1,...,G!,} C dom(E). Then, by Lemma B.29 several times, it follows
that E,y1:Tio,...,yn:Tho F P'oc : Hyo. By Lemma B.28, E + Po
{y1yi} - {yneyn} : Hao.

By definition of set difference, Hyo = (Hy — G)o U Go, and therefore
Hyo = ({G}U (Hy — G)o) U ({G} U G)o. Using the different inclusions
obtained in this item, and especially equations 2 and 3, we get that Hyo C
{GIUH4s—G)o)U({G}UGe) C (H2UH3) C (HoUH;) = H C dom(E).
Then E - Q : H.

(Red Par) Then P = P' | R and Q = @' | R for some P',Q', R such that
P'" — @'. Assume E + P : H. This must have been derived from (Proc
Par), with EF P’ : H and E + R : H” where H = H' UH". By induction
hypothesis E + Q' : H'. By (Proc Par), EF Q' | R: H UH". Hence,
EFQ:H.

(Red GRes) Then P = (vG)P' and @ = (vG)Q' for some P’,@Q’ such that
P'" — @'. Assume E + P : H. This must have been derived from (Proc
GRes), with E,G+ P’ : H and H = H' — {G'}. By induction hypothesis,
E,G+F Q' :H' By (Proc GRes), E+ @ : H.

(Red Res) Then P = (vz:T)P' and @ = (vx:T)Q' for some P, Q)' such that
P" — @'. Assume E + P : H. This must have been derived from (Proc
Res), with E,z:T + P’ : H. By induction hypothesis, E,z:T F Q' : H.
By (Proc Res), E+ @ : H.

(Red =) Then P = P’ and @ = Q' for some P', Q' such that P’ — @Q’. Assume
E + P :H. By Lemma B.30, E - P' : H. By induction hypothesis,
Et+ Q' :H. By Lemma B.30, E+ Q : H. a

Next, we prove effect soundness for our extended m-calculus, the property
that the group of any barb of a process is included in its effect. This fact
correspond to Proposition 3.3 for the unextended m-calculus.

Proposition B.32 IfE+ P:H and P | B with B € {x,T} then there is a type
G(Gy,...,Gp)[Th,...,Tu)\G such that E + x : G(G1,...,Gm)[Ty,...,T,]\G
and G € H.

Proof By induction on the derivation of P | 3.

(Barb Input) Then P = z(Gy,...,Gm,y1:T1,...,yn:Ts).P' and f = z. As-
sume E + P : H. This must have been derived from (Proc Input) with
EFP: H1 and £ + z : G(Gl,,Gm)[Tl,,Tn]\G and G € H1
followed by a number of subsumption steps implying H; C H. Hence
G e H.

(Barb Output) Then P =Z(GY,...,G,,y},...,y),) and B =T. Assume E -
P : H. This must have been derived from (Proc Output) with E + P : Hy

58

and E F 2 : G(Gy,...,Gn)[T1,...,To]\G and H; = {G} U Go, where
o is the substitution {G1+G}}---{Gn+G,}, followed by a number of
subsumption steps implying H; C H. Hence, G € H.

(Barb GRes) Then P = (vG')P’ for some P’ such that P’ | 5. Assume
E F P : H. This must have been derived from (Proc GRes) with E F
P:H; and E,G' + P' : Hy and H; = H, — {G'}, followed by a number
of subsumption steps implying H; € H. By induction hypothesis, there
is a type W = G(G4,...,Gw)[T,...,T,]\G such that F F z : W and
G € Hs. Hence, G € H.

(Barb Res) Then P = (vy:T)P' for some y, P’ such that z # y and P' | §.
Assume E F P : H. This must have been derived from (Proc Res) with
E+ P:H; and E,y:T + P’ : Hy, followed by a number of subsumption
steps implying H; C H. By induction hypothesis, there is a type W =
G(Gy,...,Gp) [Th,...,Ty]\G such that E,y:T F = : W and G € H;.
Hence G € H. By Lemma B.25, E+z : W.

(Barb Par) Then P = (P’ | P") with P’ | . Assume E + P : H. This must
have been derived from (Proc Par) with E+ P : H;, and E - P' : H', and
E+F P’ :H" and H; = H UH", followed by a number of subsumption
steps implying H; C H. By induction hypothesis, there is a type W =
G(G1,...,Gn) [T1,...,T,)\G such that E+ z : W and G € H'. Hence,
G € H.

(Barb =) Then P = P' for some P’ such that P’ | . Assume E + P : H.
By Lemma B.30, E F P’ : H. By induction hypothesis, there is a type

W =G(Gy,...,Gp) [T1,...,T,)\G such that E+ 2 :W and G € H. O

B.3 Correctness of Type Erasure

In this section, we study the relations between the typed and untyped version
of the m-calculus defined in this paper. We prove Proposition B.38, which gives
a simple correspondence between the reductions of a typed term, say P, and
the reductions of the untyped process obtained by erasing all type informa-
tions from P. The benefit of this result is that it allows us to use the labelled
transtion semantics given in Appendix A.3 to reason about typed process. This
is particularly useful because, in contrast with a labelled transition, a reduction
tells us nothing about the possible interactions of a process with an arbitrary
environment. Moreover, it is simpler to enumerate the possible transitions of a
process than its possible reductions.

Lemma B.33 For all typed processes P and Q, if P = @ then erase(P) =
erase(Q).

Proof An easy induction on the derivation of P = Q. |

Lemma B.34 For all typed processes P, P | (3 if and only if erase(P) | 8.

59

Proof An easy induction on the derivations of P | 8 and erase(P) | 8. O

If G is a sequence Gy, ..., G, of groups, let (vVG)P = (vGy)--- (vG,)P. In
particular, if n = 0, then (vG)P = P.

Lemma B.35 Assume E - P.

(1) If erase(P) = Q | R then there exist two typed processes, @', R', and a
sequence of groups, G, such that P = (vG)(Q' | R'), and erase(Q') = Q,
and erase(R') = R.

(2) If E+ x: G(Hy,...,Hn)[T,...,T,]\H and erase(P) = T{y1,...,Yn)
then there exist two sequences of groups, G and Gi,...,G" , such that
P =wG@)z(G,,...,G 1, -, yn) and {GY,...,G,} C dom(E) U {G}.

B) IfEvrx:G(Hy,...,Hp)[T1,...,Tx)\H and erase(P) = z(y1,...,yn).-R
then there exist a typed process, @, and a sequence of groups, é, such that
erase(Q) = R and P = (wG)x(Hy, ..., Hp,y1:Th, ..., yn:Th).Q.

(4) If erase(P) = (vz)R then there exist a typed process, (), a sequence, C_j,
and a type, T, such that P = (vG)(vz:T)Q, and erase(Q) = R.

—

(5) If erase(P) = 'R then there exist a typed process,), and a sequence, G,
such that P = (vG3)!Q, and erase(Q) = R.

(6) If erase(P) = O then there exists a sequence, G, such that P = (vG)0.
Proof An easy induction on the structure of P. |
Lemma B.36 For all typed processes, P, we have fn(erase(P)) = fn(P).
Proof An easy induction on the structure of P. |

Lemma B.37 IfE F P and erase(P) — R then there exists a typed process,
Q, such that P — Q and erase(Q) = R.

Proof Assume EF P. The lemma follows by showing that:

(1) If erase(P) - A and E F z : G(Hy,...,Hy)[Ti,...,T,)\H, where A =
(y1,---,yn) R, then there exist a typed process, @, and a sequence, é, such
that erase(Q) = Rand P | T(G,,...,G. yi, ... yh) = (vG)Qo{y1 <y}
-+ {yn¢yl} for any sequences yi, ..., yh, G1, ..., G),, where E + y} : T;o

for each i € 1..n and 0 = {H,;+G}}--- {Hn+G!,}.

(2) If erase(P) - A and E -z : G(Hy,..., Hp)[T1,. .., To)\H, where A =
(v2){y1,-..,yn) R, then there exist a typed process,), and two sequences
of groups, G and Gi,...,G,, and types, f, such that erase(Q)) = R and
P = W@ WwzT) @G, ...,G y1,...,yn) | Q) and E,G, 22T + y; : Tyo
for each i € 1..n, where 0 = {H1+G}--- {Hn+G.,}.

60

(3) If erase(P) —— A then there exists a typed process, @, such that P — Q
and erase(Q) = A.

We proceed by induction on the derivation of erase(P) - A.

(Trans In) Then a = z, erase(P) = x(z1,...,2,).R and A = (z1,...,2n)R.
Assume E &z : G(Hy,...,Hp)[T1,...,T,]\H. By Lemma B.35, there ex-
ist a typed process, @), and a sequence, C_j, such that P = (Vé)l‘(Hl, RN
Hpyyyz10:Th, .. 200 T).Q, and erase(Q)) = R. By (Red Interact) and (Red
E)v P | f(I17 R G'Imvyiﬂ s vy;z> - (VG:)Q{'%(_ZA} T {Z'Il(_y;z}’ as re-
quired.

(Trans Out) Then a =7, erase(P) = ZT(y1,...,yn) and A = (¥){y1,...,yn)0,
that is R = 0. Assume E + z : G(Hy,...,Hp)[T1,...,T,]\H. By

—

Lemma B.35, there exists sequences, G and G},...,G,,, such that P =
wGYE(G,,...,Gl . y1,---,Un). Let Q be the typed process 0. Hence,
erase()) = 0 and, by (Struct Par Zero) and (Struct GRes), P is struc-

turally equivalent to (I/C_j) (F(GY, ...,Gy Y1, -, yn) | 0), as required.

(Trans Inter 1) Then o = 7 and erase(P) = (R; | Ry), where Ry ——
(z1,...,22) R} and Ry == (v2)(y1,-..,yn) RS, and A = (v2) (R} {211}
< A{zp<yn} | Ry). By Lemma B.35, there exist two typed processes, P,
P, and a sequence, G, such that P = (vG)(P, | P,) and erase(P;) = R;
for each i € {1,2}. Assume E + z: G(Hy,...,Hp)[Th,...,T,]\H.

By induction hypothesis (1), there is a typed process, 1, and a sequence,
G, such that Pi | T(GY,...,Ghyt,- . yn) = (VG)QU{H1+G}-
{Hn+G Hz1¢y1} - - {zn¢yn} and erase(Q;) = R} for any well-typed
Sequences Yi, .. ., Yn-

By induction hypothesis (2), there is a typed process, ()2, sequences, ng
and GY,...,G",, and types T, such that P, = (vG)wZ:T)(T(G,,.. .,
Gl Y1, .-, yn) | @2) and erase(Q2) = R and E,G, 2T + y; : T;o for
each i € 1..n, where 0 = {H1 <G} - {Hn+G.,}.

