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Abstra
t

We show that the typed region 
al
ulus of Tofte and Talpin 
an be en-


oded in a typed �-
al
ulus equipped with name groups and a novel e�e
t

analysis. In the region 
al
ulus, ea
h boxed value has a stati
ally deter-

mined region in whi
h it is stored. Regions are allo
ated and de-allo
ated

a

ording to a sta
k dis
ipline, thus improving memory management. The

idea of name groups arose in the typed ambient 
al
ulus of Cardelli, Ghelli,

and Gordon. There, and in our �-
al
ulus, ea
h name has a stati
ally

determined group to whi
h it belongs. Groups allow for type-
he
king of


ertain mobility properties, as well as e�e
t analyses. Our en
oding makes

pre
ise the intuitive 
orresponden
e between regions and groups. We pro-

pose a new formulation of the type preservation property of the region


al
ulus, whi
h avoids Tofte and Talpin's rather elaborate 
o-indu
tive

formulation. We prove the en
oding preserves the stati
 and dynami


semanti
s of the region 
al
ulus. Our proof of the 
orre
tness of region

de-allo
ation shows it to be a spe
i�
 instan
e of a general garbage 
olle
-

tion prin
iple for the �-
al
ulus with e�e
ts. We propose new equational

laws for letregion , analogous to s
ope mobility laws in the �-
al
ulus, and

show them sound in our semanti
s.
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1 Motivation

This paper reports a new proof of 
orre
tness of region-based memory manage-

ment (Tofte and Talpin 1997), and also proofs of new equational laws for the

region 
al
ulus.

Tofte and Talpin's region 
al
ulus is a 
ompiler intermediate language that,

remarkably, supports an implementation of Standard ML that has no garbage


olle
tor, the ML Kit 
ompiler (Birkedal, Tofte, and Vejlstrup 1996). The basi


idea of the region 
al
ulus is to partition heap memory into a sta
k of regions.

Ea
h boxed value (that is, a heap-allo
ated value su
h as a 
losure or a 
ons


ell) is annotated with the parti
ular region into whi
h it is stored. The 
on-

stru
t letregion � in b manages the allo
ation and de-allo
ation of regions. It

means: �Allo
ate a fresh, empty region, denoted by the region variable �; eval-

uate the expression b; de-allo
ate �.� A type and e�e
t system for the region


al
ulus guarantees the safety of de-allo
ating the defun
t region as the last

step of letregion . The allo
ation and de-allo
ation of regions obeys a sta
k

dis
ipline determined by the nesting of the letregion 
onstru
ts. A region in-

feren
e algorithm 
ompiles ML to the region 
al
ulus by 
omputing suitable

region annotations for boxed values, and inserting letregion 
onstru
ts as ne
es-

sary. In pra
ti
e, spa
e leaks, where a parti
ular region grows without bound,

are a problem. Still, they 
an pra
ti
ally always be dete
ted by pro�ling and

eliminated by simple modi�
ations. The ML Kit e�
iently exe
utes an impres-

sive range of ben
hmarks without a garbage 
olle
tor and without spa
e leaks.

Region-based memory management fa
ilitates interoperability with languages

like C that have no garbage 
olle
tor and helps enable realtime appli
ations of

fun
tional programming.

Tofte and Talpin's semanti
s of the region 
al
ulus is a stru
tural operational

semanti
s. A map from region names to their 
ontents represents the heap. A

fresh region name is invented on ea
h evaluation of letregion . This semanti
s

supports a 
o-indu
tive proof of type safety, in
luding the safety of de-allo
ating

the defun
t region at the end of ea
h letregion . The proof is 
omplex and

surprisingly subtle, in part be
ause a
tive regions may 
ontain dangling pointers

that refer to de-allo
ated regions.

The region 
al
ulus is a strikingly simple example of a language with type

generativity. A language has type generativity when type equivalen
e is by

name (that is, when types with di�erent names but the same stru
ture are not

equivalent), and when type names 
an be generated at run-time. A prominent

example is the 
ore of Standard ML (Milner, Tofte, Harper, and Ma
Queen

1997), whose datatype 
onstru
t generates a fresh algebrai
 type ea
h time it is

evaluated. (The ML module system admits type generativity also, but at link-

time rather than run-time.) The region 
al
ulus has type generativity be
ause

the type of a boxed value in
ludes the name of the region where it lives, and

region names are dynami
ally generated by letregion . The semanti
s of Standard

ML a

ounts operationally for type generativity by inventing a fresh type name

on ea
h elaboration of datatype . Various resear
hers have sought more abstra
t

a

ounts of type generativity (Leroy 1996; Russo 1996).
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This paper des
ribes a new semanti
s for a form of the region 
al
ulus, ob-

tained by translation to a typed �-
al
ulus equipped with a novel e�e
t system.

The �-
al
ulus (Milner 1999) is a rather parsimonious formalism for des
ribing

the essential semanti
s of 
on
urrent systems. It serves as a foundation for de-

s
ribing a variety of imperative, fun
tional, and obje
t-oriented programming

features (Sangiorgi and Walker 2000; Walker 1995), for the design of 
on
urrent

programming languages (Fournet and Gonthier 1996; Pier
e and Turner 1997),

and for the study of se
urity proto
ols (Abadi and Gordon 1999), as well as

other appli
ations. The only data in the �-
al
ulus are atomi
 names. Names


an model a wide variety of identi�ers: 
ommuni
ation 
hannels, ma
hine ad-

dresses, pointers, obje
t referen
es, 
ryptographi
 keys, and so on. A new-name


onstru
t (�x)P generates names dynami
ally in the standard �-
al
ulus. It

means: �Invent a fresh name, denoted by x; run pro
ess P .� One might hope

to model region names with �-
al
ulus names but unfortunately typings would

not be preserved: a region name may o

ur in a region-
al
ulus type, but in

standard typed �-
al
uli (Pier
e and Sangiorgi 1996), names may not o

ur in

types.

We solve the problem of modelling region names by de�ning a typed �-


al
ulus equipped with named groups and a new-group 
onstru
t (Cardelli,

Ghelli, and Gordon 2000a). The idea is that ea
h �-
al
ulus name belongs

to a group, G. The type of a name now in
ludes its group. A new-group 
on-

stru
t (�G)P generates groups dynami
ally. It means: �Invent a fresh group,

denoted by G; run pro
ess P .� The basi
 ideas of the new semanti
s are that

region names are groups, that pointers into a region � are names of group �,

and that given a 
ontinuation 
hannel k the 
ontinuation-passing semanti
s of

letregion � in b is simply the pro
ess (��)[[b℄℄k where [[b℄℄k is the semanti
s of

expression b. The semanti
s of other expressions is mu
h as in earlier �-
al
ulus

semanti
s of �-
al
uli (Sangiorgi and Walker 2000). Parallelism allows us to ex-

plain a whole fun
tional 
omputation as an assembly of individual pro
esses that

represent 
omponents su
h as 
losures, 
ontinuations, and fun
tion invo
ations.

This new semanti
s for regions makes two main 
ontributions.

� First, we give a new proof of the 
orre
tness of memory management in

the region 
al
ulus. We begin by extending a standard en
oding with the

equation [[letregion � in b℄℄k = (��)[[b℄℄k. Then the rather subtle 
orre
tness

property of de-allo
ation of defun
t regions turns out to be a simple in-

stan
e of a new abstra
t prin
iple expressed in the �-
al
ulus. Hen
e, an

advantage of our �-
al
ulus proof is that it is 
on
eptually simpler than a

dire
t proof.

� Se
ond, the semanti
s provides a more abstra
t a

ount of type genera-

tivity in the region 
al
ulus than the standard operational semanti
s. A

spe
i�
 bene�t is that new equational laws for letregion are 
orollaries of

its semanti
s in terms of the new-group 
onstru
t.

The spe
i�
 te
hni
al results of the paper are:

� A simple proof of type soundness of the region 
al
ulus (Theorem 2.1).
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� A new semanti
s of the region 
al
ulus in terms of the �-
al
ulus with

groups. The translation preserves types and e�e
ts (Theorem 4.1) and

operational behaviour (Theorem 4.2).

� A new garbage 
olle
tion prin
iple for the �-
al
ulus (Theorem 4.3) whose


orollary (Theorem 4.4) justi�es de-allo
ation of defun
t regions in the

region 
al
ulus.

� A new equational theory for letregion , inspired and justi�ed (Theorem 5.2)

by the �-
al
ulus model.

We organise the rest of the paper as follows. Se
tion 2 introdu
es the region


al
ulus. Se
tion 3 des
ribes the �-
al
ulus with groups and e�e
ts. Se
tion 4

gives our new �-
al
ulus semanti
s for regions. Se
tion 5 des
ribes our new

equations for manipulating letregion . Se
tion 6 
onsiders extensions. Se
tion 7


on
ludes. Appendix A reviews the untyped �-
al
ulus. Appendix B des
ribes

proofs of all properties stated without proof in the main text.

2 A �-Cal
ulus with Regions

To fo
us on the en
oding of letregion with the new-group 
onstru
t, we work

with a simpli�ed version of the region 
al
ulus of Tofte and Talpin (1997). Our


al
ulus omits the re
ursive fun
tions, type polymorphism, and region polymor-

phism present in Tofte and Talpin's 
al
ulus. Se
tion 6 extends our results to

a version of the region 
al
ulus of this se
tion extended with re
ursive fun
-

tions, �nite lists, and region polymorphism. Tofte and Talpin explain that type

polymorphism is not essential for their results. Still, we 
onje
ture that our

framework 
ould easily a

ommodate type polymorphism.

2.1 Syntax

Our region 
al
ulus is a typed 
all-by-value �-
al
ulus equipped with a letregion


onstru
t and an annotation on ea
h fun
tion to indi
ate its storage region. We

assume an in�nite set of names, ranged over by p, q, x, y, z. For the sake of

simpli
ity, names represent both program variables and memory pointers, and

a subset of the names L = f`

1

; : : : ; `

n

g represents literals. The following table

de�nes the syntax of �-
al
ulus expressions, a or b, as well as an auxiliary notion

of boxed value, u or v.

Expressions and Values:

x; y; p; q; f; g name: variable, pointer, literal

� region variable

a; b ::= expression

x name

v at � allo
ation of v at �

x(y) appli
ation

3



let x = a in b sequen
ing

letregion � in b region allo
ation, de-allo
ation

u; v ::= boxed value

�(x:A)b fun
tion

We shall explain the type A later. In both let x = a in b and �(x:A)b,

the name x is bound with s
ope b. Let fn(a) be the set of names that o

ur

free in the expression a. We identify expressions and values up to 
onsistent

renaming of bound names. We write Pfx yg for the out
ome of renaming

all free o

urren
es of x in P to the name y. Our syntax is in a redu
ed form,

where an appli
ation x(y) is of a name to a name. We 
an regard a 
onventional

appli
ation b(a) as an abbreviation for let f = b in let x = a in f(x), where

f 6= x and f is not free in a.

We explain the intended meaning of the syntax by example. The following

expression,

ex

1

�

= letregion �

0

in

let f = �(x:Lit)x at �

0

in

let g = �(y:Lit)f(y) at � in g(5)

means: �Allo
ate a fresh, empty region, and bind it to �

0

; allo
ate �(x:Lit)x

in region �

0

, and bind the pointer to f ; allo
ate �(y:Lit)f(y) in region � (an

already existing region), and bind the pointer to g; 
all the fun
tion at g with

literal argument 5; �nally, de-allo
ate �

0

.� The fun
tion 
all amounts to 
alling

�(y:Lit)f(y) with argument 5. So we 
all �(x:Lit)x with argument 5, whi
h

immediately returns 5. Hen
e, the �nal out
ome is the answer 5, and a heap


ontaining a region � with g pointing to �(y:Lit)f(y). The intermediate region

�

0

has gone. Any subsequent invo
ations of the fun
tion �(y:Lit)f(y) would go

wrong, sin
e the target of f has been de-allo
ated. The type and e�e
t system

of Se
tion 2.3 guarantees there are no subsequent allo
ations or invo
ations on

region �

0

, su
h as invoking �(y:Lit)f(y).

2.2 Dynami
 Semanti
s

Like Tofte and Talpin, we formalize the intuitive semanti
s via a 
onventional

stru
tural operational semanti
s. A heap, h, is a map from region names to re-

gions, and a region, r, is a map from pointers (names) to boxed values (fun
tion


losures). In Tofte and Talpin's semanti
s, defun
t regions are erased from the

heap when they are de-allo
ated. In our semanti
s, the heap 
onsists of both

live regions and defun
t regions. Our semanti
s maintains a set S 
ontaining

the region names for the live regions. This is the main di�eren
e between the

two semanti
s. Side-
onditions on the evaluation rules guarantee that only the

live regions in S are a

essed during evaluation. Retaining the defun
t regions

simpli�es the proof of subje
t redu
tion. Semmelroth and Sabry (1999) adopt

a similar te
hnique for the same reason in their semanti
s of monadi
 en
apsu-

lation.
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Regions, Heaps, and Sta
ks:

r ::= (p

i

7! v

i

)

i21::n

region, p

i

distin
t

h ::= (�

i

7! r

i

)

i21::n

heap, �

i

distin
t

S ::= f�

1

; : : : ; �

n

g sta
k of live regions

A region r is a �nite map of the form p

1

7! v

1

; : : : ; p

n

7! v

n

, where the p

i

are

distin
t, whi
h we usually denote by (p

i

7! v

i

)

i21::n

. An appli
ation, r(p), of

the map r to p denotes v

i

, if p is p

i

for some i 2 1::n. Otherwise, the appli
ation

is unde�ned. The domain, dom(r), of the map r is the set fp

1

; : : : ; p

n

g. We

write ? for the empty map. If r = (p

i

7! v

i

)

i21::n

, we de�ne the notation h� p

to be p

i

7! v

i

i2(1::n)�fjg

if p = p

j

for some j 2 1::n, and otherwise to be simply

r. Then we de�ne the notation r + (p 7! v) to mean (r � p); p 7! v.

We use �nite maps to represent regions, but also heaps, and various other

stru
tures. The notational 
onventions de�ned above for regions apply also to

other �nite maps, su
h as heaps. Additionally, we de�ne dom

2

(h) to be the set

of all pointers de�ned in h, that is,

S

�2dom(h)

dom(h(�)).

The evaluation relation, S � (a; h) + (p; h

0

), may be read: in an initial heap

h, with live regions S, the expression a evaluates to the name p (a pointer or

literal), leaving an updated heap h

0

, with the same live regions S.

Judgments:

S � (a; h) + (p; h

0

) evaluation

Evaluation Rules:

(Eval Var)

S � (p; h) + (p; h)

(Eval Allo
)

� 2 S p =2 dom

2

(h)

S � (v at �; h) + (p; h+ (� 7! (h(�) + (p 7! v))))

(Eval Appl)

� 2 S h(�)(p) = �(x:A)b S � (bfx qg; h) + (p

0

; h

0

)

S � (p(q); h) + (p

0

; h

0

)

(Eval Let)

S � (a; h) + (p

0

; h

0

) S � (bfx p

0

g; h

0

) + (p

00

; h

00

)

S � (let x = a in b; h) + (p

00

; h

00

)

(Eval Letregion)

� =2 dom(h) S [ f�g � (a; h+ � 7! ?) + (p

0

; h

0

)

S � (letregion � in a; h) + (p

0

; h

0

)

5



Re
all the example expression ex

1

from the previous se
tion. Consider an

initial heap h = � 7! ? and a region sta
k S = f�g, together representing a heap

with a single region � that is live but empty. We 
an derive S � (ex

1

; h) + (5; h

0

)

where h

0

= � 7! (g 7! �(y:Lit)f(y)); �

0

7! (f 7! �(x:Lit)x). Sin
e � 2 S but

�

0

=2 S, � is live but �

0

is defun
t.

2.3 Stati
 Semanti
s

The stati
 semanti
s of the region 
al
ulus is a simple type and e�e
t sys-

tem (Gi�ord and Lu
assen 1986; Talpin and Jouvelot 1992; Wadler 1998). The


entral typing judgment of the stati
 semanti
s is:

E ` a :

f�

1

;:::;�

n

g

A

whi
h means that in a typing environment E, the expression a may yield a result

of type A, while allo
ating and invoking boxed values stored in regions �

1

, . . . ,

�

n

. The set of regions f�

1

; : : : ; �

n

g is the e�e
t of the expression, a bound on

the intera
tions between the expression and the store. For simpli
ity, we have

dropped the distin
tion between allo
ations, put(�), and invo
ations, get(�), in

Tofte and Talpin's e�e
ts. This is an inessential simpli�
ation; the distin
tion


ould easily be added to our work.

An expression type, A, is either Lit , a type of literal 
onstants, or (A

e

!

B) at �, the type of a fun
tion stored in region �. The e�e
t e is the latent

e�e
t: the e�e
t unleashed by 
alling the fun
tion. An environment E has

entries for the regions and names 
urrently in s
ope.

E�e
ts, Types, and Environments:

e ::= f�

1

; : : : ; �

n

g e�e
t

A;B ::= type of expressions

Lit type of literals

(A

e

! B) at � type of fun
tions stored in �

E ::= environment

? empty environment

E; � entry for a region �

E; x:A entry for a name x

Let fr (A) be the set of region variables o

urring in the type A. We de�ne

the domain, dom(E), of an environment, E, by the equations dom(?) = ?,

dom(E; �) = dom(E) [ f�g, and dom(E; x:A) = dom(E) [ fxg.

The following tables present our type and e�e
t system as a 
olle
tion of

typing judgments de�ned by a set of rules. Tofte and Talpin present their type

and e�e
t system in terms of 
onstru
ting a region-annotated expression from

an unannotated expression. Instead, our main judgment simply expresses the

type and e�e
t of a single region-annotated expression. Otherwise, our system

is essentially the same as Tofte and Talpin's.
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Type and E�e
t Judgments:

E ` � good environment

E ` A good type

E ` a :

e

A good expression, with type A and e�e
t e

Type and E�e
t Rules:

(Env ?)

? ` �

(Env x) (re
all L is the set of literals)

E ` A x =2 dom(E) [ L

E; x:A ` �

(Env �)

E ` � � =2 dom(E)

E; � ` �

(Type Lit)

E ` �

E ` Lit

(Type !)

E ` A � [ feg � dom(E) E ` B

E ` (A

e

! B) at �

(Exp x)

E; x:A;E

0

` �

E; x:A;E

0

` x :

?

A

(Exp `)

E ` � ` 2 L

E ` ` :

?

Lit

(Exp Appl)

E ` x :

?

(B

e

! A) at � E ` y :

?

B

E ` x(y) :

f�g[e

A

(Exp Let)

E ` a :

e

A E; x:A ` b :

e

0

B

E ` let x = a in b :

e[e

0

B

(Exp Letregion)

E; � ` a :

e

A � =2 fr(A)

E ` letregion � in a :

e�f�g

A

(Exp Fun)

E; x:A ` b :

e

B e � e

0

f�g [ e

0

� dom(E)

E ` �(x:A)b at � :

f�g

(A

e

0

! B) at �

The rules for good environments are standard; they assure that all the names

and region variables in the environment are distin
t, and that the type of ea
h

name is good. All the regions in a good type must be de
lared. The type of a

good expression is 
he
ked mu
h as in the simply typed �-
al
ulus. The e�e
t

of a good expression is the union of all the regions in whi
h it allo
ates or from

whi
h it invokes a 
losure. In the rule (Exp Letregion), the 
ondition � =2 fr(A)

ensures that no fun
tion with a latent e�e
t on the region � may be returned.

Calling su
h a fun
tion would be unsafe sin
e � is de-allo
ated on
e the letregion

terminates. In the rule (Exp Fun), the e�e
t e of the body of a fun
tion must

be 
ontained in the latent e�e
t e

0

of the fun
tion. For the sake of simpli
ity we

have no rule of e�e
t subsumption, but it would be sound to add it: if E ` a :

e

A

and e

0

� dom(E) then E ` a :

e[e

0

A. In the presen
e of e�e
t subsumption we


ould simplify (Exp Fun) by taking e = e

0

.
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Re
all the expression ex

1

from Se
tion 2.1. We 
an derive the following

judgments:

�; �

0

` (�(x:Lit)x) at �

0

:

f�

0

g

(Lit

?

! Lit) at �

0

�; �

0

; f :(Lit

?

! Lit) at �

0

` (�(x:Lit)f(x)) at � :

f�g

(Lit

f�

0

g

! Lit) at �

�; �

0

; f :(Lit

?

! Lit) at �

0

; g:(Lit

f�

0

g

! Lit) at �

` g(5) :

f�;�

0

g

Lit

Hen
e, we 
an derive � ` ex

1

:

f�g

Lit .

For an example of a type error, suppose we repla
e the appli
ation g(5) in

ex

1

simply with the identi�er g. Then we 
annot type-
he
k the letregion �

0


onstru
t, be
ause �

0

is free in the type of its body. This is just as well, be
ause

otherwise we 
ould invoke a fun
tion in a defun
t region.

For an example of how a dangling pointer may be passed around harmlessly,

but not invoked, 
onsider the following. Let F abbreviate the type (Lit

?

!

Lit) at �

0

. Let ex

2

be the following expression:

ex

2

�

= letregion �

0

in

let f = �(x:Lit)x at �

0

in

let g = �(f :F )5 at � in

let j = �(z:Lit)g(f) at � in j

We have � ` ex

2

:

f�g

(Lit

f�g

! Lit) at �. If S = f�g and h = � 7! ?,

then S � (b; h) + (j; h

0

) where the �nal heap h

0

is � 7! (g 7! �(f :F )5; j 7!

�(z:Lit)g(f)); �

0

7! (f 7! �(x:Lit)x). In the �nal heap, there is a pointer f

from the live region � to the defun
t region �

0

. Whenever j is invoked, this

pointer will be passed to g, harmlessly, sin
e g will not invoke it.

2.4 Relating the Stati
 and Dynami
 Semanti
s

To relate the stati
 and dynami
 semanti
s, we need to de�ne when a 
on�gura-

tion is well-typed. First, we need notions of region and heap typings. A region

typing R tra
ks the types of boxed values in the region. A heap typing H tra
ks

the region typings of all the regions in a heap. The environment env(H) lists

all the regions in H , followed by types for all the pointers in those regions.

Region and Heap Typings:

R ::= (p

i

:A

i

)

i21::n

region typing

H ::= (�

i

7! R

i

)

i21::n

heap typing

ptr(H)

�

= R

1

; : : : ; R

n

if H = (�

i

7! R

i

)

i21::n

env(H)

�

= dom(H); ptr(H)

The next tables des
ribe the judgments and rules de�ning well-typed regions,

heaps, and 
on�gurations. The main judgment H j= S � (a; h) : A means that
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a 
on�guration S � (a; h) is well-typed: the heap h 
onforms to H and the

expression a returns a result of type A, and its e�e
t is within the live regions

S.

Region, Heap, and Con�guration Judgments:

E ` r at � : R in E, region r, named �, has type R

H j= � the heap typing H is good

H j= h in H , the heap h is good

H j= S � (a; h) : A in H , 
on�guration S � (a; h) returns A

Region, Heap, and Con�guration Rules:

(Region Good)

E ` v

i

at � :

f�g

A

i

8i 2 1::n

E ` (p

i

7! v

i

)

i21::n

at � : (p

i

:A

i

)

i21::n

(Heap Typing Good)

env(H) ` �

H j= �

(Heap Good) (where dom(H) = dom(h))

env(H) ` h(�) at � : H(�) 8� 2 dom(H)

H j= h

(Con�g Good) (where S � dom(H))

env(H) ` a :

e

A e [ fr (A) � S H j= h

H j= S � (a; h) : A

These predi
ates roughly 
orrespond to the 
o-indu
tively de�ned 
onsis-

ten
y predi
ate of Tofte and Talpin. The retention of defun
t regions in our

semanti
s allows a simple indu
tive de�nition of these predi
ates, and a routine

indu
tive proof of the subje
t redu
tion theorem stated below.

We now present a subje
t redu
tion result relating the stati
 and dynami


semanti
s. Let H � H

0

if and only if the pointers de�ned by H and H

0

are

disjoint, that is, dom

2

(H) \ dom

2

(H

0

) = ?. Assuming that H � H

0

, we write

H+H

0

for the heap 
onsisting of all the regions in either H or H

0

; if � is in both

heaps, (H +H

0

)(�) is the 
on
atenation of the two regions H(�) and H(�

0

).

Theorem 2.1 If H j= S � (a; h) : A and S � (a; h) + (p

0

; h

0

) there is H

0

su
h that

H � H

0

and H +H

0

j= S � (p

0

; h

0

) : A.

Intuitively, the theorem asserts that evaluation of a well-typed 
on�guration

S �(a; h) leads to another well-typed 
on�guration S �(p

0

; h

0

), whereH

0

represents

types for the new pointers and regions in h

0

.

The following proposition shows that well-typed 
on�gurations avoid the

runtime errors of allo
ation or invo
ation of a 
losure in a defun
t region.
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Proposition 2.2

(1) If H j= S � (v at �; h) : A then � 2 S.

(2) If H j= S �(p(q); h) : A then there are � and v su
h that � 2 S, h(�)(p) = v,

and v is a fun
tion of the form �(x:B)b with env(H); x:B ` b :

e

A.

Combining Theorem 2.1 and Proposition 2.2 we may 
on
lude that su
h

runtime errors never arise in any intermediate 
on�guration rea
hable from an

initial well-typed 
on�guration. Impli
itly, this amounts to asserting the safety

of region-based memory management, that defun
t regions make no di�eren
e

to the behaviour of a well-typed 
on�guration. Our �-
al
ulus semanti
s of

regions makes this expli
it: we show equationally that dire
t deletion of defun
t

regions makes no di�eren
e to the semanti
s of a 
on�guration.

3 A �-Cal
ulus with Groups

In this se
tion, we de�ne a typed �-
al
ulus with groups. In the next, we explain

a semanti
s of our region 
al
ulus in this �-
al
ulus. Exa
tly as in the ambient


al
ulus with groups (Cardelli, Ghelli, and Gordon 2000a), ea
h name x has

a type that in
ludes its group G, and groups may be generated dynami
ally

by a new-group 
onstru
t, (�G)P . So as to model the type and e�e
t system

of the region 
al
ulus, we equip our �-
al
ulus with a novel group-based e�e
t

system. In other work (Cardelli, Ghelli, and Gordon 2000b), not 
on
erned with

the region 
al
ulus, we 
onsider a simpler version of this �-
al
ulus, with groups

but without an e�e
t system, and show that new-group helps keep names se
ret,

in a 
ertain formal sense.

3.1 Syntax

The following table gives the syntax of pro
esses, P . The syntax depends on a

set of atomi
 names, x, y, z, p, q, and a set of groups, G, H . For 
onvenien
e,

we assume that the sets of names and groups are identi
al to the sets of names

and region names, respe
tively, of the region 
al
ulus. We impose a standard


onstraint (Fournet and Gonthier 1996; Merro and Sangiorgi 1998), usually

known as lo
ality, that re
eived names may be used for output but not for

input. This 
onstraint 
onfers a ri
her equational theory on the �-
al
ulus and

is needed for the results of Se
tion 5. Ex
ept for the addition of type annotations

and the new-group 
onstru
t, and the lo
ality 
onstraint, the following syntax

and semanti
s are the same as for the polyadi
, 
hoi
e-free, asyn
hronous �-


al
ulus (Milner 1999).

Expressions and Pro
esses:

x; y; p; q name: variable, 
hannel

P;Q;R ::= pro
ess

x(y

1

:T

1

; : : : ; y

n

:T

n

):P input (no y

i

2 inp(P ))
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xhy

1

; : : : ; y

n

i output

(�G)P new-group: group restri
tion

(�x:T )P new-name: name restri
tion

P j Q 
omposition

!P repli
ation

0 ina
tivity

We explain the set inp(P ) below, and the types T , T

1

, . . . , T

n

in Se
tion 3.3.

In a pro
ess x(y

1

:T

1

; : : : ; y

n

:T

n

):P , the names y

1

, . . . , y

n

are bound; their

s
ope is P (we explain the types T below). In a group restri
tion (�G)P , the

group G is bound; its s
ope is P . In a name restri
tion (�x:T )P , the name x is

bound; its s
ope is P . We identify pro
esses up to the 
onsistent renaming of

bound groups and names. We let fn(P ) and fg(P ) be the sets of free names and

free groups, respe
tively, of a pro
ess P . We write Pfx yg for the out
ome

of a 
apture-avoiding substitution of the name y for ea
h free o

urren
e of the

name x in the pro
ess P .

Free names, fn(P ), of pro
ess P :

fn(x(y

1

:T

1

; : : : ; y

n

:T

n

):P )

�

= fxg [ (fn(P )� fy

1

; : : : ; y

n

g)

fn(xhy

1

; : : : ; y

n

i)

�

= fx; y

1

; : : : ; y

n

g

fn((�G)P )

�

= fn(P )

fn((�x:T )P )

�

= fn(P )� fxg

fn(P j Q)

�

= fn(P ) [ fn(Q)

fn(!P )

�

= fn(P )

fn(0)

�

= ?

Free groups, fg(P ), of pro
ess P :

fg(x(y

1

:T

1

; : : : ; y

n

:T

n

):P )

�

= fg(T

1

) [ � � � [ fg(T

n

) [ fg(P )

fg(xhy

1

; : : : ; y

n

i)

�

= ?

fg((�G)P )

�

= fg(P )� fGg

fg((�x:T )P )

�

= fg(T ) [ fg(P )

fg(P j Q)

�

= fg(P ) [ fg(Q)

fg(!P )

�

= fg(P )

fg(0)

�

= ?

The set inp(P ) 
onsists of ea
h name x su
h that an input x(y

1

:T

1

; : : : ;

y

n

:T

n

):P

0

o

urs as a subpro
ess of P , with x not bound.

Names in input position, inp(P ), in pro
ess P :

inp(x(y

1

:T

1

; : : : ; y

n

:T

n

):P )

�

= fxg [ (inp(P )� fy

1

; : : : ; y

n

g)

inp(xhy

1

; : : : ; y

n

i)

�

= ?

inp((�G)P )

�

= inp(P )
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inp((�x:T )P )

�

= inp(P )� fxg

inp(P j Q)

�

= inp(P ) [ inp(Q)

inp(!P )

�

= inp(P )

inp(0)

�

= ?

Next, we explain the semanti
s of the 
al
ulus informally, by example. We

omit type annotations and groups; we shall explain these later.

A pro
ess represents a parti
ular state in a �-
al
ulus 
omputation. A state

may redu
e to a su

essor when two subpro
esses intera
t by ex
hanging a tuple

of names on a shared 
ommuni
ation 
hannel, itself identi�ed by a name. For

example, 
onsider the following pro
ess:

f(x; k

0

):k

0

hxi j g(y; k

0

):fhy; k

0

i j gh5; ki

This is the parallel 
omposition (denoted by the j operator) of two input

pro
esses g(y; k

0

):fhy; k

0

i and f(x; k

0

):k

0

hxi, and an output pro
ess gh5; ki. The

whole pro
ess performs two redu
tions. The �rst is to ex
hange the tuple h5; ki

on the 
hannel g. The names 5 and k are bound to the input names y and k,

leaving f(x; k

0

):k

0

hxi j fh5; ki as the next state. This state itself may redu
e to

the �nal state kh5i via an ex
hange of h5; ki on the 
hannel f .

The pro
ess above illustrates how fun
tions may be en
oded as pro
esses.

Spe
i�
ally, it is a simple en
oding of the example ex

1

from Se
tion 2.1. The

input pro
esses 
orrespond to �-abstra
tions at addresses f and g; the output

pro
esses 
orrespond to fun
tion appli
ations; the name k is a 
ontinuation for

the whole expression. The redu
tions des
ribed above represent the semanti
s

of the expression: a short internal 
omputation returning the result 5 on the


ontinuation k.

The following is a more a

urate en
oding:

(�f)(�g)(

f 7!�(x)x

z }| {

!f(x; k

0

):k

0

hxi j

g 7!�(y)f(y)

z }| {

!g(y; k

0

):fhy; k

0

i j

g(5)

z }| {

gh5; ki)

A repli
ation !P is like an in�nite parallel array of repli
as of P ; we repli
ate

the inputs above so that they may be invoked arbitrarily often. A name restri
-

tion (�x)P invents a fresh name x with s
ope P ; we restri
t the addresses f

and g above to indi
ate that they are dynami
ally generated, rather than being

global 
onstants.

The other �-
al
ulus 
onstru
ts are group restri
tion and ina
tivity. Group

restri
tion (�G)P invents a fresh group G with s
ope P ; it is the analogue of

name restri
tion for groups. Finally, the 0 pro
ess represents ina
tivity.

