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Abstra
t

We settle the 
omplexity bounds of the model 
he
king problem for the

repli
ation-free ambient 
al
ulus with publi
 names against the ambient

logi
 without parallel adjun
t. We show that the problem is PSPACE-


omplete. For the 
omplexity upper-bound, we devise a new representa-

tion of pro
esses that remains of polynomial size during pro
ess exe
ution;

this allows us to keep the model 
he
king pro
edure in polynomial spa
e.

Moreover, we prove PSPACE-hardness of the problem for several quite

simple fragments of the 
al
ulus and the logi
; this suggests that there

are no interesting fragments with polynomial-time model 
he
king algo-

rithms.
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1 Introdu
tion

The ambient 
al
ulus of Cardelli and Gordon (1999a, 1999b, 2000a) is a formal-

ism for des
ribing the mobility of both software and hardware. An ambient is

a named 
luster of running pro
esses and nested sub-ambients. Ea
h 
omputa-

tion state has a spatial stru
ture, the tree indu
ed by the nesting of ambients.

Mobility is abstra
tly represented by re-arrangement of this tree: an ambient

may move inside or outside other ambients.

The ambient logi
 (Cardelli and Gordon 2000b) is a modal logi
 designed

to spe
ify properties of distributed and mobile 
omputations programmed in

the ambient 
al
ulus. As well as standard temporal modalities for des
ribing

the evolution of ambient pro
esses, the logi
 in
ludes novel spatial modalities

for des
ribing the tree stru
ture of ambient pro
esses. Serendipitously, these

spatial modalities 
an also usefully des
ribe the tree stru
ture of semistru
tured

databases (Cardelli and Ghelli 2001). Other work on the ambient logi
 in
ludes

a study of the pro
ess equivalen
e indu
ed by the satisfa
tion relation (Sangiorgi

2001) and a study of the logi
 extended with 
onstru
ts for des
ribing private

names (Cardelli and Gordon 2001).

The model 
he
king problem is to de
ide whether a given obje
t (in our 
ase,

an ambient pro
ess) satis�es (that is, is a model of) a given formula. Cardelli

and Gordon (2000b) show de
idability of the model 
he
king problem for a �nite-

state fragment of the ambient 
al
ulus against the fragment of the ambient logi


without their parallel adjun
t modality. This �nite-state ambient 
al
ulus omits

the 
onstru
ts for unbounded repli
ation and dynami
 name generation of the

full 
al
ulus. The parallel adjun
t modality is omitted be
ause it is de�ned as an

in�nite quanti�
ation over pro
esses. Cardelli and Gordon give no 
omplexity

analysis for their algorithm. Still, given the various possible appli
ations of

the logi
, it is of interest to analyse the 
omplexity of model 
he
king mobile

ambients.

In fa
t, a naive analysis of the algorithm of Cardelli and Gordon gives only

a doubly exponential bound on its use of time and spa
e. A more sophisti
ated

analysis based on results in this paper shows that their algorithm works in

single-exponential time on single-exponential spa
e.

In this paper we settle the 
omplexity bounds of the model 
he
king prob-

lem for the �nite-state ambient 
al
ulus (that is, the full 
al
ulus apart from

repli
ation and name generation) against the logi
 without parallel adjun
t.

Our main result (embodied in Theorems 3.11 and 4.2) is that the problem is

PSPACE-
omplete. Hen
e, this situates model 
he
king the ambient logi
 in

the same 
omplexity 
lass as model 
he
king 
on
urrent programs against CTL

and CTL

�

(Kupferman, Vardi, and Wolper 2000).

As we dis
uss in Se
tion 2, there are two reasons why Cardelli and Gordon's

algorithm uses exponential spa
e. One of them is that a pro
ess may grow

exponentially during its exe
ution; the other is that there may be exponentially

many pro
esses rea
hable from a given one.

In Se
tion 3, we present a new model 
he
king algorithm that avoids these

problems as follows.
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� We avoid the �rst problem by devising a new representation of pro
esses

using a form of 
losure. The main feature of this representation is that sub-

stitutions that o

ur when 
ommuni
ations take pla
e within an ambient

are not applied dire
tly, but are kept expli
it. These expli
it substitu-

tions prevent the representation blowing up exponentially in the size of

the original pro
ess. The idea of using 
losures 
omes from DAG represen-

tations used in uni�
ation for avoiding exponential blow-up. A sequential

substitution that we use here 
an be seen as a DAG representation of the

substitution.

� To avoid the se
ond problem, we �rst devise a non-deterministi
 algorithm

for testing rea
hability that does not have to store all the rea
hable pro-


esses, but instead tests it on-the-
y, and then remove nondeterminism

using Savit
h's theorem (Savit
h 1970). Hen
e we prove Theorem 3.11,

that the model 
he
king problem is solvable in PSPACE.

We show this upper bound to be tight in Se
tion 4; Theorem 4.2 asserts

that the model 
he
king problem is PSPACE-hard. A
tually, we give PSPACE-

hardness results for various fragments of the logi
 and of the 
al
ulus. For

instan
e, by Theorem 4.4, even for a 
al
ulus of purely mobile ambients (that

is, a 
al
ulus without 
ommuni
ation or the 
apability to dissolve ambients)

and the logi
 without quanti�ers, the problem is PSPACE-hard. Moreover, by

Theorem 4.6, for a 
al
ulus of purely 
ommuni
ative ambients (that is, a 
al
ulus

without the 
apabilities to move or to dissolve ambients) and the logi
 without

quanti�ers, the problem is also PSPACE-hard. Often in the study of model


he
king �xing the model or the formula makes the problem easier. Here this is

not the 
ase. Even if we �x the pro
ess to be the 
onstant 0, the model 
he
king

problem remains PSPACE-hard. Although we do not prove PSPACE-hardness

for �xed arbitrary formulas, our result is not mu
h weaker: Theorem 4.7 asserts

that for any level of the polynomial-time hierar
hy we 
an �nd a �xed formula

su
h that the model 
he
king problem is hard for that level.

We end the main part of the paper with 
on
lusions in Se
tion 5. Ap-

pendixes A and B 
ontain proofs of properties stated without proof in Se
tions 3

and 4, respe
tively.

2 Review of the Ambient Cal
ulus and Logi


We present a �nite-state ambient 
al
ulus (that is, the full 
al
ulus (Cardelli and

Gordon 2000a) apart from repli
ation and name generation) and the ambient

logi
 without parallel adjun
t. This is the same 
al
ulus and logi
 for whi
h

Cardelli and Gordon present a model 
he
king algorithm (Cardelli and Gordon

2000b).

2.1 The Ambient Cal
ulus with Publi
 Names

The following table des
ribes the expressions and pro
esses of our 
al
ulus.

2



Expressions and Pro
esses:

M;N ::= expressions P;Q;R ::= pro
esses

n name 0 ina
tivity

in M 
an enter M P j Q 
omposition

out M 
an exit M M [P ℄ ambient

open M 
an open M M:P a
tion

� null (n):P input

M:M

0

path hMi output

A name n is said to be bound in a pro
ess P if it o

urs within an input pre�x

(n). A name is said to be free in a pro
ess P if there is an o

urren
e of n outside

the s
ope of any input (n). We write bn(P ) and fn(P ) for respe
tively the set

of bound names and the set of free names in P . We say two pro
esses are �-

equivalent if they are identi
al apart from the 
hoi
e of bound names. We write

Mfn Ng and Pfn Ng for the out
omes of 
apture-avoiding substitutions

of the expression N for the name n in the expression M and the pro
ess P ,

respe
tively.

The semanti
s of the 
al
ulus is given by the relations P � Q and P ! Q.

The redu
tion relation, P ! Q, de�nes the evolution of pro
esses over time.

The stru
tural 
ongruen
e relation, P � Q, is an auxiliary relation used in the

de�nition of redu
tion. When we de�ne the satisfa
tion relation of the modal

logi
 in the next se
tion, we use an auxiliary relation, the sublo
ation relation,

P # Q, whi
h de�nes the spatial distribution of pro
esses and holds when Q

is the whole interior of a top-level ambient in P . We write !

�

and #

�

for the

re
exive and transitive 
losure of ! and #, respe
tively.

Stru
tural Congruen
e P � Q

P , Q are �-equivalent) P � Q (Stru
t Re
)

Q � P ) P � Q (Stru
t Symm)

P � Q;Q � R) P � R (Stru
t Trans)

P � Q) P j R � Q j R (Stru
t Par)

P � Q)M [P ℄ �M [Q℄ (Stru
t Amb)

P � Q)M:P �M:Q (Stru
t A
tion)

P � Q) (n):P � (n):Q (Stru
t Input)

P j Q � Q j P (Stru
t Par Comm)

(P j Q) j R � P j (Q j R) (Stru
t Par Asso
)

P j 0 � P (Stru
t Zero Par)

�:P � P (Stru
t �)

(M:M

0

):P �M:M

0

:P (Stru
t :)

Redu
tion P ! Q and Sublo
ation P # Q:

n[in m:P j Q℄ j m[R℄! m[n[P j Q℄ j R℄ (Red In)

m[n[out m:P j Q℄ j R℄! n[P j Q℄ j m[R℄ (Red Out)
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open n:P j n[Q℄! P j Q (Red Open)

hMi j (n):P ! Pfn Mg (Red I/O)

P ! Q) P j R! Q j R (Red Par)

P ! Q) n[P ℄! n[Q℄ (Red Amb)

P

0

� P; P ! Q;Q � Q

0

) P

0

! Q

0

(Red �)

P � n[P

0

℄ j P

00

) P # P

0

(Lo
)

The following example shows that the size of rea
hable pro
esses may be

exponential, and that there may be a redu
tion path of exponential length. The

algorithm given in (Cardelli and Gordon 2000b) may use exponential spa
e to


he
k properties of this example.

Consider the family of pro
esses (P

k

)

k�0

, re
ursively de�ned by the equa-

tions P

0

= (n):(p[n℄ j q[0℄) and P

k+1

= (n

k+1

):(hn

k+1

:n

k+1

i j P

k

). Intuitively,

the pro
ess P

k+1

inputs a 
apability, 
alls it n

k+1

, doubles it, and outputs

the result to the pro
ess P

k

. We have the following, where M

1

= M and

M

k+1

=M:M

k

.

hin q:out qi j P

0

!

1

p[in q:out q℄ j q[0℄

hin q:out qi j P

1

!

2

p[(in q:out q)

2

℄ j q[0℄

hin q:out qi j P

2

!

3

p[(in q:out q)

4

℄ j q[0℄

hin q:out qi j P

k

!

k+1

p[(in q:out q)

2

k

℄ j q[0℄

Sin
e (in q:out q)

2

k

is a sequen
e of 2

k


opies of in q:out q, the pro
ess

p[(in q:out q)

2

k

℄ j q[0℄ redu
es in 2

k+1

steps to p[0℄ j q[0℄. Therefore, we have

hin q:out qi j P

k

!

(k+1)+2

k+1

p[0℄ j q[0℄.

This example points out two fa
ts. First, using a simple representation of

pro
esses (su
h as the one proposed in (Cardelli and Gordon 2000b)), it may be

that the size of a pro
ess 
onsidered during model 
he
king grows exponentially

bigger than the size of the initial pro
ess. Se
ond, during the model 
he
king

pro
edure, there may be an exponential number of rea
hable pro
esses to 
on-

sider. Therefore, a dire
t implementation of the algorithm proposed in (Cardelli

and Gordon 2000b) may use spa
e exponential in the size of the input pro
ess.

These remarks motivate the approa
h taken in this paper. First, we devise a

new representation for ambient pro
esses that remains of polynomial size with

respe
t to to the input pro
ess. Se
ond, we give a non-deterministi
 algorithm

for testing rea
hability that uses only polynomial spa
e in the 
ombined size

of the problem; then by an appli
ation of Savit
h's theorem (Savit
h 1970) we

remove nondeterminism and obtain a deterministi
 version that itself uses only

polynomial spa
e.

2.2 The Logi
 (for Publi
 Names)

We des
ribe the formulas and satisfa
tion relation of the logi
.
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Logi
al Formulas:

� a name n or a variable x

A;B ::= formula

T true

:A negation

A _ B disjun
tion

0 void

�[A℄ ambient mat
h

A j B 
omposition mat
h

A�� lo
ation adjun
t

9x:A existential quanti�
ation

�A sometime modality

✧A somewhere modality

We assume that names and variables belong to two disjoint vo
abularies.

We write Afx mg for the out
ome of substituting ea
h free o

urren
e of the

variable x in the formula A with the name m. We say a formula A is 
losed if

and only if it has no free variables (though it may 
ontain free names).

Intuitively, we interpret 
losed formulas as follows. The formulas T, :A,

and A _ B embed propositional logi
. The formulas 0, �[A℄, and A j B are

spatial modalities. A pro
ess satis�es 0 if it is stru
turally 
ongruent to the

empty pro
ess 0. It satis�es n[A℄ if it is stru
turally 
ongruent to an ambient

n[P ℄ where P satis�es A. A pro
ess P satis�es A j B if it 
an be de
omposed

into two subpro
esses, P � Q j R, where Q satis�es A, and R satis�es B. The

formula 9x:A is an existential quanti�
ation over names. The formulas �A

(sometime) and ✧A (somewhere) quantify over time and spa
e, respe
tively. A

pro
ess satis�es �A if it has a temporal su

essor, that is, a pro
ess into whi
h

it evolves, that satis�es A. A pro
ess satis�es ✧A if it has a spatial su

essor,

that is, a sublo
ation, that satis�es A. Finally, a pro
ess P satis�es the formula

A�n if the ambient n[P ℄ satis�es A.

The satisfa
tion relation P j= A formalizes these intuitions.

Satisfa
tion P j= A (for A 
losed):

P j= T

P j= :A

�

= :(P j= A)

P j= A _ B

�

= P j= A _ P j= B

P j= 0

�

= P � 0

P j= n[A℄

�

= 9P

0

:P � n[P

0

℄ ^ P

0

j= A

P j= A j B

�

= 9P

0

; P

00

:P � P

0

j P

00

^ P

0

j= A ^ P

00

j= B

P j= 9x:A

�

= 9m:P j= Afx mg

P j= �A

�

= 9P

0

:P !