Since the names G5 and 7 are bound, we may assume {ég} Nfg(P) =
@ and {Z} N fn(P) = @. By (Struct GRes Par), (Struct Res Par),
(Struct. GRes Res), and (Struct Par Assoc), Py | P, = (vGs)(wZ:T)((P; |
(G, ..., G y1, - yn)) | @2). By (Red =), (Red Par), (Red Res) and
(Red GRes), P, | P, — (yé;,)(uzzf)g(yé’lelo{.ileyli---{zneyn} |
@2). Let @ be the typed process (vG)(vG2)(vZ:T)((vG1)Qi0{z14y1}
{zpeyn} | @2). By (Red GRes), P — Q. By definition of the erasure
function, erase(Q) = (vZ)(erase(Q1){z1+y1}- - {znuyn} | erase(Q2)).
Hence erase(Q) = A, as required.

Case (Trans Inter 2) is symmetric.

(Trans Par 1) Then erase(P) = Ry | Ry, where Ry — A; and A = A; | R.
By Lemma B.35, there exist two typed processes, P;, P>, and a sequence,

61

G, such that P = (vG)(P, | P,) and erase(P;) = R; for each i € {1,2}.
We proceed by case analysis on the action a.

(In) We have & = z and A1 = (21,...,2,)R|. Assume B+ 2 : G(Hy,...,
Hy)[T,-..,T,]\H. Since the names z1,..., 2, are bound, we may
assume {z1,...,2zp,} Nfo(R2) = &. Hence, A = (21,...,2,) (R} | R2),
that is, R = R} | Ra. By induction hypothesis (1), there is a typed
process, 1, and a sequence, Cj}, such that erase(Q;) = R} and
PTG Gl yh) = (WG Quo{zieyt) -+ {zneyl} for
any sequences Gi,...,G" yi,...,y,, where E F y} : T;o for each
i€l.nand o = {H <G} - {Hn<G" }. Since the groups G, are
bound, we may assume {G?l} Nfo(Re) = @. Let Q = @1 | P». By
(Struct GRes Par), (Struct Par Assoc) and (Struct Par Comm), P |
TG, Gy,) = (WO (P TG, Gy) |
P,). By (Red =), (Red Par) and (Red GRes), P | Z(GY,...,G),,v1,

cyUn) = (I/C_j, gl)Qa{zleyl} -+ {2zp¢yn}. Moreover, erase(Q) =
erase(Q1) | erase(Py) = erase(R), as required.

(Out) We have « = 7 and Ay = (v2){(y1,-..,yn)R]. Assume E F z :
G(Hi,..., Hp)[T1,...,T,]\H. Since the names Z are bound, we
may assume {Z} N fu(Ry) = @. Hence, A = (V2){y1,...,yn) (R} |
R,), that is, R = R} | Rs. By induction hypothesis (2), there is
a typed process, @1, sequences, G, and Gi,...,G",, and types T
such that erase(Q;) = R} and P, = (le)(ui:f)(T(G’l,...,G’m,
Y1,--+,Yn) | @1) and E,C_j,é’:f F y; : T;o for each i € 1..n, where
o = {H <G} {H,+G'}. Since the groups G; are bound, we
may assume {G1}Nfv(Ry) = @. Let Q = Q1 | P». By (Struct GRes),
(Struct GRes Par), (Struct Res Par), (Struct Par Assoc) and (Struct
Par Comm), P = (vG,G)wzZD)@(G,,....G y1, - un) | Q).
Moreover, erase(Q)) = erase(Q1) | erase(P2) = erase(R), as required.

(Tau) We have @ = 7. By induction hypothesis (3), there is a typed
process, @1, such that erase(Q:) = A; and P, — Q. Let Q =
Q1 | P». By (Red Par), P — Q. Moreover, erase(Q) = erase(Q1) |
erase(Py) = erase(A), as required.

Cases (Trans Par 2) and (Trans Res) are similar.

(Trans Repl) Then erase(P) = !S where S | 1S %+ A. By Lemma B.35, there
exist a typed process, P’ and a sequence, G’”, such that P = (VG")!P'
and erase(P') = S. Therefore, we have a derivation of erase((vG')(P' |
IP')) -5 A and, by (Struct Repl Par) and (Struct GRes), (vG')(P' |
IP") = P. We proceed by case analysis on the action a.

(In) We have @ = z and A = (21,...,2,)R. Assume E + z : G(Hy,...,
H,,)[Ty,...,T,]\H. By induction hypothesis (1), there is a typed
process, Q, and a sequence, (3, such that erase(Q)) = R and (Vé’)(Pl |

62

P) | Z(G, o Gl 1y -y Un) = WG)Qo{z14y1} - - {znt—yn} for
any well-typed sequences G1,...,GL,,y1,...,yn with o = {H; <G}
-+ {Hpn+G" }. By (Struct Par) and (vG")(P' | \P') = P, we get that
PTG, Gty yn) = (WG)Qo {214y} - {zn—yn}, as
required.

(Out) We have « = 7 and A = (¥2){y1,...,yn)R. Assume FE + z :
G(Hy,...,Hy)[T1,...,T,]\H. By induction hypothesis (2), there
is a typed process, @, sequences, G and Gi,...,G",, and types f,
such that erase(Q) = R and (vG@)(P' | \P") = (@) w2 T)(F(G,,
e, Gyt yn) | @) and yy, ..., y, are well-typed. Hence, By
(Struct Trans) and (vG')(P' | \P') = P, we get that P = (vG)(v2:T)
(G, ...,Gh L y1, . yn) | @), as required.

(Tau) We have @ = 7. By induction hypothesis (3), there is a typed
process,), such that erase(Q) = R and (vG')(P' | 'P') — Q. By
(Red =) and (vG")(P' | |P") = P, we get that P — Q. O

The following asserts that the reductions of a typed process, of our extend-
ing m-calculus, according to the typed operational semantics are equivalent to
the reductions of the untyped erasure of the process according to the untyped
operational semantics. A proof of Proposition 3.1, a similar property for the
unextended 7-calculus, can be obtained by simplifying the following proof.

Proposition B.38 For all typed processes P and Q, if P — Q then erase(P) —
erase(Q). If E+ P and erase(P) — R then there is a typed process @ such that
P — Q and R = erase(Q).

Proof The first implication is proved by a simple induction on the derivation
of P — (Q, with appeal to Lemma B.33.

Assume E + P and erase(P) — R. By Proposition A.1, there is an untyped
process S such that erase(P) — S and S = R. By Lemma B.37, there exists
a typed process @) such that P — @ and erase(Q) = S. By (Struct Trans),
erase(Q)) = R, as required. O

Next, we show that if the erasure of two typed processes are equivalent,
according to the untyped barbed congruence defined in Appendix A.4, then
these processes are barbed congruent.

Proposition B.39 If E+ P and E - Q and erase(P) = erase(Q) then E +
Px~Q.

Proof Let S be the relation on typed processes such that £+ P S @ if and
only if E + P and E F @ and erase(P) ~ erase(Q)). We prove that S is a
bisimulation.

(1) Assume E F P § Q. By definition, we get that E F P and E + Q
and erase(P) = erase(Q)). By Proposition A.4 (1), erase(Q) =~ erase(P).
Hence, EFQ S P.

63

(2) Assume E - P S @ and P | Z. By Lemma B.34, erase(P) | Z. Since
erase(P) = erase(Q), we get that erase(Q) | Z. By Lemma B.37 several
times, there is a typed process R such that @ —* R and erase(R) | T. By
Lemma B.34, @ | =, as required.

(3) Assume E + P S Q and P — P'. By Proposition 3.1, erase(P) —
erase(P'). Since erase(P) =~ erase(Q), we get that erase(Q) —* R
for some untyped process R such that R =~ erase(P'). By Proposi-
tion 3.1 several times, there is a typed process @' such that Q@ —* Q'
and erase(Q') = R. By Propositions A.4 (1) and A4 (4), we get that
erase(Q') = erase(P'). By Proposition 3.2, E + P' and E + @Q'. Hence,
E+ P'S Q' as required.

Since S is a bisimulation, we get that £ + P and E F @Q and erase(P) =~
erase(Q) implies E - P = Q.

Assume E+ P and E F @ and erase(P) =~ erase(Q). Let R be an arbitrary
process and o be an arbitrary E-renaming and E’ be an environment such that
Eo, E' b R. In particular, by Lemma B.16, it must be the case that Eo, E' | ¢.
By Lemmas B.27 and B.28, Eo, E' + Po. By (Proc Par), Eo,E' + (Po | R)
and Fo,E' F (Qo | R). Moreover, erase(Po | R) = erase(P)o | erase(R) and
erase(Qo | R) = erase(Q)o | erase(R). Since the untyped barbed congruence,
2, is closed by substitution and parallel composition (see Propositions A.4 (2)
and A4 (3)), we get that erase(Po | R) = erase(Qo | R). Hence, Eo,E' F

(Po | R) ~ (Qo | R), as required. O

B.4 Properties of Barbed Congruence

In this section we study some properties of typed barbed congruence. We prove
Lemma B.40, that structurally equivalent processes of the extended m-calculus
are barbed congruent. This fact corresponds to Proposition 3.4 (4), for the un-
extended m-calculus. We also prove Proposition B.46, that barbed congruence
is indeed a compositional equivalence relation. The proof of this property relies
on Lemma B.45, that barbed congruence is preserved by arbitrary substitutions
of groups for groups. It also relies on the fact that, by definition, barbed con-
gruence is preserved by E-renamings, that is substitution of names for names
that cannot identify names with different types.

Lemma B.40 If P=Q and EF P then E+ P~ (@

Proof Let S be the smallest relation on typed processes that contains ~ and
such that E+ P S Q if P = @ and E + P. The relation S is a well-defined
relation on typed processes since & is a relation on typed processes and if P = ()
and E F P then, by Proposition B.31, E Q. Note that S is symmetric. We
prove that S is a barbed bisimulation. The only interesting case is when E - P
and P = Q.

(1) Assume P | 5. By rule (Barb =), Q | 8, as required.

64

(2) Assume P — P’. By (Red =), @ — P’ and, since = is reflexive, P’ S P’,
as required.

Therefore S is a barbed bisimulation and for all processes P, @ such that £+ P
andPEQ,wegetthatEl—PéQ.

Agssume E F P and P =). Let R be an arbitrary typed process, o be
an arbitrary E-renaming and E’ be an environment such that E,E’' - R. By
Lemma B.28 several times and rule (Struct Par), Fo,E’' F Po | R and Po |
R = Qo | R. Therefore, Eo,E' F Po | R~ Qo | R. Hence, E+ P ~ Q, as
required. O

We show that barbed congruence for the extended w-calculus is closed by
E-renamings, that is substitutions of names for names that respect types. This
fact corresponds to Proposition 3.4 (3), for the unextended m-calculus.

Lemma B.41 If E+ P =~ @ and o is an E-renaming then Fo - Po =~ Qo.

Proof Assume E+ P = (@ and o is an E-renaming. By definition, Eo, E' F
Po | R = Qo | R for any process R such that Fo, E' - R. Since Eo F 0, we
get that Eo F Po | 0 =~ Qo | 0. By Lemma B.40 and transitivity of =, since
Po | 0= Po and Qo | 0 = Q, we get that Eo F Po ~ Qo. O

Next, we prove Lemmas B.42 and B.43, that structural equivalence and
reduction are preserved by arbitrary substitution of groups for groups. These
properties are used in the proof of Lemma B.44, that barbed congruence is
preserved by substitutions of groups for groups.