3.2 Dynami
 Semanti
s

We formalize the semanti
s of our �-
al
ulus using standard te
hniques. A

redu
tion relation, P ! Q, means that P evolves in one step to Q. It is de�ned

in terms of an auxiliary stru
tural 
ongruen
e relation, P � Q, that identi�es

pro
esses we never wish to tell apart.
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Stru
tural Congruen
e: P � Q

P � P (Stru
t Re�)

Q � P ) P � Q (Stru
t Symm)

P � Q;Q � R) P � R (Stru
t Trans)

P � Q) x(y

1

:T

1

; : : : ; y

n

:T

n

):P � x(y

1

:T

1

; : : : ; y

n

:T

n

):Q (Stru
t Input)

P � Q) (�G)P � (�G)Q (Stru
t GRes)

P � Q) (�x:T )P � (�x:T )Q (Stru
t Res)

P � Q) P j R � Q j R (Stru
t Par)

P � Q) !P � !Q (Stru
t Repl)

P j 0 � P (Stru
t Par Zero)

P j Q � Q j P (Stru
t Par Comm)

(P j Q) j R � P j (Q j R) (Stru
t Par Asso
)

!P � P j !P (Stru
t Repl Par)

x

1

6= x

2

) (�x

1

:T

1

)(�x

2

:T

2

)P � (�x

2

:T

2

)(�x

1

:T

1

)P (Stru
t Res Res)

x =2 fn(P )) (�x:T )(P j Q) � P j (�x:T )Q (Stru
t Res Par)

(�G

1

)(�G

2

)P � (�G

2

)(�G

1

)P (Stru
t GRes GRes)

G =2 fg(T )) (�G)(�x:T )P � (�x:T )(�G)P (Stru
t GRes Res)

G =2 fg(P )) (�G)(P j Q) � P j (�G)Q (Stru
t GRes Par)

Redu
tion: P ! Q

xhy

1

; : : : ; y

n

i j x(z

1

:T

1

; : : : ; z

n

:T

n

):P ! Pfz

1

 y

1

g � � � fz

n

 y

n

g (Red Intera
t)

P ! Q) P j R! Q j R (Red Par)

P ! Q) (�G)P ! (�G)Q (Red GRes)

P ! Q) (�x:T )P ! (�x:T )Q (Red Res)

P

0

� P; P ! Q;Q � Q

0

) P

0

! Q

0

(Red �)

Groups help to type-
he
k names stati
ally but have no dynami
 behaviour;

groups are not themselves values. The following proposition demonstrates this

pre
isely; it asserts that the redu
tion behaviour of a typed pro
ess is equivalent

to the redu
tion behaviour of the untyped pro
ess obtained by erasing all type

and group annotations. (Appendix A reviews the untyped �-
al
ulus.)

Erasing type annotations and group restri
tions:

erase((�G)P )

�

= erase(P )

erase((�x:T )P )

�

= (�x)erase(P )

erase(0)

�

= 0

erase(P j Q)

�

= erase(P ) j erase(Q)

erase(!P )

�

= !erase(P )

erase(x(y

1

:T

1

; : : : ; y

n

:T

n

):P )

�

= x(y

1

; : : : ; y

n

):erase(P )

erase(xhy

1

; : : : ; y

n

i)

�

= xhy

1

; : : : ; y

n

i
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Proposition 3.1 (Erasure) For all typed pro
esses P and Q, if P ! Q then

erase(P ) ! erase(Q). If erase(P ) ! R then there is a typed pro
ess Q su
h

that P ! Q and R � erase(Q).

3.3 Stati
 Semanti
s

The main judgment E ` P : fG

1

; : : : ; G

n

g of the e�e
t system for the �-
al
ulus

means that the pro
ess P uses names a

ording to their types and that all its

external reads and writes are on 
hannels in groups G

1

; : : : ; G

n

. A 
hannel type

takes the form G[T

1

; : : : ; T

n

℄nH. This stipulates that the name is in group G

and that it is a 
hannel for the ex
hange of n-tuples of names with types T

1

,

. . . , T

n

. The set of group names H is the hidden e�e
t of the 
hannel. In the


ommon 
ase when H = ?, we abbreviate the type to G[T

1

; : : : ; T

n

℄.

As examples of groups, in our en
oding of the region 
al
ulus we have groups

Lit and K for literals and 
ontinuations, respe
tively, and ea
h region � is a

group. Names of type Lit [℄ are in group Lit and ex
hange empty tuples, and

names of type K[Lit [℄℄ are in group K and ex
hange names of type Lit [℄. In our

running example, we have 5 : Lit [℄ and k : K[Lit [℄℄. A pointer to a fun
tion in a

region � is a name in group �. In our example, we 
ould have f : �

0

[Lit [℄;K[Lit [℄℄

and g : �[Lit [℄;K[Lit [℄℄℄.

Given these typings for names, we have g(y; k

0

):fhy; k

0

i : f�; �

0

g be
ause

the reads and writes of the pro
ess are on the 
hannels g and f whose groups

are � and �

0

. Similarly, we have f(x; k

0

):k

0

hxi : f�

0

;Kg and gh5; ki : f�g.

The 
omposition of these three pro
esses has e�e
t f�; �

0

;Kg, the union of the

individual e�e
ts.

The idea motivating hidden e�e
ts is that an input pro
ess listening on a


hannel may represent a passive resour
e (for example, a fun
tion) that is only

invoked if there is an output on the 
hannel. The hidden e�e
t of a 
hannel is

an e�e
t that is masked in an input pro
ess, but in
urred by an output pro
ess.

In the 
ontext of our example, our formal translation makes the following type

assignments: f : �

0

[Lit [℄;K[Lit [℄℄℄nfKg and g : �[Lit [℄;K[Lit [℄℄℄nfK; �

0

g. We

then have f(x; k

0

):k

0

hxi : f�

0

g, g(y; k

0

):fhy; k

0

i : f�g, and gh5; ki : f�; �

0

;Kg.

The hidden e�e
ts are transferred from the fun
tion bodies to the pro
ess gh5; ki

that invokes the fun
tions. This transfer is essential in the proof of our main

garbage 
olle
tion result, Theorem 4.4.

The e�e
t of a repli
ated or name-restri
ted pro
ess is the same as the orig-

inal pro
ess. For example, abbreviating the types for f and g, we have:

(�f :�

0

)(�g:�)(!f(x; k

0

):k

0

hxi j

!g(y; k

0

):fhy; k

0

i j gh5; ki) : f�; �

0

;Kg

On the other hand, the e�e
t of a group-restri
tion (�G)P is the same as

that of P , ex
ept that G is deleted. This is be
ause there 
an be no names free

in P of group G; any names of group G in P must be internally introdu
ed by

name-restri
tions. Therefore, (�G)P has no external reads or writes on 
hannels
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of group G. For example,

(��

0

)(�f)(�g)(!f(x; k

0

):k

0

hxi j

!g(y; k

0

):fhy; k

0

i j gh5; ki) : f�;Kg

The following tables des
ribe the syntax of types and environments, the

judgments and the rules de�ning our e�e
t system. Let fg(G[T

1

; : : : ; T

n

℄nH)

�

=

fGg [ fg(T

1

) [ � � � [ fg(T

n

) [H.

Group sets, types, environments:

G;H ::= fG

1

; : : : ; G

n

g �nite set of name groups

T ::= 
hannel type

G[T

1

; : : : ; T

n

℄nH polyadi
 
hannel in group G

with hidden e�e
t H

E ::= environment

? empty environment

E;G entry for a group G

E; x:T entry for a variable x

Judgments:

E ` � good environment

E ` T good 
hannel type T

E ` x : T good name x of 
hannel type T

E ` P : H good pro
ess P with e�e
t H

Good environments:

(Env ?)

? ` �

(Env x)

E ` T x =2 dom(E)

E; x:T ` �

(Env G)

E ` � G =2 dom(E)

E;G ` �

Good types:

(Type Chan)

E ` � fGg [H � dom(E) E ` T

1

� � � E ` T

n

E ` G[T

1

; : : : ; T

n

℄nH

Good names:

(Exp x)

E

0

; x:T;E

00

` �

E

0

; x:T;E

00

` x : T

15



Good pro
esses:

(Pro
 Input)

E ` x : G[T

1

; : : : ; T

n

℄nH E; y

1

:T

1

; : : : ; y

n

:T

n

` P : G

E ` x(y

1

:T

1

; : : : ; y

n

:T

n

):P : fGg [ (G�H)

(Pro
 Output)

E ` x : G[T

1

; : : : ; T

n

℄nH E ` y

1

: T

1

� � � E ` y

n

: T

n

E ` xhy

1

; : : : ; y

n

i : fGg [H

(Pro
 GRes)

E;G ` P : H

E ` (�G)P : H� fGg

(Pro
 Res)

E; x:T ` P : H

E ` (�x:T )P : H

(Pro
 Par)

E ` P : G E ` Q : H

E ` P j Q : G [H

(Pro
 Repl)

E ` P : H

E ` !P : H

(Pro
 Zero)

E ` �

E ` 0 : ?

(Pro
 Subsum)

E ` P : G G � H � dom(E)

E ` P : H

The rules for good environments and good 
hannel types ensure that de
lared

names and groups are distin
t, and that all the names and groups o

urring in a

type are de
lared. The rules for good pro
esses ensure that names are used for

input and output a

ording to their types, and 
ompute an e�e
t that in
ludes

the groups of all the free names used for input and output.

In the spe
ial 
ase when the hidden e�e
t H is ?, (Pro
 Input) and (Pro


Output) spe
ialise to the following:

E ` x : G[T

1

; : : : ; T

n

℄n?

E; y

1

:T

1

; : : : ; y

n

:T

n

` P : G

E ` x(y

1

:T

1

; : : : ; y

n

:T

n

):P : fGg [G

E ` x : G[T

1

; : : : ; T

n

℄n?

E ` y

1

: T

1

� � � E ` y

n

: T

n

E ` xhy

1

; : : : ; y

n

i : fGg

In this situation, we attribute all the e�e
t G of the pre�xed pro
ess P to

the input pro
ess x(y

1

:T

1

; : : : ; y

n

:T

n

):P . The e�e
t G of P is entirely ex
luded

from the hidden e�e
t, sin
e H = ?.

A dual spe
ial 
ase is when the e�e
t of the pre�xed pro
ess P is entirely

in
luded in the hidden e�e
t H. In this 
ase, (Pro
 Input) and (Pro
 Output)

spe
ialise to the following:

E ` x : G[T

1

; : : : ; T

n

℄nH

E; y

1

:T

1

; : : : ; y

n

:T

n

` P : H

E ` x(y

1

:T

1

; : : : ; y

n

:T

n

):P : fGg

16



E ` x : G[T

1

; : : : ; T

n

℄nH

E ` y

1

: T

1

� � � E ` y

n

: T

n

E ` xhy

1

; : : : ; y

n

i : fGg [H

The e�e
t of P is not attributed to the input x(y

1

:T

1

; : : : ; y

n

:T

n

):P but

instead is transferred to any outputs in the same group as x. If there are no

su
h outputs, the pro
ess P will remain blo
ked, so it is safe to dis
ard its

e�e
ts.

These two spe
ial 
ases of (Pro
 Input) and (Pro
 Output) are in fa
t su�-


ient for the en
oding of the region 
al
ulus presented in Se
tion 4.2; we need the

�rst spe
ial 
ase for typing 
hannels representing 
ontinuations, and the se
ond

spe
ial 
ase for typing 
hannels representing fun
tion pointers. For simpli
ity,

our a
tual rules (Pro
 Input) and (Pro
 Output) 
ombine both spe
ial 
ases; an

alternative would be to have two di�erent kinds of 
hannel types 
orresponding

to the two spe
ial 
ases.

The rule (Pro
 GRes) dis
ards G from the e�e
t of a new-group pro
ess

(�G)P , sin
e, in P , there 
an be no free names of group G (though there may

be restri
ted names of group G). The rule (Pro
 Subsum) is a rule of e�e
t

subsumption. We need this rule to model the e�e
t subsumption in rule (Exp

Fun) of the region 
al
ulus. The other rules for good pro
esses simply 
ompute

the e�e
t of a whole pro
ess in terms of the e�e
ts of its parts.

We 
an prove a standard subje
t redu
tion result.

Proposition 3.2 If E ` P : H and P ! Q then E ` Q : H.

Next, a standard de�nition of the barbs exhibited by a pro
ess formalizes

the idea of the external reads and writes through whi
h a pro
ess may intera
t

with its environment. Let a barb, �, be either a name x or a 
o-name x.

Exhibition of a barb:

(Barb Input)

x(y

1

:T

1

; : : : ; y

n

:T

n

):P # x

(Barb Output)

xhy

1

; : : : ; y

n

i # x

(Barb GRes)

P # �

(�G)P # �

(Barb Res)

P # � � =2 fx; xg

(�x:T )P # �

(Barb Par)

P # �

P j Q # �

(Barb �)

P � Q Q # �

P # �

The following asserts the soundness of the e�e
t system. The group of any

barb of a pro
ess is in
luded in its e�e
t.

Proposition 3.3 (E�e
t Soundness) If E ` P : H and P # � with � 2

fx; xg then there is a type G[T

1

; : : : ; T

n

℄nG su
h that E ` x : G[T

1

; : : : ; T

n

℄nG

and G 2 H.

17



3.4 Barbed Congruen
e

To state equational properties of our en
oding of the region 
al
ulus in the �-


al
ulus, we need a notion of operational equivalen
e. To this end, we use a

typed form (Pier
e and Sangiorgi 1996) of the barbed 
ongruen
e of (Milner

and Sangiorgi 1992), an equivalen
e with a uniform de�nition for a variety of

pro
ess 
al
uli. What follows is a series of de�nitions leading up to our de�nition

of barbed 
ongruen
e.

First, we state a simple predi
ate for pro
esses well-de�ned in a spe
i�


environment:

� We write E ` P to mean there is an e�e
t G su
h that E ` P : G.

Sin
e we are in a typed 
al
ulus, we only wish to ask whether two pro
esses

are equivalent when they are well-de�ned in the same environment. The notion

of a relation on typed pro
esses, given next, is that of a family of binary relations

on pro
esses, indexed by an environment. Barbed 
ongruen
e is de�ned as a

relation on typed pro
esses.

� A relation on typed pro
esses, S, is a set of triples (E;P;Q) where E is an

environment and P and Q are typed terms su
h that E ` P and E ` Q.

We write E ` P S Q to mean (E;P;Q) 2 S.

� A relation on typed pro
esses, S, is re�exive if and only if E ` P S P

whenever E ` P . It is symmetri
 if and only if E ` Q S P whenever

E ` P S Q. It is transitive if and only if E ` P S R whenever E ` P S Q

and E ` Q S R.

� For any relation on typed pro
esses, S, let E ` P �S� Q mean there are

pro
esses P

0

and Q

0

su
h that P � P

0

, E ` P

0

S Q

0

, and Q

0

� Q.

Next, as a standard step towards de�ning barbed 
ongruen
e, we de�ne an

auxiliary relation, barbed bisimilarity. It is de�ned 
o-indu
tively as the greatest

barbed bisimulation.

� We write P + � to mean there is a pro
ess P

0

su
h that P !

�

P

0

and

P

0

# �.

� A relation on typed pro
esses, S, is a barbed bisimulation if and only if it

is symmetri
 and E ` P S Q implies:

(1) If P # x then Q + x.

(2) If P ! P

0

then there is Q

0

su
h that Q!

�

Q

0

and E ` P

0

�S� Q

0

.

� Barbed bisimilarity,

�

�, is the relation on typed pro
esses su
h that E `

P

�

� Q if and only if there is a barbed bisimulation S su
h that E ` P S Q.

By de�nition, E ` P

�

� Q, it follows that the operational behaviours of P

and Q are related in that the redu
tions and the barbs of P are mat
hed by Q,

18



and vi
e versa. On the other hand, barbed bisimilarity,

�

�, is not a 
ongruen
e

relation, that is, it is not preserved by the syntax formers of our 
al
ulus. In

parti
ular, it is not even 
losed under parallel 
omposition. To remedy this, we

extra
t a 
ongruen
e relation, barbed 
ongruen
e, from barbed bisimilarity as

follows.

� A renaming, �, is a substitution fx

1

 x

0

1

g � � � fx

n

 x

0

n

g of names for names

where n � 0 and the names x

1

, . . . , x

n

are pairwise distin
t. Let dom(�) =

fx

1

; : : : ; x

n

g and ran(�) = fx

0

1

; : : : ; x

0

n

g. If x = x

j

for some j 2 1::n,

let �(x) = x

0

j

. Otherwise, if x =2 dom(�), let �(x) = x. A renaming,

�, is an E-renaming if and only if for all names x; y, if �(x) = �(y)

and E ` x : T and E ` y : T

0

then T = T

0

. For any E-renaming, �,

the environment E� is de�ned as follows: ?�

�

= ?; (E

0

; G)�

�

= E

0

�;G;

(E

0

; x:T )�

�

= E

0

�; �(x):T if �(x) =2 dom(E

0

�), and E

0

� if not.

� Barbed 
ongruen
e, �, is the relation on typed pro
esses su
h that E `

P � Q if and only if for all pro
esses R, all E-renamings � and all type

environments E

0

, if E�;E

0

` R then E�;E

0

` P� j R

�

� Q� j R.

The following are basi
 properties of barbed 
ongruen
e needed for equa-

tional reasoning. It is a 
ongruen
e relation that is preserved by well-typed

renamings, in
ludes stru
tural 
ongruen
e, and satis�es a weakening prin
iple.

Proposition 3.4

(1) Barbed 
ongruen
e is re�exive, transitive, and symmetri
.

(2) Barbed 
ongruen
e satis�es the 
ongruen
e properties:

� If E; y

1

:T

1

; : : : ; y

n

:T

n

` P � Q then

E ` x(y

1

:T

1

; : : : ; y

n

:T

n

):P � x(y

1

:T

1

; : : : ; y

n

:T

n

):Q.

� If E ` P � Q and E ` R then E ` P j R � Q j R.

� If E; x:T ` P � Q then E ` (�x:T )P � (�x:T )Q.

� If E;G ` P � Q then E ` (�G)P � (�G)Q.

� If E ` P � Q then E ` !P � !Q.

(3) If E ` P � Q and � is an E-renaming then E� ` P� � Q�.

(4) If P � Q and E ` P then E ` P � Q.

(5) If E ` P � Q and E;E

0

` � then E;E

0

` P � Q.

4 En
oding Regions as Groups

This se
tion interprets the region 
al
ulus in terms of our �-
al
ulus.
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4.1 The En
oding

Most of the ideas of the translation are standard, and have already been illus-

trated by example. A fun
tion value in the heap is represented by a repli
ated

input pro
ess, awaiting the argument and a 
ontinuation on whi
h to return a

result. A fun
tion is invoked by sending it an argument and a 
ontinuation.

Region names and letregion � are translated to groups and (��), respe
tively.

The remaining 
onstru
t of our region 
al
ulus is sequen
ing: let x = a in b.

Assuming a 
ontinuation k, we translate this to the following:

(�k

0

)([[a℄℄k

0

j k

0

(x):[[b℄℄k)

This invents a fresh, intermediate 
ontinuation k

0

. The pro
ess [[a℄℄k

0

evalu-

ates a returning a result on k

0

. The pro
ess k

0

(x):[[b℄℄k blo
ks until the result x

is returned on k

0

, then evaluates b, returning its result on k.

The following tables interpret the types, environments, expressions, regions,

and 
on�gurations of the region 
al
ulus in the �-
al
ulus. In parti
ular, if

S � (a; h) is a 
on�guration, then [[S � (a; h)℄℄k is its translation, a pro
ess that

returns any eventual result on the 
ontinuation k. In typing the translation, we

assume two global groups: a group, K, of 
ontinuations and a group, Lit , of

literals. The environment [[?℄℄ de
lares these groups and also a typing `

i

:Lit for

ea
h of the literals `

1

, . . . , `

n

.

Translating of the region 
al
ulus to the �-
al
ulus:

[[A℄℄ type modelling the type A

[[E℄℄ environment modelling environment E

[[a℄℄k pro
ess modelling term a, answer on k

[[p 7! v℄℄ pro
ess modelling value v at pointer p

[[r℄℄ pro
ess modelling region r

[[S � (a; h)℄℄k pro
ess modelling 
on�guration S � (a; h)

In the following equations, where ne
essary to 
onstru
t type annotations

in the �-
al
ulus, we have added type subs
ripts to the syntax of the region


al
ulus. The notation

Q

i2I

P

i

for some �nite indexing set I = fi

1

; : : : ; i

n

g is

short for the 
omposition P

i

1

j � � � j P

i

n

j 0.

Translation rules:

[[Lit ℄℄

�

= Lit [℄

[[(A

e

! B) at �℄℄

�

= �[[[A℄℄;K[[[B℄℄℄℄n(e [ fKg)

[[?℄℄

�

= K;Lit ; `

1

:Lit [℄; : : : ; `

n

:Lit [℄

[[E; �℄℄

�

= [[E℄℄; �

[[E; x:A℄℄

�

= [[E℄℄; x:[[A℄℄

[[x℄℄k

�

= khxi

[[let x = a

A

in b℄℄k

�

= (�k

0

:K[[[A℄℄℄)([[a℄℄k

0

j k

0

(x:[[A℄℄):[[b℄℄k)
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[[p(q)℄℄k

�

= phq; ki

[[letregion � in a℄℄k

�

= (��)[[a℄℄k

[[(v at �)

A

℄℄k

�

= (�p:[[A℄℄)([[p 7! v℄℄ j khpi)

[[p 7! �(x:A)b

B

℄℄

�

= !p(x:[[A℄℄; k:K[[[B℄℄℄):[[b℄℄k

[[(p

i

7! v

i

)

i21::n

℄℄

�

=

Q

i21::n

[[p

i

7! v

i

℄℄

[[(�

i

7! r

i

)

i21::n

℄℄

�

=

Q

i21::n

[[r

i

℄℄

[[S � (a; h

H

)℄℄k

�

= (�~�

defun
t

)(�[[ptr (H)℄℄)([[a℄℄k j [[h℄℄)

where f~�

defun
t

g = dom(H)� S

The following theorem asserts that the translation preserves the stati
 se-

manti
s of the region 
al
ulus.

Theorem 4.1 (Stati
 Adequa
y)

(1) If E ` � then [[E℄℄ ` �.

(2) If E ` A then [[E℄℄ ` [[A℄℄.

(3) If E ` a :

e

A and k =2 dom([[E℄℄) then

[[E℄℄; k:K[[[A℄℄℄ ` [[a℄℄k : e [ fKg

(4) If H j= h and � 2 dom(H) then

[[env(H)℄℄ ` [[h(�)℄℄ : f�g

(5) If H j= S � (a; h) : A and k =2 [[env(H)℄℄ then

[[env(H)℄℄; k:K[[[A℄℄℄ ` [[a℄℄k j [[h℄℄ : dom(H) [ fKg

and also

[[?℄℄; S; k:K[[[A℄℄℄ ` [[S � (a; h)℄℄k : S [ fKg

Next we state that the translation preserves the dynami
 semanti
s. Our

theorem states that if one region 
al
ulus 
on�guration evaluates to another,

their �-
al
ulus interpretations are barbed 
ongruent:

Theorem 4.2 (Dynami
 Adequa
y) If H j= S � (a; h) : A and S � (a; h) +

(p

0

; h

0

) then there is H

0

su
h that H � H

0

and H +H

0

j= S � (p

0

; h

0

) : A and for

all k =2 dom

2

(H +H

0

) [ L, [[?℄℄; S; k:K[[[A℄℄℄ ` [[S � (a; h)℄℄k � [[S � (p

0

; h

0

)℄℄k.

Re
all the evaluations of the examples ex

1

and ex

2

given previously. From

Theorem 4.2 we obtain the following equations (in whi
h we abbreviate envi-

ronments and types for the sake of 
larity):

[[f�g � (ex

1

; h)℄℄k �

(��

0

)(�f :�

0

)(�g:�)([[f 7! �(x)x℄℄ j [[g 7! �(y)f(y)℄℄ j kh5i)

[[f�g � (ex

2

; h)℄℄k �

(��

0

)(�f :�

0

)(�g:�)(�j:�)

([[f 7! �(x)x℄℄ j [[g 7! �(f)5℄℄ j [[j 7! �(z)g(f)℄℄ j khji)

21



4.2 Two Garbage Colle
tion Theorems

We present a general �-
al
ulus theorem that has as a 
orollary a theorem

asserting that defun
t regions may be deleted without a�e
ting the meaning of

a 
on�guration.

Suppose there are pro
esses P andR su
hR has e�e
t fGg butG is not in the

e�e
t of P . So R only intera
ts on names in group G, but P never intera
ts on

names in group G, and therefore there 
an be no intera
tion between P and R.

Moreover, if P and R are the only sour
es of inputs or outputs in the s
ope of G,

then R has no external intera
tions, and therefore makes no di�eren
e to the be-

haviour of the whole pro
ess. The following makes this idea pre
ise equationally.

We state the theorem in terms of the notation (�E)P de�ned by the equations:

(�?)P

�

= P , (�E; x:T )P

�

= (�E)(�x:T )P , and (�E;G)P

�

= (�E)(�G)P . The

proof pro
eeds by 
onstru
ting a suitable bisimulation relation.

Theorem 4.3 If E;G;E

0

` P : H and E;G;E

0

` R : fGg with G =2 H, then

E ` (�G)(�E

0

)(P j R) � (�G)(�E

0

)P .

Now, by applying this theorem, we 
an delete the defun
t region �

0

from our

two examples. We obtain:

(��

0

)(�f :�

0

)(�g:�)([[f 7! �(x)x℄℄ j [[g 7! �(y)f(y)℄℄ j kh5i)

� (��

0

)(�f :�

0

)(�g:�)([[g 7! �(y)f(y)℄℄ j kh5i)

(��

0

)(�f :�

0

)(�g:�)(�j:�)

([[f 7! �(x)x℄℄ j [[g 7! �(f)5℄℄ j [[j 7! �(z)g(f)℄℄ j khji)

� (��

0

)(�f :�

0

)(�g:�)(�j:�)

([[g 7! �(f)5℄℄ j [[j 7! �(z)g(f)℄℄ j khji)

The �rst equation illustrates the need for hidden e�e
ts. The hidden e�e
t

of g is fK; �

0

g, and so the overall e�e
t of the pro
ess [[g 7! �(y)f(y)℄℄ j kh5i

is simply f�;Kg. This e�e
t does not 
ontain �

0

and so the theorem justi�es

deletion of the pro
ess [[f 7! �(x)x℄℄, whose e�e
t is f�

0

g. In an e�e
t system for

the �-
al
ulus without hidden e�e
ts, the e�e
t of [[g 7! �(y)f(y)℄℄ j kh5i would

in
lude �

0

, and so the theorem would not be appli
able.

A standard garbage 
olle
tion prin
iple in the �-
al
ulus is that if f does

not o

ur free in P , then (�f)(!f(x; k):R j P ) � P . One might hope that this

prin
iple alone would justify de-allo
ation of defun
t regions. But neither of

our example equations is justi�ed by this prin
iple; in both 
ases, the name f

o

urs in the remainder of the pro
ess. We need an e�e
t system to determine

that f is not a
tually invoked by the remainder of the pro
ess.

The two equations displayed above are instan
es of our �nal theorem, a


orollary of Theorem 4.3. It asserts that deleting defun
t regions makes no

di�eren
e to the behaviour of a 
on�guration:

Theorem 4.4 Suppose H j= S � (a; h) : A and k =2 dom

2

(H) [ L. Let ~�

defun
t

be the sequen
e of groups in dom(H)� S. Then:

[[?℄℄; S; k:K[[[A℄℄℄ ` [[S � (a; h)℄℄k � (�~�

defun
t

)(�[[ptr (H)℄℄)([[a℄℄k j

Q

�2S

[[H(�)℄℄)
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5 An Equational Theory

The new-group 
onstru
t enjoys various equational properties, su
h as our laws

of stru
tural 
ongruen
e. On the other hand, equational properties of letregion

do not appear to have been previously studied. This se
tion proposes an equa-

tional theory for the region 
al
ulus, in
luding equations for letregion inspired in

part by equations for new-group. We prove that the equational theory is sound

with respe
t to the semanti
s of the previous se
tion. The equational trans-

formations of Benton and Kennedy (1999) for their ML intermediate language

(without regions) appear to be the only prior work on an expli
it equational

theory for a typed 
al
ulus with e�e
ts.

In the following, re
all that the 
onventional syntax for appli
ation, b(a),

where either b or a is not a name, abbreviates b(a)

�

= let f = b in let x = a inf(x)

where f =2 fxg [ fn(a). Given this abbreviation, we 
an de�ne in the standard

way the substitution bfx ag to be the expression obtained by repla
ing ea
h

free o

urren
e of x in b with the expression a.

Substitution of a term for a name:

xfz 
g

�

=

�


 if x = z

x otherwise

x(y)fz 
g

�

= xfz 
g(yfz 
g)

(let x = a in b)fz 
g

�

= let x = afz 
g in (bfz 
g) for x =2 fzg [ fn(
)

(�(x:A)b)fz 
g

�

= �(x:A)(bfz 
g) for x =2 fzg [ fn(
)

The rules in the following tables indu
tively de�ne the judgment E ` a $

b : A intended to mean that the terms a and b have the same type, A, and

equivalent observable behaviour, although they may have di�erent e�e
ts.

The �rst set of rules is essentially the 
all-by-value �-
al
ulus (Plotkin 1975).

As usual in an equational theory for 
all-by-value, we restri
t the argument a

in the rule (Eq Fun �) to be fully evaluated, either a name, x, or an allo
ation,

�(x)b at �. This restri
tion is a
tually unne
essary for the present 
al
ulus,

sin
e there are no non-terminating 
omputations, but we in
lude it so that the

equational theory remains valid when we extend our 
al
ulus with re
ursion. In

rule (Eq Fun �), we also ask for (�(x:A)b at �)(a) and bfx ag to share the

same type, B. This is be
ause the type of bfx ag 
an sometimes di�er from

the type of (�(x:A)b at �)(a).

Equational Theory: The Call-by-Value �-Cal
ulus

(Eq Re�)

E ` a :

e

A

E ` a$ a : A

(Eq Symm)

E ` a$ b : A

E ` b$ a : A

(Eq Trans)

E ` a$ b : A E ` b$ 
 : A

E ` a$ 
 : A
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(Eq Fun)

E ` (A

e

! B) at � E; x:A ` b

1

$ b

2

: B

E; x:A ` b

i

:

e

i

B e

i

� e 8i 2 1::2

E ` (�(x:A)b

1

) at �$ (�(x:A)b

2

) at � : (A

e

! B) at �

(Eq Fun �) (where a is a name or an allo
ation)

E ` a :

e

1

A E; x:A ` b :

e

2

B E ` bfx ag :

e

3

B � 2 dom(E)

E ` (�(x:A)b at �)(a)$ bfx ag : B

Next, we have rules for let , inspired by the 
omputational �-
al
ulus (Moggi

1989).

Equational Theory: let

(Eq Let)

E ` a$ a

0

: A E; x:A ` b$ b

0

: B

E ` let x = a in b$ let x = a

0

in b

0

: B

(Eq Let Asso
)

E ` a :

e

1

A E; x:A ` b :

e

2

B E; y:B ` 
 :

e

3

C

E ` let x = a in (let y = b in 
)

$ let y = (let x = a in b) in 
 : C

(Eq Let �) (where a is a name or an allo
ation)

E ` a :

e

1

A E; x:A :

e

2

b : B E ` bfx ag :

e

3

B

E ` let x = a in b$ bfx ag : B

Finally, here are the new rules for letregion . For the sake of brevity, we write

(��)a as a shorthand for letregion � in a.

Equational Theory: letregion

(Eq Letregion)

E; � ` a$ a

0

: A � =2 fr(A)

E ` (��)a$ (��)a

0

: A

(Eq Drop)

E ` a :

e

A � =2 dom(E)

E ` (��)a$ a : A

(Eq Swap)

E; �; �

0

` a :

e

A f�; �

0

g \ fr (A) = ?

E ` (��)(��

0

)a$ (��

0

)(��)a : A

(Eq Letregion Let)

E; � ` a :

e

1

A E; x:A; � ` b :

e

2

B � =2 fr (A) [ fr(B)

E ` (��)let x = a in b$ let x = (��)a in (��)b : B

The rule (Eq Letregion) is a 
ongruen
e rule. The rule (Eq Swap) allows

region s
opes to be re-ordered. The rule (Eq Drop) allows unused region s
opes
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to be dis
arded; we need the 
ondition � =2 dom(E), rather than the weaker


ondition � =2 e [ fr(A), to ensure that both (��)a and a are well-typed. The

rule (Eq Letregion Let) allows a single region to be broken into two.

The following are derivable rules. The �rst is an instan
e of (Eq Drop). The

se
ond follows from the �rst, (Eq Letregion Let), and (Eq Trans).

(Eq Appl x(y))

E ` x :

?

(B

e

! A) at �

0

E ` y :

?

B � =2 dom(E)

E ` (��)x(y) $ x(y) : B

(Eq Appl) (where � =2 fr ((A

e

2

! B) at �

0

))

E; � ` b :

e

1

(A

e

2

! B) at �

0

E; � ` a :

e

3

A

E ` (��)(b(a))$ ((��)b)((��)a) : B

Other examples of derivable rules are:

E ` x :

?

A

e

! B at � E ` a :

e

0

A y =2 dom(E)

E ` x(a)$ let y = a in x(y) : B

E ` a :

e

0

A

e

! B at � E ` x :

?

A y =2 dom(E)

E ` a(x)$ let y = a in y(x) : B

E; x:A ` b :

e

1

B E ` a :

e

2

A f =2 dom(E) � 2 dom(E)

E ` let f = �(x:A)b at � in f(a)$ bfx ag : B

E ` a :

e

1

A E; x:A ` b :

e

2

B � 2 dom(E)

E ` let x = a in b$ (�(x:A)b at �)(a) : B

E ` a :

e

1

A E ` b :

e

2

B x =2 dom(E)

E ` let x = a in b$ b : B

E ` a :

e

1

A E; x:A ` b :

e

2

B E ` bfx ag :

e

3

B

E ` let x = a in b$ let x = a in bfx ag : B

E ` a :

e

1

A E; x:A ` b :

e

2

B E; x:A; y : B ` 
 :

e

3

C

E ` let x = a in let y = b in 
$

let y = (let x = a in b) in (let x = a in 
) : C

The following are spe
ial 
ases of (Eq Drop):

E; � ` x :

?

A

E ` (��)x$ x :

?

A

E; � ` v at �

0

:

f�

0

g

(A

e

! B) at �

0

� =2 fr (A

e

! B at �

0

)

E ` (��)(v at �

0

)$ v at �

0

:

f�

0

g

(A

e

! B) at �

0

In the following example, we apply (Eq Let Asso
) followed by (Eq Letregion

Let) to optimise a 
omputation by repla
ing a single global region � by two
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smaller lo
al regions �

1

and �

2

whose lives do not overlap, and hen
e 
ould

share storage.