�

P

0

^ P

0

j= A

P j= ✧A
�

= 9P

0

:P #

�

P

0

^ P

0

j= A

P j= A�n

�

= n[P ℄ j= A

5



We use �A (everytime modality), ❏A (everywhere modality) and 8x:A (uni-

versal quanti�
ation) as abbreviations for :(�:A), :(✧:A) and :(9x::A),

respe
tively.

3 A Model Che
king Algorithm

We show that the model 
he
king problem 
an be de
ided in polynomial spa
e by

devising a new representation of pro
esses (Se
tion 3.1) that remains polynomial

in the size of the initial pro
ess (Se
tion 3.2). In Se
tion 3.3 we present a new

model 
he
king algorithm based on this representation.

Sin
e the redu
tion relation is de�ned up to �-equivalen
e, we may assume

for the purposes of 
omputing rea
hable pro
esses that the free and bound names

of every ambient pro
ess are distin
t, and moreover that the bound names are

pairwise distin
t.

3.1 A Polynomial-Spa
e Representation

We give in this se
tion a new representation for ambient pro
esses based on

normal 
losures (It is di�erent from the normal form of pro
esses introdu
ed

in (Cardelli and Gordon 2000b)). We also present basi
 operations on 
losures

and prove that 
losures indeed simulate the pro
esses they represent. All proofs

not in this se
tion (in parti
ular, proofs of Propositions 3.1{3.4) 
an be found

in the appendix.

Annotated Pro
esses, Substitutions, Closures:

~

P ::= annotated pro
ess

Q

i2I

�

i

multiset of primes

� ::= prime

M [

~

P ℄ ambient

M(o):

~

P a
tion, with o�set o � 0

(n):

~

P input

hMi output

� ::= fn

1

 M

1

g � � � fn

k

 M

k

g sequential substitution, k � 0

h

~

P ;�i 
losure

In a sequential substitution fn

1

 M

1

g � � � fn

k

 M

k

g, the expression M

i

lies

in the s
ope of the bindings for the remaining names n

i+1

, . . . , n

k

. We denote by

� the empty sequen
e of substitutions and treat it as the identity substitution. A

sequential substitution � is said to be a
y
li
 if either � = � or � = fx Mg�

0

,

where x does not o

ur in �

0

and �

0

is an a
y
li
 substitution.

For an annotated pro
ess

~

P , we de�ne free and bound names in the same

way as for ambient pro
esses. Let names(�) be the set of all names o

urring

in �.

We de�ne a partial mapping U from 
losures to the set of ambient pro
esses.

Intuitively, it unfolds a 
losure to the pro
ess it represents by applying the

6



substitution and 
utting o� the pre�x de�ned by the o�set. Roughly speaking,

the expression U(

~

P ; �) is de�ned if the o�sets within the annotated pro
ess do

not ex
eed the length of the expression they are asso
iated with. The unfolding

U(

~

P ; �) is de�ned as follows.

The Unfolding U(

~

P ; �) of a Closure h

~

P ;�i:

U(

Q

i2I

�

i

; �) =

�

U(�

1

; �) j : : : j U(�

n

; �) if I = f1; : : : ; ng 6= ?

0 otherwise

U(M [

~

P ℄; �) =M�[U(

~

P ; �)℄

U(M(o):

~

P ; �) =

8

>

>

<

>

>

:

N

o+1

: � � � :N

l

:U(

~

P ; �) if M� = N

1

: � � � :N

l

; o < l and N

i

being either a name or of the form


ap N

0

with 
ap 2 fin; out ; openg

unde�ned otherwise

U((n):

~

P ; �) = (n):U(

~

P ; �)

U(hMi; �) = hM�i

We are only interested in a parti
ular kind of 
losure, whi
h we refer to as

normal. Let a 
losure h

~

P ;�i be normal if U(

~

P ; �) is de�ned and if it meets some

te
hni
al 
onditions about free and bound names

De�nition 1 A 
losure h

~

P ;�i is normal if:

(1) U(

~

P ; �) is de�ned,

(2) bn(

~

P ) \ (fn(

~

P ) [ names(�)) = ?,

(3) every name n in

~

P o

urs at most on
e within an input,

(4) every o�set o o

urring in the s
ope of an input in

~

P is equal to 0, and

(5) � is a
y
li
.

The next proposition says that our representation of ambient pro
esses with

normal 
losures preserves their basi
 properties. We write fg and ++ for the

empty multiset and the multiset union operation, respe
tively.

Proposition 3.1 (Stru
tural Equivalen
es) Let h

Q

i2I

�

i

;�i be a normal


losure. Then

(1) U(

Q

i2I

�

i

; �) � 0 i� I = ?.

(2) U(

Q

i2I

�

i

; �) � M [Q℄ i� 9M

0

;

~

Q : I is a singleton fig, �

i

= M

0

[

~

Q℄,

M

0

� =M , U(

~

Q; �) � Q.

(3) U(

Q

i2I

�

i

; �) � P

0

j P

00

i� 9J;K : J [ K = I, J \ K = ?, P

0

�

U(

Q

j2J

�

j

; �), P

00

� U(

Q

k2K

�

k

; �).
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(4) U(

Q

i2I

�

i

; �) � hMi i� 9M

0

: I is a singleton fig, �

i

= hM

0

i and

M

0

� =M .

(5) U(

Q

i2I

�

i

; �) � (n):P i� 9

~

P : I is a singleton fig, �

i

= (n):

~

P and

U(

~

P ; �) � P .

Next, we present how the redu
tion and sublo
ation transitions !, # 
an

be de�ned on 
losures. Due to this parti
ular representation and the fa
t that

some part of the ambient pro
ess is 
ontained in the sequential substitution,

some auxiliary subroutines are needed.

One 
an see in the de�nition of U that only expressions M in the anno-

tated pro
ess are a�e
ted by the sequential substitution. For the sublo
ation

transition, it is important to extra
t the name represented by the expressionM

under the substitution �. So, one of those subroutines, nam(M;�), 
onsists in

re
overing from an expression M the name it e�e
tively represents within the

substitution �.

The redu
tion transition for a 
losure h

~

P ;�i requires some other auxiliary

subroutines, whi
h are more spe
i�
ally dedi
ated to the 
ase where the substi-

tution applied on the expression M leads to a sequen
e of 
apabilities in M

0

,

out M

0

, open M

0

. Intuitively, the out
ome of applying the substitution � to an

expressionM 
ontained within

~

P is a �nite sequen
e of either 
apabilities of the

form inM

0

, outM

0

, openM

0

, or names not bound by the substitution. We need

a subroutine to 
ompute the length of this sequen
e in terms of 
apabilities. To

keep the algorithm in polynomial spa
e, we must simply be able to 
ompute

this length without applying expli
itly � on M ; this is the role of len(M;�).

Now, from the de�nition of the redu
tion on ambient pro
esses, one 
an

see that the redu
tion 
onsumes one 
apability: on
e the redu
tion is done,

the involved 
apability disappears from the resulting pro
ess. This is slightly

di�erent for the representation we have proposed: a sequen
e of 
apabilities 
an

be partially 
ontained in a sequential substitution �. This substitution remains

�xed during the exe
ution of 
apabilities and the o�set atta
hed to this sequen
e

plays the role of a program 
ounter. Therefore, to perform a redu
tion step one

has to extra
t the �rst 
apability to exe
ute from a sequen
e of 
apabilities,M ,

a substitution, �, and an o�set, o. This is 
omputed by fst(M; o; �).

The next subroutine introdu
ed here, split(M(o):

~

P ; �), 
omputes a pair from

a prime, M(o):

~

P , and a sequential substitution, �. The �rst 
omponent of this

result is the �rst 
apability to be exe
uted in hfM(o):

~

P g;�i (the one in head

position). The se
ond 
omponent is the remaining annotated pro
ess on
e this

�rst 
apability has been exe
uted.

The Auxiliary Fun
tions nam, len, fst and split:

nam(n; fm Mg�) =

�

nam(M;�) if n = m

nam(n; �) otherwise

nam(n; �) = n

len(�; �) = 0

8



len(M:N; �) = len(M;�) + len(N; �)

len(M;�) = 1 if M 2 fin N; out N; open Ng

len(n; fm Mg�) =

�

len(M;�) if n = m

len(n; �) otherwise

len(n; �) = 1

fst(M:N; o; �) =

�

fst(M; o; �) if len(M;�) > o

fst(N; o� len(M;�); �) otherwise

fst(
ap N; 0; �) = 
ap (nam(N; �)) for 
ap in fin; out ; openg

fst(n; o; fm Mg�) =

�

fst(M; o; �) if n = m

fst(n; o; �) otherwise

split(M(o):

~

P ; �) =

�

(fst(M; o; �); fM(o+ 1):

~

Pg) if len(M;�) > o+ 1

(fst(M; o; �);

~

P ) otherwise

Noti
e that nam(M;�) is unde�ned if M is of the form �, N:N

0

, in N ,

out N , or open N . Therefore, the expression nam(M;�) is either unde�ned

or is evaluated to a name. Moreover, we 
an 
ompute the name returned by

nam(M;�), or whether it is unde�ned, in linear time. The number returned

by len(M;�) 
an be 
omputed in polynomial spa
e

1

. We 
an 
ompute the


apability returned by fst(M; o; �) and the pair returned by split(M(o):

~

P ; �),

or whether they are unde�ned, in polynomial spa
e.

Suppose h

~

P ;�i is a normal 
losure 
ontaining an a
tion M(o):

~

Q. From

the de�nition of a normal 
losure, len(M;�) > o, and if the a
tion o

urs

under an input variable n, then the o�set o = 0. If n o

urs in M and gets

bound to � by an I/O step, it may be that len(M; fn �g�) = 0. So, in the

transition rule for I/O, we need to re-normalize the 
losure representing the

out
ome of the transition. We do so using the following subroutines, norm(

~

P ; �)

and norm(�; �), that return the annotated pro
ess obtained by removing from

~

P and �, respe
tively, any pre�x M(o) su
h that len(M;�) = 0.

The Auxiliary Fun
tions norm:

norm(

Q

i21::k

�

i

; �) =

�

fg if k = 0

norm(�

1

; �) ++ � � � ++ norm(�

k

; �) otherwise

norm(M [

~

P ℄; �) = fM [norm(

~

P ; �)℄g

norm(M(o):

~

P ; �) =

�

norm(

~

P ; �) if len(M;�) = 0

fM(o):norm(

~

P ; �)g otherwise

norm((n):

~

P ; �) = f(n):norm(

~

P ; �)g

norm(hMi; �) = fhMig

Next, we de�ne a transition relation, h

~

P ;�i ! h

~

P

0

;�

0

i, and a sublo
ation

1

We are not 
on
erned here with time 
omplexity; a naive algorithm for 
omputing

len(M;�), as presented here, runs in exponential time in the worst 
ase. However, it is

quite easy to provide a version of this fun
tion that runs in polynomial time.

9



relation, h

~

P ;�i # h

~

P

0

;�i, on 
losures. These relations simulate the redu
tion

and the sublo
ation relations on pro
esses de�ned in Se
tion 2.1.

Transitions and Sublo
ations of Closures:

(Trans In)

split(�; �) = (in m;

~

P ) nam(M;�) = m nam(N; �) = n

hfN [f�g ++

~

Q℄;M [

~

R℄g;�i ! hfM [fN [

~

P ++

~

Q℄g ++

~

R℄g;�i

(Trans Out)

split(�; �) = (out m;

~

P ) nam(M;�) = m nam(N; �) = n

hfM [fN [f�g ++

~

Q℄g ++

~

R℄g;�i ! hfN [

~

P ++

~

Q℄;M [

~

R℄g;�i

(Trans Open)

split(�; �) = (open n;

~

P ) nam(M;�) = n

h�; fM [

~

Q℄g;�i ! h

~

P ++

~

Q;�i

(Trans I/O)

~

P

0

= norm(

~

P ; fn Mg�)

hf(n):

~

P ; hMig;�i ! h

~

P

0

; fn Mg�i

(Trans Par)

h

~

P ;�i ! h

~

P

0

;�

0

i

h

~

P ++

~

Q;�i ! h

~

P

0

++

~

Q;�

0

i

(Trans Amb)

h

~

P ;�i ! h

~

P

0

;�

0

i nam(M;�) = n

hfM [

~

P ℄g;�i ! hfM [

~

P

0

℄g;�

0

i

(Lo
)

nam(M;�) = m

h

~

Q ++ fM [

~

P ℄g;�i # h

~

P ;�i

The 
ondition for (Lo
) ensures simply that the expressionM together with

� is a name. For two normal 
losures hP ;�i, hP

0

;�

0

i, de
iding whether hP ;�i #

hP

0

;�

0

i 
an be a
hieved in polynomial spa
e. There is no rule 
orresponding to

(Red �) sin
e we always keep 
losures in normal form. The two rules (Trans

Par) and (Trans Amb) 
orrespond to the 
ongruen
e rules (Red Par) and (Red

Amb) for redu
tion.

In the same way as for ambient pro
esses, we de�ne the relations!

�

and #

�

(on 
losures) as the re
exive and transitive 
losures of ! and #, respe
tively.

Proposition 3.2

(1) If h

~

P ;�i is normal and h

~

P ;�i #

�

h

~

P

0

;�i then h

~

P

0

;�i is normal.

(2) If h

~

P ;�i is normal and h

~

P ;�i !

�

h

~

P

0

;�

0

i then h

~

P

0

;�

0

i is normal.

The next proposition says that the representation of pro
esses as 
losures

preserves sublo
ations and redu
tions.

Proposition 3.3 (Sublo
ation Equivalen
es) Assume h

~

P ;�i is a normal


losure. If h

~

P ;�i # h

~

Q;�i then U(

~

P ; �) # U(

~

Q; �). If U(

~

P ; �) # Q then there

exists

~

Q su
h that h

~

P ;�i # h

~

Q;�i and U(

~

Q; �) � Q.
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The following proposition is a 
ounterpart of Proposition 3.3. It refers to

time in the same way as Proposition 3.3 refers to spa
e.