Lemma B.42 If P = P’ then P{G+G'} = P'{G+G'}.
Proof An easy induction on the derivation of P = P’. |

Lemma B.43 If P — P’ then P{G+G'} — P'{G+G'}.

Proof An easy induction on the derivation of P — P’, with appeal to
Lemma B.42. a

The following shows that barbed congruence is preserved by substitution
of groups. This fact agrees with our previous observation that types do not
interfere with the operational behaviour of processes, see Proposition B.38.

Lemma B.44 If E,G,E' - P = Q and G' € dom(E) then E,E'{G+G'} F
P{G+G"} = Q{G+G'}.

Proof Let S be the smallest relation on typed processes that contains =
and such that E, E'{G+G'} - P{G+G'} S Q{G+G'} if E,G,E' + P ~ Q@
and G' € dom(E). Assume E,G,E'+ P and G' € dom(F). By Lemma B.29,
E,E'{G+G'} - P{G+G'}. Therefore, if E,G,E' - P ~) then the processes
P{G+G"'} and Q{G<+G'} are well-typed in the environment E, E'{G+G'}.
Hence, S is a relation on typed processes. Next, we prove that S is a barbed
bisimulation. The only interesting case is when E, E'{G+G'} F P{G+G'} S
Q{G+G'}, where E,G,E' - P =~ . Note that S is symmetric.

65

(1) Assume P{G+G'} | T. By Lemma B.34, erase(P{G<+G'}) | 7, that
is, erase(P) | T. By Lemma B.34 again, P | Z. Since P and @ are
barbed congruent, @) |} T. By Lemma B.34 several times, since erase(Q) =
erase(Q){G+G'}, we get that Q{G+G'} | T.

(2) Assume P{G+G'} —» P'. By Lemma B.43, P —» P'{G'+G}. Since P
and @ are barbed congruent, @ —* Q' with E,G,E' F Q' ~ P'{G'+G}.
By Lemma B.43 several times, Q{G+G'} =* Q'{G+G'}. By definition,
E, F'{G+G'} F Q'{G+G'} S P', as required.

Therefore S is a barbed bisimulation and if E,G,E' - P =~ @ and G' € dom(E)
then E, E'{G+G'} - P{G+G'} = Q{G+G'}. Let R be an arbitrary typed
process, o be an arbitrary (E, E'{G+G'})-renaming and E” be an environ-
ment such that E,E'{G+G'},E" + R. Assume E,G,E' - P =~ Q. By
Lemma B.29 and (Proc Par), E,G,E', E"{G'+~G} + Po | R{G'+G} ~ Qo |
R{G'+G}. Then E,E'{G+G'},E" + P{G+G'}o | R =~ Q{G+G'}o | R.
Hence, E, F'{G+G'} F P{G+G'} =~ Q{G+G'}. O

We introduce some new notations to simplify the presentation of the fol-
lowing properties. If F is a type environment G4,...,Gnm,y1:T1, ..., yn:Th,
let z(E).P be the process z(G1,...,Gm,y1:T1,...,yn:Ty).P. In particular,
z(2).P = z().P. If o is a substitution of groups for groups, the environment Eo
is defined as follows: @o = @; (E',z:T)o = E'o,z:To; (E',G)o = E'o,0(G) if
0(G) ¢ dom(E'c), and E'c otherwise.

A corollary of Lemma B.44 is the following property.

Lemma B.45 If EF P ~ Q and o is a substitution of groups for groups then
Eot Po~ Qo.

Next, we prove that barbed congruence for the extended m-calculus satisfies
the congruence property. This fact corresponds to Proposition 3.4 (2), for the
unextended 7-calculus.

Proposition B.46

(1) Let E' be the environment G, ...,Gum,y1:T1, ..., yn:Tn. If E,E'+ P = Q
then E F z(E").P ~ z(E").Q.

(2)
(3) If E,a:T + P =~ Q then E+ (va:T)P = (va:T)Q.
(4) If E,GF P~ Q then E+ (vG)P ~ (vG)Q.

(5)

Proof For the sake of brevity, we only prove the case for input prefix, which
is the most difficult case. The proofs for the other cases are similar. As in
the proof of Lemma B.40, the property follows by defining a candidate barbed

66

bisimulation, S, that is closed by renamings and parallel composition. Let
S be the smallest relation on typed processes that contains ~ and such that
EtF z(E").P| RS z(E").Q | R for all processes P,Q, R such that E,E' F
P ~ @ and E - R. Note that S is a symmetric relation on typed processes.
We prove that S is a barbed bisimulation. The only interesting case is when
EFz(E".P|RSz(E).Q|R, where E,E' - P = Q.

(1) Assume z(E').P | R | Z. By Lemma B.34, Proposition A.3 and inspection
of the possible transitions, it must be the case that R | Z. By (Barb Par)
and (Barb =), since R | T, we get that z(E').Q | R | T, as required.

(2) Assume z(E').P | R — P'. Suppose E’ is the type environment Gy, ...,
Gm,y1:Th, - .-, yn:Tn. By Propositions B.38 and A.1 and inspection of the
possible transitions, either (1) R — R' and P' = z(E').P | R, or (2)
R = (vE")(Z(H:,...,Hpn,21,...,2,) | R') and P' = (vE")(Pogoy | R')
with oq = {G1+H1} - - {Gn+Hp}and oy = {y1¢-21} - - {yné2a}.

For (1), by (Red Par), 2(E').Q | R — z(E").Q | R'. By Proposition B.31,
Etr R'. Hence, E+ z(E').P| R S z(E').Q | R, as required.

For (2), let Q" be the process (vE")(Qogoy, | R'). By (Red Interact),
(Red Par) and (Red =), z(F').Q | R — @'. By Lemma B.45, since
E,E'+ P~ Q, we get that (E, E"Yog F Pog ~ Qog. Since the names in
E' and E" are bound, we can assume that dom(E') N dom(E") = @. By
Lemma B.27 several times and since E, E" - T(Hy,...,Hy,21,...,20) |
R', we get that E" + Pog ~ Qog, where E'' is the type environment
E,E" ,y1:Tiog,...,yn:Thog. Since E + z(E').P | R, EF x2(E').Q | R
and E,E" v T(H1,...,Hpy,z1,...,2,) | R', the substitution o, is an
E"'-renaming. By Lemma B.41, since (E,E')og F Pog =~ Qog and
z; € dom(E,E") for each i € 1..n, we get that E, E" - Pogoy, = Qogoy.
Therefore, using laws (2), (3) and (4), we get that E - (vE")(Pogoy |
R') ~ (vE")(Qogoy | R'"). Hence, since the relation = (and then also =)
isin S, we get that B+ P' S @Q', as required.

Therefore S is a barbed bisimulation and if E, E' - P ~ @ then E + x(E').P |
R~ z(E").Q | R for any process R such that E - R. Assume E,E' + P &~ Q).
Let R be an arbitrary typed process, o be an arbitrary E-renaming and E" be
an environment such that E, E"” - R. Since the names in E' are bound we can
assume that dom(E') N dom(E") = @. Therefore, by Lemmas B.27 and B.28,
Eo,E"E' + Po =~ Qo, and then Fo,E" + z(E').Po | R ~ z(E").Qo | R.
Hence, E + z(E').P ~ z(E'").Q, as desired. O

B.5 Garbage Collection for the 7-Calculus

In this section we prove Theorem B.53, the garbage collection principle used
to prove the soundness of the region analysis. This property follows from sev-
eral intermediate lemmas that prove that processes with non-intersecting effects
cannot interact. For example, Lemma B.50 shows that these processes cannot

67

synchronize. In the sense that their parallel composition do not introduce new
silent transitions.

Next, we give three properties of barbs that will prove useful in the proof of
Lemma B.52.

Lemma B.47 For any process P, if (WG)P | 8 then P | 3. If (wvy:T)P | 8
then P | B with 8 € {x,T} and z # y.

Lemma B.48 For any processes P,Q, if (P | Q) | 8 then P | 8 or Q] 5.

Lemma B.49 For any processes R, if E,G,E' v R : {G} and R | B and
B € {z,T} then € dom(E").

Proof Assume E,G,E'+ R:{G} and R | 8 and § € {z,Z}. By Proposi-
tion B.32, thereis atype T = G(G1,...,Gu)[T1,...,To]\G such that E + 2 : T.
Since E,G,E" -+ R : {G}, we have E,G,E' + o. Therefore, we get that
G ¢ dom(E). Hence, x € dom(E"). O

Lemma B.50 For any processes P and R such that E,G,E' v P : H and
E,G,E'+ R:{G} and G ¢ H, if erase(P | R) == A then there is an agent A’
such that erase(P) = A" and A = A' | erase(R), or such that erase(R) = A’
and A = erase(P) | A'.

Proof Assume E,G,E'+ P :H and E,G,E' + R : {G} and G ¢ H and
erase(P) | erase(R) =+ A. We proceed by case analysis on the last rule used

to derived this reduction. We prove that the only possible rules are (Trans Par
1) and (Trans Par 2).

(Trans Par 1) Then erase(P) - A’ with A = A’ | erase(R).
(Trans Par 2) Then erase(R) - A’ with A = erase(P) | A'.

(Trans Inter 1) Then o = 7 and erase(P) — F and erase(R) 4y C and

A = FQC. By Proposition A.3 and Lemma B.34, and since erase(R) ——
C, it must be the case that R | T. Therefore, by Proposition B.32, there
is a type T = G(G1,...,Gp)[T1,...,TR]\G such that E,G,E' -z : T.
Symmetrically, using Proposition A.3, Lemma B.34, and the transition
erase(P) - F, we prove that P | z. Therefore, by Proposition B.32,

there is a type T' = G'(GY,...,GL,)[TY,..., T},]\G' such that G' € H.
By Lemma B.20, it must be the case that G equals G’, which contradicts
G ¢ H. Case (Trans Inter 2) is symmetric. O

Lemma B.51 For any processes P and R such that E,G,E' v P : H and
E,G,E'FR:{G} and G ¢ H, if P | R — Q then there is a process P' such
that P — P' and Q = P' | R, or there is a process R' such that R — R’ and
Q=P|R.

68

Proof Assume P | R — (). By Proposition A.1, there is a process S such
that erase(P) | erase(R) — S and erase(Q) = S. By Lemma B.50, there is
an agent A’ such that erase(P) — A’ and S = A’ | erase(R), or such that
erase(R) — A" and S = erase(P) | A'. By Propositions A.1 and 3.1 we get
that, in the first case, there exists P’ such that P — P’ and Q = P’ | R and, in
the latter case, there is R’ such that R - R’ and Q = P | R'. O

Lemma B.52 For any processes P, R such that E,G,E' v R : {G} and
E,G,E'+P:H and G ¢ H, we have: E+ (vG)(wE')(P | R) =~ (vG)(vE')P.