? ` (��)let f = �(x)x at � in let y = f(5)

in let g = �(z)y at � in g(42)

$ (��)let y = (let f = �(x)x at � in f(5))

in let g = �(z)y at � in g(42)

$ let y = (��

1

)(let f = �(x)x at �

1

in f(5))

in (��

2

)let g = �(z)y at �

2

in g(42) : Lit

Although our equations are not de
orated with e�e
ts, for any derivable

equation a

1

$ a

2

there is an e�e
t e that is an upper bound of the e�e
ts of

both a

1

and a

2

.

Lemma 5.1 If E ` a

1

$ a

2

: A then there is e � dom(E) su
h that for ea
h

i 2 1::2, there is e

i

� e with E ` a

i

:

e

i

A.

Using standard �-
al
ulus te
hniques, we 
an show that our equational the-

ory is sound with respe
t to our �-
al
ulus semanti
s.

Theorem 5.2 Suppose E ` a$ b : A and k =2 dom(E) [ L. Then:

[[E℄℄; k:K[[[A℄℄℄ ` [[a℄℄k � [[b℄℄k

Tofte and Talpin proved a result that the operational behaviour of a region-

annotated term (like the terms of our 
al
ulus) is the same as its erasure to a

pure term of the �-
al
ulus. We 
onje
ture that our equational theory is sound

for a standard 
ontextual equivalen
e for the region 
al
ulus, and that this 
ould

easily be shown by appealing to Tofte and Talpin's result.

6 Extensions

In this se
tion, we show that the main results of the paper apply not only to

the simple region 
al
ulus of Se
tion 2 but also to that 
al
ulus extended with

re
ursive fun
tions, lists, and region polymorphism. We des
ribe this extended


al
ulus in Se
tion 6.1. Then in Se
tion 6.2 we des
ribe an extended �-
al
ulus.

Its extensions are re
ursive types, to model lists, and group polymorphism,

to model region polymorphism. In Se
tion 6.3 we de�ne an en
oding of the

extended region 
al
ulus in this extended �-
al
ulus. With the ex
eption of the

results in Se
tion 5 
on
erning equational reasoning, all the other theorems in

the paper 
on
erning the unextended 
al
uli 
an be generalized to the extended


al
uli. We omit the statement of these generalized theorems from this se
tion,

but in Appendix B we state and prove all these theorems. We 
onje
ture that

the material in Se
tion 5 
ould be generalized also, but we have not investigated

this generalization.
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6.1 An Extended �-Cal
ulus

Here is the extended syntax of expressions and values.

Expressions and Values:

x; y; p; q; f; g name: variable, pointer, literal

� region variable

a; b ::= expression

x variable or pointer or literal

v at � allo
ation of v at �

x[�

1

; : : : ; �

n

℄(y) appli
ation

let x = a in b sequen
ing

letregion � in b region allo
ation and de-allo
ation


ase x of nil ) b

1

j (y

1

:: y

2

)) b

2

list 
ase

u; v ::= boxed value

�(f :A)�[�

1

; : : : ; �

n

℄(x)b re
ursive fun
tion

nil empty list

x

1

:: x

2


ons 
ell

Previously, the only kind of value was fun
tion abstra
tion. In this 
al
ulus,

a boxed value 
an be a re
ursive, region-polymorphi
 fun
tion, an empty list,

or a 
ons 
ell.

In a fun
tion value �(f :A)�[�

1

; : : : ; �

n

℄(x)b, the names f and x and the

region variables �

1

, . . . , �

n

are bound, with s
ope b. During evaluation, the

name x gets bound to the fun
tion's argument and the name f gets bound to

the fun
tion itself, to enable re
ursive 
alls. The region parameters �

1

, . . . , �

n

allow the fun
tion to allo
ate and read from regions passed in as arguments.

This region polymorphism is essential for e�
ient 
ode generation in the ML

Kit 
ompiler (Tofte and Talpin 1997). Other kind of boxed values are lists, that

is either the empty list, nil , or a 
ons 
ell, x

1

:: x

2

, where the names x

1

and x

2

are heap pointers referring to the head and tail of the list, respe
tively.

A new expression for fun
tion appli
ation, x[�

1

; : : : ; �

n

℄(y), applies the fun
-

tion pointed to by x to the region parameters �

1

, . . . , �

n

, and the value param-

eter y. The other new expression, 
ase x of nil ) b

1

j (y

1

:: y

2

)) b

2

, is for list

dis
rimination. In this expression, the names y

1

and y

2

are bound, with s
ope

b

2

. When the expression evaluates, if x is the empty list, b

1

runs. Otherwise,

if x is a 
ons 
ell x

1

:: x

2

, then b

2

fy

1

 x

1

gfy

2

 x

2

g runs. The other expres-

sions of the extended 
al
ulus have the same interpretation as in the unextended


al
ulus.

The de�nitions of regions, heaps, and sta
ks needed for the dynami
 seman-

ti
s are the same as before, though the set of values, v, stored in regions is

extended.

Regions, Heaps and Sta
ks:

r ::= (p

i

7! v

i

)

i21::n

region, p

i

distin
t

h ::= (�

i

7! r

i

)

i21::n

heap, �

i

distin
t
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S ::= f�

1

; : : : ; �

n

g sta
k of live regions

The evaluation relation, S � (a; h) + (p; h

0

), is de�ned by the rules in the

following table.

Evaluation Rules:

(Eval Var)

S � (p; h) + (p; h)

(Eval Allo
)

� 2 S p =2 dom

2

(h)

S � (v at �; h) + (p; h+ (� 7! (h(�) + (p 7! v))))

(Eval Appl) (where � 2 S and h(�)(p) = �(f :A)�[�

1

; : : : ; �

n

℄(x)b)

S � (bff pgf�

1

 �

0

1

g � � � f�

n

 �

0

n

gfx qg; h) + (p

0

; h

0

)

S � (p[�

0

1

; : : : ; �

0

n

℄(q); h) + (p

0

; h

0

)

(Eval Let)

S � (a; h) + (p

0

; h

0

) S � (bfx p

0

g; h

0

) + (p

00

; h

00

)

S � (let x = a in b; h) + (p

00

; h

00

)

(Eval Letregion)

� =2 dom(h) S [ f�g � (a; h+ � 7! ?) + (p

0

; h

0

)

S � (letregion � in a; h) + (p

0

; h

0

)

(Eval Case 1)

� 2 S h(�)(p) = nil S � (b

1

; h) + (p

0

; h

0

)

S � (
ase p of nil ) b

1

j (y

1

:: y

2

)) b

2

; h) + (p

0

; h

0

)

(Eval Case 2)

� 2 S h(�)(p) = q

1

:: q

2

S � (b

2

fy

1

 q

1

gfy

2

 q

2

g; h) + (p

0

; h

0

)

S � (
ase p of nil ) b

1

j (y

1

:: y

2

)) b

2

; h) + (p

0

; h

0

)

Next, we introdu
e the e�e
ts, types, and environments needed for the stati


semanti
s. The de�nitions of e�e
ts and environments are un
hanged, but we

need to introdu
e new types for region polymorphi
 fun
tions and for lists.

In the extended type system, a fun
tion value (�(f :F )�[�

1

; : : : ; �

n

℄(x)b) at �,

will have a type F = (8[�

1

; : : : ; �

n

℄A

e

! B) at �, where A is the type of the

fun
tion argument x, and the regions �

1

; � � � ; �

n

are bound. A list stored at �

will have type [A℄ at �, where A is the type of the elements of the list. Note

that nil is an overloaded 
onstant, whi
h inhabits every well-formed type, and

that ea
h element of a list are stored in the same region than the list itself.
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E�e
ts, Types, and Environments:

e ::= f�

1

; : : : ; �

n

g e�e
t

A;B; F ::= type of expressions

Lit type of literals

V at � type of V values at �

U; V ::= type of boxed values

8[�

1

; : : : ; �

n

℄A

e

! B polymorphi
 fun
tion

[A℄ list

E ::= environment

? empty environment

E; � entry for a region �

E; x:A entry for a name x

In the type (8[�

1

; : : : ; �

n

℄A

e

! B) at �, the regions �

1

; : : : ; �

n

are bound with

s
ope A

e

! B. Let fr(A) be the set of region variables free in the type A. We

have fr(Lit) = ?, and fr ((8[�

1

; : : : ; �

n

℄A

e

! B) at �) = (fr(A) [ fr(B) [ e) �

f�

1

; : : : ; �

n

g [ f�g, and fr([A℄ at �) = fr (A) [ f�g. We identify types up to


onsistent renaming of bound regions.

The stati
 semanti
s 
onsists of judgments with the same format as before:

good environments, E ` �, good types, E ` A, and good expressions, E ` a :

e

A.

The rules in the following tables de�ne the stati
 semanti
s. For any substitution

� of regions for regions and e�e
t e = f�

1

; � � � ; �

n

g, the e�e
t e� is the set of

regions f�(�

1

); � � � ; �(�

n

)g.

Typing Rules:

(Env ?)

? ` �

(Env x)

E ` A x =2 dom(E) [ L

E; x:A ` �

(Env �)

E ` � � =2 dom(E)

E; � ` �

(Type Lit)

E ` �

E ` Lit

(Type !) (where E

0

= E; �

1

; : : : ; �

n

)

E

0

` A e � dom(E

0

) E

0

` B � 2 dom(E)

E ` (8[�

1

; : : : ; �

n

℄A

e

! B) at �

(Type List)

E ` A � 2 dom(E)

E ` [A℄ at �

(Exp x)

E; x:A;E

0

` �

E; x:A;E

0

` x :

?

A

(Exp `)

E ` � ` 2 L

E ` ` :

?

Lit

(Exp Appl) (where � = f�

1

 �

0

1

g � � � f�

n

 �

0

n

g and f�

0

1

; : : : ; �

0

n

g � dom(E))

E ` x :

?

(8[�

1

; : : : ; �

n

℄A

e

! B) at � E ` y :

?

A�

E ` x[�

0

1

; : : : ; �

0

n

℄(y) :

f�g[(e�)

B�

(Exp Let)

E ` a :

e

A E; x:A ` b :

e

0

B

E ` let x = a in b :

e[e

0

B

(Exp Letregion)

E; � ` a :

e

A E ` A

E ` letregion � in a :

e�f�g

A
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(Exp Case)

E ` x :

?

[A℄ at � E ` b

1

:

e

1

B E; y

1

:A; y

2

:[A℄ at � ` b

2

:

e

2

B

E ` 
ase x of nil ) b

1

j (y

1

:: y

2

)) b

2

:

f�g[e

1

[e

2

B

(Exp Fun) (where F = (8[�

1

; : : : ; �

n

℄A

e

! B) at �)

E; f :F; �

1

; : : : ; �

n

; x:A ` b :

e

0

B e

0

� e � dom(E; �

1

; : : : ; �

n

)

E ` (�(f :F )�[�

1

; : : : ; �

n

℄(x)b) at � :

f�g

F

(Exp Nil)

E ` [A℄ at �

E ` nil at � :

f�g

[A℄ at �

(Exp Cons)

E ` x

1

:

?

A E ` x

2

:

?

[A℄ at �

E ` (x

1

:: x

2

) at � :

f�g

[A℄ at �

The de�nitions of region and heap typings, R and H , respe
tively, and of

the judgments E ` r at � : R, H j= �, H j= h, and H j= S � (a; h) : A are exa
tly

as in Se
tion 2.

6.2 An Extended �-Cal
ulus

We enri
h our typed �-
al
ulus with group polymorphism and re
ursive types.

The idea of group polymorphism is that instead of simply ex
hanging tuples

of names with �xed types on a 
hannel, we ex
hange tuples of names together

with tuples of groups, where the types of the names depend on the groups. A
-


ordingly, the type of a 
hannel a
quires the formG(G

1

; : : : ; G

m

)[T

1

; : : : ; T

n

℄nH,

where G is the group of the 
hannel, G

1

, . . . , G

m

are group parameters, T

1

,

. . . , T

n

are the types of the name parameters, and H is the hidden e�e
t. The

types T

1

, . . . , T

n

and the e�e
t H may depend on the group parameters G

1

,

. . . , G

m

. An output pro
ess takes the form xhG

1

; : : : ; G

m

; y

1

; : : : ; y

n

i, whereG

1

,

. . . , G

m

are the group parameters, and y

1

, . . . , y

n

are the name parameters. An

input pro
ess takes the form x(G

1

; : : : ; G

m

; y

1

:T

1

; : : : ; y

n

:T

n

):P where G

1

, . . . ,

G

m

re
eive the group parameters, and y

1

, . . . , y

n

re
eive the name parameters.

This treatment of group polymorphism, where group parameters are transmit-

ted on 
hannels, is inspired by previous treatments of type polymorphism in the

�-
al
ulus (Turner 1995; Pier
e and Sangiorgi 1997), where type parameters

are transmitted on 
hannels. Group polymorphism allows to type-
he
k ri
her

behaviour, su
h as an en
oding of region polymorphism, than previously. Still,

group polymorphism does not introdu
e any new dynami
 behaviour: the redu
-

tions of any well-typed pro
ess are equivalent to the redu
tions of its untyped

erasure.

The idea of re
ursive types is standard. A re
ursive type takes the form

�(X)T . A name of type �(X)T is deemed also to have the unfolded type

TfX �(X)Tg, and vi
e versa. However, for the sake of simpli
ity, we do not

identify a re
ursive type with its unfolding. A name may be assigned the type

�(X)X , but su
h a name 
annot be used for 
ommuni
ation sin
e we 
annot

unfold �(X)X to a 
hannel type.

The extended syntax of our �-
al
ulus is as follows:
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Types, Expressions, and Pro
esses:

G;H group

X type variable

T ::= 
hannel type

X type variable

G(G

1

; : : : ; G

m

)[T

1

; : : : ; T

n

℄nH 
hannel type

�(X)T re
ursive type

x; y; p; q name: variable, 
hannel

P;Q;R ::= pro
ess

x(G

1

; : : : ; G

m

; y

1

:T

1

; : : : ; y

n

:T

n

):P input (no y

i

2 inp(P ))

xhG

1

; : : : ; G

m

; y

1

; : : : ; y

n

i output

(�G)P new-group: group restri
tion

(�x:T )P new-name: name restri
tion

P j Q 
omposition

!P repli
ation

0 ina
tivity

In the type G(G

1

; : : : ; G

m

)[T

1

; : : : ; T

n

℄nH, the groups G

1

; : : : ; G

m

are bound

with s
ope T

1

; : : : ; T

n

and H. In the type �(X)T , the type variable X is bound

with s
ope T . In a pro
ess x(G

1

; : : : ; G

m

; y

1

:T

1

; : : : ; y

n

:T

n

):P , the groups G

1

,

. . . , G

m

and the names y

1

; : : : ; y

n

are bound; their s
ope is P . The other binders,

new-name and new-group, have the same semanti
s as before. The de�nitions

of free names of a pro
ess, fn(P ), free groups of a type, fg(T ), and free groups

of a pro
ess, fg(P ), are as before, ex
ept for the following 
hanges:

Free groups, fg(T ), of type T :

fg(X)

�

= ?

fg(G(G

1

; : : : ; G

m

)[T

1

; : : : ; T

n

℄nH)

�

=

fGg [ ((fg(T

1

) [ � � � [ fg(T

n

) [H)� fG

1

; : : : ; G

m

g)

fg(�(X)T )

�

= fg(T )

Free groups, fg(P ), of pro
ess P :

fg(x(G

1

; : : : ; G

m

; y

1

:T

1

; : : : ; y

n

:T

n

):P )

�

= (fg(T

1

) [ � � � [ fg(T

n

) [ fg(P ))

�fG

1

; : : : ; G

m

g

fg(xhG

1

; : : : ; G

m

; y

1

; : : : ; y

n

i)

�

= fG

1

; : : : ; G

m

g

fg((�G)P )

�

= fg(P )� fGg

fg((�x:T )P )

�

= fg(T ) [ fg(P )

fg(P j Q)

�

= fg(P ) [ fg(Q)

fg(!P )

�

= fg(P )

fg(0)

�

= ?

We identify types and pro
esses up to 
onsistent renaming of bound groups,

names, and type variables.
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We de�ne stru
tural 
ongruen
e P � Q by the same rules as before, ex
ept

that we repla
e (Stru
t Input) with the following:

P � Q)

x(G

1

; : : : ; G

m

; y

1

:T

1

; : : : ; y

n

:T

n

):P �

x(G

1

; : : : ; G

m

; y

1

:T

1

; : : : ; y

n

:T

n

):Q

(Stru
t Input)

We de�ne redu
tion P ! Q by the following rules:

Redu
tion:

xhG

0

1

; : : : ; G

0

m

; y

0

1

; : : : ; y

0

n

i j x(G

1

; : : : ; G

m

; y

1

:T

1

; : : : ; y

n

:T

n

):P

! PfG

1

 G

0

1

g � � � fG

m

 G

0

m

gfy

1

 y

0

1

g � � � fy

n

 y

0

n

g

(Red Intera
t)

P ! Q) P j R! Q j R (Red Par)

P ! Q) (�G)P ! (�G)Q (Red GRes)

P ! Q) (�x:T )P ! (�x:T )Q (Red Res)

P

0

� P; P ! Q;Q � Q

0

) P

0

! Q

0

(Red �)

To take re
ursive types into a

ount, we extend the de�nition of type environ-

ment to in
lude type variables, X . The de�nition of the domain, dom(E), of an

environment, E, is also extended and is de�ned by the equations dom(?) = ?,

dom(E; �) = dom(E) [ f�g, dom(E; x:A) = dom(E) [ fxg and dom(E;X) =

dom(E) [ fXg.

Environments:

E ::= environment

? empty environment

E;X entry for a type variable X

E;G entry for a group G

E; x:T entry for a variable x

The judgments of the type system have the same format as previously: good

environment E ` �, good type E ` T , good name E ` x : T , and good pro
ess

E ` P : H. Their meaning is given indu
tively by the rules in the following

tables.

Good environments:

(Env ?)

? ` �

(Env x)

E ` T x =2 dom(E)

E; x:T ` �

(Env G)

E ` � G =2 dom(E)

E;G ` �

(Env X)

E ` � X =2 dom(E)

E;X ` �
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Good types:

(Type Chan) (where E

0

= E;G

1

; : : : ; G

m

)

E

0

` � G 2 dom(E) H � dom(E

0

) E

0

` T

i

8i 2 1::n

E ` G(G

1

; : : : ; G

m

)[T

1

; : : : ; T

n

℄nH

(Type X)

E

0

; X;E

00

` �

E

0

; X;E

00

` X

(Type Re
)

E;X ` T

E ` �(X)T

Good names:

(Exp x)

E

0

; x:T;E

00

` �

E

0

; x:T;E

00

` x : T

(Exp Unfold)

E ` x : �(X)T

E ` x : TfX �(X)Tg

(Exp Fold)

E ` x : TfX �(X)Tg

E ` x : �(X)T

Good pro
esses:

(Pro
 Input) (where (G�H) \ fG

1

; : : : ; G

m

g = ?)

E ` x : G(G

1

; : : : ; G

m

)[T

1

; : : : ; T

n

℄nH

E;G

1

; : : : ; G

m

; y

1

:T

1

; : : : ; y

n

:T

n

` P : G

E ` x(G

1

; : : : ; G

m

; y

1

:T

1

; : : : ; y

n

:T

n

):P : fGg [ (G�H)

(Pro
 Output) (where � = fG

1

 G

0

1

g � � � fG

m

 G

0

m

g)

E ` x : G(G

1

; : : : ; G

m

)[T

1

; : : : ; T

n

℄nH

fG

0

1

; : : : ; G

0

m

g � dom(E) E ` y

0

i

: T

i

� 8i 2 1::n

E ` xhG

0

1

; : : : ; G

0

m

; y

0

1

; : : : ; y

0

n

i : fGg [H�

(Pro
 GRes)

E;G ` P : H

E ` (�G)P : H� fGg

(Pro
 Res)

E; x:T ` P : H

E ` (�x:T )P : H

(Pro
 Par)

E ` P : G E ` Q : H

E ` P j Q : G [H

(Pro
 Repl)

E ` P : H

E ` !P : H

(Pro
 Zero)

E ` �

E ` 0 : ?

(Pro
 Subsum)

E ` P : G G � H � dom(E)

E ` P : H

The standard rule (Type Re
) for 
he
king goodness of a re
ursive types

�(X)T re
ords the name of the re
ursively bound variable X by inserting it

into the environment used to 
he
k goodness of the body T . This is the only


ir
umstan
e in whi
h we are interested in having type variables in an envi-

ronment. We are only interested in the behaviour of pro
esses type-
he
ked in

proper environments, those in whi
h no type variables o

ur.
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Proper environments:

Let E be proper if and only if E ` � but there is no X su
h that E ` X .

The relation P # � where the barb � 2 fx; xg, is de�ned mu
h as before.

Exhibition of a barb:

(Barb Input)

x(G

1

; : : : ; G

m

; y

1

:T

1

; : : : ; y

n

:T

n

):P # x

(Barb Output)

xhG

1

; : : : ; G

m

; y

1

; : : : ; y

n

i # x

(Barb GRes)

P # �

(�G)P # �

(Barb Res)

P # � � =2 fx; xg

(�x:T )P # �

(Barb Par)

P # �

P j Q # �

(Barb �)

P � Q Q # �

P # �

The de�nition of a relation on typed pro
esses is the same as before, ex
ept

we restri
t attention to proper environments:

� A relation on typed pro
esses (of the extended �-
al
ulus), S, is a set of

triples (E;P;Q) where E is a proper environment and P and Q are typed

terms su
h that E ` P and E ` Q.

The de�nition of barbed 
ongruen
e, and the auxiliary notions in
luding

barbed bisimulation and barbed bisimilarity, are exa
tly as before.

6.3 An Extended En
oding

We translate the extended region 
al
ulus into the extended �-
al
ulus as fol-

lows. In this en
oding, the type of a boxed value lo
ated at region � is of the

kind �(�

1

; : : : ; �

m

)[T

1

; : : : ; T

n

℄nH. In the 
ommon 
ase when m = 0, that is,

the value is monomorphi
, and has no hidden e�e
t, we abbreviate the type to

�[T

1

; : : : ; T

n

℄.

Translating of the region 
al
ulus to the �-
al
ulus:

[[A℄℄ type modelling the type A

[[E℄℄ environment modelling proper environment E

[[a℄℄k pro
ess modelling term a, answer on k

[[p 7! v℄℄ pro
ess modelling value v at pointer p

[[r℄℄ pro
ess modelling region r

[[S � (a; h)℄℄k pro
ess modelling 
on�guration S � (a; h)

Translation rules:

[[Lit ℄℄

�

= Lit [℄

[[(8[�

1

; : : : ; �

n

℄A

e

! B) at �℄℄

�

= �(�

1

; : : : ; �

n

)[[[A℄℄;K[[[B℄℄℄℄n(e [ fKg)

[[[A℄ at �℄℄

�

= �(X)�[�[℄; �[[[A℄℄; X ℄℄
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[[?℄℄

�

= K;Lit ; `

1

:Lit [℄; : : : ; `

n

:Lit [℄

[[E; �℄℄

�

= [[E℄℄; �

[[E; x:A℄℄

�

= [[E℄℄; x:[[A℄℄

[[x℄℄k

�

= khxi

[[let x = a

A

in b℄℄k

�

= (�k

0

:K[[[A℄℄℄)([[a℄℄k

0

j k

0

(x:[[A℄℄):[[b℄℄k)

[[p[�

1

; : : : ; �

n

℄(q)℄℄k

�

= ph�

1

; : : : ; �

n

; q; ki

[[(v at �)

A

℄℄k

�

= (�p:[[A℄℄)([[p 7! v℄℄ j khpi)

[[letregion � in a℄℄k

�

= (��)[[a℄℄k

[[
ase p

[A℄at�

of nil ) b

1

j (y

1

:: y

2

)) b

2

℄℄k

�

= (�z

1

:�[℄)(�z

2

:�[[[A℄℄; [[[A℄ at �℄℄℄)

(phz

1

; z

2

i j z

1

():[[b

1

℄℄k j z

2

(y

1

:[[A℄℄; y

2

:[[[A℄ at �℄℄):[[b

2

℄℄k)

[[p 7! �(f :F )�[�

1

; : : : ; �

n

℄(x)b℄℄

�

= !p(�

1

; : : : ; �

n

; x:[[A℄℄; k:K[[[B℄℄℄):[[bff pg℄℄k

where F = (8[�

1

; : : : ; �

n

℄A

e

! B) at �

[[p 7! nil

[A℄at�

℄℄

�

= !p(z

1

:�[℄; z

2

:�[[[A℄℄; [[[A℄ at �℄℄℄):z

1

hi

[[p 7! (x

1

:: x

2

)

[A℄at�

℄℄

�

= !p(z

1

:�[℄; z

2

:�[[[A℄℄; [[[A℄ at �℄℄℄):z

2

hx

1

; x

2

i

[[(p

i

7! v

i

)

i21::n

℄℄

�

=

Q

i21::n

[[p

i

7! v

i

℄℄

[[(�

i

7! r

i

)

i21::n

℄℄

�

=

Q

i21::n

[[r

i

℄℄

[[S � (a; h

H

)℄℄k

�

= (�~�

defun
t

)(�[[ptr (H)℄℄)([[a℄℄k j [[h℄℄)

where f~�

defun
t

g = dom(H)� S

The translation of the extended region 
al
ulus is an extension of the en-


oding given in Se
tion 4. In parti
ular, the en
odings of type environments,

regions, heaps and 
on�gurations are un
hanged.

The en
oding of lists and the 
ase expression are standard (Milner 1999).

A polymorphi
 re
ursive fun
tion is modelled as a repli
ated input pro
ess,

awaiting the argument of the fun
tion, a 
ontinuation on whi
h to return a result

and for group parameters representing the region parameters to the fun
tion.

A fun
tion is invoked by sending it the argument and a 
ontinuation 
hannel.

Appendix B states and proves reformulations of all the results stated in

Se
tions 2, 3, and 4 in terms of the extended 
al
uli of this se
tion.

7 Con
lusions

We showed that the stati
 and dynami
 semanti
s of Tofte and Talpin's region


al
ulus are preserved by a translation into a typed �-
al
ulus. The letregion


onstru
t is modelled by a new-group 
onstru
t originally introdu
ed into pro-


ess 
al
uli by Cardelli, Ghelli, and Gordon (2000a). We showed that the rather

subtle 
orre
tness of memory de-allo
ation in the region 
al
ulus is an instan
e

of Theorem 4.3, a new garbage 
olle
tion prin
iple for the �-
al
ulus. The

translation is an example of how the new-group 
onstru
t a

ounts for the type

generativity introdu
ed by letregion , just as the standard new-name 
onstru
t

of the �-
al
ulus a

ounts for dynami
 generation of values.
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Banerjee, Heintze, and Rie
ke (1999) give an alternative proof of the sound-

ness of region-based memory management. Theirs is obtained by interpreting

the region 
al
ulus in a polymorphi
 �-
al
ulus equipped with a new binary type


onstru
tor # that behaves like a union or interse
tion type. Their te
hniques

are those of denotational semanti
s, 
ompletely di�erent from the operational

te
hniques of this paper. The formal 
onne
tions between the two approa
hes

are not obvious but would be intriguing to investigate. A possible advantage

of our semanti
s in the �-
al
ulus is that it 
ould easily be extended to inter-

pret a region 
al
ulus with 
on
urren
y, but that remains future work. Another

line of future work is to 
onsider the semanti
s of other region 
al
uli (Aiken,

Faehndri
h, and Levien 1995; Crary, Walker, and Morrisett 1999; Hughes and

Pareto 1999) in terms of the �-
al
ulus. Finally, various resear
hers (Moggi

and Palumbo 1999; Semmelroth and Sabry 1999) have noted a 
onne
tion be-

tween the monadi
 en
apsulation of state in Haskell (Laun
hbury and Peyton

Jones 1995) and regions; hen
e it would be illuminating to interpret monadi


en
apsulation in the �-
al
ulus.
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A Review of the Untyped �-Cal
ulus

In this se
tion, we review the syntax and semanti
s of the untyped, polyadi
,


hoi
e-free, asyn
hronous �-
al
ulus (Milner 1999; Boudol 1992; Honda 1992).

We impose two additional (standard) simpli�
ations, that are: (1) the re
ipient

of a name may only use it in output a
tions; (2) there are no operators for

testing the equality (or inequality) of names. Intuitively, only the 
apability to

output on a named 
hannel may be transmitted.

The �-
al
ulus fragment de�ned by these restri
tions, also known as the lo-


al �-
al
ulus (Merro and Sangiorgi 1998), has a ri
her equational theory than

the full �-
al
ulus, and 
an be regarded as a basis for some proposals of 
on
ur-

rent programming languages (Fournet and Gonthier 1996; Pier
e and Turner

1997). The additional algebrai
 laws obtained in the lo
al variant of �, su
h

as, for example, the repli
ation laws listed subsequently in Proposition A.8, are

required in the proof of Theorem 5.2, the 
orre
tness of our proposed equational

theory for the region 
al
ulus.

The syntax and dynami
 semanti
s of the untyped �-
al
ulus are de�ned

in Appendixes A.1 and A.2, respe
tively. In Appendix A.3 we de�ne an alter-

native semanti
s for the 
al
ulus based on a labelled transition system, that

makes it easier to reason about possible redu
tions of a pro
ess. We also for-

mulate Proposition A.1, whi
h relates the redu
tion and transition semanti
s.

In Appendix A.4 we de�ne barbed 
ongruen
e for the untyped 
al
ulus and we

prove several algebrai
 laws that are useful in Appendix B.

A.1 Syntax

Pro
esses of this 
al
ulus are those obtained from the typed �-
al
ulus pro
esses

de�ned in Se
tion 3 by erasing all type and group annotations.

Pro
esses:

x; y; p; q names

P;Q;R ::= pro
ess

x(y

1

; : : : ; y

n

):P input (no y

i

2 inp(P ))

xhy

1

; : : : ; y

n

i output

(�x)P restri
tion

P j Q 
omposition

!P repli
ation

0 ina
tivity

The lo
ality property is ensured using a synta
ti
 restri
tion on the de�nition

of inputs, x(y

1

; : : : ; y

n

):P , namely that no parameter y

i

is in inp(P ), where

inp(P ) is the set of names x su
h that an input x(z

1

; : : : ; z

m

):P

0

o

urs as a

subpro
ess of P , with x not bound.

We write Pfx x

0

g for the out
ome of a 
apture-avoiding substitution of x

0

for ea
h free o

urren
e of the variable x in the pro
ess P . We identify pro
esses
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up to renaming of bound variables. We write P = Q to mean that P and Q are

the same up to renaming of bound variables.

A.2 Dynami
 Semanti
s

We formalize the semanti
s of the untyped �-
al
ulus using te
hniques identi
al

to those applied in Se
tion 2.2. In parti
ular, a redu
tion relation between pro-


esses, P ! Q, is de�ned on top of an auxiliary stru
tural 
ongruen
e relation,

P � Q, that identi�es pro
esses up to simple rearrangements.

Stru
tural Congruen
e:

P � P (Stru
t Re�)

Q � P ) P � Q (Stru
t Symm)

P � Q;Q � R) P � R (Stru
t Trans)

P � Q) (�x)P � (�x)Q (Stru
t Res)

P � Q) P j R � Q j R (Stru
t Par)

P � Q) !P � !Q (Stru
t Repl)

P � Q) x(y

1

; : : : ; y

n

):P � x(y

1

; : : : ; y

n

):Q (Stru
t Input)

P j 0 � P (Stru
t Par Zero)

P j Q � Q j P (Stru
t Par Comm)

(P j Q) j R � P j (Q j R) (Stru
t Par Asso
)

!P � P j !P (Stru
t Repl Par)

(�x)(�y)P � (�y)(�x)P (Stru
t Res Res)

x =2 fn(P )) (�x)(P j Q) � P j (�x)Q (Stru
t Res Par)

Redu
tion:

xhy

1

; : : : ; y

n

i j x(z

1

; : : : ; z

n

):P ! Pfz

1

 y

1

g � � � fz

n

 y

n

g (Red Intera
t)

P ! Q) P j R! Q j R (Red Par)

P ! Q) (�x)P ! (�x)Q (Red Res)

P

0

� P; P ! Q;Q � Q

0

) P

0

! Q

0

(Red �)

This presentation of the �-
al
ulus semanti
s allows for a simple and 
om-

pa
t de�nition of the redu
tion rules in whi
h the sub-pro
esses having to in-

tera
t �the redexes in �-
al
ulus terminology� appear in 
ontiguous position.

Nonetheless, the operational semanti
s of 
on
urrent systems are 
ommonly de-

�ned using labelled transition systems and, whereas a redu
tion semanti
s may

be mu
h more enlightening and simple than a transition semanti
s, the latter

makes it easier to reason about the possible redu
tions of a pro
ess. For in-

stan
e, it will be di�
ult to prove Lemma A.2, given in Appendix A.3, without

the help of a labelled transition system.
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A.3 Labelled Transition Semanti
s

The de�nitions in this se
tion are adapted from the presentation of the labelled

transition system of the spi 
al
ulus (Abadi and Gordon 1999). In order to

de�ne the labelled transition semanti
s, we need some new synta
ti
 forms:

abstra
tions, 
on
retions, and agents.

� An abstra
tion is an expression of the form (~x)P , where P is a pro
ess

and ~x is a sequen
e of variables x

1

; : : : ; x

n

su
h that n � 0 and x

1

, . . . ,

x

n

are pairwise distin
t and bound in P .

� A 
on
retion is an expression of the form (�~z)h~yiQ, where Q is a pro
ess

and ~z and ~y are sequen
es of variables z

1

, . . . , z

m

, and y

1

, . . . , y

n

, respe
-

tively, su
h that m;n � 0, and f~zg � f~yg, and z

1

, . . . , z

m

are pairwise

distin
t and bound in h~yiQ.