Proposition 3.4 (Redu
tion Equivalen
es) Assume h

~

P ;�i is a normal


losure. If h

~

P ;�i ! h

~

P

0

;�

0

i then U(

~

P ; �) ! U(

~

P

0

; �

0

). If U(

~

P ; �) ! P

0

then

there exists h

~

P

0

;�

0

i su
h that h

~

P ;�i ! h

~

P

0

;�

0

i and U(

~

P

0

; �

0

) � P

0

.

Propositions 3.1{3.4 are enough to prove that normal 
losures indeed simu-

late the pro
esses they represent.

3.2 Size of the Representation

We show that 
losures indeed give a polynomial representation of pro
esses. To

do this, we have to bound the size of o�sets that o

ur in 
losures.

For a given obje
t (a 
losure or a pro
ess) O, by jOj we mean the length

of its string representation and by kOk the number of nodes in its tree repre-

sentation. We assume that an o�set is represented by a single node in the tree

representation.

Lemma 3.5 Suppose that h

~

P ;�i ! h

~

P

0

;�

0

i. Then kh

~

P

0

;�

0

ik � kh

~

P ;�ik.

Proof By a simple 
ase analysis on the derivation of h

~

P ;�i ! h

~

P

0

;�

0

i. In


ases (Trans In), (Trans Out) and (Trans Open), the transition either does

not 
hange or de
reases the representation's size. In 
ase (Trans I/O), the three

nodes representing input, output and pro
ess 
omposition ((); hi; :) together with

the representation of x and M are repla
ed with two nodes representing assign-

ment and substitution 
omposition ( ; fg) together with the representation of

x and M . Thus the tree de
reases by one node. �

Proposition 3.6 Assume h

~

P ;�i is normal and h

~

P ;�i ! h

~

P

0

;�

0

i. Then all o�-

sets used in

~

P and

~

P

0


an be represented by the same number of bits, polynomial

in jh

~

P ;�ij and, with su
h a representation, jh

~

P

0

;�

0

ij � jh

~

P ;�ij.

Proof A simple indu
tion on the length of the substitution �

0

proves that the

o�sets in

~

P

0

are bounded by the value kh

~

P

0

;�

0

ik

kh

~

P

0

;�

0

ik

. By Lemma 3.5, they

are also bounded by kh

~

P ;�ik

kh

~

P ;�ik

and then all o�sets used in

~

P and

~

P

0

are

bounded by this value, whi
h 
an be represented on kh

~

P ;�ik �(blog(kh

~

P ;�ik)
+

1) bits. With this representation of o�sets, in
rementing an o�set does not

in
rease the size of its string representation. Thus no transitions 
an in
rease

the length of the string representations of 
losures. �

The following proposition is a key fa
t in the proof that our model 
he
k-

ing algorithm and also the algorithm of Cardelli and Gordon (2000b) terminate

in exponential time. It implies that the 
omputation tree of a given pro
ess

might be very deep and very narrow (as in our example in Se
tion 2) or not

so deep and wider; in any 
ase the number of nodes in the tree remains ex-

ponentially bounded. A naive argument (without using 
losures) gives only a

11



doubly exponential bound on the number of rea
hable pro
esses: one 
an prove

that the 
omputation tree of a given pro
ess is at most exponentially deep

(as our example in Se
tion 2 shows, this bound is tight) and that the number

of su

essors for every node is at most polynomial. For example, the 
losure

hfn[in n(0):

~

P

0

℄; : : : ; n[in n(0):

~

P

k

℄g;�i has at most k

2

di�erent su

essors. These

two fa
ts do not give, however, the exponential bound on the number of nodes

in the tree, whi
h is given by the following proposition.

Proposition 3.7 Let h

~

P ;�i be a normal 
losure. Then there exist at most

exponentially many h

~

P

0

;�

0

i su
h that h

~

P ;�i !

�

h

~

P

0

;�

0

i.

Proof This is a dire
t 
onsequen
e of Proposition 3.6 and the observation

that there are only exponentially many strings of polynomial length. �

Proposition 3.8 The rea
hability problem for normal 
losures is de
idable in

PSPACE.

Proof Take any instan
e h

~

P ;�i, h

~

P

0

;�

0

i of the rea
hability problem. To de-


ide whether h

~

P ;�i !

�

h

~

P

0

;�

0

i, we �rst de�ne a nondeterministi
 algorithm

that starting from h

~

P ;�i guesses an immediate su

essor of the 
urrent 
losure

until it rea
hes h

~

P

0

;�

0

i or there are no further su

essors. By Proposition 3.6

the algorithm requires only polynomial spa
e (we have to store only the 
ur-

rent 
losure and its one immediate su

essor); Proposition 3.7 implies termina-

tion. Finally, using the general statement of Savit
h's theorem (Savit
h 1970)

(NPSPACE(S(n)) � PSPACE(S(n)

2

)), this non-deterministi
 algorithm 
an be

turned into a deterministi
 one. �

3.3 A New Algorithm

We propose a new algorithm, Che
k (

~

P ; �;A), to 
he
k whether the ambient

pro
ess simulated by h

~

P ;�i satis�es the 
losed formula A. For ea
h ambient

pro
ess, P , we only 
onsider the 
losure, F(P ), obtained using the folding fun
-

tion de�ned as follows. We prove (Proposition 3.10), that P j= A if and only if

Che
k (F(P ); �;A) returns the Boolean value T.

The Folding F(P ) of a Pro
ess P :

F(0) = fg

F(P j Q) = F(P ) ++ F(Q)

F(M [P ℄) = fM [F(P )℄g

F((n):P ) = f(n):F(P )g

F(hMi) = fhMig

F(M:P ) =

�

F(P ) if len(M; �) = 0

fM(0):F(P )g otherwise

For any pro
ess P , the 
losure hF(P ); �i is normal and U(F(P ); �) is stru
-

turally 
ongruent to P . Furthermore, F(P ) 
an be 
omputed in linear time in

the size of P .

12



For the model 
he
king problem, P j= A, we may assume without loss of

generality that the free names of A are disjoint from the bound names of P . We

denote by fn(

~

P ; �) the set (fn(

~

P ) [ names(�)) r dom(�).

Computing Whether a Pro
ess Satis�es a Closed Formula:

Che
k (

~

P ; �;T) = T

Che
k (

~

P ; �;:A) = :Che
k (

~

P ; �;A)

Che
k (

~

P ; �;A _ B) = Che
k (

~

P ; �;A) _ Che
k (

~

P ; �;B)

Che
k (

Q

i2I

�

i

; �;0) =

�

T if I = ?

F otherwise

Che
k (

Q

i2I

�

i

; �; n[A℄) =

�

Che
k (

~

Q; �;A) if I = fig; �

i

=M [

~

Q℄; nam(M;�) = n

F otherwise

Che
k (

Q

i2I

�

i

; �;A j B) =

W

J�I

(Che
k (

Q

j2J

�

j

; �;A) ^

Che
k (

Q

k2I�J

�

k

; �;B))

Che
k (

~

P ; �; 9x:A) = let fm

1

; : : : ;m

k

g = fn(

~

P ; �) [ fn(A) in

let m

0

=2 fm

1

; : : : ;m

k

g [ bn(

~

P ) [ dom(�) be fresh in

W

i20::k

Che
k (

~

P ; �;Afx m

i

g)

Che
k (

~

P ; �;�A) =

W

h

~

P ;�i!

�

h

~

P

0

;�

0

i

Che
k (

~

P

0

; �

0

;A)

Che
k (

~

P ; �;✧A) =
W

h

~

P ;�i#

�

h

~

P

0

;�i

Che
k (

~

P

0

; �;A)

Che
k (

~

P ; �;A�n) = Che
k (n[

~

P ℄; �;A)

An expression Che
k (

~

P ; �;A) is said to be normal if and only if the 
losure

h

~

P ;�i is normal, A is a 
losed formula, and fn(A) \ (bn(

~

P ) [ dom(�)) = ?.

Hen
e, for the model 
he
king problem P j= A where A is a 
losed formula, the

expression Che
k (F(P ); �;A) is normal and moreover we have:

Proposition 3.9 The model 
he
king algorithm des
ribed above preserves the

normality of Che
k (

~

P ; �;A).

Proposition 3.10 For all pro
esses P and 
losed formulas A, we have P j= A

if and only if Che
k (F(P ); �;A) = T.

Theorem 3.11 Model 
he
king the ambient 
al
ulus and logi
 of this paper is

de
idable in PSPACE.

Proof To test for a given pro
ess P and formula A whether P j= A we simply


ompute the value of Che
k (F(P ); �;A). The only problem is to implement

Che
k in su
h a way that it works in polynomial spa
e.

In the 
ase of T;0; n[A℄;A�n;:A, the algorithm 
an dire
tly 
he
k whether

the respe
tive 
onditions hold. In the 
ase of A _ B;A j B; 9x:A;�A;✧A, we
have to be more 
areful about the spa
e used to 
ompute the value of disjun
-

tions. In a loop we iteratively 
ompute the value of ea
h disjun
t, reusing the
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same spa
e in every iteration. In the 
ase of �A the subroutine 
omputing

W

h

~

P ;�i!

�

h

~

P

0

;�

0

i

Che
k (

~

P

0

; �

0

;A) 
ould look as follows.

result  F

for all h

~

P

0

;�

0

i su
h that h

~

P ;�i !

�

h

~

P

0

;�

0

i

if Che
k (

~

P

0

; �

0

;A) = T then result  T

return(result)

By Propositions 3.6 and 3.8, every iteration requires only polynomial spa
e.

The 
ases of A_B;A j B; 9x:A;✧A are similar. Thus, the spa
e S(k; j

~

P j+ j�j)

used by the algorithm to 
ompute Che
k (

~

P ; �;A) for formulas A of depth not

ex
eeding k satis�es the inequality

S(k + 1; j

~

P j+ j�j) � S(k; j

~

P j+ 
+ j�j) + p(j

~

P j+ j�j)

for some 
onstant 
 and some polynomial p (the 
onstant 
 
omes from the fa
t

that in the 
ase of A = B�n the size of n[

~

P ℄ is greater than the size of

~

P ; the

polynomial p estimates the spa
e needed for testing rea
hability et
). Therefore,

S(k; j

~

P j+ j�j) � k � p(j

~

P j+ k � 
+ j�j).

Finally, the fa
t that F(P ) is polynomial in the size of P and the statement

of Proposition 3.10 
omplete the proof. �

4 Complexity Lower Bounds

Below we present lower bounds on the spa
e 
omplexity of model 
he
king our

pro
ess 
al
ulus against our modal logi
, and also for two signi�
ant fragments.

The results given here are based on known results about the 
omplexity of

de
ision problems for Quanti�ed Boolean Formulas (QBF). We 
an assume with-

out loss of generality that these Boolean formulas are in prenex and 
onjun
tive

normal form. The alternation depth of a formula is the number of alternations

between existential and universal quanti�ers in its prenex quanti�
ation.

Those known results are: (1) de
iding the validity problem for a 
losed

quanti�ed Boolean formula ' is PSPACE-
omplete; (2) de
iding the validity

problem for a 
losed quanti�ed Boolean formula ' of alternation depth k whose

outermost quanti�er is 9 is �

P

k

-
omplete (Sto
kmeyer 1976), where �

P

k

denotes

the k-th level of the polynomial-time hierar
hy. In parti
ular, �

P

0

= P and

�

P

1

= NP.

We will use the following formula as a running example of a valid 
losed

QBF formula:

8v

1

:9v

2

:9v

3

:(v

1

_ v

2

_ v

3

) ^ (v

1

_ v

2

_ v

3

) ^ v

3

4.1 The Full Cal
ulus and Logi


We de�ne an en
oding of QBF formulas into ambient formulas. This en
oding

is then used to prove Theorem 4.2, that the 
omplexity of model 
he
king the

ambient logi
 is PSPACE-hard.
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In our en
oding, we assume that the truth values tt and � used in the

de�nition of QBF satisfa
tion are distin
t ambient 
al
ulus names.

We also use a derived operator for name equality in the ambient logi
 �rst

de�ned by Cardelli and Gordon (2000b):

� = �

�

= �[T℄��

Then 0 j= m = n if and only if the names m and n are equal. We en
ode the 8

and 9 quanti�ers over truth values as follows.

8x 2 f� ; ttg:A

�

= 8x:(x = � _ x = tt)) A

9x 2 f� ; ttg:A

�

= 9x:(x = � _ x = tt) ^ A

En
oding QBF Formulas as Ambient Logi
 Formulas:

[[v℄℄

�

= (v = tt)

[[v℄℄

�

= (v = � )

[[`

1

_ � � � _ `

k

℄℄

�

= [[`

1

℄℄ _ � � � _ [[`

k

℄℄

[[C

1

^ � � � ^ C

k

℄℄

�

= [[C

1

℄℄ ^ � � � ^ [[C

k

℄℄

[[8v:'℄℄

�

= 8v 2 f� ; ttg:[['℄℄

[[9v:'℄℄

�

= 9v 2 f� ; ttg:[['℄℄

The following properties are proved in the appendix. The proof of Lemma 4.1

is by indu
tion on the number of variables quanti�ed in '.

Lemma 4.1 Consider a 
losed quanti�ed boolean formula ' and its en
oding

[['℄℄ in the ambient logi
. The formula ' is valid if and only if the model 
he
king

problem 0 j= [['℄℄ holds.

Theorem 4.2 The 
omplexity of model 
he
king the full logi
 (in
luding name

quanti�
ation) is PSPACE-hard.

Proof Straightforward from Lemma 4.1 sin
e for the �xed ambient pro
ess

0 solving the model 
he
king problem 0 j= ' is PSPACE-hard. So in fa
t the

expression 
omplexity, that is, the 
omplexity of 
he
king formulas against a

�xed pro
ess, is PSPACE-hard. �

The theorem above holds for any fragment of the logi
 in
luding boolean 
on-

ne
tives, name quanti�
ation, and the lo
ation and lo
ation adjun
t modalities,

and for any fragment of the 
al
ulus in
luding ambients. This might suggest

that the 
omplexity of the model 
he
king problem 
omes from the quanti�
a-

tion in the logi
. Below we show that it is not the 
ase: the problem remains

so 
omplex even if we remove quanti�
ation from the logi
 and 
ommuni
ation

or mobility from the 
al
ulus. This suggests there is little 
han
e of �nding

interesting fragments of the 
al
ulus and the logi
 that would admit a faster

model 
he
king algorithm.