Proof To show that (vG)(vE')(P | R) and (vG)(vE')P are barbed bisimilar,
and hence prove the lemma, we define a barbed bisimulation, S, such that
EF (vG)(vE")(P | R) S (vG)(vE')P. Let S be the smallest symmetric relation
on typed processes such that E + (vG)(vE')(P | R) S (vG)(vE")P for all
processes P, R such that E,G,E'+ P :H and E,G,E' F R: {G} and G ¢ H.
We prove that S is a barbed bisimulation.

Consider any processes P and R such that E,G,E'+ P:H and E,G,E' +-
R:{G} and G ¢ H.

(1) By (Proc Par), (Proc GRes) and (Proc Res), E + (vG)(vE')(P | R) :
(HU{G}) — dom(G,E') and E + (vG)(vE"')P : H — dom(G, E'). Hence,
F (vG)(vE')(P | R) and E + (vG)(vE')P.
(

(2) Suppose (vG)(vE')(P | R) | . By Lemma B.47, (P | R) | T with
x ¢ dom(E'). By Lemma B.48, P | T or R | T. In the second case,
by Lemma B.49, we get that x € dom(E'), which contradicts the fact
that « ¢ dom(E'). Hence, P | T and, by (Barb Res) several times,
(vG)(vE")P | T, as required.

(3) Suppose (vG)(vE')P | T. By Lemma B.47, P | T with « ¢ dom(E'). By
(Barb Par) and (Barb Res), (vG)(vE')(P | R) | T, as required.

(4) Suppose (vG)(vE')(P | R) — . By Lemma A.2, there is a process Q'
such that (P | R) — @' and Q = (¢vG)(vE')Q’. By Lemma B.51, there
is a process P’ such that P — P’ and Q' = P’ | R, or there is a typed
process R’ such that R — R’ and Q' = P | R’. We consider first the case
where the reduction comes from P.

e Assume P — P’ and Q' = P' | R. By (Red Res) and (Red GRes),
(vG)(vE")P = (vG)(vE')P' and Q = (vG)(vE')(P' | R). By Propo-
sition 3.2, E,G,E' - P' : H. Hence, E F Q =S= (vG)(vE")P', as
required.

We consider now the case where the reduction comes from R.

e Assume R — R' and Q' = P | R'. By (Red Res) and (Red GRes),
Q= (vG)(vE"NQ' = (vG)(vE")(P | R"). By Proposition 3.2, we get
that E,G,E' F R’ : {G}. Therefore E + Q =S= (vG)(vE")P, as
required.

69

(5) Suppose (vG)(vE')P — @. By Lemma A.2, there is a process P’ such
that P — P’ and Q = (vG)(vE")P'. By (Red Par), (Red Res) and (Red
GRes), (vG)(vE")(P | R) — (vG)(vE')(P' | R). By Proposition 3.2,
E,G,E'+ P':H. Hence, E+ Q =S= (vG)(vE")(P' | R), as required.

Hence, S is a barbed bisimulation and F + (vG)(vE')(P | R) ~ (vG)(vE')P.
O

The following is the garbage collection principle for our extended m-calculus.
A proof of Theorem 4.3, garbage collection for the unextended m-calculus, can
be obtained by simplifying the following proof.

Theorem B.53 Suppose E,G,E' + P : H and E;G,E' -+ R : {G} where
G ¢ H. Then E* (vG)(vE")(P | R) =~ (vG)(vE")P.

Proof To show that (vG)(vE')(P | R) and (vG)(vE')P are barbed congru-
ent, and hence prove the theorem, we consider an arbitrary process @, type
environment E” and E-renaming o such that FEo, E” + @, and show that
Eo,E"+ (v@)(vE')(P | R)o | Q ~ ((vG)(vE')P)o | Q.

Assume FEo,E" F @Q : G. Since the names in dom (G, E') are bound, we
may assume that dom(G, E")N(dom(E")U dom(c)Uran(o)) = &. Hence, since
fu(Q) C dom(Eo, E") and G C dom(Eoc, E"), we get that fu(Q)Ndom (G, E') =
GNdom(G,E') = @ and G ¢ G. By Lemma B.28 several times, and since
E,G,E' + P : H, we get that Eo, E",G,E' - Po : H. By Lemma B.27,
Eo,E",G,E' @ : G. By (Proc Par), Eo,E",G,E' - (Po | Q) : G UH with
G ¢ GUH. Since dom(G, E')N (dom(E")Udom(o)Uran(o)) = &, we get that:

(vG)WE)(P|R)o|Q = (vG)(VE')(Po|Q | Ro)
(v@)(vE")P)o |Q = (vG)(vE')(Po|Q)

By Lemma B.52, Eo,E' - (WG)(vE')(P | R)o | Q = ((vG)(vE")P)o | Q, as
required. O

B.6 Properties of the Encoding

In this section we prove the soundness of the region analysis for the extended
region calculus. For the sake of clarity, this proof is divided into simpler goals
as follows.

In Section B.6.1, we prove that our encoding of the extended region calculus
in the extended m-calculus preserves the static semantics given in Sections 6.1.

In Section B.6.3, we prove Theorem B.67, a similar result for the dynamic
semantics. Results of dynamic adequacy are often difficult to prove directly
when the source calculus is defined with a big-step semantics. To circumvent
this difficulty, we follow a standard method and define an equivalent small-step
semantics for the region calculus. This semantics is given in Section B.6.2 where
we also prove Theorem B.62, which relates small-steps and big-steps reductions.

In Section B.6.4, we prove that defunct regions make no difference to the be-
haviour of a vell-typed program. This result is essentially based on the garbage

70

collection theorem proved in Section B.5, which is used to prove that the en-
coding of a well-typed configuration is behaviourally equivalent to the process
obtained by erasing from the memory heap all the references stored in defunct
regions.

B.6.1 Proof of Static Adequacy

We prove a series of properties, Lemma B.54 to B.58, that correspond to the
properties listed in Theorem 4.1 for the unextended calculi.

Lemma B.54
(1) If EF o then [E] & .
(2) If EF A then [E] F [A4].

Proof Part (1) follows easily by induction on the derivation of E . We
prove part (2) by induction on the derivation of E F A.

(Type Lit) Then A = Lit, and [A] = Lit[]. By definition, Lit € dom([2]).
By part (1), [E] F ¢. By (Type Chan), [E] + Lit[].

(Type —) Then A = (V[p1,...,pn]|B1 = B>) at p, where E' = E,p1,...,pn,
and E'+ By, and e C dom(E’), and E' F Bs, and p € dom(E).

By induction hypothesis, [E], p1,...,pn F [B;] for each i € {1,2}. By
(Type Chan), since p € dom([E]), we get that [E] - p(p1,...,pn)[[B1],
K[[Bz]]]\(e U {K}), as required.

(Type List) Then A = [B] at p, where E F B and p € dom(E). By in-
duction hypothesis, [E] + [B]. By definition, [A] is the recursive type
w(X)[pll, p[[B], X]]- Since the name X is bound, we may assume that
X ¢ dom(E). By Lemma B.27, [E],X + [B]. By (Type Chan), since
p € dom([E]), [E],X F p[[B],X]. By (Type Chan) and (Type Rec),
[E] F [A], as required. O

Lemma B.55
(1) IfEFx:? A then [E] F z : [A].
(2) If E-a:® A and k ¢ LU dom(E) then [E], k:K[[A]] * [a]k : e U {K}.

Proof Part (1) follows easily by induction on the structure of E. We prove
part (2) by induction on the derivation of E F a :¢ A. Recall that G[T,...,T),]
is a shorthand for the type G()[T4,...,Tx]\9.

(Exp z) Then @ = z and E = Ey,x:A,E> and e = @. Assume k ¢ LU
dom(E). By part (1), [E] - = : [A]. By (Proc Output) and Lemma B.27,
[E], k:K[[A]] b k(z) : {K}, as required.

71

(Exp) Then a = I, where | € L and A = Lit. By definition, [E] F I :
Lit[]. Assume k ¢ L U dom(E). By (Proc Output) and Lemma B.27,
[E], k:K[[A]] & k() : {K}, as required.

(Exp Appl) Then a = z[p},...,p,](y) and e = {p} Ue'o, with E -z :? F

and E + y :? Byo and F = (Vp1,...,pa]B1 LN Bs) at p and 0 =
{p1epi} - A{puspl,} and A = Byo and {p},...,p,} C dom(E). By
part (1), [E]F z: [F] and [E] by : [Bio]. Assume k ¢ LU dom(E). By
(Exp Unfold) and Lemma B.27:

[E], :KTIAN = 2 < plprs - pa) [[Bi], K([B2DI\ (e U {K})

By (Proc Output), [E], k:K[[A]] & Z{p\,.-.,ph,y, k) : €0 U{K}, as re-
quired.

(Exp Let) Then a = (let © = bp inc) and e = ¢’ Ue”, with E+ b:¢ B and
E,x:BFc:® A. Assume k ¢ L U dom(E). By induction hypothesis:

{ [E], K":K[[B]] F [b]&" : ¢ U{K}
[E], z:[B], k:K[[A]] - [c]k : " U {K}
By (Proc Input) and Lemmas B.25 and B.21:
[E], k:K[[AL, k" K([BI] - &' (z:[B]).[e]k : {K} U (" U{K})
By (Proc Par) and (Proc Res):

[E, k:K[A]) F (v£":K{[B])) ([b1#" |
k' (@:[B]).[e]k) : (' U{K}) U (" U{KD)

Hence, [E], k:K[[A]] F [a]k : e U {K}, as required.

(Exp Letregion) Then a = letregion p in b and e = e' — {p}, with E,p
b:¢ Aand E+ A. Assume k ¢ LU dom(E). By induction hypothesis,
[E], p, k:K[[A]] F [b]k : € U {K}. By Lemma B.54 (2), [E] F [A].
Therefore, since p ¢ dom(E), we have that p ¢ fg(K[[A]]) and, by
Lemma B.24, [E], k:K[[A]],p - [b]k : ¢’ U{K}. By (Proc GRes), [E],
E:K[[A]] F (vp)[b]k : (' U{K}) — {p}, as required.

(Exp Case) Then a = case x[pja, of nil = b1 | (y1 = y2) = b2 and e =
{p}UeiUes, with E+ z :? [B] at pand E F by :* Aand E,y;:B,y2:[B] at
pF by 2 A Assume k ¢ LU dom(E). By part (1) and induction
hypothesis:

[E]F « - [[B] at o]
[E], k:K[[A]] F [b:]k : e U {K}
[ET, y1:1B, y2:[[B] at p], k:K[[A]] F [bo]F - €2 U {K}

72

By (Exp Unfold), [E] F = : p[p[], p[[B], [[B] at p]]]. By Lemma B.27 and
(Proc Output):

[E], k:K (AL, 21:p0], 20:p[[B, [[B] at pl] - T(z1, 22) = {p}
[E], k:K([ALL 21:], 22:p[[B, [[B] at pl] = 210)-[ba]k = €1 U{K}

[E], k:K[[A]], z1:p]], z2:p[[B, [[B] at p]] -
22(y1:[Bl, y2:[[B] at p])-[b2]k : €2 U{K}

By (Proc Par) and (Proc Res), [E], k:K[[A]] F [a]k : {p} U (e1 U{K}) U
(e2 U {K}), as required.