� An agent is either a pro
ess, an abstra
tion, or a 
on
retion. We use the

metavariables A and B to stand for arbitrary agents.

For any abstra
tion, (~x)P , let its arity, j(~x)P j, be the length of the sequen
e

~x. Similarly, for any 
on
retion, (�~z)h~yiQ, let its arity, j(�~z)h~yiQj, be the length

of the sequen
e ~y.

Let fv(A) be the sets of free variables of an agent A. Like pro
esses, both

abstra
tions and 
on
retions are identi�ed up to 
onsistent renaming of bound

variables.

We extend the restri
tion and 
omposition operators to arbitrary agents, as

follows. For an abstra
tion, (~x)P , we set:

(�y)(~x)P

�

= (~x)(�y)P

R j (~x)P

�

= (~x)(R j P )

where we assume that the bound variables ~x are disjoint from fyg [ fv (R).

For a 
on
retion, (�~z)h~yiQ, we set:

(�x)(�~z)h~yiQ

�

=

�

(�x; ~z)h~yiQ if x 2 f~yg

(�~z)h~yi(�x)Q otherwise

R j (�~z)h~yiQ

�

= (�~z)h~yi(R j Q)

assuming that x 62 f~zg and that f~zg \ fv(R) = ?.

We de�ne the dual 
omposition A j R symmetri
ally.

Next, we de�ne pro
esses obtained by 
ombining abstra
tions and 
on
re-

tions of equal arity. If F is the abstra
tion (~x)P where ~x = x

1

; : : : ; x

n

and C is

the 
on
retion (�~z)h~yiQ where ~y = y

1

; : : : ; y

n

and f~zg \ fv (P ) = ?, we de�ne

the intera
tions F�C and C�F to be the pro
esses given by:

F�C

�

= (�~z)(Pfx

1

 y

1

g � � � fx

n

 y

n

g j Q)

C�F

�

= (�~z)(Q j Pfx

1

 y

1

g � � � fx

n

 y

n

g)
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An a
tion is either a barb or the distinguished silent a
tion � . The labelled

transition system is written P

�

�! A, where P is a pro
ess, � is an a
tion, and

A is an agent. We de�ne this relation indu
tively, by the following rules:

The Labelled Transition System:

(Trans In)

x(y

1

; : : : ; y

n

):P

x

�! (y

1

; : : : ; y

n

)P

(Trans Out)

xhy

1

; : : : ; y

n

i

x

�! (�)hy

1

; : : : ; y

n

i0

(Trans Inter 1) (with jF j = jCj)

P

x

�! F Q

x

�! C

P j Q

�

�! F�C

(Trans Inter 2) (with jF j = jCj)

P

x

�! C Q

x

�! F

P j Q

�

�! C�F

(Trans Par 1)

P

�

�! A

P j Q

�

�! A j Q

(Trans Par 2)

Q

�

�! A

P j Q

�

�! P j A

(Trans Res)

P

�

�! A � =2 fx; xg

(�x)P

�

�! (�x)A

(Trans Repl)

P j !P

�

�! A

!P

�

�! A

The following is a basi
 result that states that modulo stru
tural 
ongru-

en
e, the redu
tion relation exa
tly represents the silent a
tion of the transition

semanti
s. A proof of this property 
an be obtained by adapting the detailed

proof of an equivalent result found in the extended version of Abadi and Gordon

(1999) paper on the spi 
al
ulus.

Proposition A.1 P ! Q if and only if there is a pro
ess R su
h that P

�

�! R

and R � Q.

Lemma A.2 (�x)P ! Q if and only if there is a pro
ess P

0

su
h that P ! P

0

and Q � (�x)P

0

.

Proof Assume (�x)P ! Q. By Proposition A.1, there is a pro
ess R su
h

that (�x)P

�

�! R and R � Q. The judgment (�x)P

�

�! R must have been

derived by (Trans Res) with R = (�x)P

0

and P

�

�! P

0

. By Proposition A.1,

P ! P

0

. 2

A.4 Barbed Congruen
e

The notion of equivalen
e between untyped terms that we 
onsider in this pa-

per is barbed 
ongruen
e (Milner and Sangiorgi 1992), a bisimulation-based

behavioural equivalen
e that preserves a notion of observation, 
alled barbs.

A barb, �, is either a name x or a 
o-name x. We write P + � if there

exists P

0

su
h that P !

�

P

0

and P

0

# �, where the relation # is de�ned in the

following table.
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Exhibition of a barb:

(Barb Input)

x(y

1

; : : : ; y

n

):P # x

(Barb Output)

xhy

1

; : : : ; y

n

i # x

(Barb Res)

P # � � =2 fx; xg

(�x)P # �

(Barb Par)

P # �

P j Q # �

(Barb �)

P � Q Q # �

P # �

The barbs exhibited by a pro
ess, P , are related to the labelled transitions

that P 
an perform, that is, to the external 
ommuni
ations through whi
h a

pro
ess may intera
t with an outer 
ontext. We 
an formalize this idea using

the following proposition.

Proposition A.3 P # � if and only if there is an agent A su
h that P

�

�! A.

What follows is a series of de�nitions leading up to our de�nition of barbed


ongruen
e for the untyped �-
al
ulus.

� For any relation on pro
esses S, let P �S� Q mean there are pro
esses

P

0

and Q

0

su
h that P � P

0

, P

0

S Q

0

, and Q

0

� Q.

� A symmetri
 relation S is a barbed bisimulation if and only if P S Q

implies:

(1) If P # x then Q + x.

(2) If P ! P

0

then there is Q

0

su
h that Q!

�

Q

0

and P

0

�S� Q

0

.

� A renaming, �, is a substitution fx

1

 x

0

1

g � � � fx

n

 x

0

n

g of names for names

where n � 0 and the names x

1

, . . . , x

n

are pairwise distin
t. Let dom(�) =

fx

1

; : : : ; x

n

g and ran(�) = fx

0

1

; : : : ; x

0

n

g. If x = x

j

for some j 2 1::n, let

�(x) = x

0

j

. Otherwise, if x =2 dom(�), let �(x) = x.

� Barbed bisimilarity,

�

�, is the relation on pro
esses su
h that P

�

� Q if and

only if there is a barbed bisimulation S su
h that P S Q.

� Barbed 
ongruen
e, �, is the relation on pro
esses su
h that P � Q if and

only if for all pro
esses R and renamings � we have that P� j R

�

� Q� j R.

The following are basi
 properties of barbed 
ongruen
e for the untyped

�-
al
ulus. As in the typed 
ase, barbed 
ongruen
e is a 
ongruen
e relation

preserved by renamings that in
ludes stru
tural 
ongruen
e.

Proposition A.4

(1) Barbed 
ongruen
e is re�exive, transitive, and symmetri
.

(2) Barbed 
ongruen
e satis�es the 
ongruen
e properties.
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� If P � Q then x(y

1

; : : : ; y

n

):P � x(y

1

; : : : ; y

n

):Q.

� If P � Q then P j R � Q j R.

� If P � Q then (�x)P � (�x)Q.

� If P � Q then !P � !Q.

(3) If P � Q then P� � Q� for any arbitrary substitution � from names to

names.

(4) If P � Q then P � Q.

(5) If x =2 fv (P ) then (�x)P � P .

Next, we prove an non-interferen
e property for 
ommuni
ations over a re-

stri
ted 
hannel. This property plays an important role in the soundness proof

of the equational theory developped in Se
tion 5.

Lemma A.5 (Non-Interferen
e) If k =2 fzg [ fv (P ), then:

(�k)(khzi j k(x):P ) � Pfx zg

Proof Let S be the smallest re�exive and symmetri
 relation su
h that:

(�k)(khzi j k(x):P ) j R S (�k)(Pfx zg) j R

for all pro
esses P and R su
h that k =2 fzg [ fv (P ). We show S is a barbed

bisimulation. Assume P

1

SP

2

. Then either P

1

equals P

2

, whi
h is a trivial 
ase,

or P

1

= (�k)(Pfx zg) j R and P

2

= (�k)(khzi j k(x):P ) j R, or we have the

symmetri
 
ase, P

1

= (�k)(khzi j k(x):P ) j R and P

2

= (�k)(Pfx zg) j R.

Assume we are in the latter 
ase.

(1) Assume P

1

# x. By Proposition A.3, it must be the 
ase that R # x.

Hen
e, P

2

# x.

(2) Assume P

2

# x. Sin
e P

1

! P

2

, we have P

2

+ x.

(3) Assume P

1

! Q

1

. By Proposition A.1 and inspe
tion of the possible

transitions, either Q

1

� P

2

, or there is a pro
ess R

0

su
h that R ! R

0

and Q

1

� P

1

j R

0

. In the former 
ase, sin
e S is re�exive, we get that

Q

1

�S� P

2

. In the latter 
ase, let Q

2

be the pro
ess (�k)(Pfx zg) j R

0

.

Sin
e P

1

! Q

2

, we get that P

2

! Q

2

and Q

1

�S� Q

2

, as required.

(4) Assume P

2

! Q

2

. Sin
e P

1

! P

2

, we get that P

1

!

�

Q

1

and, by S

re�exive, we get that Q

1

�S� Q

1

, as required.

Sin
e S is a barbed bisimulation, we get that

(�k)(khzi j k(x):P ) j R

�

� (�k)(Pfx zg) j R

for all pro
esses P and R su
h that k =2 fzg [ fv (P ).
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Let R be an arbitrary pro
ess and � be an arbitrary renaming. We 
an

assume that the bound names of (�k)(Pfx zg) are not in dom(�) [ ran(�).

Therefore:

(�k)(khzi j k(x):P )� j R � (�k)(kh�(z)i j k(x):(P�)) j R

�

� (�k)(P�fx �(z)g) j R

= (�k)(Pfx zg�) j R

Hen
e, (�k)(khzi j k(x):P ) � (�k)(Pfx zg). By Proposition A.4 (5), we get

that (�k)(khzi j k(x):P ) � Pfx zg. 2

We 
an prove the following algebrai
 laws by a similar method.

Lemma A.6 If k =2 fx; y

1

; : : : ; y

n

g then:

x(y

1

; : : : ; y

n

):(�k)P � (�k)x(y

1

; : : : ; y

n

):P

Lemma A.7 (Garbage Colle
tion) If k =2 fv (Q) then:

(1) (�k)(k(x

1

; : : : ; x

n

):P j Q) � Q

(2) (�k)(!k(x

1

; : : : ; x

n

):P j Q) � Q.

Assume p does not appear free in input position in P , Q, that is, p =2

inp(P ) [ inp(Q), let the operator def p(x; k) = P in Q denote the pro
ess

(�p)(!p(x; k):P j Q). Su
h pro
esses are found in en
odings of the �-
al
ulus

in the �-
al
ulus and also in our en
oding of the region 
al
ulus. For example,

erase([[�(x:A)b at �℄℄k) 
an be rewritten def p(x; k) = [[b℄℄k in khpi.

Repli
ated Resour
es:

For all pro
esses P and Q, su
h that x =2 inp(P ) [ inp(Q), we de�ne the

pro
ess def x(y

1

; : : : ; y

n

) = P in Q to be (�x)(!x(y

1

; : : : ; y

n

):P j Q).

One of the algebrai
 laws valid in the lo
al �-
al
ulus and not in the full �-


al
ulus is the repli
ation theorem of Milner that, intuitively, states that private

resour
es 
an be safely dupli
ated, that is, for example:

def x(y

1

; : : : ; y

n

) = P in (Q j R) �

(def x(y

1

; : : : ; y

n

) = P in Q) j (def x(y

1

; : : : ; y

n

) = P in R)

We state below Proposition A.8, whi
h lists a more 
omplete set of repli-


ation laws. An equivalent of this property has been proved for the full �-


al
ulus (Milner 1999), where the equivalen
e used is strong ground 
ongru-

en
e (Milner, Parrow, and Walker 1992). But this equality holds only with the

side 
ondition that the link to the resour
e (the 
hannel x in this example)

may not be emitted, that is, does not appear in obje
t position of an output.

Only re
ently, Merro and Sangiorgi (Merro and Sangiorgi 1998) proved the same

equation, without the �rst side 
ondition, for barbed 
ongruen
e in the lo
al �-


al
ulus. The same laws have also been proved for a lo
al variant of the blue


al
ulus (Dal Zilio 1999).
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Proposition A.8 (Repli
ation Laws)

(1) If p 62 fv(P ) then def p(~y) = R in P � P

(2) def p(~y) = R in (P j Q) � (def p(~y) = R in P ) j (def p(~y) = R in Q)

(3) If p 6= q and q 62 fv (R) then:

def p(~y) = R in (def q(~z) = S in P )

� def q(~z) = (def p(~y) = R in S) in (def p(~y) = R in P )

(4) If f~zg \ fv (p(~y):R) = ? then:

x(~z):(def p(~y) = R in P ) � def p(~y) = R in x(~z):P

(5) def p(y

1

; : : : ; y

n

) = P in (phz

1

; : : : ; z

n

i j Q)

� def p(y

1

; : : : ; y

n

) = P in (Pfy

1

 z

1

g � � � fy

n

 z

n

g j Q)

We also prove another useful property of barbed 
ongruen
e.

Lemma A.9 If x =2 fv (k

0

(y):Q) then:

(�k

0

)(k(x):(P j k

0

(y):Q)) � (�k

0

)(k(x):P j k

0

(y):Q)

Proof To show that (�k

0

)(k(x):(P j k

0

(y):Q)) and (�k

0

)(k(x):P j k

0

(y):Q)

are barbed 
ongruent, we de�ne a barbed bisimulation, S, su
h that:

(�~z)(�k

0

)(k(x):(P j k

0

(y):Q)) j R S (�~z)(�k

0

)(k(x):P j k

0

(y):Q) j R (1)

Let S be the smallest re�exive and symmetri
 relation su
h that (1) holds for

all untyped pro
esses P;Q;R and sequen
es of names ~z where x =2 fv(k

0

(y):Q).

We show that S is a barbed bisimulation. Assume P

1

S P

2

. Then either P

1

equals P

2

, whi
h is a trivial 
ase, or P

1

= (�~z)((�k

0

)(k(x):P j k

0

(y):Q) j R) and

P

2

= (�~z)((�k

0

)k(x):(P j k

0

(y):Q) j R), or we have the symmetri
 
ase, P

1

=

(�~z)((�k

0

)k(x):(P j k

0

(y):Q) j R) and P

2

= (�~z)((�k

0

)(k(x):P j k

0

(y):Q) j R).

Assume we are in the latter 
ase.

(1) Suppose P

1

# p. By Proposition A.3, R # p with p =2 f~zg. By (Barb Par)

and (Barb Res) several times, P

2

# p, as required.

(2) Suppose P

2

# p. By Proposition A.3, R # p with p =2 f~zg. By (Barb Par)

and (Barb Res) several times, P

1

# p, as required.

(3) Suppose P

1

! S. By Proposition A.1 and inspe
tion of the possible

transitions, there is a sequen
e of names, ~w, su
h that R � (� ~w)(khpi j R

0

)

and S � (�~z; ~w)((�k

0

)(Pfx pg j k

0

(y):Q) j R

0

). By (Red �) and (Red

Intera
t), P

2

! S. Sin
e S is re�exive, we get that S S S, as required.
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(4) Suppose P

2

! S. By Proposition A.1 and inspe
tion of the possible

transitions, there is a sequen
e of names, ~w, su
h that R � (� ~w)(khpi j R

0

)

and S � (�~z; ~w)((�k

0

)(Pfx pg j k

0

(y):Q) j R

0

). By (Red �) and (Red

Intera
t), and sin
e x =2 fv(k

0

(y):Q), we get that P

1

! S. Sin
e S is

re�exive, we get that S S S, as required.

Sin
e S is a barbed bisimulation, we get that (�k

0

)k(x):(P j k

0

(y):Q) j R

�

�

(�k

0

)(k(x):P j k

0

(y):Q) j R, for all untyped pro
esses P;Q;R su
h that x =2

fv(k

0

(y):Q). Let � be an arbitrary substitution of names for names. We 
an

assume that (dom(�) [ ran(�)) \ fk

0

; x; yg = ?, and therefore:

((�k

0

)k(x):(P j k

0

(y):Q))� j R � (�k

0

)k(x):(P� j k

0

(y):Q�) j R

((�k

0

)(k(x):P j k

0

(y):Q))� j R � (�k

0

)(k(x):P� j k

0

(y):Q�) j R

where x =2 fv(k

0

(y):Q�). Hen
e, (�k

0

)(k(x):(P j k

0

(y):Q)) � (�k

0

)(k(x):P j

k

0

(y):Q), as required. 2

B Proofs

In this appendix, we prove all the propositions stated without proof in the main

body of the paper. We split the appendix into several se
tions. Throughout,

with the ex
eption of Appendix B.7, we work with the extended 
al
uli of Se
-

tion 6. Proofs of all the 
orresponding theorems for the unextended 
al
uli may

be obtained by simplifying the proofs for the extended 
al
uli.

(1) In Appendix B.1 we prove Theorem B.13, the subje
t redu
tion prop-

erty for the extended region 
al
ulus, and Proposition B.14, the property

that well-typed 
on�gurations do not lead to runtime errors. These fa
ts


orrespond to Theorem 2.1 and Proposition 2.2, respe
tively, for the un-

extended region 
al
ulus.

(2) In Appendix B.2, we prove Proposition B.31, the subje
t redu
tion prop-

erty for our extended �-
al
ulus, and Proposition B.32, e�e
t soundness,

the property that the group of any barb of a pro
ess is in
luded in its

e�e
t. These fa
ts 
orrespond to Proposition 3.2 and Proposition 3.3,

respe
tively, for the unextended �-
al
ulus.

(3) In Appendix B.3, we prove Proposition B.38, whi
h asserts that the re-

du
tions of a typed pro
ess a

ording to the typed operational semanti
s

are equivalent to the redu
tions of the untyped erasure of the pro
ess a
-


ording to the untyped operational semanti
s. This fa
t 
orresponds to

Proposition 3.1 for the unextended �-
al
ulus.

(4) In Appendix B.4, we prove Proposition B.46, that barbed 
ongruen
e

for the extended �-
al
ulus satis�es the 
ongruen
e properties. This fa
t


orresponds to Proposition 3.4 (2), for the unextended �-
al
ulus.
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(5) In Appendix B.5, we prove Theorem B.53, the garbage 
olle
tion prin
iple

for our extended �-
al
ulus. This fa
t 
orresponds to Theorem 4.3 for the

unextended �-
al
ulus.

(6) In Appendix B.6 we prove various properties of the en
oding of the region


al
ulus in the �-
al
ulus.

Appendix B.6.1 proves Theorem B.59, whi
h asserts that the en
oding

preserves the stati
 semanti
s.

Appendix B.6.2 introdu
es an auxiliary small-step semanti
s for the region


al
ulus.

Appendix B.6.3 exploits the auxiliary small-step semanti
s in order to

prove Theorem B.67, whi
h asserts that the en
oding preserves the dy-

nami
 semanti
s.

Appendix B.6.4 proves Theorem B.68, whi
h asserts that defun
t regions

make no di�eren
e to the behaviour of a program.

The three theorems proved in this appendix 
orrespond to Theorem 4.1,

Theorem 4.2, and Theorem 4.4, respe
tively, for the unextended 
al
uli.

(7) In Appendix B.7, we prove the auxiliary lemma, Lemma 5.1, and the

soundness of the equational theory for the unextended region 
al
ulus,

Theorem 5.2, as stated in Se
tion 5.

B.1 Subje
t Redu
tion for the �-Cal
ulus

In this se
tion, we prove Theorem B.13, that in the extended region 
al
ulus

redu
tion preserves types. We also prove Proposition B.14, that well-typed

values are allo
ated in lived regions and that well-typed fun
tion appli
ations

invoke 
losures stored in lived regions. These two properties 
ombined imply

that a well-typed expressions 
annot yield a runtime errors.

The proof of these properties use a series of simple intermediate results,

Lemmas B.1 to B.12, that are 
lassi
 in proof of subje
t redu
tion. For example,

Lemma B.3, that is an example of so-
alled ex
hange lemma, Lemma B.6, that

is an example of weakening lemma, or Lemmas B.11 and B.12, that are examples

of substitutions lemmas. For the sake of brevity, we omit the proofs of these

intermediate properties.

In the type and e�e
t system introdu
ed in Se
tions 2.3 and 6.1, ea
h judg-

ment has the form E ` J , where E is a typing judgment and J is an assertion

that is either �, for well-formed environments, or a type A, for well-formed types,

or a :

e

A, for good expressions a with type A and e�e
t e. In the rest of this

paper, we use the symbol J to denote an assertion.

Lemma B.1 If E ` J then E ` �.

Lemma B.2 If E;E

0

` J then dom(E) \ dom(E

0

) = ? and E ` �.

Lemma B.3 If E; x:A; �;E

0

` J then E; �; x:A;E

0

` J .
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Lemma B.4 If E;E

0

` J , x =2 dom(E;E

0

)[L and E ` A then E; x:A;E

0

` J .

Lemma B.5 If E;E

0

` J and � =2 dom(E;E

0

) then E; �;E

0

` J .

Lemma B.6 If E ` J and E;E

0

` � then E;E

0

` J .

Lemma B.7 Let (p

i

:A

i

)

i21::n

be the environment ptr(H). If H j= � then

dom(H) ` A

i

for ea
h i 2 1::n.

Lemma B.8 If H j= � and H � H

0

and H

0

j= � then H +H

0

j= �.

Lemma B.9 If env(H) ` J and H � H

0

and H

0

j= � then env(H +H

0

) ` J .

Lemma B.10 If E ` x :

e

A and E ` x :

e

0

B then e = e

0

= ? and A = B.

Lemma B.11 If E; x:A;E

0

` J and E ` p :

?

A then E;E

0

` J fx pg.

Lemma B.12 If E; �;E

0

` J and �

0

is a region de�ned in dom(E) then

E;E

0

f� �

0

g ` J f� �

0

g.

The following is the subje
t redu
tion theorem for our extended region 
al-


ulus. A proof of Theorem 2.1, subje
t redu
tion for the unextended region


al
ulus, 
an be obtained by simplifying the following proof.

Theorem B.13 If H j= S � (a; h) : A and S � (a; h) + (p

0

; h

0

) there is H

0

su
h

that H � H

0

and H +H

0

j= S � (p

0

; h

0

) : A.

Proof By indu
tion on the derivation of S � (a; h) + (p

0

; h

0

).

(Eval Var) Then S � (p; h) + (p; h), and we have H j= S � (p; h) : A by assump-

tion. Take H

0

= ? and we trivially have H � H

0

and H+H

0

j= S � (p; h) :

A.

(Eval Allo
) Then S � (v at �; h) + (p; h+ (� 7! (h(�) + (p 7! v))) with � 2 S

and p =2 dom

2

(h).

By (Con�g Good), H j= S �(v at �; h) : A means that env(H) ` v at � :

e

A

for some e � S, and that H j= h and S � dom(H). Sin
e only (Exp Nil),

(Exp Cons) or (Exp Fun) 
an derive env(H) ` v at � :

e

A, we have

A = V at �, for some V , and e = f�g.

Let H

0

be the heap typing � 7! (p:A). Sin
e p =2 dom

2

(H) = dom

2

(h),

we have env(H + H

0

) ` �. Hen
e, env(H + H

0

) ` p :

?

A. Moreover

S � dom(H +H

0

).

By (Heap Good), H j= h and � 2 S imply that env(H) ` h(�) at � : H(�).

Therefore, env(H +H

0

) ` h(�) at �+(p 7! v at �) : H(�)+ (p:A). Hen
e,

H +H

0

j= h+ � 7! (h(�) + p 7! v).

We have env(H +H

0

) ` p at � : A and S � dom(H +H

0

) and H +H

0

j=

h+� 7! (h(�)+p 7! v). Hen
e, by (Con�g Good), H+H

0

j= S � (p; h) : A,

as required.
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(Eval Appl) Then S � (p[�

0

1

; : : : ; �

0

n

℄(q); h) + (p

0

; h

0

) derives from S � (bff pg

fx qg�; h) + (p

0

; h

0

) where � 2 S and h(�)(p) is the fun
tion �(f :F )�[�

1

;

: : : ; �

n

℄(x)b and � = f�

1

 �

0

1

g � � � f�

n

 �

0

n

g and F = 8[�

1

; : : : ; �

n

℄(B

1

e

0

!

B

2

) at �.

By (Con�g Good), H j= S � (p[�

0

1

; : : : ; �

0

n

℄(q); h) : A means that env(H) `

p[�

0

1

; : : : ; �

0

n

℄(q) :

e

A for some e � S, and that H j= h and S � dom(H).

Only (Exp Appl) 
an derive env(H) ` p[�

0

1

; : : : ; �

0

n

℄(q) :

e

A and so we

have env(H) ` p :

?

F and env(H) ` q :

?

B

1

� and A = B

2

�, where

e = f�g[e

0

� and f�

0

1

; : : : ; �

0

n

g � dom(H). Sin
e H j= h and � 2 dom(H),

we have that env(H) ` h(�) at � : H(�), and in parti
ular, env(H) `

�(f :F )�[�

1

; : : : ; �

n

℄(x)b at � :

f�g

F .

Only (Exp Fun) 
an derive env(H) ` �(f :F )�[�

1

; : : : ; �

n

℄(x)b at � :

f�g

F , and so env(H); f :F; �

1

; : : : ; �

n

; x:B

1

` b :

e

00

B

2

where e

00

� e

0

�

dom(E; �

1

; : : : ; �

n

). By Lemma B.11 and B.12, sin
e env(H) ` q :

?

B

1

�

and env(H) ` p :

?

F , we get that env(H) ` bff pgfx qg� :

e

00

�

B

2

�.

By (Con�g Good), H j= S � (bff pgfx qg�; h) : A.

By indu
tion hypothesis, sin
e S � (bff pgfx qg�; h) + (p

0

; h

0

), we get

that there is H

0

with H � H

0

and H +H

0

j= S � (p

0

; h

0

) : A, as required.

(Eval Let) Then S �(let x = b in a; h) + (p

00

; h

00

) derives from S �(b; h) + (p

0

; h

0

)

and S � (afx p

0

g; h

0

) + (p

00

; h

00

).

By (Con�g Good), H j= S � (let x = b in a; h) : A means that env(H) `

let x = b in a :

e

A for some e � S, and that H j= h and S � dom(H).

Only (Exp Let) 
an derive env(H) ` let x = b in a :

e

A and so we have

env(H) ` b :

e

b

B and env(H); x:B ` a :

e

a

A for some e

b

, e

a

and B, su
h

that e = e

a

[ e

b

. By (Con�g Good), env(H) ` b :

e

b

B and e

b

� S and

H j= h and S � dom(H) imply that H j= S � (b; h) : B.

By indu
tion hypothesis, sin
e S � (b; h) + (p

0

; h

0

), we get that there is H

0

with H � H

0

and H+H

0

j= S � (p

0

; h

0

) : B. By (Con�g Good), this means

that env(H +H

0

) ` p

0

:

e

0

B for some e

0

� S, and that H +H

0

j= h

0

and

S � dom(H+H

0

). Only (Exp x) or (Exp l) 
an derive this and so it must

be that e

0

= ?.

By Lemma B.9, sin
e env(H); x:B ` a :

e

a

A, we get that env(H +

H

0

); x:B ` a :

e

a

A. By Lemma B.11, sin
e env(H + H

0

) ` p

0

:

?

B,

we get that env(H +H

0

) ` afx p

0

g :

e

a

A. Therefore, by (Con�g Good),

env(H +H

0

) j= S � (afx p

0

g; h

0

) : A.

By indu
tion hypothesis, sin
e S � (afx p

0

g; h

0

) + (p

00

; h

00

), we get that

there is H

00

su
h that H+H

0

� H

00

and (H +H

0

)+H

00

j= S � (p

00

; h

00

) : A.

To 
omplete the 
ase, note that H � H

0

+ H

00

and H + (H

0

+ H

00

) j=

S � (p

00

; h

00

) : A.

(Eval Letregion) Then S � (letregion � in a; h) + (p

0

; h

0

) derives from S [f�g �

(a; h+ � 7! ?) + (p

0

; h

0

) with � =2 dom(h).
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By (Con�g Good), H j= S � (letregion � in a; h) : A means that env(H) `

letregion � in a :

e

A and H j= h for some e � S.

Only (Exp Letregion) 
an derive this and so we have env(H); � ` a :

e

0

A

with env(H) ` A and e = e

0

� f�g. In parti
ular � =2 dom(H).

Let H

0

be the heap typing (� 7! ?). We have H � H

0

and env(H+H

0

) =

env(H); �. By (Con�g Good), env(H +H

0

) ` a :

e

0

A, and e

0

� S [ f�g

and S [ f�g � dom(H + H

0

) and H + H

0

j= h + � 7! ? imply that

H +H

0

j= (S [ f�g) � (a; h+ � 7! ?) : A.

By indu
tion hypothesis, sin
e (S [ f�g) � (a; h + � 7! ?) + (p

0

; h

0

), we

get that there is H

00

with H + H

0

� H

00

and (H + H

0

) + H

00

j= (S [

f�g) � (p

0

; h

0

) : A. To 
omplete the 
ase, note that H � H

0

+ H

00

and

H + (H

0

+H

00

) j= S � (p

0

; h

0

) : A.

(Eval Case 1) Then S � (
ase p of nil ) b

1

j (y

1

:: y

2

)) b

2

; h) + (p

0

; h

0

). This

derives from S � (b

1

; h) + (p

0

; h

0

) with � 2 S and h(�)(p) = nil .

By (Con�g Good), H j= S � (
ase p of nil ) b

1

j (y

1

:: y

2

) ) b

2

; h) : A

means that env(H) ` 
ase p of nil ) b

1

j (y

1

:: y

2

) ) b

2

:

e

A and H j= h

for some e � S.

Only (Exp Case) 
an derive this and so we have env(H) ` p :

?

[B℄ at �

and env(H) ` b

1

:

e

1

A and env(H); y

1

:B; y

2

:[B℄ at � ` b

2

:

e

2

A.

By indu
tion hypothesis, sin
e S � (b

1

; h) + (p

0

; h

0

), we get that there is H

0

with H � H

0

and H +H

0

j= S � (p

0

; h

0

) : A, as required.

(Eval Case 2) Then S � (
ase p of nil ) b

1

j (y

1

:: y

2

)) b

2

; h) + (p

0

; h

0

). This

derives from S �(b

2

fy

1

 q

1

gfy

2

 q

2

g; h) + (p

0

; h

0

) with � 2 S and h(�)(p) =

q

1

:: q

2

.

By (Con�g Good), H j= S � (
ase p of nil ) b

1

j (y

1

:: y

2

) ) b

2

; h) : A

means that env(H) ` 
ase p of nil ) b

1

j (y

1

:: y

2

) ) b

2

:

e

A and H j= h

for some e � S.

Only (Exp Case) 
an derive this and so we have env(H) ` p :

?

[B℄ at �

and env(H) ` b

1

:

e

1

A and env(H); y

1

:B; y

2

:[B℄ at � ` b

2

:

e

2

A.

Therefore, by hypothesis, h(�)(p) = q

1

:: q

2

and env(H) ` p :

?

[B℄ at �.

Hen
e, by (Con�g Good), env(H) ` (q

1

:: q

2

) at � :

f�g

[B℄ at �. Only

(Exp Cons) 
an derive this and so we have E ` q

1

:

?

B and E ` q

2

:

?

[B℄ at �.

By Lemma B.11, sin
e env(H); y

1

:B; y

2

:[B℄ at � ` b

2

:

e

2

A, we get that

env(H) ` b

2

fy

1

 q

1

gfy

2

 q

2

g :

e

2

A.

By indu
tion hypothesis, sin
e S �(b

2

fy

1

 q

1

gfy

2

 q

2

g; h) + (p

0

; h

0

), we get

that there is H

0

with H � H

0

and H +H

0

j= S � (p

0

; h

0

) : A, as required.2

Next, we show that well-typed 
on�gurations avoid the runtime errors of

allo
ation or invo
ation of a 
losure in a defun
t region. A proof of Propo-

sition 2.2, an equivalent property for the unextended region 
al
ulus, 
an be

obtained by simplifying the following proof.
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Proposition B.14

(1) If H j= S � (v at �; h) : A then � 2 S.

(2) If H j= S � (p[�

0

1

; : : : ; �

0

n

℄(q); h) : A then there are � and v su
h that � 2 S,

h(�)(p) = v, and v is a fun
tion of the form �(f :F )�[�

1

; : : : ; �

n

℄(x)b,

where F is the type (8[�

1

; : : : ; �

n

℄B

e

! A) at � and there is e

0

su
h that

e

0

� e � dom(E; �

1

; : : : ; �

n

) and env(H); f :F; �

1

; : : : ; �

n

; x:B ` b :

e

0

A.

Proof For part (1), assume H j= S � (v at �; h) : A. By (Con�g Good) we get

that env(H) ` (v at �) :

e

A for some e�e
t e, with e [ fg(A) � S. Only (Exp

Nil), (Exp Cons) or (Exp Fun) 
an derive this and so we have e = f�g. Hen
e,

� 2 S.

For part (2), assume H j= S � (p[�

0

1

; : : : ; �

0

n

℄(q); h) : A. By (Con�g Good)

we get that H j= h and that env(H) ` p[�

0

1

; : : : ; �

0

n

℄(q) :

e

A for some e�e
ts e,

with e [ fg(A) � S. Only (Exp Appl) 
an derive this and so we have env(H) `

p :

?

F for some region �, with F = (8[�

1

; : : : ; �

n

℄(B

e

0

! A)) at � and e =

f�g [ e

0

f�

1

 �

0

1

g � � � f�

n

 �

0

n

g. Only (Exp x) 
an derive env(H) ` p :

?