15



4.2 Mobile Ambients Without I/O, No Quanti�ers

In this se
tion, we study the 
omplexity of the model 
he
king problem for the

fragment of the ambient 
al
ulus without I/O and the fragment of the logi


without quanti�
ation.

For every QBF variable, v, we assume that v, v

0

and v

00

are distin
t ambient


al
ulus names.

En
oding QBF Formulas as Ambient Pro
esses and Formulas:

[[v℄℄ = v[pos [0℄ j v

0

[0℄℄ j T

[[v℄℄ = v[neg [0℄ j v

0

[0℄℄ j T

[[`

1

_ � � � _ `

k

℄℄ = [[`

1

℄℄ _ � � � _ [[`

k

℄℄

[[C

1

^ � � � ^ C

k

℄℄ = (end [0℄; [[C

1

℄℄ ^ � � � ^ [[C

k

℄℄)

[[8v:'℄℄ = (v

0

[in v:n[out v

0

:out v:P ℄℄;�((n[T℄ j T)) A)) where (n[P ℄;A) = [['℄℄

[[9v:'℄℄ = (v

0

[in v:n[out v

0

:out v:P ℄℄;�((n[T℄ j T) ^ A)) where (n[P ℄;A) = [['℄℄

en
(') = (v

1

[pos [0℄℄ j v

1

[neg [0℄℄ j � � � j v

n

[pos [0℄℄ j v

n

[neg [0℄℄ j P;A)

where (P;A) = [['℄℄ and ' = Q

1

v

1

: : : : :Q

n

v

n

:C

1

^ � � � ^ C

k

where ea
h Q

i

2 f9;8g.

Brief explanation. In the en
oding en
(') above, the parallel 
omposition

v

1

[pos [0℄℄ j : : : j v

n

[neg [0℄℄ represents the sequen
e v

1

; : : : v

n

of (uninstantiated)

boolean variables and P is a pro
ess that instantiates them. An instantiated

variable v

i

is represented by a subpro
ess v

i

[pos [0℄ j v

0

i

[0℄℄ j v

i

[neg [0℄℄ (if its

value is tt) or v

i

[pos [0℄℄ j v

i

[neg [0℄ j v

0

i

[0℄℄ (if its value is � ). The pro
ess

P �rst instantiates v

1

by 
hoosing one of the ambients v

1

[pos [0℄℄ or v

1

[neg [0℄℄

nondeterministi
ally, going inside it, leaving the token v

0

1

[0℄ inside the 
hosen

ambient and then returning to the top level. It then iteratively instantiates the

variables v

2

; : : : ; v

n

in the same way. The formula n[T℄ j T in the 
ontext of the

en
oding for a quanti�ed variable v

i

above (where n is v

i+1

or end for i = n)

expresses that the instantiation of v

i

has �nished but that the instantiation of n

has yet to start; thus �(n[T℄ j T : : :) and �(n[T℄ j T : : :) express, respe
tively,

universal and existential quanti�
ations over instantiations of v

i

.

In the 
ase where ' is the formula de�ned previously as an example, one

would obtain en
(') = (P;A), where P is the pro
ess depi
ted in Figure 1(a)

and where the formula A is of the form:

�((v

0

2

[T℄ j T)) �((v

0

3

[T℄ j T) ^ �((end [T℄ j T) ^ B)))

where B is the formula given by [[v

1

_ v

2

_ v

3

℄℄ ^ [[v

1

_ v

2

_ v

3

℄℄ ^ [[v

3

℄℄.

More detailed explanation. We explain this en
oding with referen
e to the

ambient pro
ess depi
ted in Figure 1(a). The ambients whose names range over

v

i

des
ribe an interpretation for the Boolean variables v

i

whereas the ambients
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v

1

pos [℄

j

v

1

neg [℄

j

v

2

pos [℄

j

v

2

neg [℄

j

v

3

pos [℄

j

v

3

neg [℄

j

v

0

1

in v

1

:

v

0

2

out v

0

1

:out v

1

:in v

2

:

v

0

3

out v

0

2

:out v

2

:in v

3

:

end

out v

0

3

:out v

3

:0

(a) The pro
ess P in en
(') = (P;A)

v

1

pos [℄ j v

0

1

[℄

j

v

1

neg [℄

j

v

2

pos [℄ j v

0

2

[℄

j

v

2

neg [℄

j

v

3

pos [℄

j

v

3

neg [℄ j v

0

3

[℄

j

end

0

(b) The irredu
ible pro
ess for the interpretation v

1

7! tt ; v

2

7! tt ; v

3

7! �

Figure 1: En
oding for mobile ambients without I/O, no quanti�ers

named v

0

i

are the \material" to extend this interpretation. In the initial ambi-

ent, the ambients v

i

en
ode the empty interpretation and the material is in an

ambient named v

0

1

marking the fa
t that v

1

is the �rst variable to treat. The

�rst step of redu
tion will move the ambient v

0

1

non-deterministi
ally either in-

side v

1

[pos [℄℄ (the Boolean variable v

1

takes the value tt) or inside v

1

[neg [℄℄ (the

Boolean variable v

1

takes the value � ). The next two steps of redu
tion are

deterministi
. They aim to leave a mark in one of the ambients v

1

a

ording to

the �rst non-deterministi
 
hoi
e and to rea
h a situation in whi
h the Boolean

variable v

2

is 
onsidered. For instan
e, if the �rst 
hoi
e was to instantiate

v

1

with tt then, one would obtain a parallel 
omposition of v

1

[pos [℄ j v

0

1

[℄℄ and

v

1

[neg [℄℄. The ambients named v

2

, v

3

are kept un
hanged and the ambient 
on-

taining the rest of the interpretation would be of the form v

0

2

[in v

2

:v

0

3

[Q℄℄ where

Q is the internal of v

0

3

in the initial pro
ess. This 
omputation, 
onsisting of

one non-deterministi
 step followed by two deterministi
 ones, 
an be 
arried

on for the variables v

2

and v

3

. Then, when no more redu
tion step is possible,

the resulting pro
ess is a parallel 
omposition of the empty ambient end [℄ and,

for ea
h i, of v

i

[n[℄ j v

0

i

[℄℄ and v

i

[n

0

[℄℄ where n; n

0

are distin
t elements from

fpos ;negg. For instan
e, the irredu
ible pro
ess given in Figure 1(b) represents

the interpretation v

1

7! tt ; v

2

7! tt ; v

3

7! � .
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We said that the ambient pro
esses en
ode interpretations. The Boolean

formula itself is en
oded in the ambient formula A. On
e no more redu
tion

step is possible on the ambient pro
ess, this latter represents an interpretation

whose domain is the set of all variables in ': this interpretation is given by the

pla
es where the marks v

0

i

have been put. It is easy with an ambient formula to

test whether this interpretation renders true the quanti�er-free part of '. This

role is played by the ambient formula B whereas the remaining part of A aims

to en
ode the quanti�ers of '.

Let us �rst 
onsider the outermost quanti�er 8v

1

in ': this quanti�
ation

stands for \for all possible interpretations of the variable v

1

". We have des
ribed

above the me
hanism for the instantiation of the Boolean variable v

1

in the am-

bient pro
ess. It 
onsists of �rst a non-deterministi
 step, then two deterministi


steps. Whatever the �rst step is, those three steps lead to a situation where

the ambient pro
ess is of the form R j v

0

2

[R

0

℄. It should be noti
ed that those

two pro
esses (one for ea
h possibility of the �rst step) are the only pro
esses

of this form rea
hable from the initial pro
ess. Therefore, the statement \for

all possible interpretations of the variable v

1

" 
an be translated as \for all pro-


esses of the form R j v

0

2

[R

0

℄ rea
hable from the initial pro
ess". This rephrased

statement 
an be expressed in the ambient logi
 as �((v

0

2

[T℄ j T)) : : :).

A dual reasoning 
an be applied then for 9v

2

, the following quanti�
ation of

the formula '. In that 
ase, the statement \there exists an interpretation for

the variable v

2

" is translated into \there exists an ambient pro
ess of the form

T j v

0

3

[T

0

℄ rea
hable from the 
urrent pro
ess". This 
urrent pro
ess is one of

the two pro
esses after the instantiation of the variable v

2

, that is of the form

S j v

0

3

[S

0

℄. This statement 
an be expressed by means of the ambient logi
 by

the formula �((v

0

3

[T℄ j T) ^ : : :). Finally, the quanti�
ation 9v

3

is expressed by

�((end [T℄ j T) ^ : : :).

Lemma 4.3 Assume ' is a 
losed quanti�ed Boolean formula, and (P;A) =

en
('). Then P j= A if and only if ' is valid.

Theorem 4.4 The 
omplexity of model 
he
king mobile ambients without I/O

against the quanti�er-free logi
 is PSPACE-hard.

Proof Straightforward from the PSPACE-
ompleteness of the validity for

QBF and from Lemma 4.3, taking into a

ount that for en
(') = (P;A), both

P and A are of polynomial size with respe
t to '. �

4.3 Immobile Ambients With I/O, No Quanti�ers

In this se
tion, we study the 
omplexity of the model 
he
king problem for the

fragment of the ambient 
al
ulus without a
tion pre�x.

We 
onsider �xed names end , C, and D. For any QBF variable ambient

name v

0

i

, let

Inst(v

0

i

)

�

= v

0

i

[T℄ j T Inst

+

(v

0

i

)

�

= v

0

i

[v

00

i

[T℄ j T℄ j T
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and for the name end ,

Inst(end)

�

= end [T℄ j T Inst

+

(end)

�

= end [end

0

[T℄ j T℄ j T

En
oding QBF Formulas as Ambient Pro
esses and Formulas:

[[v℄℄ = v[0℄

[[v℄℄ = v[0℄

[[`

1

_ : : : _ `

k

℄℄ = D[0℄ j [[`

1

℄℄ j : : : j [[`

k

℄℄

en
(C

1

^ : : : ^ C

k

) = (end [C[ [[C

1

℄℄ ℄ j : : : j C[ [[C

k

℄℄ ℄℄;

❏((D[0℄ j T)) (tt [0℄ j T)))

en
(9v:') = (v

0

[htti j h� i j (v):(v

00

[℄ j (v):n[P ℄)℄;

T j v

0

[�( (Inst(n) ^ :Inst

+

(n)) ^A )℄)

where en
(') = (n[P ℄;A)

en
(8v:') = (v

0

[htti j h� i j (v):(v

00

[℄ j (v):n[P ℄)℄;

T j v

0

[�( (Inst(n) ^ :Inst

+

(n)) ) A )℄)

where en
(') = (n[P ℄;A)

Brief explanation. The idea of the en
oding here is quite similar to that

from the previous se
tion. A boolean variable v is represented here by two

ambients v[℄ and v[℄, whi
h after the instantiation are named tt [℄ and � [℄. We

exploit here the nondeterminism of 
ommuni
ation: the variable v reads either

the message htti or h� i; then its dual v has to read the other one. The names

v

0

i

and v

00

i

(similar to v

0

i

in the previous se
tion) are used for distinguishing

the moment when the variable v

i

is already instantiated but v

i+1

is not. The

formula ❏((D[0℄ j T)) (tt [0℄ j T)) requires that in the �nal state, ea
h ambient

representing a 
lause (that is, an ambient 
ontaining D[0℄) 
ontains at least one

true literal (that is, an ambient tt [0℄).

For the formula ' used in our example, one would have en
(') = (P;A),

where P is depi
ted in Figure 2(a).

More detailed explanation. The key idea of this en
oding is to use (redu
-

tions of) 
ommuni
ations for performing the instantiation of the quanti�er-free

part of ' with respe
t to some interpretation. Therefore, the quanti�er-free

formula C

1

^ : : : ^ C

k

is en
oded in the ambient pro
ess itself, inside an am-

bient named end . For instan
e, in Figure 2(a) for our example, the ambient

end [C[D[℄ j v

1

[℄ j v

2

[℄ j v

3

[℄℄ j C[D[℄ j v

1

[℄ j v

2

[℄ j v

3

[℄℄ j C[D[℄ j v

3

[℄℄℄ en
odes the

quanti�er-free part of ': the ambient end 
ontains a sub-ambient 
alled C for

ea
h 
lause C

i

in ' and the ambient 
orresponding to C

i


ontains an ambient

`

j

[℄ for ea
h literal `

j

from C

i

.

Starting from P des
ribed in Figure 2(a), let us inspe
t the behaviour of

pro
esses through redu
tions. Two redu
tions 
an be performed on P : one

establishes a 
ommuni
ation between htti and (v

1

) and the other one between

h� i and (v

1

). On
e this redu
tion step is performed the name v

1

has been

repla
ed by either tt or � uniformly at every position and in parti
ular in the
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v

0

1

htti j h� i j

(v

1

):(v

00

1

[℄ j (v

1

)):

v

0

2

htti j h� i j

(v

2

):(v

00

2

[℄ j (v

2

)):

v

0

3

htti j h� i j

(v

3

):(v

00

3

[℄ j (v

3

)):

end

C

D[℄ j v

1

[℄ j v

2

[℄ j v

3

[℄

j

C

D[℄ j v

1

[℄ j v

2

[℄ j v

3

[℄

j

C

D[℄ j v

3

[℄

(a) The pro
ess P in en
(') = (P;A)

end

C

D[℄ j tt [℄ j � [℄ j � [℄

j

C

D[℄ j � [℄ j tt [℄ j � [℄

j

C

D[℄ j tt [℄

(b) The pro
ess representing the instantiation of C

1

^ C

2

^ C

3

by v

1

7! tt; v

2

7!

tt; v

3

7! �

Figure 2: En
oding for immobile ambients with I/O, no quanti�ers

ambient named end . Hen
e, the �rst step of 
omputation is non-deterministi


and instantiates the literal v

1

. It has also a side-e�e
t: it reveals an ambient

pro
ess v

00

1

[℄ within the ambient v

0

1

; this pro
ess is a marker for the 
ontrol

of 
omputations. Its pre
ise role will be explained later on. The se
ond step

is deterministi
: for ea
h �rst step, only one se
ond step is possible. This

se
ond step aims to instantiate the literal v

1

a

ording to the instantiation of

v

1

. Indeed, if the �rst 
ommuni
ation has 
onsumed the output htti then for

the se
ond one only the output h� i remains and vi
e-versa. So, after the se
ond

step, the name v

1

is globally repla
ed by a Boolean value. Moreover, at this

point there are no more a
tions pre�xing the ambient named v

0

2

and so this

ambient 
an be now redu
ed using the rules (Red Par) and (Red Amb). The

next redu
tion steps are performed in a similar way: a non-deterministi
 step

follows by a deterministi
 one. This leads �nally to repla
e in the ambient end

all the names 
orresponding to literals by Boolean values tt and � . As an

example, in Figure 2(b), we have depi
ted the ambient end on
e the redu
tions


orresponding to the interpretationM = v

1

7! tt ; v

2

7! tt ; v

3

7! � have been

performed.
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Now, using an ambient formula it is not diÆ
ult to test whether the inter-

pretation indu
ed from the pro
ess in Figure 2(b) is a model for C

1

^ C

2

^ C

3

:

as C

1

^ C

2

^ C

3

is in 
onjun
tive normal form, M is a model for it if and

only if M renders at least one literal true in every 
lause C

i

. A

ording to

the way redu
tions are performed and 
orrespond to instantiations, this is

equivalent to the 
laim that in the pro
ess from Figure 2(b), every ambient

named C 
ontains a sub-ambient tt [℄. This 
an be tested with the formula

B = ❏((D[0℄ j T) ) (tt [0℄ j T)), whi
h is exa
tly the formula given by

en
(C

1

^ C

2

^ C

3

).