(Exp Fun) Then @ = v at p and e = {p} and A = (V[p1,...,pu]B1 =
Bs) at p, where v is the function (u(f:A)A[p1,...,pn](x)b) and E, f:A,
Ply--es pn,x:B1 = b :® By and ¢ C e C dom(E,p1,..., pn)- Assume

k ¢ LUdom(E)U {p}. Since f and p are bound names, we can also
assume that k ¢ {f,p}. By induction hypothesis and Lemma B.27:

[E], p:[ALL f:[AL o1, - oy @[Bi], kK[Be]] - [B]K - €' U {K}

By Lemma B.28:

[[E]]ap:[[A]]apla cee 7pnax:[[B1]]a kK[[[B2]]] + [[b{f(_p}]]k e'U {K}

By (Exp z) and (Exp Unfold):

[ELp:[AT = p: pprs - - o) [[B1], K[B:01\(e U {K})
By (Proc Input), [E],p:[A] - [p = v] : {p}. By (Proc Output) and
Lemma B.27, [E], k:K[[A]], p:[A] + k(p) : {K'}. By (Proc Par) and (Proc
Res), [E], k:K[[A]] F (p:[A]) (Ip ~ o] | B(p)) - {K, p}, as required.

(Exp Nil) Then a = nil at p and e = {p} and A = [B] at p, where E |- [B] at
p. By Lemma B.54 (2), [E] F [[B] at p]. By Lemma B.27:

[E], p:[Al z1:p], 22:p[[B, [[B] at p]] - 21() : {p}
By (Exp z) and (Exp Unfold):

[E], p:[AL 21:01], 22:p[[B, [[B] at pl] = p = plell, p[IBI, [[B] at pll]
By (Proc Input), [E],p:[A] & [p = niliBjatp] : {p}. Assume k ¢ LU
dom(E)U{p}. By (Proc Output) and Lemma B.27, [E], k:K[[A]], p:[A] -

k(p) : {K}. By (Proc Par) and (Proc Res), [E], k:K[[A]] - (vp:[A])([p —
nil 4] | k(p)) : {K, p}, as required.

73

(Exp Cons) Then a = (1 :: x2) at p and e = {p} and A = [B] at p, where
Erx 2 Band E & x5 :? [B] at p. By part (1), [E] + =1 : [B] and
[E] F z2 : [[B] at p]. By (Exp z), (Exp Unfold) and Lemma B.27:

[E], p:[AL 21:01], 22:p[[B, [[B] at pl] = p = plell, p[IBI, [[B] at pll]

By (Proc Output):

[E], p:[AL, z1:], 22:p[[B, [[B] at pl] - Z5 (21, 22) = {p}

By (Proc Input), [E],p:[A] & [p — (x1 :: x2)a] : {p}. Assume k ¢
L U dom(E) U {p}. By (Proc Output) and Lemma B.27, [E], k:K[[A]],
p:[A] + E(p) : {K}. By (Proc Par) and (Proc Res), [E], k:K[[A]] -
(wp:[A]) ([p = (z1 = x2) a] | B(p)) : {K, p}, as required. m|

Lemma B.56 If H = h and h(p)(p) = v then [env(H)] F [p— v] : {p}.

Proof Assume H |= h and h(p)(p) = v. By (Heap Good) and (Region Good),
there is a type, A4, such that H(p)(p) = A. By (Exp z), env(H) - p:? A. By
Lemma B.55 (1), [env(H)] F p: [A].

By (Heap Good), since p € dom(h), we get that env(H) - h(p) at p : H(p).
This must have been derived from (Region Good) with env(H) v at p :1°} A.
Only (Exp Fun), (Exp Nil) and (Exp Cons) can derive this judgment and so we
have three possible cases.

(Exp Fun) Then v is the function (u(f:A)A[p1, ..., pn](z)b) and A is the type
(VIp1,...,pn|B1 = By) at p, with env(H), f:A,p1, ..., pn,2:B1 F b€ By
and ' C e C dom(E,p1,...,ppn). Assume k ¢ LU dom(E)U{f,p,z}. By
Lemma B.55 (2):

[env(H)], f:[A], p1,---» pn, z:[B1], k:K[[B2]] + [b]k : €' U{K}
By Lemma B.28, since [env(H)] F p: [4]:

lenv(H)], p1,---,pn,x:[B1], k:K[[B2]] F [b{f<p}]k: e U{K}
By (Exp Unfold), since [env(H)] F p : [A]:

[env(H)] = p: p(pr,-- -, pn)[[B1], K[[BaQl\(e U {K})
By (Proc Input), [env(H)] F [p — v] : {p}, as required.

(Exp Nil) Then v = nil and A = [B] at p, where env(H) F [B] at p and e =
{p}. Assume 21, 2o are fresh names. By (Proc Output) and Lemma B.27:

[env(H)], z1:p[), 22:p[[BI [[B] at p]] - Z1() {p}
By (Exp Unfold), since [env(H)] F p : [A]:

[env(H)] = p - plell, o[BI, [[B] at p]]]

By (Proc Input), [env(H)] = [p = nilpat,] : {p}, as required.

74

(Exp Cons) Then v = (z; :: 72) and A = [B] at p, where env(H) + z; : B
and env(H) b x5 :? [B] at p. By Lemma B.55 (1), [env(H)] F z1 : [B]
and [env(H)] b xo : [[B] at p]. Assume 21, z5 are fresh names. By (Proc
Output) and Lemma B.27:

[env(H)], z1:p0], 22:p[[B, [[B] at p]] - 25 (21, 22) = {p}

By (Exp Unfold), since [env(H)] F p : [A]:

[env(H)] = p: plpll, pIIBI, [[B] at p]]]
By (Proc Input), [env(H)] F [p— (z1 :: 22)4] : {p}, as required. O
Lemma B.57 If H |= h and p € dom(H) then [env(H)] - [h(p)] : {p}.

Proof Assume H | h and p € dom(H). The judgment H = h must have
been derived from (Heap Good) with env(H) = h(p) at p : H(p). This must
have been derived from (Region Good) with h(p) = (p; — v;) *€1™ and H(p) =
(pi:A;) €% and env(H) F v; at p 1Pt A; for all i € 1.n. By (Exp z), since
H(p) = (pi:A;) €1 we get that env(H) & p; :Z A; for each i € 1.n. By
Lemma B.55 (1), [env(H)] F p; : [A;]. By Lemma B.56, [env(H)] + [p; —
vi] : {p} for each i € 1..n. By (Proc Par), [env(H)] F [],c; ,Ipi = vi] : {p}-
Hence, [env(H)] F [h(p)] : {p}- O

Lemma B.58 If H =S - (a,h) : A and k ¢ dom2(H) U L then:
[env(H)], k:K[[A]] - [a]k | [R] : dom(H) U {K}
and also [2], S, k:K[[A]] F [S - (a,hm)]k : SU{K}.

Proof Assume H |=S-(a,h): Aand k ¢ domz(H)UL. Only (Config Good)
can derive this judgment and so env(H) F a :¢ A, eU fg(A) C S, H = h, and
S C dom(H). By Lemma B.55 (2), [env(H)], k:K[[A]] F [a]k : e U {K}. By
Lemma B.57 and (Proc Par), [env(H)] F [1] : U, com(m{r}- By (Proc Par)
and Lemma B.27, [env(H)], k:K[[A]] F [a]k | [R] : dom(H)UeU {K?}. Since
e C dom(H), we get that [env(H)], k:K[[A]] F [a]k | [R] : dom(H) U {K}, as
desired.

By (Proc Res) and (Proc GRes), since env(H) = dom(H), ptr(H), we get
that [2], S, k:K[[A]] F (v(dom(H) — S))(v[ptr(H)])([a]k | [h]) : SU{K}, that
is, [2], S, k:K[[A]] F [S - (a, hm)]k : SU{K}. O

The following asserts that the encoding of the extended region calculus in
our extended w-calculus preserves the static semantics. This fact corresponds
to Theorem 4.1 for the unextended calculi.

Theorem B.59 (Static Adequacy)
(1) If E* o then [E] + <.

75

(2) If E*- A then [E] F [A].
(3) If EtFa:® A and k ¢ dom([E]) then

[E], k:K[[A]] - [a]k : e U {K}

(4) If H = h and p € dom(H) then
[env(ED)] - [h(p)] = {0}

(5) FHE=S-(a,h): A and k ¢ [env(H)] then
[env(E)], k:K[[AT] & Talk | [H] : dom(H) U{K}

and also
[21, S, k:K[[A]] - [S - (a,)]k : S U {K}
Proof Combine Lemmas B.54, B.55, B.57 and B.58. O

B.6.2 An Auxiliary Small Step Semantics

This section defines an auxiliary small step semantics for the region calculus.
We prove Theorem B.62, that relates small step reductions to evaluations in the
big step semantics.

Continuations and Control stack:
I 1

cu= continuations
popregion p marker to deallocate region p
(z:A)b continuation with argument z
C:=ler, ..., cnl stack of continuations

The reduction relation, S - (a,h,C) — S’ - (a’,h',C"), may be read: in an
initial heap h, with control stack C' and live regions S, the expression a reduces
to a’ with updated heap h’, control stack C’, and live regions S’.

Reduction: S-(a,h,C) = S'-(a',h',C")
I 1

(Red Alloc)

p€S pé domy(h)
S (vatp,h,C)—=S-(p,h+(p+ (h(p) + (p— v))),C)

(Red Appl)

pES hip)p) =p(f:A)Np1,...,pul(x)b
S (plpts .-, PLl(@), b, C) = S - (b{fepHpr=pi} - {pnp) H{zq}, 1, O)

76

(Red Let)

S-(let x=ay inb,h,C)—= S (a,h,(z:A)b:: C)
(Red Pop Let)

S (p,h,(x:A)b:: C) = S - (b{x<p}, h,C)

(Red Letregion)
p ¢ (SU dom(h))

S - (letregion p ina,h,C) = (SU{p})-(a,h+p— 2,C)

(Red Pop Letregion)
peS

S - (p, h, popregion p :: C) = (S — {p}) - (p, h,C)
(Red Case 1)

p€S hip)(p) =ni
S - (case p of nil = by | (y1 2 y2) = ba,h) = S - (by,h,C)

(Red Case 2)
pES hip)p) =q ¢
S - (case p of nil = by | (y1 :: y2) = ba, h) = S - (ba{y1aq1 }{y24-a2}, h,C)

The static semantics defines new heap judgments used to type the elements
in the control stack.