F and

so there is a region �

0

su
h that H(�

0

)(p) = F . By (Heap Good), �

0

= �

and � 2 dom(H) and there is a value v su
h that H(�)(p) = v. By (Region

Good), env(H) ` v at � :

f�g

F . Only (Exp Fun) 
an derive this. Hen
e,

v is a fun
tion of the form �(f :F )�[�

1

; : : : ; �

n

℄(x)b and there is e

00

su
h that

e

00

� e

0

� dom(E; �

1

; : : : ; �

n

) and env(H); f :F; �

1

; : : : ; �

n

; x:B ` b :

e

00

A. 2

B.2 Subje
t Redu
tion for the �-Cal
ulus

We show that redu
tion in the �-
al
ulus preserves types and e�e
ts. Like in

the previous se
tion on subje
t redu
tion for the �-
al
ulus, we use intermediate

results whose proofs are omitted for the sake of brevity. We will also use the

symbol J to denote an assertion, that is either �, a type T , a 
hannel typing

x : T , or a pro
ess typing P : H.

Lemma B.15 If E ` P : H then H � dom(E).

Lemma B.16 If E ` J then E ` �.

Lemma B.17 If E;E

0

` J then dom(E) \ dom(E

0

) = ? and E ` �.

Lemma B.18 If E; x:T;E

0

` J then E ` T .

Lemma B.19 If E ` J then fg(J ) � dom(E).

Lemma B.20 If E ` x : T

1

and E ` x : T

2

, where T

1

and T

2

are 
hannel types

of the form G(H

1

; : : : ; H

m

)[T

0

1

; : : : ; T

0

n

℄nH, then T

1

= T

2

.

Lemma B.21 If E; x

1

:T

1

; x

2

:T

2

; E

0

` J then E; x

2

:T

2

; x

1

:T

1

; E

0

` J .

Lemma B.22 If E;G;H;E

0

` J then E;H;G;E

0

` J .
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Lemma B.23 If E;G; x:T;E

0

` J and G =2 fg(T ) then E; x:T;G;E

0

` J .

Lemma B.24 If E; x:T;G;E

0

` J then E;G; x:T;E

0

` J .

Lemma B.25 If E; x:T;E

0

` J and x =2 fn(J ) then E;E

0

` J .

Lemma B.26 If E;G;E

0

` J and G =2 fg(J ) [ dom(E

0

) then E;E

0

` J .

Lemma B.27 If E ` J and E;E

0

` � then E;E

0

` J .

Lemma B.28 If E; x:T;E

0

` J and E ` y : T then E;E

0

` J fx yg.

Lemma B.29 If E;G;E

0

` J and H is a group de�ned in dom(E) then

E;E

0

fG Hg ` J fG Hg.

Lemma B.30 If E ` P : H and P � Q then E ` Q : H.

Proof The lemma follows by showing that P � Q implies:

(1) If E ` P : H then E ` Q : H.

(2) If E ` Q : H then E ` P : H.

We pro
eed by indu
tion on the derivation of P � Q.

(Stru
t Re�) Trivial.

(Stru
t Symm) Then Q � P . For (1), assume E ` P : H. By indu
tion

hypothesis (2), Q � P implies that E ` Q : H. Part (2) is symmetri
.

(Stru
t Trans) Then there is R su
h that P � R and R � Q. For (1), assume

E ` P : H. By indu
tion hypothesis (1), E ` R : H. Again, by indu
tion

hypothesis (1), E ` Q : H. Part (2) is symmetri
.

(Stru
t Res) Then P = (�x:T )P

0

and Q = (�x:T )Q

0

for some P

0

; Q

0

, with

P

0

� Q

0

. For (1), assume E ` P : H. This must have been derived

from (Pro
 Res), with E; x:T ` P

0

: H. By indu
tion hypothesis (1),

E; x:T ` Q

0

: H. By (Pro
 Res), E ` Q : H. Part (2) is symmetri
.

(Stru
t GRes) Then P = (�G)P

0

and Q = (�G)Q

0

for some P

0

; Q

0

, with

P

0

� Q

0

. For (1), assume E ` P : H. This must have been derived from

(Pro
 GRes), with E;G ` P

0

: G where H = G � fGg. By indu
tion

hypothesis (1), E;G ` Q

0

: G. By (Pro
 GRes), E ` Q : H. Part (2) is

symmetri
.

(Stru
t Par) Then P = P

0

j R and Q = Q

0

j R for some P

0

; Q

0

; R, with

P

0

� Q

0

. For (1), assume E ` P : H. This must have been derived from

(Pro
 Par), with E ` P

0

: H

0

and E ` R : H

00

, where H = H

0

[H

00

. By

indu
tion hypothesis (1), E ` Q

0

: H

0

. By (Pro
 Par), E ` Q : H. Part

(2) is symmetri
.
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(Stru
t Repl) Then P = !P

0

and Q = !Q

0

for some P

0

; Q

0

, with P

0

� Q

0

. For

(1), assume E ` P : H. This must have been derived from (Pro
 Repl),

with E ` P

0

: H. By indu
tion hypothesis (1), E ` Q

0

: H. By (Pro


Repl), E ` Q : H. Part (2) is symmetri
.

(Stru
t Input) Then P = x(G

1

; : : : ; G

m

; y

1

:T

1

; : : : ; y

n

:T

n

):P

0

and Q = x(G

1

;

: : : ; G

m

; y

1

:T

1

; : : : ; y

n

:T

n

):Q

0

for some P

0

; Q

0

, with P

0

� Q

0

. For (1), as-

sume E ` P : H. This must have been derived from (Pro
 Input), with:

E ` x : G(G

1

; : : : ; G

m

)[T

1

; : : : ; T

n

℄nH

0

E;G

1

; : : : ; G

m

; y

1

:T

1

; : : : ; y

n

:T

n

` P

0

: G

where H = fGg [ (G � H

0

) and (G � H

0

) \ fG

1

; : : : ; G

m

g = ?. By

indu
tion hypothesis (1), E;G

1

; : : : ; G

m

; y

1

:T

1

; : : : ; y

n

:T

n

` Q

0

: G. By

(Pro
 Input), E ` Q : H. Part (2) is symmetri
.

(Stru
t Par Zero) Then P = Q j 0.

For (1), assume E ` P : H. This must have been derived from (Pro
 Par),

with E ` Q : H and E ` 0 : ?. Hen
e, E ` Q : H.

For (2), assume E ` Q : H. By Lemma B.16, E ` �. By (Pro
 Zero),

E ` 0 : ?. By (Pro
 Par), E ` Q j 0 : H, that is, E ` P : H.

(Stru
t Par Comm) Then P = P

0

j P

00

and Q = P

00

j P

0

for some P

0

; P

00

.

For (1), assume E ` P

0

j P

00

: H. This must have been derived from (Pro


Par), with E ` P

0

: H

0

and E ` P

00

: H

00

where H = H

0

[H

00

. By (Pro


Par), E ` P

00

j P

0

: H. Hen
e, E ` Q : H. Part (2) is symmetri
.

(Stru
t Par Asso
) Then P = (P

0

j P

00

) j P

000

and Q = P

0

j (P

00

j P

000

) for

some P

0

; P

00

; P

000

. For (1), assume E ` (P

0

j P

00

) j P

000

: H. This must have

been derived from (Pro
 Par), with E ` (P

0

j P

00

) : H

1

and E ` P

000

: H

2

,

where (H

1

[H

2

) =H, followed by a number of subsumption steps implying

E ` (P

0

j P

00

) : H

3

, where H

3

�H

1

by transitivity, and followed by (Pro


Par), with E ` P

0

: H

4

, and E ` P

00

: H

5

where (H

4

[H

5

) = H

3

. By

(Pro
 Par) twi
e, E ` P

0

j (P

00

j P

000

) : H

4

[(H

5

[H

2

). By (Pro
 Subsum)

and Lemma B.15, and sin
eH

4

[(H

5

[H

2

) = (H

3

[H

2

) � (H

1

[H

2

) =H,

we get that E ` Q : H. Part (2) is symmetri
.

(Stru
t Repl Par) Then P = !R and Q = R j !R for some R.

For (1), assume E ` !R : H. This must have been derived from (Pro


Repl), with E ` R : H. By (Pro
 Par), E ` R j !R : H [ H. Hen
e,

E ` Q : H.

For (2), assume E ` R j !R : H. This must have been derived from (Pro


Par), with E ` R : H

0

and E ` !R : H

00

where H = H

0

[ H

00

. Hen
e,

H

00

� H. By (Pro
 Subsum) and Lemma B.15, E ` !R : H. Hen
e,

E ` P : H.
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(Stru
t Res Res) Then P = (�x

1

:T

1

)(�x

2

:T

2

)R and Q = (�x

2

:T

2

)(�x

1

:T

1

)R

for some R, with x

1

6= x

2

. For (1), assume E ` (�x

1

:T

1

)(�x

2

:T

2

)R : H.

This must have been derived from (Pro
 Res), with E; x

1

:T

1

` (�x

2

:T

2

)R :

H, followed by a number of subsumption steps implying E ` (�x

2

:T

2

)R :

H

0

, where H

0

� H by transitivity, and followed by (Pro
 Res), with

E; x

1

:T

1

; x

2

:T

2

` R : H

0

. By Lemma B.21, E; x

2

:T

2

; x

1

:T

1

` R : H

0

. By

(Pro
 Res) twi
e, (Pro
 Subsum) and Lemma B.15 we have E ` (�x

2

:T

2

)

(�x

1

:T

1

)R : H. Hen
e, E ` Q : H. Part (2) is symmetri
.

(Stru
t Res Par) Then P = (�x:T )(P

0

j P

00

) and Q = P

0

j (�x:T )P

00

for

some P

0

; P

00

, with x =2 fn(P

0

).

For (1), assume E ` P : H. This must have been derived from (Pro


Res) with E; x:T ` P

0

j P

00

: H, followed by a number of subsumption

steps implying E; x:T ` P

0

j P

00

: G, where G � H by transitivity, and

followed by (Pro
 Par), with E; x:T ` P

0

: G

0

and E; x:T ` P

00

: G

00

,

where G = G

0

[ G

00

. By Lemma B.25, sin
e x =2 fn(P

0

), we have E `

P

0

: G

0

. By (Pro
 Res), E ` (�x:T )P

00

: G

00

. By (Pro
 Par) we have

E ` P

0

j (�x:T )P

00

: G. By (Pro
 Subsum) and Lemma B.15, we get that

E ` Q : H.

For (2), assume E ` Q : H. This must have been derived from (Pro
 Par),

with E ` P

0

: H

0

, E ` (�x:T )P

00

: H

00

and H = H

0

[H

00

, followed by a

number of subsumption steps implying E ` (�x:T )P

00

: G, whereG � H

00

by transitivity, and followed by (Pro
 Res), with E; x:T ` P

00

: G. By

Lemma B.17 and B.18 we have x =2 dom(E) and E ` T . By Lemma B.27,

E; x:T ` P

0

: H

0

. By (Pro
 Par), E; x:T ` P

0

j P

00

: (H

0

[ G) where

(H

0

[G) � H. By (Pro
 Res), (Pro
 Subsum) and Lemma B.15, we get

that E ` (�x:T )(P

0

j P

00

) : H. Hen
e, E ` P : H.

(Stru
t GRes GRes) Then P = (�G

1

)(�G

2

)R and Q = (�G

2

)(�G

1

)R for

some R. We 
an 
onsider that G

1

6= G

2

.

For (1), assume E ` (�G

1

)(�G

2

)R : H. This must have been derived from

(Pro
 GRes), with E;G

1

` (�G

2

)R : H

0

and H = H

0

� fG

1

g, followed

by a number of subsumption steps implying E;G

1

` (�G

2

)R : H

00

, where

H

00

� H

0

by transitivity, and followed by (Pro
 GRes), with E;G

1

; G

2

`

R : H

000

and H

00

= H

000

� fG

2

g. By Lemma B.22, E;G

2

; G

1

` R : H

000

,

where H

000

� fG

1

; G

2

g � H. By (Pro
 Subsum) and (Pro
 GRes) twi
e

we have E ` (�G

2

)(�G

1

)R : H. Hen
e, E ` Q : H. Part (2) is symmetri
.

(Stru
t GRes Res) Then P = (�G)(�x:T )R and Q = (�x:T )(�G)R for some

R, with G =2 fg(T ) For (1), assume E ` (�G)(�x:T )R : H. This must

have been derived from (Pro
 GRes), with E;G ` (�x:T )R : H

0

and

H = H

0

� fGg, followed by a number of subsumption steps implying

E;G ` (�x:T )R : H

00

, where H

00

� H

0

by transitivity, and followed by

(Pro
 Res), with E;G; x:T ` R : H

00

. By Lemma B.23, E; x:T;G ` R :

H

00

. By (Pro
 GRes), (Pro
 Res), (Pro
 Subsum) and Lemma B.15, we

get that E ` Q : H. Part (2) is symmetri
.

56



(Stru
t GRes Par) Then P = (�G)(P

0

j P

00

) and Q = P

0

j (�G)P

00

for some

P

0

; P

00

, with G =2 fg(P

0

).

For (1), assume E ` P : H. This must have been derived from (Pro


GRes) with E;G ` P

0

j P

00

: H

0

and H = H

0

� fGg, followed by a

number of subsumption steps implying E;G ` P

0

j P

00

: G, whereG � H

0

by transitivity, and followed by (Pro
 Par) with E;G ` P

0

: G

0

and

E;G ` P

00

: G

00

, where G = G

0

[G

00

. By Lemma B.26, sin
e x =2 fg(P

0

),

we have E ` P

0

: G

0

. By (Pro
 GRes), E ` (�G)P

00

: G

00

� fGg. By

(Pro
 Par) we have E ` P

0

j (�G)P

00

: G� fGg. By (Pro
 Subsum) and

Lemma B.15, we get that E ` Q : H.

For (2), assume E ` Q : H. This must have been derived from (Pro
 Par),

with E ` P

0

: H

0

, E ` (�G)P

00

: H

00

and H = H

0

[ H

00

, followed by a

number of subsumption steps implying E ` (�G)P

00

: G, where G � H

00

by transitivity, and followed by (Pro
 GRes), with E;G ` P

00

: G

0

, where

G = G

0

�fGg. By Lemma B.17 we have G =2 dom(E) and by Lemma B.19

G =2 H

0

. By Lemma B.27, E;G ` P

0

: H

0

. By (Pro
 Par), E;G ` P

0

j

P

00

: (H

0

[ G

0

). By (Pro
 GRes), (Pro
 Subsum) and Lemma B.15, we

get that E ` (�G)(P

0

j P

00

) : H. Hen
e, E ` P : H. 2

The following is the subje
t redu
tion property for our extended �-
al
ulus.

A proof of Proposition 3.2, subje
t redu
tion for the unextended �-
al
ulus, 
an

be obtained by simplifying the following proof.

Proposition B.31 If E ` P : H and P ! Q then E ` Q : H.

Proof By indu
tion on the derivation of P ! Q.

(Red Intera
t) Then P = xhG

0

1

; : : : ; G

0

m

; y

0

1

; : : : ; y

0

n

i j x(G

1

; . . . , G

m

; y

1

:T

1

;

. . . , y

n

:T

n

):P

0

and Q = P

0

�fy

1

 y

0

1

g � � � fy

n

 y

0

n

g where � is the substi-

tution fG

1

 G

0

1

g � � � fG

m

 G

0

m

g.

Assume E ` P : H. By Lemma B.15, H � dom(E). The judgment

E ` P : H must have been derived from (Pro
 Par), with E ` xhG

0

1

; . . . ,

G

0

m

; y

0

1

; . . . , y

0

n

i : H

1

, and E ` x(G

1

; : : : ; G

m

; y

1

:T

1

; : : : ; y

n

:T

n

):P

0

: H

2

where H =H

1

[H

2

. The former must have been derived from a number

of subsumption steps implying E ` xhG

0

1

; : : : ; G

0

m

; y

0

1

; : : : ; y

0

n

i : H

3

, where

H

3

� H

1

, followed by (Pro
 Output), with E ` y

0

1

: T

1

�; � � � ; E ` y

0

n

: T

n

�,

and E ` x : G(G

1

; : : : ; G

m

)[T

1

; : : : ; T

n

℄nG, and:

fGg [G� = H

3

(2)

By Lemma B.20, the latter must have been derived from (Pro
 Input),

with E;G

1

; : : : ; G

m

; y

1

:T

1

, . . . , y

n

:T

n

` P

0

: H

4

and (H

4

�G)\ fG

1

; : : : ;

G

m

g = ?, followed by a number of subsumption steps implying fGg [

(H

4

�G) � H

2

� dom(E) by transitivity. In parti
ular, we have that:

(H

4

�G)� = (H

4

�G) � H

2

(3)
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By Lemma B.19, sin
e E ` xhG

0

1

; . . . , G

0

m

; y

0

1

; . . . , y

0

n

i, we have that

fG

0

1

; : : : ; G

0

m

g � dom(E). Then, by Lemma B.29 several times, it follows

that E; y

1

:T

1

�; : : : ; y

n

:T

n

� ` P

0

� : H

4

�. By Lemma B.28, E ` P

0

�

fy

1

 y

0

1

g � � � fy

n

 y

0

n

g : H

4

�.

By de�nition of set di�eren
e, H

4

� = (H

4

� G)� [ G�, and therefore

H

4

� = (fGg [ (H

4

�G)�) [ (fGg [G)�. Using the di�erent in
lusions

obtained in this item, and espe
ially equations 2 and 3, we get thatH

4

� �

(fGg[(H

4

�G)�)[(fGg[G�) � (H

2

[H

3

) � (H

2

[H

1

) = H � dom(E).

Then E ` Q : H.

(Red Par) Then P = P

0

j R and Q = Q

0

j R for some P

0

; Q

0

; R su
h that

P

0

! Q

0

. Assume E ` P : H. This must have been derived from (Pro


Par), with E ` P

0

: H

0

and E ` R : H

00

whereH = H

0

[H

00

. By indu
tion

hypothesis E ` Q

0

: H

0

. By (Pro
 Par), E ` Q

0

j R : H

0

[H

00

. Hen
e,

E ` Q : H.

(Red GRes) Then P = (�G)P

0

and Q = (�G)Q

0

for some P

0

; Q

0

su
h that

P

0

! Q

0

. Assume E ` P : H. This must have been derived from (Pro


GRes), with E;G ` P

0

: H

0

and H = H

0

�fGg. By indu
tion hypothesis,

E;G ` Q

0

: H

0

. By (Pro
 GRes), E ` Q : H.

(Red Res) Then P = (�x:T )P

0

and Q = (�x:T )Q

0

for some P

0

; Q

0

su
h that

P

0

! Q

0

. Assume E ` P : H. This must have been derived from (Pro


Res), with E; x:T ` P

0

: H. By indu
tion hypothesis, E; x:T ` Q

0

: H.

By (Pro
 Res), E ` Q : H.

(Red �) Then P � P

0

and Q � Q

0

for some P

0

; Q

0

su
h that P

0

! Q

0

. Assume

E ` P : H. By Lemma B.30, E ` P

0

: H. By indu
tion hypothesis,

E ` Q

0

: H. By Lemma B.30, E ` Q : H. 2

Next, we prove e�e
t soundness for our extended �-
al
ulus, the property

that the group of any barb of a pro
ess is in
luded in its e�e
t. This fa
t


orrespond to Proposition 3.3 for the unextended �-
al
ulus.

Proposition B.32 If E ` P : H and P # � with � 2 fx; xg then there is a type

G(G

1

; : : : ; G

m

)[T

1

; : : : ; T

n

℄nG su
h that E ` x : G(G

1

; : : : ; G

m

)[T

1

; : : : ; T

n

℄nG

and G 2 H.

Proof By indu
tion on the derivation of P # �.

(Barb Input) Then P = x(G

1

; : : : ; G

m

; y

1

:T

1

; : : : ; y

n

:T

n

):P

0

and � = x. As-

sume E ` P : H. This must have been derived from (Pro
 Input) with

E ` P : H

1

and E ` x : G(G

1

; : : : ; G

m

)[T

1

; : : : ; T

n

℄nG and G 2 H

1

followed by a number of subsumption steps implying H

1

� H. Hen
e

G 2 H.

(Barb Output) Then P = xhG

0

1

; : : : ; G

0

m

; y

0

1

; : : : ; y

0

n

i and � = x. Assume E `

P : H. This must have been derived from (Pro
 Output) with E ` P : H

1
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and E ` x : G(G

1

; : : : ; G

m

)[T

1

; : : : ; T

n

℄nG and H

1

= fGg [ G�, where

� is the substitution fG

1

 G

0

1

g � � � fG

m

 G

0

m

g, followed by a number of

subsumption steps implying H

1

� H. Hen
e, G 2 H.

(Barb GRes) Then P = (�G

0

)P

0

for some P

0

su
h that P

0

# �. Assume

E ` P : H. This must have been derived from (Pro
 GRes) with E `

P : H

1

and E;G

0

` P

0

: H

2

and H

1

= H

2

� fG

0

g, followed by a number

of subsumption steps implying H

1

� H. By indu
tion hypothesis, there

is a type W

�

= G(G

1

; : : : ; G

m

)[T

1

; : : : ; T

n

℄nG su
h that E ` x : W and

G 2 H

2

. Hen
e, G 2 H.

(Barb Res) Then P = (�y:T )P

0

for some y, P

0

su
h that x 6= y and P

0

# �.

Assume E ` P : H. This must have been derived from (Pro
 Res) with

E ` P : H

1

and E; y:T ` P

0

: H

1

, followed by a number of subsumption

steps implying H

1

� H. By indu
tion hypothesis, there is a type W

�

=

G(G

1

; : : : ; G

m

) [T

1

; : : : ; T

n

℄nG su
h that E; y:T ` x : W and G 2 H

1

.

Hen
e G 2 H. By Lemma B.25, E ` x : W .

(Barb Par) Then P = (P

0

j P

00

) with P

0

# �. Assume E ` P : H. This must

have been derived from (Pro
 Par) with E ` P : H

1

, and E ` P

0

: H

0

, and

E ` P

00

: H

00

, and H

1

= H

0

[H

00

, followed by a number of subsumption

steps implying H

1

� H. By indu
tion hypothesis, there is a type W

�

=

G(G

1

; : : : ; G

m

) [T

1

; : : : ; T

n

℄nG su
h that E ` x : W and G 2 H

0

. Hen
e,

G 2 H.

(Barb �) Then P � P

0

for some P

0

su
h that P

0

# �. Assume E ` P : H.

By Lemma B.30, E ` P

0

: H. By indu
tion hypothesis, there is a type

W

�

= G(G

1

; : : : ; G

m

) [T

1

; : : : ; T

n

℄nG su
h that E ` x : W and G 2 H. 2

B.3 Corre
tness of Type Erasure

In this se
tion, we study the relations between the typed and untyped version

of the �-
al
ulus de�ned in this paper. We prove Proposition B.38, whi
h gives

a simple 
orresponden
e between the redu
tions of a typed term, say P , and

the redu
tions of the untyped pro
ess obtained by erasing all type informa-

tions from P . The bene�t of this result is that it allows us to use the labelled

transtion semanti
s given in Appendix A.3 to reason about typed pro
ess. This

is parti
ularly useful be
ause, in 
ontrast with a labelled transition, a redu
tion

tells us nothing about the possible intera
tions of a pro
ess with an arbitrary

environment. Moreover, it is simpler to enumerate the possible transitions of a

pro
ess than its possible redu
tions.

Lemma B.33 For all typed pro
esses P and Q, if P � Q then erase(P ) �

erase(Q).

Proof An easy indu
tion on the derivation of P � Q. 2

Lemma B.34 For all typed pro
esses P , P # � if and only if erase(P ) # �.
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Proof An easy indu
tion on the derivations of P # � and erase(P ) # �. 2

If

~

G is a sequen
e G

1

; : : : ; G

n

of groups, let (�

~

G)P = (�G

1

) � � � (�G

n

)P . In

parti
ular, if n = 0, then (�

~

G)P = P .

Lemma B.35 Assume E ` P .

(1) If erase(P ) = Q j R then there exist two typed pro
esses, Q

0

, R

0

, and a

sequen
e of groups,

~

G, su
h that P = (�

~

G)(Q

0

j R

0

), and erase(Q

0

) = Q,

and erase(R

0

) = R.

(2) If E ` x : G(H

1

; : : : ; H

m

)[T

1

; : : : ; T

n

℄nH and erase(P ) = xhy

1

; : : : ; y

n

i

then there exist two sequen
es of groups,

~

G and G

0

1

; : : : ; G

0

m

, su
h that

P = (�

~

G)xhG

0

1

; : : : ; G

0

m

; y

1

; : : : ; y

n

i and fG

0

1

; : : : ; G

0

m

g � dom(E) [ f

~

Gg.

(3) If E ` x : G(H

1

; : : : ; H

m

)[T

1

; : : : ; T

n

℄nH and erase(P ) = x(y

1

; : : : ; y

n

):R

then there exist a typed pro
ess, Q, and a sequen
e of groups,

~

G, su
h that

erase(Q) = R and P = (�

~

G)x(H

1

; : : : ; H

m

; y

1

:T

1

; : : : ; y

n

:T

n

):Q.

(4) If erase(P ) = (�x)R then there exist a typed pro
ess, Q, a sequen
e,

~

G,

and a type, T , su
h that P = (�

~

G)(�x:T )Q, and erase(Q) = R.

(5) If erase(P ) = !R then there exist a typed pro
ess, Q, and a sequen
e,

~

G,

su
h that P = (�

~

G)!Q, and erase(Q) = R.

(6) If erase(P ) = 0 then there exists a sequen
e,

~

G, su
h that P = (�

~

G)0.

Proof An easy indu
tion on the stru
ture of P . 2

Lemma B.36 For all typed pro
esses, P , we have fn(erase(P )) = fn(P ).

Proof An easy indu
tion on the stru
ture of P . 2

Lemma B.37 If E ` P and erase(P )

�

�! R then there exists a typed pro
ess,

Q, su
h that P ! Q and erase(Q) = R.

Proof Assume E ` P . The lemma follows by showing that:

(1) If erase(P )

x

�! A and E ` x : G(H

1

; : : : ; H

m

)[T

1

; : : : ; T

n

℄nH, where A =

(y

1

; : : : ; y

n

)R, then there exist a typed pro
ess, Q, and a sequen
e,

~

G, su
h

that erase(Q) = R and P j xhG

0

1

; : : : ; G

0

m

; y

0

1

; : : : ; y

0

n

i ! (�

~

G)Q�fy

1

 y

0

1

g

� � � fy

n

 y

0

n

g for any sequen
es y

0

1

; . . . , y

0

n

, G

0

1

, . . . , G

0

m

, where E ` y

0

i

: T

i

�

for ea
h i 2 1::n and � = fH

1

 G

0

1

g � � � fH

m

 G

0

m

g.

(2) If erase(P )

x

�! A and E ` x : G(H

1

; : : : ; H

m

)[T

1

; : : : ; T

n

℄nH, where A =

(�~z)hy

1

; : : : ; y

n

iR, then there exist a typed pro
ess, Q, and two sequen
es

of groups,

~

G and G

0

1

; : : : ; G

0

m

, and types,

~

T , su
h that erase(Q) = R and

P � (�

~

G)(�~z:

~

T )(xhG

0

1

; : : : ; G

0

m

; y

1

; : : : ; y

n

i j Q) and E;

~

G;~z:

~

T ` y

i

: T

i

�

for ea
h i 2 1::n, where � = fH

1

 G

0

1

g � � � fH

m

 G

0

m

g.
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(3) If erase(P )

�

�! A then there exists a typed pro
ess, Q, su
h that P ! Q

and erase(Q) = A.

We pro
eed by indu
tion on the derivation of erase(P )

�

�! A.

(Trans In) Then � = x, erase(P ) = x(z

1

; : : : ; z

n

):R and A = (z

1

; : : : ; z

n

)R.

Assume E ` x : G(H

1

; : : : ; H

m

)[T

1

; : : : ; T

n

℄nH. By Lemma B.35, there ex-

ist a typed pro
ess, Q, and a sequen
e,

~

G, su
h that P = (�

~

G)x(H

1

; : : : ;

H

m

; z

1

:T

1

; : : : ; z

n

:T

n

):Q, and erase(Q) = R. By (Red Intera
t) and (Red

�), P j xhG

0

1

; : : : ; G

0

m

; y

0

1

; : : : ; y

0

n

i ! (�

~

G)Qfz

1

 y

0

1

g � � � fz

n

 y

0

n

g, as re-

quired.

(Trans Out) Then � = x, erase(P ) = xhy

1

; : : : ; y

n

i and A = (�)hy

1

; : : : ; y

n

i0,

that is R = 0. Assume E ` x : G(H

1

; : : : ; H

m

)[T

1

; : : : ; T

n

℄nH. By

Lemma B.35, there exists sequen
es,

~

G and G

0

1

; : : : ; G

0

m

, su
h that P =

(�

~

G)xhG

0

1

; : : : ; G

0

m

; y

1

; : : : ; y

n

i. Let Q be the typed pro
ess 0. Hen
e,

erase(Q) = 0 and, by (Stru
t Par Zero) and (Stru
t GRes), P is stru
-

turally equivalent to (�

~

G)(xhG

0

1

; : : : ; G

0

m

; y

1

; : : : ; y

n

i j 0), as required.

(Trans Inter 1) Then � = � and erase(P ) = (R

1

j R

2

), where R

1

x

�!

(z

1

; : : : ; z

n

)R

0

1

and R

2

x

�! (�~z)hy

1

; : : : ; y

n

iR

0

2

, and A = (�~z)(R

0

1

fz

1

 y

1

g

� � � fz

n

 y

n

g j R

0

2

). By Lemma B.35, there exist two typed pro
esses, P

1

,

P

2

, and a sequen
e,

~

G, su
h that P = (�

~

G)(P

1

j P

2

) and erase(P

i

) = R

i

for ea
h i 2 f1; 2g. Assume E ` x : G(H

1

; : : : ; H

m

)[T

1

; : : : ; T

n

℄nH.

By indu
tion hypothesis (1), there is a typed pro
ess, Q

1

, and a sequen
e,

~

G

1

, su
h that P

1

j xhG

0

1

; : : : ; G

0

m

; y

1

; : : : ; y

n

i ! (�

~

G

1

)Q

1

fH

1

 G

0

1

g � � �

fH

m

 G

0

m

gfz

1

 y

1

g � � � fz

n

 y

n

g and erase(Q

1

) = R

0

1

for any well-typed

sequen
es y

1

; : : : ; y

n

.

By indu
tion hypothesis (2), there is a typed pro
ess, Q

2

, sequen
es,

~

G

2

and G

0

1

; : : : ; G

0

m

, and types

~

T , su
h that P

2

� (�

~

G

2

)(�~z:

~

T )(xhG

0

1

; : : : ;

G

0

m

; y

1

; : : : ; y

n

i j Q

2

) and erase(Q

2

) = R

0

2

and E;

~

G;~z:

~

T ` y

i

: T

i

� for

ea
h i 2 1::n, where � = fH

1

 G

0

1

g � � � fH

m

 G

0

m

g.

Sin
e the names

~

G

2

and ~z are bound, we may assume f

~

G

2

g \ fg(P

1

) =

? and f~zg \ fn(P

1

) = ?. By (Stru
t GRes Par), (Stru
t Res Par),

(Stru
t GRes Res), and (Stru
t Par Asso
), P

1

j P

2

� (�

~

G

2

)(�~z:

~

T )((P

1

j

xhG

0

1

; : : : ; G

0

m

; y

1

; : : : ; y

n

i) j Q

2

). By (Red �), (Red Par), (Red Res) and

(Red GRes), P

1

j P

2

! (�

~

G

2

)(�~z:

~

T )((�

~

G

1

)Q

1

�fz

1

 y

1

g � � � fz

n

 y

n

g j

Q

2

). Let Q be the typed pro
ess (�

~

G)(�

~

G

2

)(�~z:

~

T )((�

~

G

1

)Q

1

�fz

1

 y

1

g

� � � fz

n

 y

n

g j Q

2

). By (Red GRes), P ! Q. By de�nition of the erasure

fun
tion, erase(Q) = (�~z)(erase(Q

1

)fz

1

 y

1

g � � � fz

n

 y

n

g j erase(Q

2

)).

Hen
e erase(Q) = A, as required.

Case (Trans Inter 2) is symmetri
.

(Trans Par 1) Then erase(P ) = R

1

j R

2

, where R

1

�

�! A

1

and A = A

1

j R

2

.

By Lemma B.35, there exist two typed pro
esses, P

1

, P

2

, and a sequen
e,
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~

G, su
h that P = (�

~

G)(P

1

j P

2

) and erase(P

i

) = R

i

for ea
h i 2 f1; 2g.

We pro
eed by 
ase analysis on the a
tion �.

(In) We have � = x and A

1

= (z

1

; : : : ; z

n

)R

0

1

. Assume E ` x : G(H

1

; : : : ;

H

m

)[T

1

; : : : ; T

n

℄nH. Sin
e the names z

1

; : : : ; z

n

are bound, we may

assume fz

1

; : : : ; z

n

g\ fv (R

2

) = ?. Hen
e, A = (z

1

; : : : ; z

n

)(R

0

1

j R

2

),

that is, R = R

0

1

j R

2

. By indu
tion hypothesis (1), there is a typed

pro
ess, Q

1

, and a sequen
e,

~

G

1

, su
h that erase(Q

1

) = R

0

1

and

P

1

j xhG

0

1

; : : : ; G

0

m

; y

0

1

; : : : ; y

0

n

i ! (�

~

G

1

)Q

1

�fz

1

 y

0

1

g � � � fz

n

 y

0

n

g for

any sequen
es G

0

1

; : : : ; G

0

m

; y

0

1

; : : : ; y

0

n

, where E ` y

0

i

: T

i

� for ea
h

i 2 1::n and � = fH

1

 G

0

1

g � � � fH

m

 G

0

m

g. Sin
e the groups

~

G

1

are

bound, we may assume f

~

G

1

g \ fv(R

2

) = ?. Let Q = Q

1

j P

2

. By

(Stru
t GRes Par), (Stru
t Par Asso
) and (Stru
t Par Comm), P j

xhG

0

1

; : : : ; G

0

m

; y

1

; : : : ; y

n

i � (�

~

G)((P

1

j xhG

0

1

; : : : ; G

0

m

; y

1

; : : : ; y

n

i) j

P

2

). By (Red �), (Red Par) and (Red GRes), P j xhG

0

1

; : : : ; G

0

m

; y

1

;

: : : ; y

n

i ! (�

~

G;

~

G

1

)Q�fz

1

 y

1

g � � � fz

n

 y

n

g. Moreover, erase(Q) =

erase(Q

1

) j erase(P

2

) = erase(R), as required.