In the en
oding en
(') = (P;A), one part of A aims to test whether the

interpretation 
orresponding to the redu
tions is a model of '. The other part

of A is used to en
ode the quanti�
ation of '. Let us illustrate on our example

the ideas of this en
oding: for the formula ' from our example, the formula A

is equal to

T j v

0

1

[�( (Inst(v

0

2

) ^ :Inst

+

(v

0

2

)) )

(T j v

0

2

[�( (Inst(v

0

3

) ^ :Inst

+

(v

0

3

)) ^

(T j v

0

3

[�(Inst(end) ^ :Inst

+

(end) ^ B)℄) )℄) )℄

where B is the result of the en
oding of the quanti�er-free part of '. For the

variable v

i

, the intuitive reading of Inst(v

0

i

) is \the next variable to 
onsider

is v

i

", that is, the instantiation of the variable v

i�1

has been 
ompleted. The

reading of Inst

+

(v

0

i

) is \the variable v

i

has been partially treated", that is,

the instantiation has been performed for the positive literal v

i

. For the ambient

name end , Inst(end) refers to the 
ompletion of the instantiation of the variable

v

n

.

The �rst quanti�
ation 8v

1

stands for \for all possible interpretations of the

variable v

1

" and the part of ' related with this quanti�
ation is

T j v

0

1

[�( (Inst(v

0

2

) ^ :Inst

+

(v

0

2

)) ) : : :)℄

This formula is model 
he
ked against the pro
ess P given in Figure 2(a).

As P � 0 j P , the model 
he
king problem is redu
ed to 
he
king the interior

of v

0

1

against the sub-formula of the form �A

1

: all pro
esses rea
hable from

the interior of v

0

1

must satisfy A

1

. Let us have a look at the form of those

rea
hable pro
esses: the interior of v

0

1

is itself rea
hable as well as the two

pro
esses 
orresponding to the instantiation of the literal v

1

(rea
hable in one

step). In those pro
esses v

1

has been repla
ed by a Boolean value but none

of them satis�es v

0

2

[T℄ j T, that is, Inst(v

0

2

). Now, the pro
esses rea
hable in

two steps or more indeed satisfy the formula Inst(v

0

2

); but the ones rea
hable in

exa
tly two steps 
an be distinguished from the others sin
e these former are the

only ones whi
h do not satisfy v

0

2

[v

00

2

[T℄ j T℄ j T, that is, Inst

+

(v

0

2

). Indeed, steps

beyond the se
ond one reveal the marker v

00

2

[℄ inside the ambient v

0

2

. We have

already mentioned the fa
t that the two steps of 
omputation 
orrespond exa
tly

to the 
omplete treatment of the variable v

1

whi
h is the intended meaning of

Inst(v

0

2

)^:Inst

+

(v

0

2

). Therefore, model 
he
king 
ontinues by 
he
king the two

pro
esses (the se
ond step of 
omputation being deterministi
), de�ned as the
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interior of v

0

1

in whi
h the literals v

1

and v

1

have been repla
ed by Boolean

values, against the formula

T j v

0

2

[�( (Inst(v

0

3

) ^ :Inst

+

(v

0

3

)) ^ :::)℄

from the en
oding of the quanti�
ation 9v

2

. It stands for \there exists an

interpretation for v

2

". The pro
ess that is 
he
ked against this formula is of the

form v

00

1

[℄ j v

0

2

[R℄. Therefore, it amounts to 
he
k whether the pro
ess R, whi
h

is the interior of v

0

2

in whi
h names v

1

; v

1

have been repla
ed with Boolean

values, is a model for the sub-formula of the form �A

2

. Equivalently, there

must exist a pro
ess rea
hable from R whi
h satis�es A

2

. Let us inspe
t the

pro
esses rea
hable from R. Of 
ourse, R itself is rea
hable as well as the two

pro
esses rea
hable in one step of 
omputation performing the instantiation for

the literal v

2

. None of these pro
esses satis�es the formula v

0

3

[T℄ j T, that

is, Inst(v

0

3

). Pro
esses that are obtained with two steps or more from R do

satisfy Inst(v

0

3

) but only those obtained by stri
tly more than two steps reveal

the marker v

00

3

[℄ inside v

0

3

and thus, satisfy v

0

3

[v

00

3

[T℄ j T℄ j T, that is Inst

+

(v

0

3

).

Those 
omputations from R of exa
tly two steps 
orrespond to the 
omplete

treatment of the variable v

2

and satisfy Inst(v

0

3

) ^ :(Inst

+

(v

0

3

)). So, model


he
king 
arries on by 
he
king that one of these two pro
esses rea
hable from

R in two steps and de�ned as the interior of v

2

in whi
h the literals v

1

, v

1

, v

2

,

v

2

have been repla
ed by Boolean values, is a model for the remaining part of

the en
oding of the formula.

Finally, the quanti�
ation 9v

3

is en
oded as

T j v

0

3

[�( ((T j end [T℄) ^ :(T j end [end

0

[T℄ j T℄)) ^ :::)℄

and its treatment is similar to that of 9v

2

. It leads to model 
he
king the pro
ess

named end given in Figure 2(b) against the formula B.

Lemma 4.5 Assume ' is a 
losed quanti�ed Boolean formula, and (P;A) =

en
('). Then P j= A if and only if ' is valid.

Theorem 4.6 The 
omplexity of model 
he
king immobile ambients with I/O

against the quanti�er-free logi
 is PSPACE-hard.

Proof This follows from the PSPACE-
ompleteness of validity for QBF, from

Lemma 4.5 taking into a

ount that for en
(') = (P;A), both P and A are of

polynomial size with respe
t to '. �

We 
an strengthen this result by slightly modifying our en
oding. Our pre-

vious en
oding is based on an individual treatment for the variables in the

quanti�
ation. The improved en
oding will be based on the alternation of quan-

ti�ers: roughly, 9v

2

9v

3


an be grouped together by saying that \there exists an

interpretation for v

2

and v

3

". As far as the previous en
oding is 
on
erned, the

ambient formula resulting from the en
oding of 9v

2

9v

3

will perform two su
-


essive tests for rea
hability; this 
an be modi�ed in su
h a way that only one
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test of rea
hability is performed. This will imply for the new en
oding that the

markers used to 
ontrol the model 
he
king (namely, the ambients v

0

) will no

longer be asso
iated with the variables but with the alternation of quanti�ers.

Those ambient names will range over a

i

where i is an integer. We de�ne for

those a

i

's:

Inst(a

i

)

�

= a

i

[T℄ j T Inst

+

(a

i

)

�

= a

i

[a

i

[℄ j T℄ j T

The Revised En
oding:

en
(8v:') = en
(8v:'; 1)

en
(9v:') = en
(9v:'; 1)

en
(8v:'; i) = (a

i

[htti j h� i j (v):(a

i

[℄ j (v)):P;

T j a

i

[�( Inst(a

i+1

) ^ Inst

+

(a

i+1

) ) A )℄)

where en


8

('; i) = (P;A)

en
(9v:'; i) = (a

i

[htti j h� i j (v):(a

i

[℄ j (v)):P;

T j a

i

[�( Inst(a

i+1

) ^ Inst

+

(a

i+1

) ^ A )℄)

where en


9

('; i) = (P;A)

en


8

(9v:'; i) = en
(9v:'; i+ 1)

en


8

(8v:'; i) = (htti j h� i j (v):(v):P;A) where en


8

('; i) = (P;A)

en


9

(8v:') = en
(8v:'; i+ 1)

en


9

(8v:'; i) = (htti j h� i j (v):(v):P;A) where en


9

('; i) = (P;A)

en
(C

1

^ : : : ^ C

k

; i) = (a

i

[C[ [[C

1

℄℄ ℄ j : : : j C[ [[C

k

℄℄ ℄℄;❏((D[0℄ j T)) tt [0℄ j T))

[[`

1

_ : : : _ `

k

℄℄ = D[0℄ j [[`

1

℄℄ j : : : j [[`

k

℄℄

[[v℄℄ = v[℄

[[v℄℄ = v[℄

The statement of Lemma 4.5 still holds for this new en
oding. Furthermore,

in the en
oding (P;A) of the Boolean formula ', the ambient logi
 formula A

depends only on the alternation depth and the outermost quanti�er of '; for

any two Boolean formulas '; '

0

having the same alternation depth k and the

same outermost quanti�er Q, if en
(') = (P;A) and en
('

0

) = (P

0

;A

0

) then

A = A

0

.

Theorem 4.7 For every integer k there exists a formula A

9

k

su
h that the 
om-

plexity of model 
he
king pro
esses against A

9

k

is �

P

k

-hard.

Proof Let A

9

k

be the formula su
h that for any 
losed quanti�ed Boolean

formula ' of alternation depth k whose outermost quanti�er is 9, en
(') =

(P

'

;A

9

k

). Due to the remark above, we know that this formula exists and

furthermore, is of size polynomial in k.

Now, by Lemma 4.5, every instan
e of the validity problem for a 
losed

quanti�ed Boolean formula ' of alternation depth k whose outermost quanti�er
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is 9 
an be redu
ed to the model 
he
king problem P

'

j= A

9

k

for en
(') =

(P

'

;A

9

k

). Thus, sin
e the size of P

'

is polynomial in the size of ', the theorem

follows. �

5 Con
lusion

We show in this paper that the model 
he
king problem of the repli
ation-

free ambient 
al
ulus with publi
 names against the ambient logi
 without


omposition-adjun
t is PSPACE-
omplete. In order to prove this 
omplexity

bound, we have proposed a new representation for pro
esses, 
alled 
losures,

that prevents the exponential blow-up of the size. We use this representation

together with a new algorithm to prove the PSPACE upper bound.

We also have shown that there is little 
han
e to �nd polynomial algorithms

for interesting subproblems: model 
he
king remains PSPACE-hard even for

quite simple fragments of the 
al
ulus and the logi
.

Possible dire
tions for future work in
lude investigations of the model 
he
k-

ing problem for extensions of the logi
 and the 
al
ulus. Re
ently, Cardelli and

Gordon (2001) have presented an extended version of the logi
 that allows rea-

soning about restri
ted names; it seems that there is no diÆ
ulty in extending

our algorithm to deal with name restri
tion.
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A Corre
tness Proofs

This appendix 
ontains proofs of results stated in Se
tion 3.

A.1 Proof of Proposition 3.1

Proposition 3.1 
on
erns the relationship between normal 
losures and stru
-

tural 
ongruen
e. In this appendix we develop enough fa
ts about 
losures and

stru
tural 
ongruen
e to prove it.

We begin with a proposition that normality is preserved by de
omposition

with ambient or parallel 
omposition.

Proposition A.1

� h

~

P ;�i and h

~

Q;�i are normal and fn(

~

P ) \ bn(

~

Q) = bn(

~

P ) \ fn(

~

Q) =

bn(

~

P ) \ bn(

~

Q) = ? i� h

~

P ++

~

Q;�i is normal.

� for all expressions M su
h that M does not 
ontain names from bn(

~

P ),

hfM [

~

P ℄g;�i is normal i� h

~

P ;�i is normal.

Proof For the �rst point: from right to left, it is straightforward from the

de�nition of U that if U(

~

P ++

~

Q; �) is de�ned then both U(

~

P ; �) and U(

~

Q; �)

are so. As fn(

~

P ++

~

Q) = fn(

~

P ) [ fn(

~

Q) and bn(

~

P ++

~

Q) = bn(

~

P ) [ bn(

~

Q), if

bn(

~

P ++

~

Q)\(fn(

~

P ++

~

Q)[names(�)) = ? then bn(

~

P )\(fn(

~

P )[names(�)) =

bn(

~

Q)\ (fn(

~

Q) [ names(�)) = ?. If for

~

P ++

~

Q bound variables o

ur at most

on
e within an input and o�sets in the s
ope of an input are equal to 0, then it

is so for

~

P and

~

Q. The last 
ondition for normality on sequential substitution

is obvious. The three other 
onditions follow dire
tly from the normality of

h

~

P ++

~

Q;�i. From left to right, the de�nition of U implies that if h

~

P ;�i and

h

~

Q;�i are de�ned then h

~

P ++

~

Q;�i is de�ned. Now, fn(

~

P ++

~

Q)\bn(

~

P ++

~

Q) =

(fn(

~

P )[fn(

~

Q))\(bn(

~

P )[bn(

~

Q)). We have fn(

~

P )\bn(

~

Q) = bn(

~

P )\fn(

~

Q) = ?

by assumption and fn(

~

P )\bn(

~

P ) = fn(

~

Q)\bn(

~

Q) = ? as h

~

P ;�i and h

~

Q;�i are

normal. So, fn(

~

P ++

~

Q)\ bn(

~

P ++

~

Q) = ?. By normality of h

~

P ;�i and h

~

Q;�i,

names(�)\bn(

~

R) = ? for

~

R 2 f

~

P ;

~

Qg. So, names(�)\bn(

~

P ++

~

Q) = ?. h

~

P ;�i

and h

~

Q;�i being normal and as by assumption bn(

~

P )\ bn(

~

Q) = ?, every input

variable o

urs at most on
e within an input in

~

P ++

~

Q. The last 
onditions

on o�sets in the s
ope of an input and on sequential substitution is obvious.