Heap Judgments:
I

B = [Ay, Ay stack of types

HES- C : B the control stack C' has type B

HES: (a,h,C): A in H, the configuration (a, h,C) returns A
L

Region and Heap Rules:

I(Control Good Empty)
env(H)F A fg(A)CS
HES-: 4]

(Control Good Mark)_‘
H=S-C:B p¢S
H = (SU{p}) - (popregionp:: C) : B
(Control Good Cont) .
env(H),z:AFb:*B fg(A)ueCS HES-C:(B:B)
HES- - (z:A)b::C): (A: B: B)

7

(Small Config Good)
HES-(a,h):A HES-C:(A:B)
HES-(a,h,C): last(A :: B)

Lemma B.60 IfH |= S-(a,h,C) : A and S-(a,h) § (p',h') then S-(a, h,C) —*
S-(', W, 0).

Proof An easy induction on the derivation of S - (a, h) | (p', h'). m|

Lemma B.61 If H =S - (a,h,[]) : A and S - (a,h,[]) =* So - 0o, ho,[]) then
S - (a,h) ¥ (po, ho).

Proof Assume H =S :(a,h,C): A and S-(a,h,C) —* Sy (po, ho,[]). The
lemma follows by showing that:

(1) If C =[] then S - (a,h) I (po, ho).

(2) If C = (popregion p :: C') then p € S and thereis p', b’ such that S-(a,h) |
(p',h"yand S - (p',h',C") =* So - (po, ho,[])-

(3) If C = ((#:B)b :: C") then there is p,p’, h' such that S - (a,h) | (p',h)
and p ¢ (SUdom(h')) and S = S"U {p} and S’ - (b{z+p'}, W', C") =*
SO : (p07h07 [])

We proceed by induction on the derivation of S - (a, h,C) =* Sy - (po, ho, [])-
The base case is for an empty reduction sequence, that is, a = pp and h = hyg
and C =[]. By (Eval Var), S - (a,h) { (po, ho), as required.
In the general case, there is S’,a’, h’, C' such that S-(a, h,C) — S'-(a',h',C")
and S’ - (a',1,C") =* So - (po,ho,[]). We proceed by case analysis on the
derivation of S - (a,h,C) — S"- (a', ', C").

(Red Alloc) Then a = (v at p), and o' = p, and b’ = h+ (p— (h(p) + (p —
v))), and S’ = S, and C' = C, where p € S and p ¢ domz(h). For part
(1), by induction hypothesis (1), we get S - (p,h) I (po,ho). This must
have been derived from (Eval Var) with p = py and b’ = hy. By (Eval
Alloc), S - (a,h) U (po, ho). Parts (2) and (3) are similar.

(Red Appl) Then a = p[p,...,p,](q), and o' = b{f+p}{x<q}o, and h' =
h, and S" = S, and C' = C, where p € S, h(p)(p) is the function
u(f:A)Ap1, ..., pn)(x)b and o is the substitution {p1+pi}-- {pn+pl}.
For part (1), by induction hypothesis (1), we get that S”-(a', h") I (po, ho)-
By (Eval Appl), S - (a,h) | (po, ho). Parts (2) and (3) are similar.

(Red Let) Then a = (let © = a'y, ind), and C' = (x:A")b :: C, and h' = h, and
S' = S. By induction hypothesis (3), there is p”, " such that S"-(a', h') |
(P",h") and S”- (b{z<p"},h") I (po, ho). For part (1), by (Eval Let), we
get that S - (a,h) | (po, ho). Parts (2) and (3) are similar.

78

(Red Pop Let) Then a = p, and o' = b{z¢<p}, and C = (2:A")b = C', and
h' =h,and S' = S, and S - (b{z+p},h,C") =* So - (po, ho,[]). We only
have to consider part (3). By (Eval Var), S - (a,h) | (p, h), as required.

(Red Letregion) Then a = (letregion p in a'), and b’ = h + p — @, and
S'" = S U {p}, where p ¢ (S U dom(h)), and C = C'. For part (1), by
induction hypothesis (1), we get that (S U {p}) - (a’,h') § (po,ho). By
(Eval Letregion), S - (a,h) { (po, ho). Parts (2) and (3) are similar.

(Red Pop Letregion) Then a = a’ = p, and h = I/, and there is p € S
such that S' = S\ {p}, and C = (popregionp :: C'), and S’ - (p, h,C") =*
So-(po, ho, []). We only have to consider part (2). By (Eval Var), S-(a,h) §
(p, h), as required.

(Red Case 1) Then a = casep of nil = a' | (y1 :: y2) = be, and h = R/,
and C = C', where p € S and h(p)(p) = nil. For part (1), by induction
hypothesis (1), we get that S - (a’,h) | (po,ho). By (Eval Case 1), S -
(a,h) I (po, ho). Parts (2) and (3) are similar.

(Red Case 2) Then a = case p of nil = by | (y1 = y2) = ba, and d' =
bo{y1 a1 H{y24q2}, and h = ', and C = C’, where p € S and h(p)(p) =
¢1 :: g2. For part (1), by induction hypothesis (1), we get that S - (a',h) |
(po, ho). By (Eval Case 2), S - (a,h) | (po,ho). Parts (2) and (3) are
similar. |

Theorem B.62 Suppose H = S - (a,h) : A. Then S - (a,h) § (p',h') if and
only if S (a,h,[]) = S- (', 1, []).

Proof Assume H | S-(a,h) : A. By (Small Config Good) and (Control
Good Empty), H = S-(a,h,[]) : A. If S+ (a, h) § (p, k') then, by Lemma B.60,
S-(a,h,[]) =*S-(',0,[])- IfS-(a,h,[]) =* S-(p',1,]]) then, by Lemma B.61,
S-(a,h) 4 (p',h). O

B.6.3 Proof of Dynamic Adequacy

e The length of a control stack, length(C), is the number of continuations
contained in C, that is, length([]) = 0, and length(popregion p :: C) =
length(C), and length((x:A)b :: C') = length(C) + 1.

e The types of a control stack, types(C), is the sequence of types inductively
defined from C' by the following rules, types([]) is the empty sequence, and
types(popregion p :: C) = types(C), and types((z:A)b :: C') = A, types(C).

Translation rules:

Let k be a stack, [k1,...,kn], of n pairwise distinct names.
[(x:A)b = CJk = k_} (a:K[[[fl]]])[[b]]kg | [Cllk2, - - -, knl
[popregion p :: CTk = [CTk

(k=0

79

Let {p} = dom(H) — S, and n = length(C), and [Ay,...,A,] = types(C),

and kq,...,k,+1 be a sequence of n + 1 pairwise distinct names.

[S - (a, hiar, O)kn1 = (vp) (vptr (H)]) vk :K[[A]]) - - - (vkn:K[[An]])
([a]kr [[P T ICU KL - - - B])

In the case of an empty control stack, C' =[], the translation of a small-step
configuration, S - (a, hy, C'), equals the translation of the big-step configuration
S - (a,hg). That is, we have the following property:

Lemma B.63 [S - (a,hm,)]k =[S - (a,hu)]k.

LemmaB.64 If H E S-C : [A1,...,Any1] then [env(H)], ki:K[[A4]],-. -,
Eni1:K[[Ansa]l F [Clk1, - - - kny1] 2 dom(H) U {K}.

Proof By induction on the structure of C. Let B be the stack of types
[Atsee oy Appa].

(Empty) Then C' =[] and n = 0. The judgment H = S -C : B must have
been derived by (Control Good Empty) with B = [4;] and env(H) b A;.
By Lemma B.54, [env(H)] F [A1]. By (Proc Zero) and Lemma B.27,
[env(H)], k1:K[[A1]] F 0 : @. By (Proc Subsum), [env(H)], k1:K[[A1]] F
[00(k1] = dom(H) U {K}.

(Cont) Then C = (2:4;)b:: C". The judgment H |= S - C' : B must have been
derived by (Control Good Cont) with env(H),z:A; F b :® Ay and H |=
S-C":(As,...,An+1). By Lemma B.55, [env(H)], z:[A1], k2:K[[A2]] F
[b]ks : eU{K}. Therefore, by (Proc Input) and Lemma B.27, we get that
[env(H)], k1:K[[A1]], k2:K[[A2]] F ki(z [[Al]]) [b]ks : e U{K}. By in-
duction hypothesis, [env(H)], k2:K[[A2]],- - ., knt1:K[[Ant1]] F [C'][k2,

<y kn+1] s dom(H)U{K}. By (Proc Par) and Lemma B.27, we finally ob-
tain that [env(H)], k:K[[A1]],- .., kne1:K[[Ansa]] F [Cllk1, - -, knta] :
dom(H) U{K}, as required.

(Pop) Then C = popregion p :: C' and [C]k = [C']k. The judgment H |=
S-C': B must have been derived by (Control Good Mark) with H }= S-C" :
B. By induction hypothesis, [env(H)], ki:K[[A]], ..., knt1:K[[Anti]] F
[C'Nk2, - - k1] : dom(H) U {K}, as required. O

Proposition B.65 If H = S - (a,h,C) : A then:
[2],S, k:K[[A]) F [S - (a,hu,C)]k : SU{K}

Proof Assume H = S - (a,h,C) : A and k ¢ domy(H) U L. Only (Small
Config Good) can derive this judgment and so H = S - (a,h) : A; and H |=
S-C:JAy,...,Apy1] with n = length(C) and A = A, 1. Let E be the stack
[k1,...,kni1] and T be the sequence K[[A1]],..., K[[Ans1]]-

80

By Lemma B.58, [env(H)],ki:Ty F [a]ks | [h] : dom(H) U {K}. By
Lemma B.64, [env(H)],k:T v [C]k : dom(H) U {K}. By (Proc Par) and
Lemma B.27, [env(H)], k:T + [a]ky | [B] | [C]k : dom(H) U {K}.

By (Proc Res) and (Proc GRes), [@],S, kn+1:K[[A]] F [S - (a,hm,C)]k :
SU{K}. O

Lemma B.66 If H = S - (a,h,C): A and S - (a,h,C) = S"-(a',1,C"), then
there is a heap typing H', with H < H', such that H+ H' |= 5" - (a',h',C") : A
and that, for all channel k with k ¢ (dom2(H + H') U L), we have:

[2], S, k:K[[A]) & [S - (a, e, O)]k & [S"- (a', hig g, C')] K

Proof By induction on the derivation of S-(a,h,C) — S’-(a’',h',C"). Assume
HE S (a,h,C): A. Let §= dom(H)—S, and H = [ptr(H)], and k be a stack,
[k1, - .., ky], made of pairwise distinct variables such that {k} N (doms(H)U LU
{k}) = @. Let Ai,...,A, be the sequence types(C) and let T; denote the 7-
calculus type K[[A;]] for each i € 1..n. In the remainder of this proof, we
will use the notation (vk:T)P for the process (vki:T}) -+ (Vkn:Ty)P and we
will sometimes use k,y; and A,y; instead of k£ and A. We will also omit
type annotations when they can be easily inferred from the environment. Let
E 2 [2], 8, k:K[[B]).