(Out) We have � = x and A

1

= (�~z)hy

1

; : : : ; y

n

iR

0

1

. Assume E ` x :

G(H

1

; : : : ; H

m

)[T

1

; : : : ; T

n

℄nH. Sin
e the names ~z are bound, we

may assume f~zg \ fv (R

2

) = ?. Hen
e, A = (�~z)hy

1

; : : : ; y

n

i(R

0

1

j

R

2

), that is, R = R

0

1

j R

2

. By indu
tion hypothesis (2), there is

a typed pro
ess, Q

1

, sequen
es,

~

G

1

and G

0

1

; : : : ; G

0

m

, and types

~

T

su
h that erase(Q

1

) = R

0

1

and P

1

� (�

~

G

1

)(�~z:

~

T )(xhG

0

1

; : : : ; G

0

m

;

y

1

; : : : ; y

n

i j Q

1

) and E;

~

G;~z:

~

T ` y

i

: T

i

� for ea
h i 2 1::n, where

� = fH

1

 G

0

1

g � � � fH

m

 G

0

m

g. Sin
e the groups

~

G

1

are bound, we

may assume f

~

G

1

g\fv (R

2

) = ?. Let Q = Q

1

j P

2

. By (Stru
t GRes),

(Stru
t GRes Par), (Stru
t Res Par), (Stru
t Par Asso
) and (Stru
t

Par Comm), P � (�

~

G;

~

G

1

)(�~z:

~

T )(xhG

0

1

; : : : ; G

0

m

; y

1

; : : : ; y

n

i j Q).

Moreover, erase(Q) = erase(Q

1

) j erase(P

2

) = erase(R), as required.

(Tau) We have � = � . By indu
tion hypothesis (3), there is a typed

pro
ess, Q

1

, su
h that erase(Q

1

) = A

1

and P

1

! Q

1

. Let Q =

Q

1

j P

2

. By (Red Par), P ! Q. Moreover, erase(Q) = erase(Q

1

) j

erase(P

2

) = erase(A), as required.

Cases (Trans Par 2) and (Trans Res) are similar.

(Trans Repl) Then erase(P ) = !S where S j !S

�

�! A. By Lemma B.35, there

exist a typed pro
ess, P

0

and a sequen
e,

~

G

0

, su
h that P = (�

~

G

0

)!P

0

and erase(P

0

) = S. Therefore, we have a derivation of erase((�

~

G

0

)(P

0

j

!P

0

))

�

�! A and, by (Stru
t Repl Par) and (Stru
t GRes), (�

~

G

0

)(P

0

j

!P

0

) � P . We pro
eed by 
ase analysis on the a
tion �.

(In) We have � = x and A = (z

1

; : : : ; z

n

)R. Assume E ` x : G(H

1

; : : : ;

H

m

)[T

1

; : : : ; T

n

℄nH. By indu
tion hypothesis (1), there is a typed

pro
ess,Q, and a sequen
e,

~

G, su
h that erase(Q) = R and (�

~

G

0

)(P

0

j
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!P

0

) j xhG

0

1

; : : : ; G

0

m

; y

1

; : : : ; y

n

i ! (�

~

G)Q�fz

1

 y

1

g � � � fz

n

 y

n

g for

any well-typed sequen
es G

0

1

; : : : ; G

0

m

; y

1

; : : : ; y

n

with � = fH

1

 G

0

1

g

� � � fH

m

 G

0

m

g. By (Stru
t Par) and (�

~

G

0

)(P

0

j !P

0

) � P , we get that

P j xhG

0

1

; : : : ; G

0

m

; y

1

; : : : ; y

n

i ! (�

~

G)Q� fz

1

 y

1

g � � � fz

n

 y

n

g, as

required.

(Out) We have � = x and A = (�~z)hy

1

; : : : ; y

n

iR. Assume E ` x :

G(H

1

; : : : ; H

m

)[T

1

; : : : ; T

n

℄nH. By indu
tion hypothesis (2), there

is a typed pro
ess, Q, sequen
es,

~

G and G

0

1

; : : : ; G

0

m

, and types

~

T ,

su
h that erase(Q) = R and (�

~

G

0

)(P

0

j !P

0

) � (�

~

G)(�~z:

~

T )(xhG

0

1

;

: : : ; G

0

m

; y

1

; : : : ; y

n

i j Q) and y

1

; : : : ; y

n

are well-typed. Hen
e, By

(Stru
t Trans) and (�

~

G

0

)(P

0

j !P

0

) � P , we get that P � (�

~

G)(�~z:

~

T )

(xhG

0

1

; : : : ; G

0

m

; y

1

; : : : ; y

n

i j Q), as required.

(Tau) We have � = � . By indu
tion hypothesis (3), there is a typed

pro
ess, Q, su
h that erase(Q) = R and (�

~

G

0

)(P

0

j !P

0

) ! Q. By

(Red �) and (�

~

G

0

)(P

0

j !P

0

) � P , we get that P ! Q. 2

The following asserts that the redu
tions of a typed pro
ess, of our extend-

ing �-
al
ulus, a

ording to the typed operational semanti
s are equivalent to

the redu
tions of the untyped erasure of the pro
ess a

ording to the untyped

operational semanti
s. A proof of Proposition 3.1, a similar property for the

unextended �-
al
ulus, 
an be obtained by simplifying the following proof.

Proposition B.38 For all typed pro
esses P and Q, if P ! Q then erase(P )!

erase(Q). If E ` P and erase(P )! R then there is a typed pro
ess Q su
h that

P ! Q and R � erase(Q).

Proof The �rst impli
ation is proved by a simple indu
tion on the derivation

of P ! Q, with appeal to Lemma B.33.

Assume E ` P and erase(P )! R. By Proposition A.1, there is an untyped

pro
ess S su
h that erase(P )

�

�! S and S � R. By Lemma B.37, there exists

a typed pro
ess Q su
h that P ! Q and erase(Q) = S. By (Stru
t Trans),

erase(Q) � R, as required. 2

Next, we show that if the erasure of two typed pro
esses are equivalent,

a

ording to the untyped barbed 
ongruen
e de�ned in Appendix A.4, then

these pro
esses are barbed 
ongruent.

Proposition B.39 If E ` P and E ` Q and erase(P ) � erase(Q) then E `

P � Q.

Proof Let S be the relation on typed pro
esses su
h that E ` P S Q if and

only if E ` P and E ` Q and erase(P ) � erase(Q). We prove that S is a

bisimulation.

(1) Assume E ` P S Q. By de�nition, we get that E ` P and E ` Q

and erase(P ) � erase(Q). By Proposition A.4 (1), erase(Q) � erase(P ).

Hen
e, E ` Q S P .
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(2) Assume E ` P S Q and P # x. By Lemma B.34, erase(P ) # x. Sin
e

erase(P ) � erase(Q), we get that erase(Q) + x. By Lemma B.37 several

times, there is a typed pro
ess R su
h that Q!

�

R and erase(R) # x. By

Lemma B.34, Q + x, as required.

(3) Assume E ` P S Q and P ! P

0

. By Proposition 3.1, erase(P ) !

erase(P

0

). Sin
e erase(P ) � erase(Q), we get that erase(Q) !

�

R

for some untyped pro
ess R su
h that R � erase(P

0

). By Proposi-

tion 3.1 several times, there is a typed pro
ess Q

0

su
h that Q !

�

Q

0

and erase(Q

0

) � R. By Propositions A.4 (1) and A.4 (4), we get that

erase(Q

0

) � erase(P

0

). By Proposition 3.2, E ` P

0

and E ` Q

0

. Hen
e,

E ` P

0

S Q

0

, as required.

Sin
e S is a bisimulation, we get that E ` P and E ` Q and erase(P ) �

erase(Q) implies E ` P

�

� Q.

Assume E ` P and E ` Q and erase(P ) � erase(Q). Let R be an arbitrary

pro
ess and � be an arbitrary E-renaming and E

0

be an environment su
h that

E�;E

0

` R. In parti
ular, by Lemma B.16, it must be the 
ase that E�;E

0

` �.

By Lemmas B.27 and B.28, E�;E

0

` P�. By (Pro
 Par), E�;E

0

` (P� j R)

and E�;E

0

` (Q� j R). Moreover, erase(P� j R) = erase(P )� j erase(R) and

erase(Q� j R) = erase(Q)� j erase(R). Sin
e the untyped barbed 
ongruen
e,

�, is 
losed by substitution and parallel 
omposition (see Propositions A.4 (2)

and A.4 (3)), we get that erase(P� j R) � erase(Q� j R). Hen
e, E�;E

0

`

(P� j R)

�

� (Q� j R), as required. 2

B.4 Properties of Barbed Congruen
e

In this se
tion we study some properties of typed barbed 
ongruen
e. We prove

Lemma B.40, that stru
turally equivalent pro
esses of the extended �-
al
ulus

are barbed 
ongruent. This fa
t 
orresponds to Proposition 3.4 (4), for the un-

extended �-
al
ulus. We also prove Proposition B.46, that barbed 
ongruen
e

is indeed a 
ompositional equivalen
e relation. The proof of this property relies

on Lemma B.45, that barbed 
ongruen
e is preserved by arbitrary substitutions

of groups for groups. It also relies on the fa
t that, by de�nition, barbed 
on-

gruen
e is preserved by E-renamings, that is substitution of names for names

that 
annot identify names with di�erent types.

Lemma B.40 If P � Q and E ` P then E ` P � Q

Proof Let S be the smallest relation on typed pro
esses that 
ontains � and

su
h that E ` P S Q if P � Q and E ` P . The relation S is a well-de�ned

relation on typed pro
esses sin
e � is a relation on typed pro
esses and if P � Q

and E ` P then, by Proposition B.31, E ` Q. Note that S is symmetri
. We

prove that S is a barbed bisimulation. The only interesting 
ase is when E ` P

and P � Q.

(1) Assume P # �. By rule (Barb �), Q # �, as required.
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(2) Assume P ! P

0

. By (Red �), Q! P

0

and, sin
e � is re�exive, P

0

S P

0

,

as required.

Therefore S is a barbed bisimulation and for all pro
esses P;Q su
h that E ` P

and P � Q, we get that E ` P

�

� Q.

Assume E ` P and P � Q. Let R be an arbitrary typed pro
ess, � be

an arbitrary E-renaming and E

0

be an environment su
h that E;E

0

` R. By

Lemma B.28 several times and rule (Stru
t Par), E�;E

0

` P� j R and P� j

R � Q� j R. Therefore, E�;E

0

` P� j R

�

� Q� j R. Hen
e, E ` P � Q, as

required. 2

We show that barbed 
ongruen
e for the extended �-
al
ulus is 
losed by

E-renamings, that is substitutions of names for names that respe
t types. This

fa
t 
orresponds to Proposition 3.4 (3), for the unextended �-
al
ulus.

Lemma B.41 If E ` P � Q and � is an E-renaming then E� ` P� � Q�.

Proof Assume E ` P � Q and � is an E-renaming. By de�nition, E�;E

0

`

P� j R � Q� j R for any pro
ess R su
h that E�;E

0

` R. Sin
e E� ` 0, we

get that E� ` P� j 0 � Q� j 0. By Lemma B.40 and transitivity of �, sin
e

P� j 0 � P� and Q� j 0 � Q, we get that E� ` P� � Q�. 2

Next, we prove Lemmas B.42 and B.43, that stru
tural equivalen
e and

redu
tion are preserved by arbitrary substitution of groups for groups. These

properties are used in the proof of Lemma B.44, that barbed 
ongruen
e is

preserved by substitutions of groups for groups.

Lemma B.42 If P � P

0

then PfG G

0

g � P

0

fG G

0

g.

Proof An easy indu
tion on the derivation of P � P

0

. 2

Lemma B.43 If P ! P

0

then PfG G

0

g ! P

0

fG G

0

g.

Proof An easy indu
tion on the derivation of P ! P

0

, with appeal to

Lemma B.42. 2

The following shows that barbed 
ongruen
e is preserved by substitution

of groups. This fa
t agrees with our previous observation that types do not

interfere with the operational behaviour of pro
esses, see Proposition B.38.

Lemma B.44 If E;G;E

0

` P � Q and G

0

2 dom(E) then E;E

0

fG G

0

g `

PfG G

0

g � QfG G

0

g.

Proof Let S be the smallest relation on typed pro
esses that 
ontains �

and su
h that E;E

0

fG G

0

g ` PfG G

0

g S QfG G

0

g if E;G;E

0

` P � Q

and G

0

2 dom(E). Assume E;G;E

0

` P and G

0

2 dom(E). By Lemma B.29,

E;E

0

fG G

0

g ` PfG G

0

g. Therefore, if E;G;E

0

` P � Q then the pro
esses

PfG G

0

g and QfG G

0

g are well-typed in the environment E;E

0

fG G

0

g.

Hen
e, S is a relation on typed pro
esses. Next, we prove that S is a barbed

bisimulation. The only interesting 
ase is when E;E

0

fG G

0

g ` PfG G

0

g S

QfG G

0

g, where E;G;E

0

` P � Q. Note that S is symmetri
.
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(1) Assume PfG G

0

g # x. By Lemma B.34, erase(PfG G

0

g) # x, that

is, erase(P ) # x. By Lemma B.34 again, P # x. Sin
e P and Q are

barbed 
ongruent, Q + x. By Lemma B.34 several times, sin
e erase(Q) =

erase(Q)fG G

0

g, we get that QfG G

0

g + x.

(2) Assume PfG G

0

g ! P

0

. By Lemma B.43, P ! P

0

fG

0

 Gg. Sin
e P

and Q are barbed 
ongruent, Q!

�

Q

0

with E;G;E

0

` Q

0

� P

0

fG

0

 Gg.

By Lemma B.43 several times, QfG G

0

g !

�

Q

0

fG G

0

g. By de�nition,

E;E

0

fG G

0

g ` Q

0

fG G

0

g S P

0

, as required.

Therefore S is a barbed bisimulation and if E;G;E

0

` P � Q and G

0

2 dom(E)

then E;E

0

fG G

0

g ` PfG G

0

g

�

� QfG G

0

g. Let R be an arbitrary typed

pro
ess, � be an arbitrary (E;E

0

fG G

0

g)-renaming and E

00

be an environ-

ment su
h that E;E

0

fG G

0

g; E

00

` R. Assume E;G;E

0

` P � Q. By

Lemma B.29 and (Pro
 Par), E;G;E

0

; E

00

fG

0

 Gg ` P� j RfG

0

 Gg � Q� j

RfG

0

 Gg. Then E;E

0

fG G

0

g; E

00

` PfG G

0

g� j R � QfG G

0

g� j R.

Hen
e, E;E

0

fG G

0

g ` PfG G

0

g � QfG G

0

g. 2

We introdu
e some new notations to simplify the presentation of the fol-

lowing properties. If E is a type environment G

1

; : : : ; G

m

; y

1

:T

1

; : : : ; y

n

:T

n

,

let x(E):P be the pro
ess x(G

1

; : : : ; G

m

; y

1

:T

1

; : : : ; y

n

:T

n

):P . In parti
ular,

x(?):P = x():P . If � is a substitution of groups for groups, the environment E�

is de�ned as follows: ?�

�

= ?; (E

0

; x:T )�

�

= E

0

�; x:T�; (E

0

; G)�

�

= E

0

�; �(G) if

�(G) =2 dom(E

0

�), and E

0

� otherwise.

A 
orollary of Lemma B.44 is the following property.

Lemma B.45 If E ` P � Q and � is a substitution of groups for groups then

E� ` P� � Q�.

Next, we prove that barbed 
ongruen
e for the extended �-
al
ulus satis�es

the 
ongruen
e property. This fa
t 
orresponds to Proposition 3.4 (2), for the

unextended �-
al
ulus.

Proposition B.46

(1) Let E

0

be the environment G

1

; : : : ; G

m

; y

1

:T

1

; : : : ; y

n

:T

n

. If E;E

0

` P � Q

then E ` x(E

0

):P � x(E

0

):Q.

(2) If E ` P � Q and E ` R then E ` P j R � Q j R.

(3) If E; x:T ` P � Q then E ` (�x:T )P � (�x:T )Q.

(4) If E;G ` P � Q then E ` (�G)P � (�G)Q.

(5) If E ` P � Q then E ` !P � !Q.

Proof For the sake of brevity, we only prove the 
ase for input pre�x, whi
h

is the most di�
ult 
ase. The proofs for the other 
ases are similar. As in

the proof of Lemma B.40, the property follows by de�ning a 
andidate barbed
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bisimulation, S, that is 
losed by renamings and parallel 
omposition. Let

S be the smallest relation on typed pro
esses that 
ontains � and su
h that

E ` x(E

0

):P j R S x(E

0

):Q j R for all pro
esses P;Q;R su
h that E;E

0

`

P � Q and E ` R. Note that S is a symmetri
 relation on typed pro
esses.

We prove that S is a barbed bisimulation. The only interesting 
ase is when

E ` x(E

0

):P j R S x(E

0

):Q j R, where E;E

0

` P � Q.

(1) Assume x(E

0

):P j R # x. By Lemma B.34, Proposition A.3 and inspe
tion

of the possible transitions, it must be the 
ase that R # x. By (Barb Par)

and (Barb �), sin
e R # x, we get that x(E

0

):Q j R # x, as required.

(2) Assume x(E

0

):P j R ! P

0

. Suppose E

0

is the type environment G

1

; : : : ;

G

m

; y

1

:T

1

; : : : ; y

n

:T

n

. By Propositions B.38 and A.1 and inspe
tion of the

possible transitions, either (1) R ! R

0

and P

0

� x(E

0

):P j R

0

, or (2)

R � (�E

00

)(xhH

1

; : : : ; H

m

; z

1

; : : : ; z

n

i j R

0

) and P

0

� (�E

00

)(P�

G

�

y

j R

0

)

with �

G

= fG

1

 H

1

g � � � fG

m

 H

m

g and �

y

= fy

1

 z

1

g � � � fy

n

 z

n

g.

For (1), by (Red Par), x(E

0

):Q j R! x(E

0

):Q j R

0

. By Proposition B.31,

E ` R

0

. Hen
e, E ` x(E

0

):P j R

0

S x(E

0

):Q j R

0

, as required.

For (2), let Q

0

be the pro
ess (�E

00

)(Q�

G

�

y

j R

0

). By (Red Intera
t),

(Red Par) and (Red �), x(E

0

):Q j R ! Q

0

. By Lemma B.45, sin
e

E;E

0

` P � Q, we get that (E;E

0

)�

G

` P�

G

� Q�

G

. Sin
e the names in

E

0

and E

00

are bound, we 
an assume that dom(E

0

) \ dom(E

00

) = ?. By

Lemma B.27 several times and sin
e E;E

00

` xhH

1

; : : : ; H

m

; z

1

; : : : ; z

n

i j

R

0

, we get that E

000

` P�

G

� Q�

G

, where E

000

is the type environment

E;E

00

; y

1

:T

1

�

G

; : : : ; y

n

:T

n

�

G

. Sin
e E ` x(E

0

):P j R, E ` x(E

0

):Q j R

and E;E

00

` xhH

1

; : : : ; H

m

; z

1

; : : : ; z

n

i j R

0

, the substitution �

y

is an

E

000

-renaming. By Lemma B.41, sin
e (E;E

0

)�

G

` P�

G

� Q�

G

and

z

i

2 dom(E;E

00

) for ea
h i 2 1::n, we get that E;E

00

` P�

G

�

y

� Q�

G

�

y

.

Therefore, using laws (2), (3) and (4), we get that E ` (�E

00

)(P�

G

�

y

j

R

0

) � (�E

00

)(Q�

G

�

y

j R

0

). Hen
e, sin
e the relation � (and then also �)

is in S, we get that E ` P

0

S Q

0

, as required.

Therefore S is a barbed bisimulation and if E;E

0

` P � Q then E ` x(E

0

):P j

R

�

� x(E

0

):Q j R for any pro
ess R su
h that E ` R. Assume E;E

0

` P � Q.

Let R be an arbitrary typed pro
ess, � be an arbitrary E-renaming and E

00

be

an environment su
h that E;E

00

` R. Sin
e the names in E

0

are bound we 
an

assume that dom(E

0

) \ dom(E

00

) = ?. Therefore, by Lemmas B.27 and B.28,

E�;E

00

; E

0

` P� � Q�, and then E�;E

00

` x(E

0

):P� j R

�

� x(E

0

):Q� j R.

Hen
e, E ` x(E

0

):P � x(E

0

):Q, as desired. 2

B.5 Garbage Colle
tion for the �-Cal
ulus

In this se
tion we prove Theorem B.53, the garbage 
olle
tion prin
iple used

to prove the soundness of the region analysis. This property follows from sev-

eral intermediate lemmas that prove that pro
esses with non-interse
ting e�e
ts


annot intera
t. For example, Lemma B.50 shows that these pro
esses 
annot
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syn
hronize. In the sense that their parallel 
omposition do not introdu
e new

silent transitions.

Next, we give three properties of barbs that will prove useful in the proof of

Lemma B.52.

Lemma B.47 For any pro
ess P , if (�G)P # � then P # �. If (�y:T )P # �

then P # � with � 2 fx; xg and x 6= y.

Lemma B.48 For any pro
esses P;Q, if (P j Q) # � then P # � or Q # �.

Lemma B.49 For any pro
esses R, if E;G;E

0

` R : fGg and R # � and

� 2 fx; xg then x 2 dom(E

0

).

Proof Assume E;G;E

0

` R : fGg and R # � and � 2 fx; xg. By Proposi-

tion B.32, there is a type T = G(G

1

; : : : ; G

m

)[T

1

; : : : ; T

n

℄nG su
h that E ` x : T .

Sin
e E;G;E

0

` R : fGg, we have E;G;E

0

` �. Therefore, we get that

G =2 dom(E). Hen
e, x 2 dom(E

0

). 2

Lemma B.50 For any pro
esses P and R su
h that E;G;E

0

` P : H and

E;G;E

0

` R : fGg and G =2 H, if erase(P j R)

�

�! A then there is an agent A

0

su
h that erase(P )

�

�! A

0

and A = A

0

j erase(R), or su
h that erase(R)

�

�! A

0

and A = erase(P ) j A

0

.

Proof Assume E;G;E

0

` P : H and E;G;E

0

` R : fGg and G =2 H and

erase(P ) j erase(R)

�

�! A. We pro
eed by 
ase analysis on the last rule used

to derived this redu
tion. We prove that the only possible rules are (Trans Par

1) and (Trans Par 2).

(Trans Par 1) Then erase(P )

�

�! A

0

with A = A

0

j erase(R).

(Trans Par 2) Then erase(R)

�

�! A

0

with A = erase(P ) j A

0

.

(Trans Inter 1) Then � = � and erase(P )

x

�! F and erase(R)

x

�! C and

A = F�C. By Proposition A.3 and Lemma B.34, and sin
e erase(R)

x

�!

C, it must be the 
ase that R # x. Therefore, by Proposition B.32, there

is a type T = G(G

1

; : : : ; G

m

)[T

1

; : : : ; T

n

℄nG su
h that E;G;E

0

` x : T .

Symmetri
ally, using Proposition A.3, Lemma B.34, and the transition

erase(P )

x

�! F , we prove that P # x. Therefore, by Proposition B.32,

there is a type T

0

= G

0

(G

0

1

; : : : ; G

0

m

0

)[T

0

1

; : : : ; T

0

n

0

℄nG

0

su
h that G

0

2 H.

By Lemma B.20, it must be the 
ase that G equals G

0

, whi
h 
ontradi
ts

G =2 H. Case (Trans Inter 2) is symmetri
. 2

Lemma B.51 For any pro
esses P and R su
h that E;G;E

0

` P : H and

E;G;E

0

` R : fGg and G =2 H, if P j R ! Q then there is a pro
ess P

0

su
h

that P ! P

0

and Q � P

0

j R, or there is a pro
ess R

0

su
h that R ! R

0

and

Q � P j R

0

.
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Proof Assume P j R ! Q. By Proposition A.1, there is a pro
ess S su
h

that erase(P ) j erase(R)

�

�! S and erase(Q) � S. By Lemma B.50, there is

an agent A

0

su
h that erase(P )

�

�! A

0

and S = A

0

j erase(R), or su
h that

erase(R)

�

�! A

0

and S = erase(P ) j A

0

. By Propositions A.1 and 3.1 we get

that, in the �rst 
ase, there exists P

0

su
h that P ! P

0

and Q � P

0

j R and, in

the latter 
ase, there is R

0

su
h that R! R

0

and Q � P j R

0

. 2

Lemma B.52 For any pro
esses P , R su
h that E;G;E

0

` R : fGg and

E;G;E

0

` P : H and G =2 H, we have: E ` (�G)(�E

0

)(P j R)

�

� (�G)(�E

0

)P .

Proof To show that (�G)(�E

0

)(P j R) and (�G)(�E

0

)P are barbed bisimilar,

and hen
e prove the lemma, we de�ne a barbed bisimulation, S, su
h that

E ` (�G)(�E

0

)(P j R) S (�G)(�E

0

)P . Let S be the smallest symmetri
 relation

on typed pro
esses su
h that E ` (�G)(�E

0

)(P j R) S (�G)(�E

0

)P for all

pro
esses P;R su
h that E;G;E

0

` P : H and E;G;E

0

` R : fGg and G =2 H.

We prove that S is a barbed bisimulation.

Consider any pro
esses P and R su
h that E;G;E

0

` P : H and E;G;E

0

`

R : fGg and G =2 H.

(1) By (Pro
 Par), (Pro
 GRes) and (Pro
 Res), E ` (�G)(�E

0

)(P j R) :

(H [ fGg)� dom(G;E

0

) and E ` (�G)(�E

0

)P : H� dom(G;E

0

). Hen
e,

E ` (�G)(�E

0

)(P j R) and E ` (�G)(�E

0

)P .

(2) Suppose (�G)(�E

0

)(P j R) # x. By Lemma B.47, (P j R) # x with

x =2 dom(E

0

). By Lemma B.48, P # x or R # x. In the se
ond 
ase,

by Lemma B.49, we get that x 2 dom(E

0

), whi
h 
ontradi
ts the fa
t

that x =2 dom(E

0

). Hen
e, P # x and, by (Barb Res) several times,

(�G)(�E

0

)P # x, as required.

(3) Suppose (�G)(�E

0

)P # x. By Lemma B.47, P # x with x =2 dom(E

0

). By

(Barb Par) and (Barb Res), (�G)(�E

0

)(P j R) # x, as required.

(4) Suppose (�G)(�E

0

)(P j R) ! Q. By Lemma A.2, there is a pro
ess Q

0

su
h that (P j R) ! Q

0

and Q � (�G)(�E

0

)Q

0

. By Lemma B.51, there

is a pro
ess P

0

su
h that P ! P

0

and Q

0

� P

0

j R, or there is a typed

pro
ess R

0

su
h that R! R

0

and Q

0

� P j R

0

. We 
onsider �rst the 
ase

where the redu
tion 
omes from P .

� Assume P ! P

0

and Q

0

� P

0

j R. By (Red Res) and (Red GRes),

(�G)(�E

0

)P ! (�G)(�E

0

)P

0

andQ � (�G)(�E

0

)(P

0

j R). By Propo-

sition 3.2, E;G;E

0

` P

0

: H. Hen
e, E ` Q �S� (�G)(�E

0

)P

0

, as

required.

We 
onsider now the 
ase where the redu
tion 
omes from R.

� Assume R ! R

0

and Q

0

� P j R

0

. By (Red Res) and (Red GRes),

Q � (�G)(�E

0

)Q

0

� (�G)(�E

0

)(P j R

0

). By Proposition 3.2, we get

that E;G;E

0

` R

0

: fGg. Therefore E ` Q �S� (�G)(�E

0

)P , as

required.
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(5) Suppose (�G)(�E

0

)P ! Q. By Lemma A.2, there is a pro
ess P

0

su
h

that P ! P

0

and Q � (�G)(�E

0

)P

0

. By (Red Par), (Red Res) and (Red

GRes), (�G)(�E

0

)(P j R) ! (�G)(�E

0

)(P

0

j R). By Proposition 3.2,

E;G;E

0

` P

0

: H. Hen
e, E ` Q �S� (�G)(�E

0

)(P

0

j R), as required.

Hen
e, S is a barbed bisimulation and E ` (�G)(�E

0

)(P j R)

�

� (�G)(�E

0

)P .

2

The following is the garbage 
olle
tion prin
iple for our extended �-
al
ulus.

A proof of Theorem 4.3, garbage 
olle
tion for the unextended �-
al
ulus, 
an

be obtained by simplifying the following proof.

Theorem B.53 Suppose E;G;E

0

` P : H and E;G;E

0

` R : fGg where

G =2 H. Then E ` (�G)(�E

0

)(P j R) � (�G)(�E

0

)P .

Proof To show that (�G)(�E

0

)(P j R) and (�G)(�E

0

)P are barbed 
ongru-

ent, and hen
e prove the theorem, we 
onsider an arbitrary pro
ess Q, type

environment E

00

and E-renaming � su
h that E�;E

00

` Q, and show that

E�;E

00

` (�G)(�E

0

)(P j R)� j Q

�

� ((�G)(�E

0

)P )� j Q.

Assume E�;E

00

` Q : G. Sin
e the names in dom(G;E

0

) are bound, we

may assume that dom(G;E

0

)\ (dom(E

00

)[dom(�)[ran(�)) = ?. Hen
e, sin
e

fv(Q) � dom(E�;E

00

) andG � dom(E�;E

00

), we get that fv(Q)\dom(G;E

0

) =

G \ dom(G;E

0

) = ? and G =2 G. By Lemma B.28 several times, and sin
e

E;G;E

0

` P : H, we get that E�;E

00

; G;E

0

` P� : H. By Lemma B.27,

E�;E

00

; G;E

0

` Q : G. By (Pro
 Par), E�;E

00

; G;E

0

` (P� j Q) : G [H with

G =2 G[H. Sin
e dom(G;E

0

)\ (dom(E

00

)[dom(�)[ran(�)) = ?, we get that:

(�G)(�E

0

)(P j R)� j Q � (�G)(�E

0

)(P� j Q j R�)

((�G)(�E

0

)P )� j Q � (�G)(�E

0

)(P� j Q)

By Lemma B.52, E�;E

0

` (�G)(�E

0

)(P j R)� j Q

�

� ((�G)(�E

0

)P )� j Q, as

required. 2

B.6 Properties of the En
oding

In this se
tion we prove the soundness of the region analysis for the extended

region 
al
ulus. For the sake of 
larity, this proof is divided into simpler goals

as follows.

In Se
tion B.6.1, we prove that our en
oding of the extended region 
al
ulus

in the extended �-
al
ulus preserves the stati
 semanti
s given in Se
tions 6.1.

In Se
tion B.6.3, we prove Theorem B.67, a similar result for the dynami


semanti
s. Results of dynami
 adequa
y are often di�
ult to prove dire
tly

when the sour
e 
al
ulus is de�ned with a big-step semanti
s. To 
ir
umvent

this di�
ulty, we follow a standard method and de�ne an equivalent small-step

semanti
s for the region 
al
ulus. This semanti
s is given in Se
tion B.6.2 where

we also prove Theorem B.62, whi
h relates small-steps and big-steps redu
tions.

In Se
tion B.6.4, we prove that defun
t regions make no di�eren
e to the be-

haviour of a vell-typed program. This result is essentially based on the garbage
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olle
tion theorem proved in Se
tion B.5, whi
h is used to prove that the en-


oding of a well-typed 
on�guration is behaviourally equivalent to the pro
ess

obtained by erasing from the memory heap all the referen
es stored in defun
t

regions.

B.6.1 Proof of Stati
 Adequa
y

We prove a series of properties, Lemma B.54 to B.58, that 
orrespond to the

properties listed in Theorem 4.1 for the unextended 
al
uli.

Lemma B.54

(1) If E ` � then [[E℄℄ ` �.

(2) If E ` A then [[E℄℄ ` [[A℄℄.

Proof Part (1) follows easily by indu
tion on the derivation of E ` �. We

prove part (2) by indu
tion on the derivation of E ` A.

(Type Lit) Then A = Lit , and [[A℄℄ = Lit [℄. By de�nition, Lit 2 dom([[?℄℄).

By part (1), [[E℄℄ ` �. By (Type Chan), [[E℄℄ ` Lit [℄.

(Type !) Then A = (8[�

1

; : : : ; �

n

℄B

1

e

! B

2

) at �, where E

0

= E; �

1

; : : : ; �

n

,

and E

0

` B

1

, and e � dom(E

0

), and E

0

` B

2

, and � 2 dom(E).

By indu
tion hypothesis, [[E℄℄; �

1

; : : : ; �

n

` [[B

i

℄℄ for ea
h i 2 f1; 2g. By

(Type Chan), sin
e � 2 dom([[E℄℄), we get that [[E℄℄ ` �(�

1

; : : : ; �

n

)[[[B

1

℄℄;

K[[[B

2

℄℄℄℄n(e [ fKg), as required.