For the se
ond point: It is easy to see that U(fM [

~

P ℄g; �) is de�ned i� U(

~

P ; �)

is so. The set of names o

urring free in M is exa
tly the set fn(fM [0℄g). Now,

as bn(fM [

~

P ℄g) = bn(

~

P ) and fn(fM [

~

P ℄g) = fn(

~

P ) [ fn(fM [0℄g), fn(fM [

~

P ℄g) \

bn(fM [

~

P ℄g) is empty i� fn(

~

P ) \ bn(

~

P ) is empty (taking into a

ount the

assumption that bn(

~

P ) \ fn(fM [0℄g) = ?) and bn(fM [

~

P ℄g) \ names(�) =

bn(

~

P )\ names(�) = ?. Finally, the last three statements are obvious to 
he
k.

�

In the proof of Proposition 3.1 we will have to show that some pro
esses

are equivalent if and only if some 
onditions hold. In parti
ular, we will have

to show that if these 
onditions do not hold, the pro
esses are not equivalent.
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Although it is relatively easy to prove equivalen
e of pro
esses, it is not so

easy to prove their inequivalen
e (whi
h requires showing that no equivalen
e

proof exists). We use Theorem A.2 and Propositions A.3{A.5 below as tools for

proving inequivalen
es needed in Proposition 3.1.

Let us 
onsider � the signature used to build pro
esses from the ambient


al
ulus with publi
 names. The signature � 
ontains an in�nite number of


onstants used as names. It 
ontains moreover 0 and � as 
onstant symbols, the


apabilities in; out ; open and hi as unary fun
tion symbols. Finally, the binary

fun
tion symbols j; [℄; :; () belong to �.

Let us denote T

�

the set of all terms over �. Any ambient pro
ess from

the ambient 
al
ulus with publi
 names 
an be written as a term over this

vo
abulary. And of 
ourse, some terms from T

�

are not ambient pro
ess, as for

instan
e, h0 j 0i.

The set T

�

indu
es a 
anoni
al algebra that we denote T

�

: the algebra

T

�

has for 
arrier the set T

�

and ea
h fun
tion symbols from � is interpreted

synta
ti
ally in T

�

.

The stru
tural 
ongruen
e relation � de�ned in Se
tion 2.1 over pairs of

ambient pro
esses 
an be viewed as a relation de�ned over T

�

�T

�

. One should

noti
e that the set of axioms de�ning � is a set of de�nite Horn 
lauses, and

thus, (T

�

;�) is a Herbrand model for this set of axioms. Moreover, as we


onsider the least relation satisfying these axioms, the stru
ture (T

�

;�) is the

least Herbrand model for this set of axioms. This implies that two pro
esses P;Q

are stru
turally equivalent if and only if P � Q belongs to the least Herbrand

model of these axioms.

Note that if � is not assumed to be the least relation satisfying the axioms

but for instan
e the greatest one, then one would have P � Q whatever P;Q

are.

The following theorem is a dire
t 
onsequen
e of two well-known fa
ts (Lloyd

1987), that (1) every model of a set of Horn 
lauses 
an be translated to a

Herbrand model, and (2) that every Herbrandmodel 
ontains the least Herbrand

model. Essentially, the theorem says that anything that does not belong to some

model 
annot belong to the least model.

Theorem A.2 Let S be a set of de�nite Horn 
lauses de�ning a relation symbol

�. Then for all algebras A, for all stru
tures R de�ned over A and giving an

interpretation for � su
h that R j= S,

R j= s � t if (T

�

;�) j= s � t

That is, if there exists a stru
ture R su
h that R j= S and R j= s 6� t, then

(T

�

;�) j= s 6� t.

Let us 
onsider now the algebra

^

A de�ned over �; the 
arrier D

^

A

is the least

set su
h that

� the 
onstants from � ex
ept � and 0 belong to D

^

A

,

� the empty string and the empty multiset belong to D

^

A

,
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� for any d

1

; d

2

2 D

^

A

, the items in d

1

, out d

1

, open d

1

, hd

1

i, (d

1

)d

2

and

d

1

[d

2

℄ belong to D

^

A

,

� for any d

1

; : : : ; d

n

2 D

^

A

, the string d

1

: : : d

n

and the multiset fd

1

; : : : ; d

n

g

belong to D

^

A

.

The fun
tion symbols from � are interpreted in

^

A as follows.

� The 
onstants from � ex
ept � and 0 are interpreted synta
ti
ally.

� The 
onstants � and 0 are interpreted respe
tively as the empty string and

as the empty multiset.

� The fun
tion symbols in , out , open , hi, () and [℄ are interpreted synta
ti-


ally.

� For the fun
tion symbol :: d

1

:d

2

is the string obtained by 
on
atenation of

d

1

and d

2

if both d

1

and d

2

are strings. Otherwise, elements from fd

1

; d

2

g

that are not strings are transformed into a string of length one and then,

the 
on
atenation is performed.

� For the fun
tion symbol j: d

1

j d

2

is the multiset obtained by union of d

1

and d

2

if both d

1

and d

2

are multisets. Otherwise, elements from fd

1

; d

2

g

that are not multisets are transformed into a singleton multiset and then,

the union is performed.

The algebra

^

A is extended into a stru
ture

^

R in whi
h � is interpreted as

the binary relation $ over D

^

A

� D

^

A

. The relation $ is de�ned re
ursively as

follows: d $ d

0

i�

� d and d

0

are both the empty string.

� d and d

0

are both 
omposed strings su
h that d

h

and d

0

h

, the �rst two

elements of d; d

0

satisfy d

h

$ d

0

h

and d

t

and d

0

t

the two strings obtained by

removing the �rst element in respe
tively d and d

0

satisfy d

t

$ d

0

t

.

� d and d

0

are both the empty multiset.

� d and d

0

are both non-empty multiset and there exists d

e

and d

0

e

respe
-

tively in d and d

0

su
h that d

e

$ d

0

e

and dr d

e

$ d

0

r d

0

e

.

� d and d

0

are respe
tively of the form hd

1

i and hd

0

1

i and d

1

$ d

0

1

.

� d and d

0

are respe
tively of the form 
ap d

1

and 
ap d

0

1

and d

1

$ d

0

1

where


ap belongs to fin; out ; openg.

� d and d

0

are respe
tively of the form d

1

[d

2

℄ and d

0

1

[d

0

2

℄ and d

1

$ d

0

1

, d

2

$ d

0

2

.

� d and d

0

are respe
tively of the form (d

1

)d

2

and (d

0

1

)d

0

2

and d

1

$ d

0

1

,

d

2

$ d

0

2

.

Proposition A.3

^

R is a model of the axioms for �.
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Proof By 
ase inspe
tion. �

Proposition A.4 For any pro
ess P , for any M , for any name n, for any


ap 2 fin; out ; openg,

� for any pro
ess Q, we have 0 6�M [P ℄, 0 6� (n):P , 0 6� hMi, 0 6� 
apM:P

and 0 6� P j Q if P 6� 0.

� if P 6� 0, then for any pro
esses Q;P

0

su
h that Q 6� 0, we have P j Q 6�

M [P

0

℄, P j Q 6� (n):P

0

, P j Q 6� hMi, P j Q 6� 
ap M:P

0

.

� for any pro
esses Q;P

0

and for any M

0

, we have M [P ℄ 6� (n):Q, M [P ℄ 6�

hM

0

i, M [P ℄ 6� 
ap M

0

:P

0

and M [P ℄ 6� M

0

[P

0

℄ if M;M

0

are two di�erent

sequen
es or if P 6� P

0

.

� for any M

0

, we have hMi 6� 
ap M

0

:P , hMi 6� (n):P and hMi 6� hM

0

i if

M;M

0

are two di�erent sequen
es.

� for any pro
ess Q, for any names n;m, we have (n):P 6� 
ap M:Q and

(n):P 6� (m):Q if n;m are two di�erent names or if P 6� Q.

� for any pro
ess Q, for anyM

0

and for any 
apability 
ap

0

2 fin; out ; openg,

we have 
apM:P 6� 
ap

0

M

0

:Q if either 
ap 6= 
ap

0

or M;M

0

are two dif-

ferent sequen
es or if Q 6� Q.

Proof It is easy to 
he
k that all the statements above holds for

^

R. Using

Proposition A.3 with Theorem A.2, those statements hold for ambient pro
esses

and �. �

Proposition A.5 For any sequential substitution �, for any prime � su
h that

hf�g;�i is normal, U(�; �) 6� 0.

Proof Straightforward from the de�nition of U and Proposition A.3 �

Restatement of Proposition 3.1 Let h

Q

i2I

�

i

;�i be a normal 
losure.

Then

(1) U(

Q

i2I

�

i

; �) � 0 i� I = ?.

(2) U(

Q

i2I

�

i

; �) � M [Q℄ i� 9M

0

;

~

Q : I is a singleton fig, �

i

= M

0

[

~

Q℄,

M

0

� =M , U(

~

Q; �) � Q.

(3) U(

Q

i2I

�

i

; �) � P

0

j P

00

i� 9J;K : J [ K = I, J \ K = ?, P

0

�

U(

Q

j2J

�

j

; �), P

00

� U(

Q

k2K

�

k

; �).

(4) U(

Q

i2I

�

i

; �) � hMi i� 9M

0

: I is a singleton fig, �

i

= hM

0

i and

M

0

� =M .

(5) U(

Q

i2I

�

i

; �) � (n):P i� 9

~

P : I is a singleton fig, �

i

= (n):

~

P and

U(

~

P ; �) � P .
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Proof For the �rst point, if I = ? then

~

P = fg; so, by de�nition for U ,

U(

~

P ; �) � 0. Now for the other dire
tion, the 
losure h

~

P ;�i being normal, if I

is not empty, then by Proposition A.4 and the de�nition for U , U(

Q

2I

�; �) 6� 0.

For the se
ond point, for the dire
tion from right to left: U(

Q

i2I

�

i

; �) �

U(f�

i

g; �) � U(fM

0

[

~

Q℄g; �) sin
e I is a singleton fig and �

i

=M

0

[

~

Q℄. Now, by

de�nition for U , U(

Q

i2I

�

i

; �) � M

0

�[U(

~

Q; �)℄ � M [U(

~

Q; �)℄ sin
e M

0

� = M .

So, U(

Q

i2I

�

i

; �) � M [Q℄. From left to right: let us assume that I is not a

singleton. For I = ?, a

ording to the �rst point, U(

Q

i2I

�

i

; �) � 0 and thus,

by Proposition A.4, U(

Q

i2I

�

i

; �) 6� M [Q℄ for any M;Q. Now, the 
losure

h

~

P ;�i being normal, if I 
ontains at least two elements then by de�nition of

U , U(

~

P ; �) � R

0

j R

00

for some R;R

0

6� 0 by Propositions A.5 and A.4 .

Thus, still by Proposition A.4, U(

~

P ; �) 6� M [Q℄ whatever M , Q are. So, I is

a singleton. Now, if �

i

6= M

0

[

~

Q℄ or M

0

�;M are two di�erent sequen
es, on
e

again from the de�nition of U and Proposition A.4, U(

~

P ; �) 6� M [Q℄. Finally,

sin
e U(

Q

i2I

�

i

; �) =M [U(

~

Q; �)℄, we have U(

~

Q; �) � Q.

For the third point, from right to left: we have P

0

j P

00

� U(

Q

j2J

�

j

; �) j

U(

Q

k2K

�

k

; �). By de�nition of U , sin
e J;K are disjoint and J [ K = I ,

P

0

j P

00

� U(

Q

i2I

�

i

; �). From left to right: by de�nition, U(

Q

i2I

�

i

; �) =

U(�

1

; �) j : : : j U(�

k

; �) where I is assumed to be f1; : : : ; kg and the �

i

's are

primes. Sin
e U(

Q

i2I

�

i

; �) = P

0

j P

00

, there must exist I; J two disjoint sets of

indi
es su
h that I [ J = 1::k, P

0

� U(

Q

i2I

�

i

; �) and P

00

� U(

Q

j2J

�

j

; �).

For the fourth point, from right to left: from the de�nition of U , we have

U(

Q

i2I

�

i

; �) = U(�

i

; �) = hM

0

�i. So, using the hypothesis, U(

Q

i2I

�

i

; �) �

hMi. From left to right: similar to the se
ond point.

For the �fth point, from right to left: from the de�nition of U , we have

U(

Q

i2I

�

i

; �) = U(�

i

; �) = (n):U(

~

P ; �). Using the hypothesis, U(

Q

i2I

�

i

; �) �

(n):P . From left to right: similar to the se
ond point. �

A.2 Properties of the Auxiliary Fun
tions

Here, we state and prove 
orre
tness properties needed in subsequent se
tions

of the auxiliary fun
tions nam , len , fst , and split .

First, the fun
tion nam is 
orre
t in the following sense.

Proposition A.6 nam(M;�) = n i� M� = n.

Proof Straightforward by indu
tion over the length of the sequential substi-

tution �. �

Se
ond, the fun
tion len has the following property.

Proposition A.7 len(M;�) = l i� M� = N

1

: : : : :N

l

with N

i

being either a

name or of the form 
ap N

0

with 
ap 2 fin; out ; openg.

Proof The proof goes by indu
tion on the length of the sequential substitu-

tion �.
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For � being the empty sequen
e �: M� = M = N

1

: : : : :N

l

. By de�nition,

len(N

1

: : : : :N

l

; �) =

P

l

i=1

len(N

i

; �). Sin
e ea
h N

i

is either a name n or of the

form in N

0

, out N

0

or open N

0

, we have len(N

i

; �) = 1. This is equivalent to

len(N

1

: : : : :N

l

; �) = l.