(Red Alloc) We have a = (v at p) and a’ = p, where p € S and p ¢ domy(h),
and h' =h+ (p — (h(p) + (p — v))), and C' = C. By (Config Good) and
(Region Good), since H |= S - (a,h,C) : A, there is a type B such that
env(H) Fa 1Pt B. Take H' = (p+— [p ~ v]). Then:

H+H =S-(d,n,C"):A
[S - (a,her, Ok = (vp) wH)(wk:T)
(wp:[AD([p = o] | k() | [] | [CT[E, k])
[S" - (a/, Wy gy, Ok = () VM) (vp:[A]) (vE:T)
(k) | (IA] | [p = o1) [[C1Ik, k1)
Therefore [S - (a, hg, C)]k = [S"- (¢, Wiy v, C')]k. By Lemma B.40 and
Proposition B.65, E =[S - (a,hg,C)]k = [S"- (a', Mgy, C")]k.

(Red Appl) We have a = p[p},...,p,](¢) and o' = b{f<p}{z+q}o, where
h(p)(p) is a function v = p(f:F)A[p1,...,pnl(x)b, S =S', h =h', C =
C' and o is the substitution {p;<p}} - {pn<pl}. Take H' = . By
Lemma B.11 and (Small Config Good), since H = S - (a,h,C) : A, we get
that H + H' = S" - (a',h,C") : A. Moreover:

[S - (a, hr, OV = (vp) (wH) (vk:T)_

81

where [h] = ([(p = v)] | @), for some @ such that p ¢ inp(Q). By
Proposition A.8 (5):

EF[S- (a,hi,O)k = (vp)(vH) (vE:T))
(I fp}E {11} - - {pnt=py Hr=q} | [P] | [C]k, E])
Hence, E &[S - (a,hyg,O)]k = [S"- (a', Mg g, C")]k.

(Red Let) We have a = (let x = a!y, inb), and C' = ((2:49)b :: C), and
S =5, and h = h'. Take H' = &. By (Control Good Cont) and (Small
Config Good), H+ H' = S"-(a',h',C") : A. Moreover:

[S - (a, hur, O)Tk = (vp) (VM) (vk:T) (vko: K [[A]]) ([a'Tko |
ko(a:[Ao])-[0]k1) |] | [CT[R, K1)
= (vp)(vH)(vko - K[[Ao]])(vk:T) R
([a"Tko | TAD | (Ko(:[AD)-[b1k1 | [C[, K1)

If TO = K[[[Ao]]] then:
[S"- (@', Wiy e, Ok = (v7) () (vho:To, ET)
(Ia'Tko | [1] | [(z:A40)b :: Clko, k, k])

Therefore, [S - (a,he,C)]k = [S" - (a', My g, C")]k. By Lemma B.40,
EF[S-(a,hy,C)]k~[S"-(a', Wiy g, C")]E.

(Red Pop Let) We have a = p, and o' = b{z+p}, and C = (2:41)b :: C',
and S = S, and h = h'. Take Hi = @. By Lemma B.11, we get that
H+H ES -(a,h,C") : A. Let k' be the sequence [k2, ..., kn].

[S - (a, har, O]k = (vp) (VM) (vE:T)

(R (p) [TR | (R (2:[AdD)-([b1k2) | [CIR, K]))
Let 7" denote the sequence Ty, ..., T,. By Lemma A.5:

EF[S- (a,hg, O)]k ~ (uﬁ’)ﬂ(u%)(l/k_”:f’)
([o{z<=p}k: [[P] | ICI(K', k)
Hence, EF [S - (a,hm,)]k = [S" - (a', My g, C)]k.

(Red Letregion) We have a = (letregion p in a'), where p ¢ (S U dom(h)),
and S'=SU{p},and ' =h+p— &, and C =C'. Take H' = (p —).
Then:

[S - (a, har, C)]k = (vp) (VM) (vE:T) 3
((wp)[a'Tkr) | TP] | [CUIK, K])

[S" - (@', iy s Ok = (vp) () (W) (VT
([a'Tk:r [[R] | ICTTR, K1)

82

Since the name p_is bound, we may assume that it is different from the
names in H and k. Therefore [S - (a,hg,C)|k = [S" - (a', Wy g, C')]k.
By Lemma B.40, E & [S - (a, hg, C)]k = [S" - (a', Ky, g, C')]E-

(Red Pop Letregion) We have a = o’ = p, and C' = popregion p :: C', and
p€S,and S' =S\ {p}, and h = h'. Take H = &. Then H + H' =
S"-(a',h',C") : A, and:

[S - (a, har, OVIk = (vp) (i) (wk:T) (ki (p) | [] | [CT[F, k)

where [C][k, k] = [C"][k, k]. Therefore, [S-(a, hsr,C)]k = [S"-(a', iy prr)
C")]k. By Lemma B.40, E - [S - (a, hgr, O)]k =~ [S" - (', Wy y e, O]

e ase 1 en a = case p of nil = by Y1 1 Y2) = bz and a = 01 where

Red C Th f nil = b by and @’ = by wh
p € S and h(p)(p) = nil and S =S’ and h = h'. Take H' = &. Therefore
H+H ES - (d,h,C"): A and:

[S - (a,hy, C)k = (v7)(vH) (vE:T)
((wz1)(vz2)(p(z1, 22) | 2100-[011F | 22(y1, y2)-[b2]F)
| [P] | [CTTE, &])

where [h] = ([p — [ni]] | @) for some @ such that p ¢ inp(Q). By
Proposition A.8 (5):

EV[S - (a,hy, O)k ~ (vp)(vH)(vk:T) 3
((vz1)(vz2)(Z1() | 210)-[01]k | 22(y1,y2).[02]F) | [R] | [CT[K, K])
By Lemma A.5,
EF[S - (a,hu, Ok ~ (vp) wH)wkT)
((vz2)(z2(y1,y2)-[b21k) | [or]k | [P] | [CT[E, K])
By Lemma A.7, EF [S - (a,hyg,O)]k = [S" - (a', Mg g, C")]k.

(Red Case 2) Then a = case p of nil = by | (y1 : y2) = by and o' =
bo{y1 a1 H{y24-q2} where p € S and h(p)(p) = ¢1 = ¢z and S = 5’
and h = h'. Take H' = @. Therefore H + H' =S’ - (a’,h',C") : A and:

[S - (a,hi, Ok = (vp)(vH) (vE:T)
((vz1)(vz2)(p(z1, 22) | 2100-[011F | 22(y1, y2)-[b2]F)
| [P] | [CTTE, &])

where [h] = ([p = [¢1 = ¢2]] | @) for some @ such that p ¢ inp(Q). By
Proposition A.8 (5):

EF[S-(a,hy,O)k ~ (vp)(vH)(wk:T)(vz1)(vzs) 3
(Z2(a1,a2) | 210)-[01]% | 22(y1, y2).[b21k | [1] | [CT[K, K])

83

By Lemma A.5,

EF[S-(a, hi, O)]k ~ (vp) (vH) (vk:T) (vz1) 3
(210)-[b1]%) | [b2]E{y1 a1 Hy24=q2} | [P] | [C][F, K]

By Lemma A.7, E + [S - (a, har, O)Jk = [S" - (a', By g, C")] k- O

The following asserts that the encoding of the extended region calculus pre-
serves the dynamic semantics. A proof of Theorem 4.2, dynamic adequacy for
the unextended calculi, can be obtained by defining an auxiliary (unextended)
small-step semantics for the region calculus and simplifying the following proof.

Theorem B.67 If H =S - (a,h): A and S - (a,h) | (p', 1) then there is H'
such that H < H and H+H' = S-(p',h') : A and for all k ¢ domy(H+H')UL,
[2], S, k:K[[A]] - [S - (a, hm)]k & [S - (0, Wy)T

Proof Assume H=S:-(a,h):Aand S-(a,h) | (p',h'). By Theorem B.62,
we have S-(a, h,[]) =* S-(p',1,[]). By rule (Control Good Empty) and (Small
Config Good), we have H = S - (a, h,[]) : A. By Lemma B.66, there is a heap
typing H', with H < H', such that H+ H' =S - (p', h',[]) : A and that, for all
channel k with k ¢ (domq(H + H') U L), we have:

[2], S, k:K[[All F [(H, S,a,h,)]k ~ [(H + H',S,p', 1, [])]k
By Lemma B.63, [2], S, k:K[[A]] F [S- (a,he)]k = [(S,H+ H',p',h)]k. O

B.6.4 Proof of Garbage Collection for the \-Calculus

The following property asserts that defunct regions make no difference to the
behaviour of a program. It corresponds to Theorem 4.4 for the unextended
calculi.

Theorem B.68 Suppose H |= S - (a,h) : A and k ¢ dom2(H)U L. Let
{Pdefunct} = dom(H) — S. Then:

2], S, :K[[A]] F[S - (a, h)]k
~ (VPaetunct) (v [ptr (H)])([alk | T1,es[H (0)])

Proof Let p be a sequence of groups, p1, ..., pm, such that {p} = S. Let
Pdefunct be a sequence of groups, pi, ..., pl,, such that {Puefunct} = dom(H)—S.
For the sake of brevity, we use the symbol px instead of pyefunct in the remainder
of this proof. In particular ({f} U {K})N{px} = @. Let:

o= Fe T T
H = = R,px— Ry
env(H) = p,px,7 at p,7x at pPx

84

By (Config Good), H = S-(a,h) : A implies env(H) F a:®* Aand eUfg(A) C S
and H = S - h. By Theorem 4.1, we have that:

[2], 7, Px, [T at p],[Fx at px], k:K[[A]] F [a]k : e U {K}
[2], 5, 5, [at p1, [P at px], k:K[[A]] - [7 = 7] - {7}
[2]. 7, 7, [7 at p1, [Px at px], :K[[A]] F [5x = 7] < {px}

Let P = [a]k | [§+— 7]. By an exchange lemma, we get:

[21, p, k:K([A]L, i, [at p), [P ot pix] = P = {7, K7}
[21, 5, k:KTLALL A, [at 91, [P ot pix] = [5x = 7] = {px}

By Theorem B.53 sevral times, we get:

121, S, k:K[[AL] - (v (WIF at) (v at fx])
(P | [5x = 7<) ~ (vp)(VIF at A)(W[Fx at px])P

But this is:

[2], S, k:K[[A]] & [S - (a,)]k
R (VPaetunct) (VIptr (H)])([alk | TT,es[H (0)])

B.7 An Equational Theory

We now prove that the equational theory for the region calculus is sound with
respect to our encoding in the w-calculus with groups. This property is given by
Theorem 5.2, that the encoding of equivalent expressions are (barbed) equivalent
processes. In this appendix we consider the simple region calculus introduced
in Section 2. For the sake of brevity we have not considered the details of how
to extend this theory to the polymorphic region calculus.

We start by proving Lemma B.69, that the encoding of a term obtained by
substituting an allocation v at p, to a variable x, in a term b, is equivalent to the
process obtained by substituting to z in [b], a private link to a replicated copy
of the process [v]. This property is used in the proof of Theorem 5.2. More
precisely, it is needed in the proof that the encoding of f-equivalent terms are
equivalent processes.