(Type List) Then A = [B℄ at �, where E ` B and � 2 dom(E). By in-

du
tion hypothesis, [[E℄℄ ` [[B℄℄. By de�nition, [[A℄℄ is the re
ursive type

�(X)[�[℄; �[[[B℄℄; X ℄℄. Sin
e the name X is bound, we may assume that

X =2 dom(E). By Lemma B.27, [[E℄℄; X ` [[B℄℄. By (Type Chan), sin
e

� 2 dom([[E℄℄), [[E℄℄; X ` �[[[B℄℄; X ℄. By (Type Chan) and (Type Re
),

[[E℄℄ ` [[A℄℄, as required. 2

Lemma B.55

(1) If E ` x :

?

A then [[E℄℄ ` x : [[A℄℄.

(2) If E ` a :

e

A and k =2 L [ dom(E) then [[E℄℄; k:K[[[A℄℄℄ ` [[a℄℄k : e [ fKg.

Proof Part (1) follows easily by indu
tion on the stru
ture of E. We prove

part (2) by indu
tion on the derivation of E ` a :

e

A. Re
all that G[T

1

; : : : ; T

n

℄

is a shorthand for the type G()[T

1

; : : : ; T

n

℄n?.

(Exp x) Then a = x and E = E

1

; x:A;E

2

and e = ?. Assume k =2 L [

dom(E). By part (1), [[E℄℄ ` x : [[A℄℄. By (Pro
 Output) and Lemma B.27,

[[E℄℄; k:K[[[A℄℄℄ ` khxi : fKg, as required.
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(Exp l) Then a = l, where l 2 L and A = Lit . By de�nition, [[E℄℄ ` l :

Lit [℄. Assume k =2 L [ dom(E). By (Pro
 Output) and Lemma B.27,

[[E℄℄; k:K[[[A℄℄℄ ` khli : fKg, as required.

(Exp Appl) Then a = x[�

0

1

; : : : ; �

0

n

℄(y) and e = f�g [ e

0

�, with E ` x :

?

F

and E ` y :

?

B

1

� and F = (8[�

1

; : : : ; �

n

℄B

1

e

0

! B

2

) at � and � =

f�

1

 �

0

1

g � � � f�

n

 �

0

n

g and A = B

2

� and f�

0

1

; : : : ; �

0

n

g � dom(E). By

part (1), [[E℄℄ ` x : [[F ℄℄ and [[E℄℄ ` y : [[B

1

�℄℄. Assume k =2 L[ dom(E). By

(Exp Unfold) and Lemma B.27:

[[E℄℄; k:K[[[A℄℄℄ ` x : �(�

1

; : : : ; �

n

)[[[B

1

℄℄;K[[[B

2

℄℄℄℄n(e

0

[ fKg)

By (Pro
 Output), [[E℄℄; k:K[[[A℄℄℄ ` xh�

0

1

; : : : ; �

0

n

; y; ki : e

0

� [ fKg, as re-

quired.

(Exp Let) Then a = (let x = b

B

in 
) and e = e

0

[ e

00

, with E ` b :

e

0

B and

E; x:B ` 
 :

e

00

A. Assume k =2 L [ dom(E). By indu
tion hypothesis:

(

[[E℄℄; k

0

:K[[[B℄℄℄ ` [[b℄℄k

0

: e

0

[ fKg

[[E℄℄; x:[[B℄℄; k:K[[[A℄℄℄ ` [[
℄℄k : e

00

[ fKg

By (Pro
 Input) and Lemmas B.25 and B.21:

[[E℄℄; k:K[[[A℄℄℄; k

0

:K[[[B℄℄℄ ` k

0

(x:[[B℄℄):[[
℄℄k : fKg [ (e

00

[ fKg)

By (Pro
 Par) and (Pro
 Res):

[[E℄℄; k:K[[[A℄℄℄ ` (�k

0

:K[[[B℄℄℄)([[b℄℄k

0

j

k

0

(x:[[B℄℄):[[
℄℄k) : (e

0

[ fKg) [ (e

00

[ fKg)

Hen
e, [[E℄℄; k:K[[[A℄℄℄ ` [[a℄℄k : e [ fKg, as required.

(Exp Letregion) Then a = letregion � in b and e = e

0

� f�g, with E; � `

b :

e

0

A and E ` A. Assume k =2 L [ dom(E). By indu
tion hypothesis,

[[E℄℄; �; k:K[[[A℄℄℄ ` [[b℄℄k : e

0

[ fKg. By Lemma B.54 (2), [[E℄℄ ` [[A℄℄.

Therefore, sin
e � =2 dom(E), we have that � =2 fg(K[[[A℄℄℄) and, by

Lemma B.24, [[E℄℄; k:K[[[A℄℄℄; � ` [[b℄℄k : e

0

[ fKg. By (Pro
 GRes), [[E℄℄,

k:K[[[A℄℄℄ ` (��)[[b℄℄k : (e

0

[ fKg)� f�g, as required.

(Exp Case) Then a = 
ase x

[B℄at�

of nil ) b

1

j (y

1

:: y

2

) ) b

2

and e =

f�g[e

1

[e

2

, with E ` x :

?

[B℄ at � and E ` b

1

:

e

1

A and E; y

1

:B; y

2

:[B℄ at

� ` b

2

:

e

2

A. Assume k =2 L [ dom(E). By part (1) and indu
tion

hypothesis:

8

>

>

>

<

>

>

>

:

[[E℄℄ ` x : [[[B℄ at �℄℄

[[E℄℄; k:K[[[A℄℄℄ ` [[b

1

℄℄k : e

1

[ fKg

[[E℄℄; y

1

:[[B℄℄; y

2

:[[[B℄ at �℄℄; k:K[[[A℄℄℄ ` [[b

2

℄℄k : e

2

[ fKg
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By (Exp Unfold), [[E℄℄ ` x : �[�[℄; �[[[B℄℄; [[[B℄ at �℄℄℄℄. By Lemma B.27 and

(Pro
 Output):

8

>

>

>

>

>

<

>

>

>

>

>

:

[[E℄℄; k:K[[[A℄℄℄; z

1

:�[℄; z

2

:�[[[B℄℄; [[[B℄ at �℄℄℄ ` xhz

1

; z

2

i : f�g

[[E℄℄; k:K[[[A℄℄℄; z

1

:�[℄; z

2

:�[[[B℄℄; [[[B℄ at �℄℄℄ ` z

1

():[[b

1

℄℄k : e

1

[ fKg

[[E℄℄; k:K[[[A℄℄℄; z

1

:�[℄; z

2

:�[[[B℄℄; [[[B℄ at �℄℄℄ `

z

2

(y

1

:[[B℄℄; y

2

:[[[B℄ at �℄℄):[[b

2

℄℄k : e

2

[ fKg

By (Pro
 Par) and (Pro
 Res), [[E℄℄; k:K[[[A℄℄℄ ` [[a℄℄k : f�g [ (e

1

[ fKg) [

(e

2

[ fKg), as required.

(Exp Fun) Then a = v at � and e = f�g and A = (8[�

1

; : : : ; �

n

℄B

1

e

!

B

2

) at �, where v is the fun
tion (�(f :A)�[�

1

; : : : ; �

n

℄(x)b) and E; f :A;

�

1

; : : : ; �

n

; x:B

1

` b :

e

0

B

2

and e

0

� e � dom(E; �

1

; : : : ; �

n

). Assume

k =2 L [ dom(E) [ fpg. Sin
e f and p are bound names, we 
an also

assume that k =2 ff; pg. By indu
tion hypothesis and Lemma B.27:

[[E℄℄; p:[[A℄℄; f :[[A℄℄; �

1

; : : : ; �

n

; x:[[B

1

℄℄; k:K[[[B

2

℄℄℄ ` [[b℄℄k : e

0

[ fKg

By Lemma B.28:

[[E℄℄; p:[[A℄℄; �

1

; : : : ; �

n

; x:[[B

1

℄℄; k:K[[[B

2

℄℄℄ ` [[bff pg℄℄k : e

0

[ fKg

By (Exp x) and (Exp Unfold):

[[E℄℄; p:[[A℄℄ ` p : �(�

1

; : : : ; �

n

)[[[B

1

℄℄;K[[[B

2

℄℄℄℄n(e [ fKg)

By (Pro
 Input), [[E℄℄; p:[[A℄℄ ` [[p 7! v℄℄ : f�g. By (Pro
 Output) and

Lemma B.27, [[E℄℄; k:K[[[A℄℄℄; p:[[A℄℄ ` khpi : fKg. By (Pro
 Par) and (Pro


Res), [[E℄℄; k:K[[[A℄℄℄ ` (�p:[[A℄℄) ([[p 7! v℄℄ j khpi) : fK; �g, as required.

(Exp Nil) Then a = nil at � and e = f�g and A = [B℄ at �, where E ` [B℄ at

�. By Lemma B.54 (2), [[E℄℄ ` [[[B℄ at �℄℄. By Lemma B.27:

[[E℄℄; p:[[A℄℄; z

1

:�[℄; z

2

:�[[[B℄℄; [[[B℄ at �℄℄℄ ` z

1

hi : f�g

By (Exp x) and (Exp Unfold):

[[E℄℄; p:[[A℄℄; z

1

:�[℄; z

2

:�[[[B℄℄; [[[B℄ at �℄℄℄ ` p : �[�[℄; �[[[B℄℄; [[[B℄ at �℄℄℄℄

By (Pro
 Input), [[E℄℄; p:[[A℄℄ ` [[p 7! nil

[B℄at�

℄℄ : f�g. Assume k =2 L [

dom(E)[fpg. By (Pro
 Output) and Lemma B.27, [[E℄℄; k:K[[[A℄℄℄; p:[[A℄℄ `

khpi : fKg. By (Pro
 Par) and (Pro
 Res), [[E℄℄; k:K[[[A℄℄℄ ` (�p:[[A℄℄)([[p 7!

nil

A

℄℄ j khpi) : fK; �g, as required.
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(Exp Cons) Then a = (x

1

:: x

2

) at � and e = f�g and A = [B℄ at �, where

E ` x

1

:

?

B and E ` x

2

:

?

[B℄ at �. By part (1), [[E℄℄ ` x

1

: [[B℄℄ and

[[E℄℄ ` x

2

: [[[B℄ at �℄℄. By (Exp x), (Exp Unfold) and Lemma B.27:

[[E℄℄; p:[[A℄℄; z

1

:�[℄; z

2

:�[[[B℄℄; [[[B℄ at �℄℄℄ ` p : �[�[℄; �[[[B℄℄; [[[B℄ at �℄℄℄℄

By (Pro
 Output):

[[E℄℄; p:[[A℄℄; z

1

:�[℄; z

2

:�[[[B℄℄; [[[B℄ at �℄℄℄ ` z

2

hx

1

; x

2

i : f�g

By (Pro
 Input), [[E℄℄; p:[[A℄℄ ` [[p 7! (x

1

:: x

2

)

A

℄℄ : f�g. Assume k =2

L [ dom(E) [ fpg. By (Pro
 Output) and Lemma B.27, [[E℄℄; k:K[[[A℄℄℄;

p:[[A℄℄ ` khpi : fKg. By (Pro
 Par) and (Pro
 Res), [[E℄℄; k:K[[[A℄℄℄ `

(�p:[[A℄℄)([[p 7! (x

1

:: x

2

)

A

℄℄ j khpi) : fK; �g, as required. 2

Lemma B.56 If H j= h and h(�)(p) = v then [[env(H)℄℄ ` [[p 7! v℄℄ : f�g.

Proof AssumeH j= h and h(�)(p) = v. By (Heap Good) and (Region Good),

there is a type, A, su
h that H(�)(p) = A. By (Exp x), env(H) ` p :

?

A. By

Lemma B.55 (1), [[env (H)℄℄ ` p : [[A℄℄.

By (Heap Good), sin
e � 2 dom(h), we get that env(H) ` h(�) at � : H(�).

This must have been derived from (Region Good) with env(H) ` v at � :

f�g

A.

Only (Exp Fun), (Exp Nil) and (Exp Cons) 
an derive this judgment and so we

have three possible 
ases.

(Exp Fun) Then v is the fun
tion (�(f :A)�[�

1

; : : : ; �

n

℄(x)b) and A is the type

(8[�

1

; : : : ; �

n

℄B

1

e

! B

2

) at �, with env(H); f :A; �

1

; : : : ; �

n

; x:B

1

` b :

e

0

B

2

and e

0

� e � dom(E; �

1

; : : : ; �

n

). Assume k =2 L [ dom(E) [ ff; p; xg. By

Lemma B.55 (2):

[[env(H)℄℄; f :[[A℄℄; �

1

; : : : ; �

n

; x:[[B

1

℄℄; k:K[[[B

2

℄℄℄ ` [[b℄℄k : e

0

[ fKg

By Lemma B.28, sin
e [[env(H)℄℄ ` p : [[A℄℄:

[[env(H)℄℄; �

1

; : : : ; �

n

; x:[[B

1

℄℄; k:K[[[B

2

℄℄℄ ` [[bff pg℄℄k : e

0

[ fKg

By (Exp Unfold), sin
e [[env(H)℄℄ ` p : [[A℄℄:

[[env(H)℄℄ ` p : �(�

1

; : : : ; �

n

)[[[B

1

℄℄;K[[[B

2

℄℄℄℄n(e [ fKg)

By (Pro
 Input), [[env(H)℄℄ ` [[p 7! v℄℄ : f�g, as required.

(Exp Nil) Then v = nil and A = [B℄ at �, where env(H) ` [B℄ at � and e =

f�g. Assume z

1

; z

2

are fresh names. By (Pro
 Output) and Lemma B.27:

[[env(H)℄℄; z

1

:�[℄; z

2

:�[[[B℄℄; [[[B℄ at �℄℄℄ ` z

1

hi : f�g

By (Exp Unfold), sin
e [[env(H)℄℄ ` p : [[A℄℄:

[[env(H)℄℄ ` p : �[�[℄; �[[[B℄℄; [[[B℄ at �℄℄℄℄

By (Pro
 Input), [[env(H)℄℄ ` [[p 7! nil

[B℄at�

℄℄ : f�g, as required.
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(Exp Cons) Then v = (x

1

:: x

2

) and A = [B℄ at �, where env(H) ` x

1

:

?

B

and env(H) ` x

2

:

?

[B℄ at �. By Lemma B.55 (1), [[env(H)℄℄ ` x

1

: [[B℄℄

and [[env(H)℄℄ ` x

2

: [[[B℄ at �℄℄. Assume z

1

; z

2

are fresh names. By (Pro


Output) and Lemma B.27:

[[env(H)℄℄; z

1

:�[℄; z

2

:�[[[B℄℄; [[[B℄ at �℄℄℄ ` z

2

hx

1

; x

2

i : f�g

By (Exp Unfold), sin
e [[env(H)℄℄ ` p : [[A℄℄:

[[env(H)℄℄ ` p : �[�[℄; �[[[B℄℄; [[[B℄ at �℄℄℄℄

By (Pro
 Input), [[env(H)℄℄ ` [[p 7! (x

1

:: x

2

)

A

℄℄ : f�g, as required. 2

Lemma B.57 If H j= h and � 2 dom(H) then [[env (H)℄℄ ` [[h(�)℄℄ : f�g.

Proof Assume H j= h and � 2 dom(H). The judgment H j= h must have

been derived from (Heap Good) with env(H) ` h(�) at � : H(�). This must

have been derived from (Region Good) with h(�) = (p

i

7! v

i

)

i21::n

and H(�) =

(p

i

:A

i

)

i21::n

and env(H) ` v

i

at � :

f�g

A

i

for all i 2 1::n. By (Exp x), sin
e

H(�) = (p

i

:A

i

)

i21::n

, we get that env(H) ` p

i

:

?

A

i

for ea
h i 2 1::n. By

Lemma B.55 (1), [[env(H)℄℄ ` p

i

: [[A

i

℄℄. By Lemma B.56, [[env (H)℄℄ ` [[p

i

7!

v

i

℄℄ : f�g for ea
h i 2 1::n. By (Pro
 Par), [[env(H)℄℄ `

Q

i21::n

[[p

i

7! v

i

℄℄ : f�g.

Hen
e, [[env (H)℄℄ ` [[h(�)℄℄ : f�g. 2

Lemma B.58 If H j= S � (a; h) : A and k =2 dom

2

(H) [ L then:

[[env (H)℄℄; k:K[[[A℄℄℄ ` [[a℄℄k j [[h℄℄ : dom(H) [ fKg

and also [[?℄℄; S; k:K[[[A℄℄℄ ` [[S � (a; h

H

)℄℄k : S [ fKg.

Proof Assume H j= S � (a; h) : A and k =2 dom

2

(H)[L. Only (Con�g Good)


an derive this judgment and so env(H) ` a :

e

A, e [ fg(A) � S, H j= h, and

S � dom(H). By Lemma B.55 (2), [[env(H)℄℄; k:K[[[A℄℄℄ ` [[a℄℄k : e [ fKg. By

Lemma B.57 and (Pro
 Par), [[env(H)℄℄ ` [[h℄℄ :

S

�2dom(H)

f�g. By (Pro
 Par)

and Lemma B.27, [[env (H)℄℄; k:K[[[A℄℄℄ ` [[a℄℄k j [[h℄℄ : dom(H) [ e [ fKg. Sin
e

e � dom(H), we get that [[env(H)℄℄; k:K[[[A℄℄℄ ` [[a℄℄k j [[h℄℄ : dom(H) [ fKg, as

desired.

By (Pro
 Res) and (Pro
 GRes), sin
e env(H) = dom(H); ptr(H), we get

that [[?℄℄; S; k:K[[[A℄℄℄ ` (�(dom(H)�S))(�[[ptr (H)℄℄)([[a℄℄k j [[h℄℄) : S [fKg, that

is, [[?℄℄; S; k:K[[[A℄℄℄ ` [[S � (a; h

H

)℄℄k : S [ fKg. 2

The following asserts that the en
oding of the extended region 
al
ulus in

our extended �-
al
ulus preserves the stati
 semanti
s. This fa
t 
orresponds

to Theorem 4.1 for the unextended 
al
uli.

Theorem B.59 (Stati
 Adequa
y)

(1) If E ` � then [[E℄℄ ` �.
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(2) If E ` A then [[E℄℄ ` [[A℄℄.

(3) If E ` a :

e

A and k =2 dom([[E℄℄) then

[[E℄℄; k:K[[[A℄℄℄ ` [[a℄℄k : e [ fKg

(4) If H j= h and � 2 dom(H) then

[[env(H)℄℄ ` [[h(�)℄℄ : f�g

(5) If H j= S � (a; h) : A and k =2 [[env(H)℄℄ then

[[env(H)℄℄; k:K[[[A℄℄℄ ` [[a℄℄k j [[h℄℄ : dom(H) [ fKg

and also

[[?℄℄; S; k:K[[[A℄℄℄ ` [[S � (a; h)℄℄k : S [ fKg

Proof Combine Lemmas B.54, B.55, B.57 and B.58. 2

B.6.2 An Auxiliary Small Step Semanti
s

This se
tion de�nes an auxiliary small step semanti
s for the region 
al
ulus.

We prove Theorem B.62, that relates small step redu
tions to evaluations in the

big step semanti
s.

Continuations and Control sta
k:


 ::= 
ontinuations

popregion � marker to deallo
ate region �

(x:A)b 
ontinuation with argument x

C ::= [


1

; : : : ; 


n

℄ sta
k of 
ontinuations

The redu
tion relation, S � (a; h; C) ! S

0

� (a

0

; h

0

; C

0

), may be read: in an

initial heap h, with 
ontrol sta
k C and live regions S, the expression a redu
es

to a

0

with updated heap h

0

, 
ontrol sta
k C

0

, and live regions S

0

.

Redu
tion: S � (a; h; C)! S

0

� (a

0

; h

0

; C

0

)

(Red Allo
)

� 2 S p =2 dom

2

(h)

S � (v at �; h; C)! S � (p; h+ (� 7! (h(�) + (p 7! v))); C)

(Red Appl)

� 2 S h(�)(p) = �(f :A)�[�

1

; : : : ; �

n

℄(x)b

S � (p[�

0

1

; : : : ; �

0

n

℄(q); h; C)! S � (bff pgf�

1

 �

0

1

g � � � f�

n

 �

0

n

gfx qg; h; C)
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(Red Let)

S � (let x = a

A

in b; h; C)! S � (a; h; (x:A)b :: C)

(Red Pop Let)

S � (p; h; (x:A)b :: C)! S � (bfx pg; h; C)

(Red Letregion)

� =2 (S [ dom(h))

S � (letregion � in a; h; C)! (S [ f�g) � (a; h+ � 7! ?; C)

(Red Pop Letregion)

� 2 S

S � (p; h; popregion � :: C)! (S � f�g) � (p; h; C)

(Red Case 1)

� 2 S h(�)(p) = nil

S � (
ase p of nil ) b

1

j (y

1

:: y

2

)) b

2

; h)! S � (b

1

; h; C)

(Red Case 2)

� 2 S h(�)(p) = q

1

:: q

2

S � (
ase p of nil ) b

1

j (y

1

:: y

2

)) b

2

; h)! S � (b

2

fy

1

 q

1

gfy

2

 q

2

g; h; C)

The stati
 semanti
s de�nes new heap judgments used to type the elements

in the 
ontrol sta
k.

Heap Judgments:

~

B ::= [A

1

; : : : ; A

n

℄ sta
k of types

H j= S � C :

~

B the 
ontrol sta
k C has type

~

B

H j= S � (a; h; C) : A in H , the 
on�guration (a; h; C) returns A

Region and Heap Rules:

(Control Good Empty)

env(H) ` A fg(A) � S

H j= S � [℄ : [A℄

(Control Good Mark)

H j= S � C :

~

B � =2 S

H j= (S [ f�g) � (popregion � :: C) :

~

B

(Control Good Cont)

env(H); x:A ` b :

e

B fg(A) [ e � S H j= S � C : (B ::

~

B)

H j= S � ((x:A)b :: C) : (A :: B ::

~

B)
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(Small Con�g Good)

H j= S � (a; h) : A H j= S � C : (A ::

~

B)

H j= S � (a; h; C) : last(A ::

~

B)

Lemma B.60 If H j= S �(a; h; C) : A and S �(a; h) + (p

0

; h

0

) then S �(a; h; C)!

�

S � (p

0

; h

0

; C).

Proof An easy indu
tion on the derivation of S � (a; h) + (p

0

; h

0

). 2

Lemma B.61 If H j= S � (a; h; [℄) : A and S � (a; h; [℄) !

�

S

0

� (p

0

; h

0

; [℄) then

S � (a; h) + (p

0

; h

0

).

Proof Assume H j= S � (a; h; C) : A and S � (a; h; C)!

�

S

0

� (p

0

; h

0

; [℄). The

lemma follows by showing that:

(1) If C = [℄ then S � (a; h) + (p

0

; h

0

).

(2) If C = (popregion � :: C

0

) then � 2 S and there is p

0

; h

0

su
h that S �(a; h) +

(p

0

; h

0

) and S � (p

0

; h

0

; C

0

)!

�

S

0

� (p

0

; h

0

; [℄).

(3) If C = ((x:B)b :: C

0

) then there is �; p

0

; h

0

su
h that S � (a; h) + (p

0

; h

0

)

and � =2 (S [ dom(h

0

)) and S = S

0

[ f�g and S

0

� (bfx p

0

g; h

0

; C

0

) !

�

S

0

� (p

0

; h

0

; [℄).

We pro
eed by indu
tion on the derivation of S � (a; h; C)!

�

S

0

� (p

0

; h

0

; [℄).

The base 
ase is for an empty redu
tion sequen
e, that is, a = p

0

and h = h

0

and C = [℄. By (Eval Var), S � (a; h) + (p

0

; h

0

), as required.

In the general 
ase, there is S

0

; a

0

; h

0

; C

0

su
h that S�(a; h; C)! S

0

�(a

0

; h

0

; C

0

)

and S

0

� (a

0

; h

0

; C

0

) !

�

S

0

� (p

0

; h

0

; [℄). We pro
eed by 
ase analysis on the

derivation of S � (a; h; C)! S

0

� (a

0

; h

0

; C

0

).

(Red Allo
) Then a = (v at �), and a

0

= p, and h

0

= h+ (� 7! (h(�) + (p 7!

v))), and S

0

= S, and C

0

= C, where � 2 S and p =2 dom

2

(h). For part

(1), by indu
tion hypothesis (1), we get S � (p; h) + (p

0

; h

0

). This must

have been derived from (Eval Var) with p = p

0

and h

0

= h

0

. By (Eval

Allo
), S � (a; h) + (p

0

; h

0

). Parts (2) and (3) are similar.

(Red Appl) Then a = p[�

0

1

; : : : ; �

0

n

℄(q), and a

0

= bff pgfx qg�, and h

0

=

h, and S

0

= S, and C

0

= C, where � 2 S, h(�)(p) is the fun
tion

�(f :A)�[�

1

; : : : ; �

n

℄(x)b and � is the substitution f�

1

 �

0

1

g � � � f�

n

 �

0

n

g.

For part (1), by indu
tion hypothesis (1), we get that S

0

�(a

0

; h

0

) + (p

0

; h

0

).

By (Eval Appl), S � (a; h) + (p

0

; h

0

). Parts (2) and (3) are similar.

(Red Let) Then a = (let x = a

0

A

0

in b), and C

0

= (x:A

0

)b :: C, and h

0

= h, and

S

0

= S. By indu
tion hypothesis (3), there is p

00

; h

00

su
h that S

0

�(a

0

; h

0

) +

(p

00

; h

00

) and S

0

� (bfx p

00

g; h

00

) + (p

0

; h

0

). For part (1), by (Eval Let), we

get that S � (a; h) + (p

0

; h

0

). Parts (2) and (3) are similar.
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(Red Pop Let) Then a = p, and a

0

= bfx pg, and C = (x:A

0

)b :: C

0

, and

h

0

= h, and S

0

= S, and S � (bfx pg; h; C

0

) !

�

S

0

� (p

0

; h

0

; [℄). We only

have to 
onsider part (3). By (Eval Var), S � (a; h) + (p; h), as required.

(Red Letregion) Then a = (letregion � in a

0

), and h

0

= h + � 7! ?, and

S

0

= S [ f�g, where � =2 (S [ dom(h)), and C = C

0

. For part (1), by

indu
tion hypothesis (1), we get that (S [ f�g) � (a

0

; h

0

) + (p

0

; h

0

). By

(Eval Letregion), S � (a; h) + (p

0

; h

0

). Parts (2) and (3) are similar.

(Red Pop Letregion) Then a = a

0

= p, and h = h

0

, and there is � 2 S

su
h that S

0

= S n f�g, and C = (popregion � :: C

0

), and S

0

� (p; h; C

0

)!

�

S

0

�(p

0

; h

0

; [℄). We only have to 
onsider part (2). By (Eval Var), S �(a; h) +

(p; h), as required.

(Red Case 1) Then a = 
ase p of nil ) a

0

j (y

1

:: y

2

) ) b

2

, and h = h

0

,

and C = C

0

, where � 2 S and h(�)(p) = nil . For part (1), by indu
tion

hypothesis (1), we get that S � (a

0

; h) + (p

0

; h

0

). By (Eval Case 1), S �

(a; h) + (p

0

; h

0

). Parts (2) and (3) are similar.

(Red Case 2) Then a = 
ase p of nil ) b

1

j (y

1

:: y

2

) ) b

2

, and a

0

=

b

2

fy

1

 q

1

gfy

2

 q

2

g, and h = h

0

, and C = C

0

, where � 2 S and h(�)(p) =

q

1

:: q

2

. For part (1), by indu
tion hypothesis (1), we get that S � (a

0

; h) +

(p

0

; h

0

). By (Eval Case 2), S � (a; h) + (p

0

; h

0

). Parts (2) and (3) are

similar. 2

Theorem B.62 Suppose H j= S � (a; h) : A. Then S � (a; h) + (p

0

; h

0

) if and

only if S � (a; h; [℄)!

�

S � (p

0

; h

0

; [℄).

Proof Assume H j= S � (a; h) : A. By (Small Con�g Good) and (Control

Good Empty), H j= S � (a; h; [℄) : A. If S � (a; h) + (p

0

; h

0

) then, by Lemma B.60,

S �(a; h; [℄)!

�

S �(p

0

; h

0

; [℄). If S �(a; h; [℄)!

�

S �(p

0

; h

0

; [℄) then, by Lemma B.61,

S � (a; h) + (p

0

; h

0

). 2

B.6.3 Proof of Dynami
 Adequa
y

� The length of a 
ontrol sta
k, length(C), is the number of 
ontinuations


ontained in C, that is, length([℄) = 0, and length(popregion � :: C) =

length(C), and length((x:A)b :: C) = length(C) + 1.

� The types of a 
ontrol sta
k, types(C), is the sequen
e of types indu
tively

de�ned from C by the following rules, types([℄) is the empty sequen
e, and

types(popregion � :: C) = types(C), and types((x:A)b :: C) = A; types(C).

Translation rules:

Let

~

k be a sta
k, [k

1

; : : : ; k

n

℄, of n pairwise distin
t names.

[[(x:A)b :: C℄℄

~

k

�

= k

1

(x:K[[[A℄℄℄):[[b℄℄k

2

j [[C℄℄[k

2

; : : : ; k

n

℄

[[popregion � :: C℄℄

~

k

�

= [[C℄℄

~

k

[[[ ℄℄℄

~

k

�

= 0
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Let f~�g = dom(H)� S, and n = length(C), and [A

1

,. . . ,A

n

℄ = types(C),

and k

1

; : : : ; k

n+1

be a sequen
e of n+ 1 pairwise distin
t names.

[[S � (a; h

H

; C)℄℄k

n+1

�

= (�~�)(�[[ptr (H)℄℄)(�k

1

:K[[[A

1

℄℄℄) � � � (�k

n

:K[[[A

n

℄℄℄)

([[a℄℄k

1

j [[h℄℄ j [[C℄℄[k

1

; : : : ; k

n+1

℄)

In the 
ase of an empty 
ontrol sta
k, C = [℄, the translation of a small-step


on�guration, S � (a; h

H

; C), equals the translation of the big-step 
on�guration

S � (a; h

H

). That is, we have the following property:

Lemma B.63 [[S � (a; h

H

; [℄)℄℄k = [[S � (a; h

H

)℄℄k.

Lemma B.64 If H j= S � C : [A

1

; : : : ; A

n+1

℄ then [[env (H)℄℄; k

1

:K[[[A

1

℄℄℄; : : : ;

k

n+1

:K[[[A

n+1

℄℄℄ ` [[C℄℄[k

1

; : : : ; k

n+1

℄ : dom(H) [ fKg.

Proof By indu
tion on the stru
ture of C. Let

~

B be the sta
k of types

[A

1

; : : : ; A

n+1

℄.

(Empty) Then C = [℄ and n = 0. The judgment H j= S � C :

~

B must have

been derived by (Control Good Empty) with

~

B = [A

1

℄ and env(H) ` A

1

.

By Lemma B.54, [[env (H)℄℄ ` [[A

1

℄℄. By (Pro
 Zero) and Lemma B.27,

[[env (H)℄℄; k

1

:K[[[A

1

℄℄℄ ` 0 : ?. By (Pro
 Subsum), [[env(H)℄℄; k

1

:K[[[A

1

℄℄℄ `

[[[℄℄℄[k

1

℄ : dom(H) [ fKg.

(Cont) Then C = (x:A

1

)b :: C

0

. The judgment H j= S � C :

~

B must have been

derived by (Control Good Cont) with env(H); x:A

1

` b :

e

A

2

and H j=

S � C

0

: (A

2

; : : : ; A

n+1

). By Lemma B.55, [[env(H)℄℄; x:[[A

1

℄℄; k

2

:K[[[A

2

℄℄℄ `

[[b℄℄k

2

: e[fKg. Therefore, by (Pro
 Input) and Lemma B.27, we get that

[[env (H)℄℄; k

1

:K[[[A

1

℄℄℄; k

2

:K[[[A

2

℄℄℄ ` k

1

(x:[[A

1

℄℄):[[b℄℄k

2

: e [ fKg. By in-

du
tion hypothesis, [[env(H)℄℄; k

2

:K[[[A

2

℄℄℄; : : : ; k

n+1

:K[[[A

n+1

℄℄℄ ` [[C

0

℄℄[k

2

;

: : : ; k

n+1

℄ : dom(H)[fKg. By (Pro
 Par) and Lemma B.27, we �nally ob-

tain that [[env(H)℄℄; k

1

:K[[[A

1

℄℄℄; : : : ; k

n+1

:K[[[A

n+1

℄℄℄ ` [[C℄℄[k

1

; : : : ; k

n+1

℄ :

dom(H) [fKg, as required.

(Pop) Then C = popregion � :: C

0

and [[C℄℄

~

k = [[C

0

℄℄

~

k. The judgment H j=

S �C :

~

B must have been derived by (Control Good Mark) withH j= S �C

0

:

~

B. By indu
tion hypothesis, [[env (H)℄℄; k

1

:K[[[A

℄

℄℄; : : : ; k

n+1

:K[[[A

n+1

℄℄℄ `

[[C

0

℄℄[k

2

; : : : ; k

n+1

℄ : dom(H) [ fKg, as required. 2

Proposition B.65 If H j= S � (a; h; C) : A then:

[[?℄℄; S; k:K[[[A℄℄℄ ` [[S � (a; h

H

; C)℄℄k : S [ fKg

Proof Assume H j= S � (a; h; C) : A and k =2 dom

2

(H) [ L. Only (Small

Con�g Good) 
an derive this judgment and so H j= S � (a; h) : A

1

and H j=

S � C : [A

1

; : : : ; A

n+1

℄ with n = length(C) and A = A

n+1

. Let

~

k be the sta
k

[k

1

; : : : ; k

n+1

℄ and

~

T be the sequen
e K[[[A

1

℄℄℄; : : : ;K[[[A

n+1

℄℄℄.
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By Lemma B.58, [[env(H)℄℄; k

1

:T

1

` [[a℄℄k

1

j [[h℄℄ : dom(H) [ fKg. By

Lemma B.64, [[env (H)℄℄;

~

k:

~

T ` [[C℄℄

~

k : dom(H) [ fKg. By (Pro
 Par) and

Lemma B.27, [[env(H)℄℄;

~

k:

~

T ` [[a℄℄k

1

j [[h℄℄ j [[C℄℄

~

k : dom(H) [ fKg.