For � being the sequen
e fx M

0

g�

0

of length at least 1:

let M = N

0

1

: : : : :N

0

k

. By indu
tion over k:

- k = 0: in this 
ase, M = � and Mfx M

0

g� = �. So, l = 0 and by de�nition

len(M;�) = 0.

- k = 1: in this 
ase M = N

0

1

and we have three 
ases

� N

0

1

is of the form 
ap N

0

for some 
ap 2 fin ; out ; openg: in this 
ase,

Mfx M

0

g� is of the form 
apN

00

and by de�nition, len(M;�fx Mg) =

1.

� N

0

1

is a name di�erent from x: in this 
ase, Mfx M

0

g� = M� and

len(M; fx M

0

g�) = len(M;�). Using the indu
tion hypothesis, M� =

N

00

1

: : : : :N

00

l

i� len(M;�) = l, therefore Mfx M

0

g� = N

00

1

: : : : :N

00

l

i�

len(M; fx M

0

g�) = l.

� N

0

1

= x: in this 
ase, Mfx M

0

g� = M

0

� and len(M; fx M

0

g�) =

len(M

0

; �). By indu
tion hypothesis M

0

� = N

00

1

: : : : :N

00

l

i� len(M

0

; �) =

l, so Mfx M

0

g� = N

00

1

: : : : :N

00

l

i� len(M; fx M

0

g�) = l.

- k > 1: using the indu
tion hypothesis, len(N

0

1

: : : : :N

0

k�1

; fx M

0

g�) = l

0

i�

N

0

1

fx M

0

g�: : : : :N

0

k�1

fx M

0

g� = N

00

1

: : : : :N

00

l

0

and for the expression N

k

,

len(N

k

; fx M

0

g�) = l

00

i� N

0

k

fx M

0

g� = N

00

l

0

+1

: : : : :N

00

l

0

+l

00

. By de�ni-

tion, len(M; fx M

0

g�) is the sum of len(N

0

1

: : : : :N

0

k�1

; fx M

0

g�) and of

len(N

0

k

; fx M

0

g�). So, we 
an 
on
lude that Mfx M

0

g� = N

00

1

: : : : :N

00

l

0

+l

00

i� len(M; fx M

0

g�) = l

0

+ l

00

. �

Third, we state the 
orre
tness of fst in Proposition A.9. To prove it, we

need the following lemma.

Lemma A.8 Let h

~

P ; fx Ng�i be a normal 
losure. Then h

~

P fx Ng;�i is

normal and U(

~

P ; fx Ng�) � U(

~

P fx Ng; �).

Proof For the normality of h

~

Pfx Ng;�i: we 
an show that U(

~

Pfx Ng; �)

is de�ned by indu
tion over the stru
ture of pro
esses and primes. The only non-

trivial 
ase is for

~

P = M(o):

~

P

0

: then,

~

Pfx Ng = Mfx Ng(o):

~

P

0

fx Ng.

Sin
e U(

~

P ; fx Ng�) by assumption and U(

~

P

0

fx Ng; �) by indu
tion hypoth-

esis are de�ned and (Mfx Ng)� = M(fx Ng�), U(

~

Pfx Ng; �) is de�ned.

For the se
ond statement, sin
e h

~

P ; fx Ng�i is normal, x and names from

N are not bound in

~

P , so bn(

~

Pfx Ng) = bn(

~

P ) and fn(

~

Pfx Ng) 
on-

tains fn(

~

P ) and some possibly other names that do not belong to bn(

~

P ). So,

fn(

~

Pfx Ng) \ bn(

~

Pfx Ng) = ?. Moreover, as the bound names from

~

P do

not o

ur in fx Ng� and bn(

~

Pfx Ng) = bn(

~

P ), bn(

~

Pfx Ng)\names(�) =

?. Sin
e x is not bound in

~

P , o

urren
es of bound variables in

~

P are not
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a�e
ted by the substitution fx Ng. The requirement on o�sets is trivially

preserved and �nally, as fx Ng� is a
y
li
, � is so.

We show that U(

~

P ; fx Ng�) � U(

~

P fx Ng; �) by indu
tion over the stru
-

tures of pro
esses and primes taking into a

ount that x in not a bound variable

in

~

P . �

Proposition A.9 Let N be a 
apability of the form inn, out n or openn. Then

for all normal 
losures h

~

Q;�i, there exists Q su
h that U(M(o):

~

Q; �) � N:Q i�

fst(M; o; �) = N .

Proof Let us assume that M = N

1

: : : : N

l

and that N = 
ap n where 
ap

ranges over in; out ; open . The proof goes by indu
tion over the o�set o.

Case where o = 0: we have fst(M; 0; �) = 
ap n. We follow by indu
tion

over the length of the sequential substitution �.

- 
ase where the length of � is 0: � = � and fst(M; 0; �) = 
apn. By de�nition of

fst , this is equivalent to fst(N

1

; 0; �) = 
apn and toN

1

= 
apn. Furthermore, as

U(M(0):

~

Q; �) = N

1

: : : : :N

l

:U(

~

Q), this is equivalent to U(M(0):

~

Q; �) � 
ap n:Q

for some Q.

- 
ase where � is of the form fx M

0

g�

0

and the proposition holds for �

0

: by

de�nition of fst , fst(M; 0; �) = fst(N

1

; 0; �) = 
ap n. Now, a

ording to the

value of N

1

:

� N

1

is of the form 
ap L: so, nam(L; �) = n whi
h is equivalent due to

Proposition A.6, to L� = n. As U(M(0):

~

Q; �) = N

1

�: : : : :N

l

�:U(

~

Q; �),

U(M(0):

~

Q; �) = 
ap n:N

2

� : : : :N

l

�:U(

~

Q; �). Therefore, this is equivalent

to that U(M(0):

~

Q; �) � 
ap n:Q for some Q.

� N

1

is a name m: for ea
h of the two 
ases in the de�nition of fst .

Case where m = x: we have fst(N

1

; 0; �) = fst(m; 0; fx M

0

g�

0

) =

fst(M

0

; 0; �

0

) = 
apn. By indu
tion hypothesis, it is equivalent to that for

any

~

Q, U(M

0

(0):

~

Q; �

0

) � 
ap n:Q for some Q. In parti
ular for some P ,


ap n:P � U(M

0

(0):N

2

fx M

0

g: : : : :N

l

fx M

0

g(0):

~

Pfx N

0

g; �

0

), that

is 
ap n:P �M

0

�

0

:N

2

fx M

0

g�

0

: : : : :N

l

fx M

0

g�

0

:U(

~

Pfx N

0

g; �

0

). So


ap n:P � mfx M

0

g�

0

:N

2

�: : : : :N

l

�:U(

~

P ; fx N

0

g�

0

) by Lemma A.8.

And thus, by de�nition of U , this is equivalent to that for some P ,


ap n:P � U(M(0):

~

P ; �).

Case where m 6= x: in this 
ase, fst(M; 0; �) = fst(m; 0; �

0

) = 
ap n. By

indu
tion hypothesis, this is equivalent to that for any

~

Q, U(m(0):

~

Q; �

0

) �


ap n:Q for some Q. The rest of the proof is similar to the previous 
ase,

using the fa
t that m�

0

= mfx M

0

g�

0

sin
e m 6= x.

Case where the proposition holds for any o

0

< o: we have fst(M; o; �) = 
apn.

By indu
tion over the length of the sequential substitution �.

- 
ase where the length of � is 0: � = � and fst(M; o; �) = 
ap n. Sin
e

len(N

1

: : : : :N

o

; �) = o, 
ap n = fst(N

o+1

: : : : :N

l

; 0; �). Using the base 
ase,
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this latter is equivalent to that for any

~

P , U(N

o+1

: : : : :N

l

(0):

~

P ; �) � 
ap n:P

for some P . Now, this is equivalent to 
ap n:P � N

o+1

: : : : :N

l

:U(

~

P ; �) by de�-

nition of U . Finally, as M� = N

1

: : : : :N

l

, by de�nition of U , it is equivalent to

that 
ap n:P � U(M(o):

~

P ; �) for some P .

- 
ase where � is of the form fx M

0

g�

0

and the proposition holds for �

0

:

sin
e fst(M; o; �) is de�ned, o < len(M;�). Let i be the unique integer

su
h that len(N

1

: : : : :N

i�1

; �) � o and len(N

1

: : : : :N

i

; �) > o and p be o �

len(N

1

: : : : :N

i�1

; �). Then we have 
ap n = fst(M; o; �) = fst(N

i

: : : : :N

l

; p; �).

Now, a

ording to the value of N

i

:

� N

i

is of the form 
ap L: so, nam(L; �) = n whi
h is equivalent due

to Proposition A.6, to L� = n. Furthermore, sin
e len(N

i

; �) = 1,

we have o = len(N

1

: : : : :N

i�1

; �) and thus, p = 0. Hen
e, 
ap n =

fst(N

i

: : : : :N

l

; 0; �). A

ording to the base 
ase, this is equivalent to that

for any

~

P , U(N

i

: : : : :N

l

(0):

~

P ; �) � 
ap n:P for some P . Let M� be

N

0

1

: : : : :N

0

k

. So by de�nition of U , U(M(o):

~

P ; �) = N

0

o+1

: : : : :N

0

k

:U(

~

P ; �).

Now, as o = len(N

1

: : : : :N

i�1

; �), N

i

�: : : : :N

l

� = N

0

o+1

: : : : :N

0

k

. Hen
e,

U(M(o):

~

P ; �) = N

i

�: : : : :N

l

�:U(

~

P ; �). Equivalently, U(M(o):

~

P ; �) =

U(N

i

: : : : :N

l

(0):

~

P ; �) and so, U(M(o):

~

P ; �) � 
ap n:P for some P .

� N

i

is a name m: in this 
ase, we have len(N

i

; �) > p. Hen
e, by de�nition

of fst , 
ap n = fst(M; o; �) = fst(N

i

; p; fx M

0

g�

0

). For ea
h of the two


ases in the de�nition of fst :

Case where m = x: we have 
ap n = fst(M

0

; p; �

0

). By indu
tion hy-

pothesis, this is equivalent to that for any

~

Q, U(M

0

(p):

~

Q; �

0

) � 
ap n:Q

for some Q. As a parti
ular 
ase, this latter holds for Q = P and for

~

Q = N

i+1

fx M

0

g: : : : :N

l

fx M

0

g(0):

~

Pfx M

0

g. Now, from the de�-

nition of U and using that M

0

= N

i

fx M

0

g, this is equivalent to that

U(N

i

fx M

0

g: : : : :N

l

fx M

0

g(p):

~

Pfx M

0

g; �

0

) = 
ap n:P for some P .

Let N

0

1

: : : : :N

0

k

be N

i

�. Then, still by de�nition of U , it is equivalent

to that N

0

p+1

: : : : :N

0

k

:N

i+1

�: : : : :N

l

�:U(Pfx M

0

g; �

0

) = 
ap n:P . By

Lemma A.8, it is equivalent to N

0

p+1

: : : : :N

0

k

:N

i+1

�: : : : :N

l

�:U(P; �) =


ap n:P . On
e again, by de�nition of U , we have U(N

i

: : : : :N

l

(p):

~

P ; �) =


ap n:P . Let p

0

be len(N

1

: : : : :N

i�1

; �). By de�nition of U , we have

U(N

1

: : : : N

i�1

(p

0

):N

i

: : : : :N

l

(p):

~

P ; �) = 
ap n:P . By de�nition of U ,

U(N

1

: : : : N

i�1

:N

i

: : : : :N

l

(p+ p

0

):

~

P ; �) = 
ap n:P . Finally, as p+ p

0

= o,

this latter is equivalent to that U(M(o):

~

P ; �) = 
ap n:P for some P .

Case where m 6= x: by de�nition of fst , 
ap n = fst(m; p; fx M

0

g�

0

)=

fst(m; p; �

0

). By indu
tion hypothesis, this is equivalent to that for all

~

Q,

there exists

~

Q su
h that U(m(p):

~

Q; �) � 
ap n:

~

Q. The rest of the proof

is similar to the previous 
ase, using the fa
t that m�

0

= mfx M

0

g�

0

sin
e m 6= x. �

Fourth, we prove that split is 
orre
t in the following sense.
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Proposition A.10 Let h

Q

i2I

�

i

;�i be a normal 
losure, and let L be of the

form in n, out n or open n. Then U(

Q

i2I

�

i

; �) � L:P i� 9L

0

; o;

~

P ;

~

P

0

: I is a

singleton fig, �

i

= L

0

(o):

~

P

0

, split(�

i

; �) = (L;

~

P ) and U(

~

P ; �) � P .

Proof From right to left: we have U(

Q

i2I

�

i

; �) = U(�

i

; �), �

i

= L

0

(o):

~

P

0

,

split(�

i

; �) = (L;

~

P ). By Proposition A.9, U(�

i

; �) � L:P for some P . Moreover,

for L

0

� being of the form L

0

1

: : : : :L

0

l

, U(�

i

; �) = L

0

o+1

: : : : :L

0

l

:U(

~

P ; �) and L

0

o+1

=

L. Note that U(�

i

; �) being de�ned, we have o < len(L

0

; �) = l. Now, by the

de�nition of split , a

ording to the values of o and len(L

0

; �):

- len(L

0

; �) > o + 1: in this 
ase,

~

P = fL

0

(o+ 1):

~

P

0

g. So, by de�nition of

U , U(fL

0

(o+ 1):

~

P

0

g; �) = L

0

o+2

: : : : :L

0

l

:U(

~

P

0

; �) and thus, U(

Q

i2I

�

i

; �) �

L

0

o+1

:U(fL

0

(o+ 1):

~

P

0

g; �) � L:P for P � U(fL

0

(o+ 1):

~

P

0

g; �) � U(

~

P ; �).

- len(L

0

; �) = o + 1: in this 
ase,

~

P =

~

P

0

. Therefore, U(fL

0

(o+ 1):

~

P

0

g; �) =

L

0

l

:U(

~

P

0

; �) = L

0

o+1

:U(

~

P

0

; �) = L:U(

~

P

0

; �). Thus, U(

Q

i2I

�

i

; �) � L:P for

P � U(

~

P

0

; �) � U(

~

P ; �).

From left to right: let us assume that U(

Q

i2I

�

i

; �) � L:P . Using Proposi-

tion A.4, the set I has to be a singleton and �

i

has to be of the form L

0

(o):

~

P

0

.

Now, by Proposition A.9, we know that fst(L

0

; o; �) = L. Thus, it is suÆ
ient to

prove that P � U(

~

P ; �) for split(�

i

; �) = (L;

~

P ). From the de�nitions of U and

split and from Proposition A.4, it is straightforward to see that P 6� U(

~

P ; �)

implies U(

Q

i2I

�

i

; �) 6� L:P . �

A.3 Proof of Proposition 3.2

Using Lemma A.11 below, we show Proposition 3.2(1), that #

�

, the re
exive and

transitive 
losure of the sublo
ation relation #, preserves normality of 
losures.

Lemma A.11 If h

~

P ;�i is normal, then for any h

~

P

0

;�i su
h that h

~

P ;�i #

h

~

P

0

;�i, the 
losure h

~

P

0

;�i is normal.

Proof From the de�nition of #, we have

~

P =

~

Q ++ fM [

~

P

0

℄g for some

~

Q, M .

Thus, by the �rst point of Proposition A.1, the 
losure hfM [

~

P

0

℄g;�i is normal.

Now, the names fromM o

ur freely in fM [

~

P

0

℄g. So, hfM [

~

P

0

℄g;�i being normal,

none of the names from M is in bn(fM [

~

P

0

℄g) and thus, in bn(

~

P

0

). Therefore,

by the se
ond point of Proposition A.1, h

~

P

0

;�i is normal. �

Restatement of Proposition 3.2(1) If h

~

P ;�i is normal and h

~

P ;�i #

�

h

~

P

0

;�i then h

~

P

0

;�i is normal.

Proof A simple indu
tion using Lemma A.11. �

Using Lemmas A.12 and A.13 below, we show Proposition 3.2(2), that !

�

,

the re
exive and transitive 
losure of the redu
tion relation !, preserves nor-

mality of 
losures.
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Lemma A.12 If hf�g;�i is normal and split(�; �) = (N;

~

S) then h

~

S;�i is

normal.

Proof Sin
e split(�; �) = (N;

~

S), � = M(o):

~

S

0

for some expression M and

some annotated pro
ess

~

S

0

. Furthermore, U(f�g; �) being de�ned, U(

~

S

0

; �) is

de�ned. Now, a

ording to the value of

~

S: if

~

S = M(o + 1):

~

S

0

then, from the

de�nition of split , o + 1 < len(M;�). So, from the de�nition of U , U(

~

S

0

; �)

being de�ned, U(M(o+ 1):

~

S

0

; �)= U(

~

S; �) is de�ned. If

~

S =

~

S

0

then U(

~

S; �) is

de�ned.

Let us �rst noti
e that bn(f�g) = bn(fM(o+ 1):

~

S

0

g) = bn(

~

S

0

) and that

fn(f�g) = fn(fM(o+ 1):

~

S

0

g) � fn(

~

S

0

). Therefore, sin
e by normality bn(f�g)\

(fn(f�g) [ names(�)) = ?, we have bn(

~

S) \ (fn(

~

S) [ names(�) = ?.

The last three statements are obvious to 
he
k. �

Lemma A.13 If h

~

P ;�i is normal, then for any h

~

P

0

;�i su
h that h

~

P ;�i !

h

~

P

0

;�i, the 
losure h

~

P

0

;�i is normal, and moreover

� either �

0

= �, bn(

~

P ) = bn(

~

P

0

) and fn(

~

P

0

) � fn(

~

P ),

� or for some x;M , �

0

= fx Mg�, bn(

~

P ) = bn(

~

P

0

) [ fxg and fn(

~

P

0

) �

fn(

~

P ) [ fxg.

Proof The proof goes by indu
tion over the stru
ture of the 
ontext under

whi
h the redu
tion takes pla
e.

If the 
ontext is empty, then the applied redu
tion 
orresponds to one of

the rules (Trans In), (Trans Out), (Trans Open) and (Trans I/O). For (Trans

In), (Trans Out) and (Trans Open) respe
tively, hfN [

~

Q ++ f�g℄;M [

~

R℄g;�i,

hfM [fN [

~

Q ++ �℄g ++

~

R℄g;�i and hfM [

~

P ℄; �g;�i are normal by assumption.

Con
erning the se
ond 
laim of the lemma: obviously, �

0

= �, bn(

~

P ) =

bn(

~

P

0

). For the rules (Trans In) and (Trans Out), fn(

~

P ) = fn(

~

P

0

) and for

(Trans Open) fn(

~

P

0

) � fn(

~

P ) (the exe
ution of open may let an ambient name

disappeared).

Now for the �rst 
laim, by using Proposition A.1, h�;�i is normal. Then,

from Lemma A.12 together with the transition rules on 
losures, h

~

P ;�i is normal

(where split(�; �) = (N;

~

P ) and N being respe
tively inm, out m and open m).

Finally, using the fa
t that bn(f�g) = bn(

~

P ) and that fn(f�g) � fn(

~

P ) and by

applying on
e more Proposition A.1, the 
losures hfM [fN [

~

Q ++ �℄g ++

~

R℄g;�i,

hfN [

~

Q ++ f�g℄;M [

~

R℄g;�i and h

~

P ++

~

Q;�i are normal.

For (Trans I/O), hfhMi; (x):

~

Pg;�i is normal by assumption. Let us start

with the se
ond 
laim of the lemma. We have �

0

= fx Mg�. Due to the

assumption of normality, x o

urs at most on
e within an input in

~

P and

bound and free names are disjoint in

~

P . So, bn(fhMi; (x):

~

P g) = bn(

~

P ) [ fxg

and fn(

~

P ) � fn(fhMi; (x):

~

P g) [ fxg. Now, for the �rst 
laim, let us �rst

prove that U(norm(

~

P ; fx Mg�); fx Mg�) is de�ned by indu
tion over the

stru
ture of

~

P : this is obvious for

~

P being the empty multiset or the single-

ton fhM

0

ig. For the indu
tion step, this is also straightforward for

~

P be-

ing a multiset of primes or a singleton f(x

0

):

~

Qg or fM

0

[

~

Q℄g. Now, for

~

P =
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fM

0

(o):

~

Qg. By hypothesis, U(M

0

(o):

~

Q; �) is de�ned. So, o < len(M

0

; �). If

len(M

0

; fx Mg�) = 0, then norm(

~

P ; fx Mg�) = norm(

~

Q; fx Mg�) and so

U(norm(

~

P ; fx Mg�); fx Mg�) is de�ned by indu
tion hypothesis. Other-

wise, len(M

0

; �) � len(M

0

; fx Mg�). So U(norm(

~

P ; fx Mg�); fx Mg�)=

U(M

0

(o):norm(

~

Q; fx Mg�); fx Mg�) is de�ned. Sin
e every variable o

urs

at most on
e within an input in the annotated pro
ess of a normal 
losure,

bn(

~

P ) = bn(f(x):

~

P ; hMig) r fxg; Moreover, sin
e fn(

~

P ) � fn(fhMi; (x):

~

Pg) [

fxg, bn(fhMi; (x):

~

P g) \ fn(fhMi; (x):

~

P g) = ?. Let us show that names from

bn(

~

P ) do not o

ur in �

0

= fx Mg�. As bn(

~

P ) � bn(fhMi; (x):

~

Pg), be
ause

of the hypothesis of normality, names from bn(

~

P ) do not o

ur in �. Moreover,

we know that x 62 bn(

~

P ) and names o

urring inM are free in fhMi; (x):

~

Pg and

so, in

~

P . It is straightforward that the property of the uniqueness of variable

within an input and the fa
t that o�sets are equal to 0 in the s
ope of an input

are preserved. Finally, sin
e hfhMi; (x):

~

P g;�i is normal, � is a
y
li
 and as x

is bound, x does not o

ur in �; so the last point holds for h

~

P ; fx Mg�i.

Now, we investigate the 
ase where the 
ontext of redu
tion is non-empty,

that is the rule used for redu
tion is either (Trans Par) or (Trans Amb). We show

in this 
ase that the se
ond 
laim of the lemma holds and then that normality

is preserved.

For (Trans Amb): we assume the 
losure hM [

~

P ℄;�i to be normal. For any

~

S,

we have bn(M [

~

S℄) = bn(

~

S), fn(M [

~

S℄) = fn(

~

S)[ fn(M [0℄). Let us �rst 
onsider

the 
ase where � = �

0

: by indu
tion hypothesis bn(

~

P ) = bn(

~

P

0

), fn(

~

P

0

) �

fn(

~

P ). So, bn(M [

~

P ℄) = bn(M [

~

P

0

℄) and fn(M [

~

P

0

℄) � fn(M [

~

P ℄). Now, for the


ase where �

0

= fx Mg�: By indu
tion hypothesis, bn(

~

P ) = bn(

~

P

0

) [ fxg,

fn(

~

P

0

) = fn(

~

P ) [ fxg. So, bn(M [

~

P ℄) = bn(M [

~

P

0

℄) [ fxg and fn(M [

~

P

0

℄) =

fn(M [

~

P ℄) [ fxg.

Let us show now that hM [

~

P

0

℄;�

0

i is normal: sin
e hM [

~

P ℄;�i is normal, by

Proposition A.1, h

~

P ;�i is normal. Then, sin
e h

~

P ;�i ! h

~

P

0

;�

0

i, by indu
tion

hypothesis, h

~

P

0

;�

0

i is normal. So, as bn(

~

P

0

) � bn(

~

P ), by Proposition A.1,

hM [

~

P

0

℄;�

0

i is normal.

For (Trans Par): we assume the 
losure h

~

P ++

~

Q;�i to be normal. For

any

~

S;

~

S

0

, we have bn(

~

S ++

~

S

0

) = bn(

~

S) [ bn(

~

S

0

) and fn(

~

S ++

~

S

0

) = fn(

~

S) [

fn(

~

S

0

). Let us �rst 
onsider the 
ase where � = �

0

: as by indu
tion hypothesis

bn(

~

P ) = bn(

~

P

0

) and fn(

~

P

0

) � fn(

~

P ), we have bn(

~

P ++

~

Q) = bn(

~

P

0

++

~

Q) and

fn(

~

P

0

++

~

Q) � fn(

~

P ++

~

Q). Now, for the 
ase where �

0

= fx Mg�: as by

indu
tion hypothesis bn(

~

P ) = bn(

~

P

0

) [ fxg and fn(

~

P

0

) � fn(

~

P ) [ fxg, we have

bn(

~

P ++

~

Q) = bn(

~

P

0

++

~

Q) [ fxg and fn(

~

P

0

++

~

Q) � fn(

~

P ++

~

Q) [ fxg.

Let us show now that h

~

P ++

~

Q;�

0

i is normal: h

~

P ++

~

Q;�

0

i being normal,

by Proposition A.1, both h

~

P ;�i and h

~

Q;�i are normal. Now, sin
e h

~

P ;�i !

h

~

P

0

;�

0

i, by indu
tion hypothesis, h

~

P

0

;�

0

i is normal. Let us now prove that

h

~

Q;�

0

i is normal: we know that x 2 bn(

~

P ); so, by normality of h

~

P ++

~

Q;�i, x

does not o

ur in

~

Q, so U(

~

Q; �

0

) � U(

~

Q; �) and thus, U(

~

Q; �

0

) is de�ned. The

other points are obviously implied by the normality of h

~

Q;�i and h

~

P

0

;�

0

i. Fi-

nally, the fa
t that h

~

P ++

~

Q;�i and h

~

Q;�

0

i are normal together with Proposition

A.1 implies that h

~

P

0

++

~

Q;�

0

i is normal. �
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Restatement of Proposition 3.2(2) If h

~

P ;�i is normal and h

~

P ;�i !

�

h

~

P

0

;�

0

i then h

~

P

0

;�

0

i is normal.

Proof An indu
tion with appeal to Lemma A.13. �

A.4 Proof of Proposition 3.3

We prove now that the sublo
ation relation de�ned on 
losures simulates the

sublo
ation relation de�ned on pro
esses.

Restatement of Proposition 3.3 Assume h

~

P ;�i is a normal 
losure. If

h

~

P ;�i # h

~

Q;�i then U(

~

P ; �) # U(

~

Q; �). If U(

~

P ; �) # Q then there exists

~

Q su
h

that h

~

P ;�i # h

~

Q;�i and U(

~

Q; �) � Q.

Proof For the �rst point, by de�nition for # on 
losures, we have

~

P =

~

Q ++

fM [

~

P

0

℄g for some

~

Q, M , n su
h that nam(M;�) = n. Therefore, by de�nition

of U , U(

~

P ; �) = U(

~

Q; �) j M�[U(

~

P

0

; �)℄. Note that h

~

P ;�i being normal, both

h

~

Q;�i, h

~

P

0

;�i are de�ned and thus, pro
esses. Now, for the two pro
esses

U(

~

P ; �), U(

~

P

0

; �), there exists a pro
ess Q (namely U(

~

Q; �)) and a name n (n =

M� by Proposition A.6) su
h that U(

~

P ; �) � Q j n[U(

~

P

0

; �)℄. So, U(

~

P ; �) #

U(

~

P

0

; �).

For the se
ond point, by de�nition of # on pro
esses, U(

~

P ; �) # P

0

i� there

exists Q;n su
h that U(

~

P ; �) � Q j n[P

0

℄. The annotated pro
ess

~

P being of

the form

Q

k2K

�

k

, by Proposition 3.1, there exists I; J su
h that I[J = K, I\

J = ? and U(

Q

i2I

�

i

; �) � Q, U(

Q

j2J

�

j

; �) � n[P

0

℄. From U(

Q

j2J

�

j

; �) �

n[P

0

℄, by Proposition 3.1, there exists M

0

;

~

P

0

su
h that J is a singleton fjg,

�

j

= M

0

[

~

P

0

℄, M

0

� = n and U(

~

P

0

; �) � P

0

. Sin
e M

0

� = n, by Proposition

A.6, nam(M

0

; �) = n. Furthermore,

~

P is equal to

Q

i2I

�

i

++ fM

0

[

~

P

0

℄g. So,

h

~

P ;�i # h

~

P

0

;