Note that this is the only result of this paper that relies on the locality
restriction imposed on the 7-calculus.

Lemma B.69 Consider two expressions a and b such that a is an allocation,
v at p, with E F a :%»Y A and E,2:A + b :* B and E + b{z<a} :* B. If
p ¢ fu(v) U fu(b) and k ¢ dom(E)U L then:

[E], k:K([BI - [b{za}]k = (vp:[A]D([p = o] | [b{z+p}]k)

Proof By induction on the structure of . Let a be an allocation, v at p.
Assume E F a :1?Y A and E,2:A + b :* B and E F b{z<a} :* B. Let
k ¢ dom(FE)U L. By Theorem 4.1 (3), [E], z:[A], k:K[[B]] F [b]k : eU {K}

85

and [E],k:K[[B]] F [b{z+a}]k : ¢ U{K}. By Lemma B.56, [E],p:[A] F
[p — v] : {p}. By (Proc Par), (Proc Res) and Lemma B.28, [E], k:K[[B]] -
(vp:[A])([p — v] | [b{z<+p}]k). Hence [E], k:K[[B]] F [b{z+a}]k and [E],
kK(IBT) F (vpAD ([p ~ o] | [b{ap) k).

For the sake of brevity, we omit the type annotations in the encoding of
region calculus terms in the remainder of this proof.

(Variable) Then b = y. If y = 2 then [b{za}]k = [v at p]k = (vp)([p — v] |
[p]k), as required. If y # x then [b{z<a}]k = [y]k. By Lemma A.7, since

pé va(gy]]k), we get that [E], k:K[[B]] - (vp)([p =] | [y]k) = [y]k, as
required.

(Allocation) Then b = (A(y)c at p') and [b{z<-a}]k is the replicated resource
def q(y, k) = [e{z+a}]k in k(g). By induction hypothesis, and since =
is a congruence, we get that:

[E], k:K[[B]] - [b{z+a}]k =~ 3
def q(y, k) = (vp)([p = v] | [c{z<p}]k) in k(q))

By Propositions A.8 (1) and A.8 (3), we get that
[E], k:K([B]] - [b{za}lk ~ (vp)([p = o] | [b{zp}]k)

(Application) Then b = y(z). Assume y = . Since the term b is well-typed,
it must be the case that z # z. Hence, [b{z+a}]k = (vk',p)([p — v] |
k'(p) | ¥'(2').[2'(2)]k). By Lemma A.5, [E], k:K[[B]] - [b{z+a}]k ~
(vp)([p — v] | [p(2)]k), as required. Assume z = z. Since the term
b is well-typed, it must be the case that y # z. Hence, [b{z+a}]k =
(vk',p)([p ~ o] | F(p) | F'(a").[y(e")]K). By Lemma A.5, [E], k:K[[B] -
[b{wea}lk ~ (vp)([p —] | [y(p)]k). as required.

(Sequencing) Then b = let y = ¢; in ¢y and [b{z«a}]k is the process
(k" ([er{z+a}]k' | k' (y).[ca{x+a}]k). By induction hypothesis, Propo-
sition A.8 (4), and since = is a congruence, we get that:

[E], k:K[[B]] F [b{z+a}]k ~ (vk') ((vp1)([p1 — 0] |
[e1{zp1}]E') |
(vp2)([p2 =] |

k' (y)-[e2{z¢p2}]k))

Assume p ¢ fo(v) U fu(b). Since p1,p2 ¢ fu(v), we get that:

[E], k:K[[B]] - [b{za}lk ~ (k') ((vp)([p =] | [er{zp}]K) |
(wp)([p = o] | K (y)-[e2{zp}]k))

By Proposition A.8 (2), [E], k:K[[B]] + [b{z<a}]k = (vp)([p — v] |
(k") ([er{z<p}K' | k' (y)-[ea{z+p}]k)), as required

86

(Letregion) Then b = letregion p "inc. Hence, [b{z<a}]k = (vp')[c{za}]k.
Assume p ¢ fo(v) U fo(b). By induction hypothesis, and since =~ is a
congruence, we get that: [E], k:K[[B]] b [b{z<a}]k =~ (vp')(vp)([p —
v] | [e{z<p}]k). By Proposition 3.4 (4), since p' ¢ fr(a) and fg([v]k) =
fr(a) U {K}, we get that [E], k:K[[B]] F [b{z+al}]k =~ (vp)([p — ©] |
(vp")[e{z+p}]k), as required. O

Proof of Lemma 5.1 If Et a; < as : A then there is e C dom(E) such
that for each i € 1.2, there is e; C e with E'+ a; ¢ A.

Proof By induction on the derivation of E F a; <> a3 : A.
(Eq Refl) and (Eq Symm) Trivial.

(Eq Trans) Then E F a; & b: Aand E + b & as : A. By induction
hypothesis, there are effects f!, f2 C dom(E) such that E + a; :fi A,
Erbis A Ebay /T Aand EF b /5 A, where for each i,j € 1..2,
fi C fi. Take e = f' U f* and e; = f} for each i € 1.2,

(Eq Fun) Then E,z : A+ b; :* B' for eachi € 1.2 and A = (A4’ L B') at p),
where a; = (M(z:A4")b; at p) and e; C e and E + A. Take e = {p}.
By (Type —), since E + A, we get that e C dom(E). By (Exp Fun),
Et a; :¢ A for each i € 1..2, as required.

(Eq Fun $) and (Eq Let) Then a; = let y = (M(#:B)b at p) in y(a) and
ay = b{z<a} where a is a name or an allocation, and y ¢ fv(a), and
EFa:® B,and E,:B + b :*> A, and E F b{xz+a} :*> A (that is,
EF ay:® A), and p € dom(E). Take e = {p} Ue; Ues. By (Exp Appl)
and (Exp Let), we get that E - ay : A, as required. The case for (Eq Let
B) is similar.

(Eq Let) and (Eq Letregion Let) Then a; = let z = a in b and ay =
let x =a'inb where EFa <> d : Band E;z: BF b+ b : A. By
induction hypothesis, there is e!, €2 C dom(FE) such that for each i, j € 1..2
there is eg Cel with EFa el B, Et+d € B,E,x:BFkFb 1 4 and
E,x:BFUV > A Takee; = el Uel for each i € 1.2 and e = e1 U es.
By (Exp Let), we get that E - a; :* A and e; C e for each i € 1..2, as
required. The case for (Eq Letregion Let) is similar.

(Eq Let Assoc) Then a; = let z = a in (let y = b inc) and ay = let y =
(let © = a inb) inc where E F a :* Aand E,z : A+ b :*® B and
E,y : BF c¢:% C. In particular, since z ¢ dom(E,y : B), we get that
x & fu(c) and E,y:B,x:A F o. Takee = e; = e2 = e, Uep Ue.. By
(Exp Let) and Lemma B.6, we get that E a; :* C for each i € 1..2, as
required.

87

(Eq Letregion) and (Eq Swap) Then a; = (vp)b; for each i € 1..2 where
E,pkb; & by: Aand p ¢ fr(A). By induction hypothesis, there is f C
dom(FE, p) such that for each i € 1..2, there is f; C f with E,p F b; :fi A.
Take e = f — {p} and e; = f; — {p} for each i € 1..2. By (Exp Letregion),
Et a; % A for each i € 1..2, as required. Case (Eq Swap) is similar.

(Eq Drop) Then a; = (vp)az where E + a :* A and p ¢ dom(E). Take
e1 = ez = e. Since e C dom(E), we get that e = e — {p} and p ¢ fr(A).
By (Exp Letregion), E I a; :¢ A, as required. a

Proof of Theorem 5.2 Suppose E+Fa < b: A and k ¢ dom(E)UL. Then
[E], k:K[[A]] F [a]k = [b] k.

Proof By induction on the derivation of £+ a ++ b: A. By Lemma 5.1, there
is e C dom(FE) and ey, e such that e; C e for each i € 1..2 with E+ a :** A and
EFb:2 A Let k ¢ dom(E)U L. By Theorem 4.1 (3), [E], k:K[[A]] F [a]k :
et U{K} and [E], k:K[[A]] F [b]k : e2U{K}. Hence, [E], k:K[[A]] F [a]k, [b].

For the sake of brevity, we omit the type annotations in the encoding of
region calculus terms in the remainder of this proof.

(Eq Refl), (Eq Symm) and (Eq Trans) Trivial, since & is an equivalence
relation.

(Eq Fun), (Eq Let) and (Eq Letregion) Trivial, since & is a congruence.

(Eq Fun) and (Eq Let 8) Then a = let y = (A(z:B)Y at p) in y(a') and
b = b'{z<a'} where o' is a name or an allocation, and y ¢ fv(a'). Hence,
[alk = (vE')def p(z, k) = [V']k in (K" (p) | ¥'(y).[y(a')]k) where k' and p
are fresh names. By Lemma A.5, [E], k:K[[A]] F [a]k =~ def p(z,k) =
[0'1k in [p(a’)]k. We have two possible cases depending on the shape of
a.

Assume a' is a name, say q. Hence, [E], k:K[[A]] F [a]k ~ def p(z, k) =
[0'1k in B{q, k). By Proposition A.8 (5):

[E], k:K[[A]] - [a]k = def p(x, k) = [b']k in [b'{z<a’}]k
By Proposition A.8 (1), since p ¢ fu(b{x<+a'}), we get that:

[E], k:K[[A]] F [a]k = [b'{z+a'}]k

88

Assume o' is an allocation, say (A(y)c at p'). Hence:

[E], k:K[[A]l - [a]®

&
&
A
=

(By Lemma A.5)
def p(x, k) =[b']k in
(def q(y, k) = [c]k in (g, k)
(By Proposition A.8 (5))
def p(z, k) = [b']k in
(def 4(y,) = [k in [0 {zeq}F)
(By Lemma B.69)
def p(x, k) = [b']k in [b'{za'}]k

Q

X

Q

Case (Eq Let j) is similar.

(Eq Let Assoc) Then a = let = a' in (let y = b inc) and b = let y =
(let z = o' ind') inc where E F o * Aand E,oz : ARV 2 B
and E,y : B+ ¢ :* (. In particular, since x ¢ dom(E,y : B), we
get that = ¢ fo(¢). Hence, [a]k = (vky)([a']k1 | ki (z).(vks)([0']ks |
a().[cTE)) and [b]k = (vky) ([P | (vkz) Ok (2)-D0Tk2 | Ko ()-I€TH)),
where kp, k2 are two fresh names. By Lemma A.6, [E], k:K[[A]] [a]k =
(vk1)([a']kr | (Vka)ki(2).([']k2 | k2(y).[¢']k)). By Lemma A.9, we get
that [E], k:K[[A]] F [a]k ~ [b]k, as desired.

(Eq Drop), (Eq Swap) and (Eq Letregion Let) In each of this cases we

have erase([a]k) = erase([b]k), [E], k:K[[A]] F [a]k and [E], k:K[[A]] I—
[b]k. By Proposition B.39, [E], k:K[[A]] - [a]k = [b]%.

89