By (Pro
 Res) and (Pro
 GRes), [[?℄℄; S; k

n+1

:K[[[A℄℄℄ ` [[S � (a; h

H

; C)℄℄k :

S [ fKg. 2

Lemma B.66 If H j= S � (a; h; C) : A and S � (a; h; C) ! S

0

� (a

0

; h

0

; C

0

), then

there is a heap typing H

0

, with H � H

0

, su
h that H +H

0

j= S

0

� (a

0

; h

0

; C

0

) : A

and that, for all 
hannel k with k =2 (dom

2

(H +H

0

) [ L), we have:

[[?℄℄; S; k:K[[[A℄℄℄ ` [[S � (a; h

H

; C)℄℄k � [[S

0

� (a

0

; h

0

H+H

0

; C

0

)℄℄k

Proof By indu
tion on the derivation of S �(a; h; C)! S

0

�(a

0

; h

0

; C

0

). Assume

H j= S �(a; h; C) : A. Let ~� = dom(H)�S, and H = [[ptr(H)℄℄, and

~

k be a sta
k,

[k

1

; : : : ; k

n

℄, made of pairwise distin
t variables su
h that f

~

kg\ (dom

2

(H)[L[

fkg) = ?. Let A

1

,. . . ,A

n

be the sequen
e types(C) and let T

i

denote the �-


al
ulus type K[[[A

i

℄℄℄ for ea
h i 2 1::n. In the remainder of this proof, we

will use the notation (�

~

k:

~

T )P for the pro
ess (�k

1

:T

1

) � � � (�k

n

:T

n

)P and we

will sometimes use k

n+1

and A

n+1

instead of k and A. We will also omit

type annotations when they 
an be easily inferred from the environment. Let

E

�

= [[?℄℄; S; k:K[[[B℄℄℄.

(Red Allo
) We have a = (v at �) and a

0

= p, where � 2 S and p =2 dom

2

(h),

and h

0

= h+(� 7! (h(�) + (p 7! v))), and C

0

= C. By (Con�g Good) and

(Region Good), sin
e H j= S � (a; h; C) : A, there is a type B su
h that

env(H) ` a :

f�g

B. Take H

0

= (� 7! [p 7! v℄). Then:

H +H

0

j= S

0

� (a

0

; h

0

; C

0

) : A

[[S � (a; h

H

; C)℄℄k = (�~�)(�H)(�

~

k:

~

T )

((�p:[[A℄℄)([[p 7! v℄℄ j k

1

hpi) j [[h℄℄ j [[C℄℄[

~

k; k℄)

[[S

0

� (a

0

; h

0

H+H

0

; C

0

)℄℄k � (�~�)(�H)(�p:[[A℄℄)(�

~

k:

~

T )

(k

1

hpi j ([[h℄℄ j [[p 7! v℄℄) j [[C℄℄[

~

k; k℄)

Therefore [[S � (a; h

H

; C)℄℄k � [[S

0

� (a

0

; h

0

H+H

0

; C

0

)℄℄k. By Lemma B.40 and

Proposition B.65, E ` [[S � (a; h

H

; C)℄℄k � [[S

0

� (a

0

; h

0

H+H

0

; C

0

)℄℄k.

(Red Appl) We have a = p[�

0

1

; : : : ; �

0

n

℄(q) and a

0

= bff pgfx qg�, where

h(�)(p) is a fun
tion v = �(f :F )�[�

1

; : : : ; �

n

℄(x)b, S = S

0

, h = h

0

, C =

C

0

and � is the substitution f�

1

 �

0

1

g � � � f�

n

 �

0

n

g. Take H

0

= ?. By

Lemma B.11 and (Small Con�g Good), sin
e H j= S � (a; h; C) : A, we get

that H +H

0

j= S

0

� (a

0

; h

0

; C

0

) : A. Moreover:

[[S � (a; h

H

; C)℄℄k = (�~�)(�H)(�

~

k:

~

T )

(ph�

1

; : : : ; �

n

; q; k

1

i j [[h℄℄ j [[C℄℄[

~

k; k℄)
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where [[h℄℄ � ([[(p 7! v)℄℄ j Q), for some Q su
h that p =2 inp(Q). By

Proposition A.8 (5):

E ` [[S � (a; h

H

; C)℄℄k � (�~�)(�H)(�

~

k:

~

T )

([[bff pg℄℄k

1

f�

1

 �

0

1

g � � � f�

n

 �

0

n

gfx qg j [[h℄℄ j [[C℄℄[

~

k; k℄)

Hen
e, E ` [[S � (a; h

H

; C)℄℄k � [[S

0

� (a

0

; h

0

H+H

0

; C

0

)℄℄k.

(Red Let) We have a = (let x = a

0

A

0

in b), and C

0

= ((x:A

0

)b :: C), and

S = S

0

, and h = h

0

. Take H

0

= ?. By (Control Good Cont) and (Small

Con�g Good), H +H

0

j= S

0

� (a

0

; h

0

; C

0

) : A. Moreover:

[[S � (a; h

H

; C)℄℄k = (�~�)(�H)(�

~

k:

~

T )((�k

0

:K[[[A℄℄℄)([[a

0

℄℄k

0

j

k

0

(x:[[A

0

℄℄):[[b℄℄k

1

) j [[h℄℄ j [[C℄℄[

~

k; k℄)

� (�~�)(�H)(�k

0

: K[[[A

0

℄℄℄)(�

~

k:

~

T )

([[a

0

℄℄k

0

j [[h℄℄ j (k

0

(x:[[A℄℄):[[b℄℄k

1

j [[C℄℄[

~

k; k℄))

If T

0

= K[[[A

0

℄℄℄ then:

[[S

0

� (a

0

; h

0

H+H

0

; C

0

)℄℄k = (�~�)(�H)(�k

0

:T

0

;

~

k:

~

T )

([[a

0

℄℄k

0

j [[h℄℄ j [[(x:A

0

)b :: C℄℄[k

0

;

~

k; k℄)

Therefore, [[S � (a; h

H

; C)℄℄k � [[S

0

� (a

0

; h

0

H+H

0

; C

0

)℄℄k. By Lemma B.40,

E ` [[S � (a; h

H

; C)℄℄k � [[S

0

� (a

0

; h

0

H+H

0

; C

0

)℄℄k.

(Red Pop Let) We have a = p, and a

0

= bfx pg, and C = (x:A

1

)b :: C

0

,

and S = S

0

, and h = h

0

. Take H

0

= ?. By Lemma B.11, we get that

H +H

0

j= S

0

� (a

0

; h

0

; C

0

) : A. Let

~

k

0

be the sequen
e [k

2

; : : : ; k

n

℄.

[[S � (a; h

H

; C)℄℄k = (�~�)(�H)(�

~

k:

~

T )

(k

1

hpi j [[h℄℄ j (k

1

(x:[[A

1

℄℄):([[b℄℄k

2

) j [[C℄℄[

~

k

0

; k℄))

Let

~

T

0

denote the sequen
e T

2

, . . . , T

n

. By Lemma A.5:

E ` [[S � (a; h

H

; C)℄℄k � (�~�)(�H)(�

~

k

0

:

~

T

0

)

([[bfx pg℄℄k

2

j [[h℄℄ j [[C℄℄(

~

k

0

; k))

Hen
e, E ` [[S � (a; h

H

; C)℄℄k � [[S

0

� (a

0

; h

0

H+H

0

; C

0

)℄℄k.

(Red Letregion) We have a = (letregion � in a

0

), where � =2 (S [ dom(h)),

and S

0

= S [ f�g, and h

0

= h+ � 7! ?, and C = C

0

. Take H

0

= (� 7! ?).

Then:

[[S � (a; h

H

; C)℄℄k = (�~�)(�H)(�

~

k:

~

T )

(((��)[[a

0

℄℄k

1

) j [[h℄℄ j [[C℄℄[

~

k; k℄)

[[S

0

� (a

0

; h

0

H+H

0

; C

0

)℄℄k = (��)(�~�)(�H)(�

~

k:

~

T )

([[a

0

℄℄k

1

j [[h℄℄ j [[C℄℄[

~

k; k℄)
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Sin
e the name � is bound, we may assume that it is di�erent from the

names in H and

~

k. Therefore [[S � (a; h

H

; C)℄℄k � [[S

0

� (a

0

; h

0

H+H

0

; C

0

)℄℄k.

By Lemma B.40, E ` [[S � (a; h

H

; C)℄℄k � [[S

0

� (a

0

; h

0

H+H

0

; C

0

)℄℄k.

(Red Pop Letregion) We have a = a

0

= p, and C = popregion � :: C

0

, and

� 2 S, and S

0

= S n f�g, and h = h

0

. Take H

0

= ?. Then H + H

0

j=

S

0

� (a

0

; h

0

; C

0

) : A, and:

[[S � (a; h

H

; C)℄℄k = (�~�)(�H)(�

~

k:

~

T )(k

1

hpi j [[h℄℄ j [[C℄℄[

~

k; k℄)

where [[C℄℄[

~

k; k℄ = [[C

0

℄℄[

~

k; k℄. Therefore, [[S �(a; h

H

; C)℄℄k � [[S

0

�(a

0

; h

0

H+H

0

;

C

0

)℄℄k. By Lemma B.40, E ` [[S � (a; h

H

; C)℄℄k � [[S

0

� (a

0

; h

0

H+H

0

; C

0

)℄℄k.

(Red Case 1) Then a = 
ase p of nil ) b

1

j (y

1

:: y

2

)) b

2

and a

0

= b

1

where

� 2 S and h(�)(p) = nil and S = S

0

and h = h

0

. Take H

0

= ?. Therefore

H +H

0

j= S

0

� (a

0

; h

0

; C

0

) : A and:

[[S � (a; h

H

; C)℄℄k = (�~�)(�H)(�

~

k:

~

T )

((�z

1

)(�z

2

)(phz

1

; z

2

i j z

1

():[[b

1

℄℄k j z

2

(y

1

; y

2

):[[b

2

℄℄k)

j [[h℄℄ j [[C℄℄[

~

k; k℄)

where [[h℄℄ � ([[p 7! [[nil ℄℄℄℄ j Q) for some Q su
h that p =2 inp(Q). By

Proposition A.8 (5):

E ` [[S � (a; h

H

; C)℄℄k � (�~�)(�H)(�

~

k:

~

T )

((�z

1

)(�z

2

)(z

1

hi j z

1

():[[b

1

℄℄k j z

2

(y

1

; y

2

):[[b

2

℄℄k) j [[h℄℄ j [[C℄℄[

~

k; k℄)

By Lemma A.5,

E ` [[S � (a; h

H

; C)℄℄k � (�~�)(�H)(�

~

k:

~

T )

((�z

2

)(z

2

(y

1

; y

2

):[[b

2

℄℄k) j [[b

1

℄℄k j [[h℄℄ j [[C℄℄[

~

k; k℄)

By Lemma A.7, E ` [[S � (a; h

H

; C)℄℄k � [[S

0

� (a

0

; h

0

H+H

0

; C

0

)℄℄k.

(Red Case 2) Then a = 
ase p of nil ) b

1

j (y

1

:: y

2

) ) b

2

and a

0

=

b

2

fy

1

 q

1

gfy

2

 q

2

g where � 2 S and h(�)(p) = q

1

:: q

2

and S = S

0

and h = h

0

. Take H

0

= ?. Therefore H +H

0

j= S

0

� (a

0

; h

0

; C

0

) : A and:

[[S � (a; h

H

; C)℄℄k = (�~�)(�H)(�

~

k:

~

T )

((�z

1

)(�z

2

)(phz

1

; z

2

i j z

1

():[[b

1

℄℄k j z

2

(y

1

; y

2

):[[b

2

℄℄k)

j [[h℄℄ j [[C℄℄[

~

k; k℄)

where [[h℄℄ � ([[p 7! [[q

1

:: q

2

℄℄℄℄ j Q) for some Q su
h that p =2 inp(Q). By

Proposition A.8 (5):

E ` [[S � (a; h

H

; C)℄℄k � (�~�)(�H)(�

~

k:

~

T )(�z

1

)(�z

2

)

(z

2

hq

1

; q

2

i j z

1

():[[b

1

℄℄k j z

2

(y

1

; y

2

):[[b

2

℄℄k j [[h℄℄ j [[C℄℄[

~

k; k℄)
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By Lemma A.5,

E ` [[S � (a; h

H

; C)℄℄k � (�~�)(�H)(�

~

k:

~

T )(�z

1

)

(z

1

():[[b

1

℄℄k) j [[b

2

℄℄kfy

1

 q

1

gfy

2

 q

2

g j [[h℄℄ j [[C℄℄[

~

k; k℄

By Lemma A.7, E ` [[S � (a; h

H

; C)℄℄k � [[S

0

� (a

0

; h

0

H+H

0

; C

0

)℄℄k. 2

The following asserts that the en
oding of the extended region 
al
ulus pre-

serves the dynami
 semanti
s. A proof of Theorem 4.2, dynami
 adequa
y for

the unextended 
al
uli, 
an be obtained by de�ning an auxiliary (unextended)

small-step semanti
s for the region 
al
ulus and simplifying the following proof.

Theorem B.67 If H j= S � (a; h) : A and S � (a; h) + (p

0

; h

0

) then there is H

0

su
h that H � H

0

and H+H

0

j= S �(p

0

; h

0

) : A and for all k =2 dom

2

(H+H

0

)[L,

[[?℄℄; S; k:K[[[A℄℄℄ ` [[S � (a; h

H

)℄℄k � [[S � (p

0

; h

0

H+H

0

)℄℄k.

Proof Assume H j= S � (a; h) : A and S � (a; h) + (p

0

; h

0

). By Theorem B.62,

we have S � (a; h; [℄)!

�

S � (p

0

; h

0

; [℄). By rule (Control Good Empty) and (Small

Con�g Good), we have H j= S � (a; h; [℄) : A. By Lemma B.66, there is a heap

typing H

0

, with H � H

0

, su
h that H +H

0

j= S � (p

0

; h

0

; [℄) : A and that, for all


hannel k with k =2 (dom

2

(H +H

0

) [ L), we have:

[[?℄℄; S; k:K[[[A℄℄℄ ` [[(H;S; a; h; [℄)℄℄k � [[(H +H

0

; S; p

0

; h

0

; [℄)℄℄k

By Lemma B.63, [[?℄℄; S; k:K[[[A℄℄℄ ` [[S � (a; h

H

)℄℄k � [[(S;H+H

0

; p

0

; h

0

)℄℄k. 2

B.6.4 Proof of Garbage Colle
tion for the �-Cal
ulus

The following property asserts that defun
t regions make no di�eren
e to the

behaviour of a program. It 
orresponds to Theorem 4.4 for the unextended


al
uli.

Theorem B.68 Suppose H j= S � (a; h) : A and k =2 dom

2

(H) [ L. Let

f~�

defun
t

g = dom(H)� S. Then:

[[?℄℄; S; k:K[[[A℄℄℄ ` [[S � (a; h)℄℄k

� (�~�

defun
t

)(�[[ptr (H)℄℄)([[a℄℄k j

Q

�2S

[[H(�)℄℄)

Proof Let ~� be a sequen
e of groups, �

1

, . . . , �

m

, su
h that f~�g = S. Let

~�

defun
t

be a sequen
e of groups, �

0

1

, . . . , �

0

n

, su
h that f~�

defun
t

g = dom(H)�S.

For the sake of brevity, we use the symbol ~�

�

instead of ~�

defun
t

in the remainder

of this proof. In parti
ular (f~�g [ fKg) \ f~�

�

g = ?. Let:

h = ~� 7! ~r; ~�

�

7! ~r

�

H = ~� 7!

~

R; ~�

�

7!

~

R

�

env(H) = ~�; ~�

�

; ~r at ~�;~r

�

at ~�

�
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By (Con�g Good), H j= S � (a; h) : A implies env(H) ` a :

e

A and e[ fg(A) � S

and H j= S � h. By Theorem 4.1, we have that:

[[?℄℄; ~�; ~�

�

; [[~r at ~�℄℄; [[~r

�

at ~�

�

℄℄; k:K[[[A℄℄℄ ` [[a℄℄k : e [ fKg

[[?℄℄; ~�; ~�

�

; [[~r at ~�℄℄; [[~r

�

at ~�

�

℄℄; k:K[[[A℄℄℄ ` [[~� 7! ~r℄℄ : f~�g

[[?℄℄; ~�; ~�

�

; [[~r at ~�℄℄; [[~r

�

at ~�

�

℄℄; k:K[[[A℄℄℄ ` [[~�

�

7! ~r

�

℄℄ : f~�

�

g

Let P = [[a℄℄k j [[~� 7! ~r℄℄. By an ex
hange lemma, we get:

[[?℄℄; ~�; k:K[[[A℄℄℄; ~�

�

; [[~r at ~�℄℄; [[~r

�

at ~�

�

℄℄ ` P : f~�;Kg

[[?℄℄; ~�; k:K[[[A℄℄℄; ~�

�

; [[~r at ~�℄℄; [[~r

�

at ~�

�

℄℄ ` [[~�

�

7! ~r

�

℄℄ : f~�

�

g

By Theorem B.53 sevral times, we get:

[[?℄℄; S; k:K[[[A℄℄℄ ` (�~�

�

)(�[[~r at ~�℄℄)(�[[~r

�

at ~�

�

℄℄)

(P j [[~�

�

7! ~r

�

℄℄) � (�~�

�

)(�[[~r at ~�℄℄)(�[[~r

�

at ~�

�

℄℄)P

But this is:

[[?℄℄; S; k:K[[[A℄℄℄ ` [[S � (a; h)℄℄k

� (�~�

defun
t

)(�[[ptr (H)℄℄)([[a℄℄k j

Q

�2S

[[H(�)℄℄)

2

B.7 An Equational Theory

We now prove that the equational theory for the region 
al
ulus is sound with

respe
t to our en
oding in the �-
al
ulus with groups. This property is given by

Theorem 5.2, that the en
oding of equivalent expressions are (barbed) equivalent

pro
esses. In this appendix we 
onsider the simple region 
al
ulus introdu
ed

in Se
tion 2. For the sake of brevity we have not 
onsidered the details of how

to extend this theory to the polymorphi
 region 
al
ulus.

We start by proving Lemma B.69, that the en
oding of a term obtained by

substituting an allo
ation v at �, to a variable x, in a term b, is equivalent to the

pro
ess obtained by substituting to x in [[b℄℄, a private link to a repli
ated 
opy

of the pro
ess [[v℄℄. This property is used in the proof of Theorem 5.2. More

pre
isely, it is needed in the proof that the en
oding of �-equivalent terms are

equivalent pro
esses.

Note that this is the only result of this paper that relies on the lo
ality

restri
tion imposed on the �-
al
ulus.

Lemma B.69 Consider two expressions a and b su
h that a is an allo
ation,

v at �, with E ` a :

f�g

A and E; x:A ` b :

e

B and E ` bfx ag :

e

0

B. If

p =2 fv (v) [ fv(b) and k =2 dom(E) [ L then:

[[E℄℄; k:K[[[B℄℄℄ ` [[bfx ag℄℄k � (�p:[[A℄℄)([[p 7! v℄℄ j [[bfx pg℄℄k)

Proof By indu
tion on the stru
ture of b. Let a be an allo
ation, v at �.

Assume E ` a :

f�g

A and E; x:A ` b :

e

B and E ` bfx ag :

e

0

B. Let

k =2 dom(E) [ L. By Theorem 4.1 (3), [[E℄℄; x:[[A℄℄; k:K[[[B℄℄℄ ` [[b℄℄k : e [ fKg
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and [[E℄℄; k:K[[[B℄℄℄ ` [[bfx ag℄℄k : e

0

[ fKg. By Lemma B.56, [[E℄℄; p:[[A℄℄ `

[[p 7! v℄℄ : f�g. By (Pro
 Par), (Pro
 Res) and Lemma B.28, [[E℄℄; k:K[[[B℄℄℄ `

(�p:[[A℄℄)([[p 7! v℄℄ j [[bfx pg℄℄k). Hen
e [[E℄℄; k:K[[[B℄℄℄ ` [[bfx ag℄℄k and [[E℄℄;

k:K[[[B℄℄℄ ` (�p:[[A℄℄)([[p 7! v℄℄ j [[bfx pg℄℄k).

For the sake of brevity, we omit the type annotations in the en
oding of

region 
al
ulus terms in the remainder of this proof.

(Variable) Then b

�

= y. If y = x then [[bfx ag℄℄k = [[v at �℄℄k = (�p)([[p 7! v℄℄ j

[[p℄℄k), as required. If y 6= x then [[bfx ag℄℄k = [[y℄℄k. By Lemma A.7, sin
e

p =2 fv([[y℄℄k), we get that [[E℄℄; k:K[[[B℄℄℄ ` (�p)([[p 7! v℄℄ j [[y℄℄k) � [[y℄℄k, as

required.

(Allo
ation) Then b

�

= (�(y)
 at �

0

) and [[bfx ag℄℄k is the repli
ated resour
e

def q(y; k) = [[
fx ag℄℄k in khqi. By indu
tion hypothesis, and sin
e �

is a 
ongruen
e, we get that:

[[E℄℄; k:K[[[B℄℄℄ ` [[bfx ag℄℄k �

def q(y; k) = (�p)([[p 7! v℄℄ j [[
fx pg℄℄k) in khqi)

By Propositions A.8 (1) and A.8 (3), we get that

[[E℄℄; k:K[[[B℄℄℄ ` [[bfx ag℄℄k � (�p)([[p 7! v℄℄ j [[bfx pg℄℄k)

(Appli
ation) Then b

�

= y(z). Assume y = x. Sin
e the term b is well-typed,

it must be the 
ase that z 6= x. Hen
e, [[bfx ag℄℄k = (�k

0

; p)([[p 7! v℄℄ j

k

0

hpi j k

0

(x

0

):[[x

0

(z)℄℄k). By Lemma A.5, [[E℄℄; k:K[[[B℄℄℄ ` [[bfx ag℄℄k �

(�p)([[p 7! v℄℄ j [[p(z)℄℄k), as required. Assume z = x. Sin
e the term

b is well-typed, it must be the 
ase that y 6= x. Hen
e, [[bfx ag℄℄k =

(�k

0

; p)([[p 7! v℄℄ j k

0

hpi j k

0

(x

0

):[[y(x

0

)℄℄k). By Lemma A.5, [[E℄℄; k:K[[[B℄℄℄ `

[[bfx ag℄℄k � (�p)([[p 7! v℄℄ j [[y(p)℄℄k), as required.

(Sequen
ing) Then b

�

= let y = 


1

in 


2

and [[bfx ag℄℄k is the pro
ess

(�k

0

)([[


1

fx ag℄℄k

0

j k

0

(y):[[


2

fx ag℄℄k). By indu
tion hypothesis, Propo-

sition A.8 (4), and sin
e � is a 
ongruen
e, we get that:

[[E℄℄; k:K[[[B℄℄℄ ` [[bfx ag℄℄k � (�k

0

)((�p

1

)([[p

1

7! v℄℄ j

[[


1

fx p

1

g℄℄k

0

) j

(�p

2

)([[p

2

7! v℄℄ j

k

0

(y):[[


2

fx p

2

g℄℄k))

Assume p =2 fv (v) [ fv(b). Sin
e p

1

; p

2

=2 fv(v), we get that:

[[E℄℄; k:K[[[B℄℄℄ ` [[bfx ag℄℄k � (�k

0

)((�p)([[p 7! v℄℄ j [[


1

fx pg℄℄k

0

) j

(�p)([[p 7! v℄℄ j k

0

(y):[[


2

fx pg℄℄k))

By Proposition A.8 (2), [[E℄℄; k:K[[[B℄℄℄ ` [[bfx ag℄℄k � (�p)([[p 7! v℄℄ j

(�k

0

) ([[


1

fx pg℄℄k

0

j k

0

(y):[[


2

fx pg℄℄k)), as required
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(Letregion) Then b

�

= letregion �

0

in 
. Hen
e, [[bfx ag℄℄k = (��

0

)[[
fx ag℄℄k.

Assume p =2 fv (v) [ fv (b). By indu
tion hypothesis, and sin
e � is a


ongruen
e, we get that: [[E℄℄; k:K[[[B℄℄℄ ` [[bfx ag℄℄k � (��

0

)(�p)([[p 7!

v℄℄ j [[
fx pg℄℄k). By Proposition 3.4 (4), sin
e �

0

=2 fr (a) and fg([[v℄℄k) =

fr (a) [ fKg, we get that [[E℄℄; k:K[[[B℄℄℄ ` [[bfx ag℄℄k � (�p)([[p 7! v℄℄ j

(��

0

)[[
fx pg℄℄k), as required. 2

Proof of Lemma 5.1 If E ` a

1

$ a

2

: A then there is e � dom(E) su
h

that for ea
h i 2 1::2, there is e

i

� e with E ` a

i

:

e

i

A.

Proof By indu
tion on the derivation of E ` a

1

$ a

2

: A.

(Eq Re�) and (Eq Symm) Trivial.

(Eq Trans) Then E ` a

1

$ b : A and E ` b $ a

2

: A. By indu
tion

hypothesis, there are e�e
ts f

1

; f

2

� dom(E) su
h that E ` a

1

:

f

1

1

A,

E ` b :

f

1

2

A, E ` a

2

:

f

2

1

A and E ` b :

f

2

2

A, where for ea
h i; j 2 1::2,

f

i

j

� f

i

. Take e = f

1

[ f

2

and e

i

= f

i

1

for ea
h i 2 1::2.

(Eq Fun) Then E; x : A

0

` b

i

:

e

i

B

0

for ea
h i 2 1::2 and A

�

= (A

0

e

0

! B

0

) at �),

where a

i

�

= (�(x:A

0

)b

i

at �) and e

i

� e

0

and E ` A. Take e = f�g.

By (Type !), sin
e E ` A, we get that e � dom(E). By (Exp Fun),

E ` a

i

:

e

A for ea
h i 2 1::2, as required.

(Eq Fun �) and (Eq Let �) Then a

1

�

= let y = (�(x:B)b at �) in y(a) and

a

2

�

= bfx ag where a is a name or an allo
ation, and y =2 fv (a), and

E ` a :

e

1

B, and E; x:B ` b :

e

2

A, and E ` bfx ag :

e

3

A (that is,

E ` a

2

:

e

3

A), and � 2 dom(E). Take e = f�g [ e

1

[ e

2

. By (Exp Appl)

and (Exp Let), we get that E ` a

1

:

e

A, as required. The 
ase for (Eq Let

�) is similar.

(Eq Let) and (Eq Letregion Let) Then a

1

�

= let x = a in b and a

2

�

=

let x = a

0

in b

0

where E ` a $ a

0

: B and E; x : B ` b $ b

0

: A. By

indu
tion hypothesis, there is e

1

; e

2

� dom(E) su
h that for ea
h i; j 2 1::2

there is e

j

i

� e

j

with E ` a :

e

1

1

B, E ` a

0

:

e

1

2

B, E; x : B ` b :

e

2

1

A and

E; x : B ` b

0

:

e

2

2

A. Take e

i

= e

i

1

[ e

i

2

for ea
h i 2 1::2 and e = e

1

[ e

2

.

By (Exp Let), we get that E ` a

i

:

e

i

A and e

i

� e for ea
h i 2 1::2, as

required. The 
ase for (Eq Letregion Let) is similar.

(Eq Let Asso
) Then a

1

�

= let x = a in (let y = b in 
) and a

2

�

= let y =

(let x = a in b) in 
 where E ` a :

e

a

A and E; x : A ` b :

e

b

B and

E; y : B ` 
 :

e




C. In parti
ular, sin
e x =2 dom(E; y : B), we get that

x =2 fv (
) and E; y:B; x:A ` �. Take e = e

1

= e

2

= e

a

[ e

b

[ e




. By

(Exp Let) and Lemma B.6, we get that E ` a

i

:

e

i

C for ea
h i 2 1::2, as

required.
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(Eq Letregion) and (Eq Swap) Then a

i

= (��)b

i

for ea
h i 2 1::2 where

E; � ` b

1

$ b

2

: A and � =2 fr (A). By indu
tion hypothesis, there is f �

dom(E; �) su
h that for ea
h i 2 1::2, there is f

i

� f with E; � ` b

i

:

f

i

A.

Take e = f �f�g and e

i

= f

i

�f�g for ea
h i 2 1::2. By (Exp Letregion),

E ` a

i

:

e

i

A for ea
h i 2 1::2, as required. Case (Eq Swap) is similar.

(Eq Drop) Then a

1

= (��)a

2

where E ` a :

e

A and � =2 dom(E). Take

e

1

= e

2

= e. Sin
e e � dom(E), we get that e = e� f�g and � =2 fr(A).

By (Exp Letregion), E ` a

1

:

e

A, as required. 2

Proof of Theorem 5.2 Suppose E ` a$ b : A and k =2 dom(E) [L. Then

[[E℄℄; k:K[[[A℄℄℄ ` [[a℄℄k � [[b℄℄k.

Proof By indu
tion on the derivation of E ` a$ b : A. By Lemma 5.1, there

is e � dom(E) and e

1

; e

2

su
h that e

i

� e for ea
h i 2 1::2 with E ` a :

e

1

A and

E ` b :

e

2

A. Let k =2 dom(E) [ L. By Theorem 4.1 (3), [[E℄℄; k:K[[[A℄℄℄ ` [[a℄℄k :

e

1

[fKg and [[E℄℄; k:K[[[A℄℄℄ ` [[b℄℄k : e

2

[fKg. Hen
e, [[E℄℄; k:K[[[A℄℄℄ ` [[a℄℄k; [[b℄℄k.

For the sake of brevity, we omit the type annotations in the en
oding of

region 
al
ulus terms in the remainder of this proof.

(Eq Re�), (Eq Symm) and (Eq Trans) Trivial, sin
e � is an equivalen
e

relation.

(Eq Fun), (Eq Let) and (Eq Letregion) Trivial, sin
e � is a 
ongruen
e.

(Eq Fun �) and (Eq Let �) Then a

�

= let y = (�(x:B)b

0

at �) in y(a

0

) and

b

�

= b

0

fx a

0

g where a

0

is a name or an allo
ation, and y =2 fv (a

0

). Hen
e,

[[a℄℄k

�

= (�k

0

)def p(x; k) = [[b

0

℄℄k in (k

0

hpi j k

0

(y):[[y(a

0

)℄℄k) where k

0

and p

are fresh names. By Lemma A.5, [[E℄℄; k:K[[[A℄℄℄ ` [[a℄℄k � def p(x; k) =

[[b

0

℄℄k in [[p(a

0

)℄℄k. We have two possible 
ases depending on the shape of

a

0

.

Assume a

0

is a name, say q. Hen
e, [[E℄℄; k:K[[[A℄℄℄ ` [[a℄℄k � def p(x; k) =

[[b

0

℄℄k in phq; ki. By Proposition A.8 (5):

[[E℄℄; k:K[[[A℄℄℄ ` [[a℄℄k � def p(x; k) = [[b

0

℄℄k in [[b

0

fx a

0

g℄℄k

By Proposition A.8 (1), sin
e p =2 fv (bfx a

0

g), we get that:

[[E℄℄; k:K[[[A℄℄℄ ` [[a℄℄k � [[b

0

fx a

0

g℄℄k
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Assume a

0

is an allo
ation, say (�(y)
 at �

0

). Hen
e:

[[E℄℄; k:K[[[A℄℄℄ ` [[a℄℄k � def p(x; k) = [[b

0

℄℄k in

(�k

0

)(def q(y; k) = [[
℄℄k in

(k

0

hqi j k

0

(y):phy; ki))

(By Lemma A.5)

� def p(x; k) = [[b

0

℄℄k in

(def q(y; k) = [[
℄℄k in phq; ki)

(By Proposition A.8 (5))

� def p(x; k) = [[b

0

℄℄k in

(def q(y; k) = [[
℄℄k in [[b

0

fx qg℄℄k)

(By Lemma B.69)

� def p(x; k) = [[b

0

℄℄k in [[b

0

fx a

0

g℄℄k

Case (Eq Let �) is similar.

(Eq Let Asso
) Then a

�

= let x = a

0

in (let y = b

0

in 


0

) and b

�

= let y =

(let x = a

0

in b

0

) in 


0

where E ` a

0

:

e

1

A and E; x : A ` b

0

:

e

2

B

and E; y : B ` 


0

:

e

3

C. In parti
ular, sin
e x =2 dom(E; y : B), we

get that x =2 fv (


0

). Hen
e, [[a℄℄k

�

= (�k

1

)([[a

0

℄℄k

1

j k

1

(x):(�k

2

)([[b

0

℄℄k

2

j

k

2

(y):[[


0

℄℄k)) and [[b℄℄k � (�k

1

)([[a

0

℄℄k

1

j (�k

2

)(k

1

(x):[[b

0

℄℄k

2

j k

2

(y):[[


0

℄℄k)),

where k

1

; k

2

are two fresh names. By Lemma A.6, [[E℄℄; k:K[[[A℄℄℄ ` [[a℄℄k �

(�k

1

)([[a

0

℄℄k

1

j (�k

2

)k

1

(x):([[b

0

℄℄k

2

j k

2

(y):[[


0

℄℄k)). By Lemma A.9, we get

that [[E℄℄; k:K[[[A℄℄℄ ` [[a℄℄k � [[b℄℄k, as desired.

(Eq Drop), (Eq Swap) and (Eq Letregion Let) In ea
h of this 
ases we

have erase([[a℄℄k) = erase([[b℄℄k), [[E℄℄; k:K[[[A℄℄℄ ` [[a℄℄k and [[E℄℄; k:K[[[A℄℄℄ `

[[b℄℄k. By Proposition B.39, [[E℄℄; k:K[[[A℄℄℄ ` [[a℄℄k � [[b℄℄k. 2

89


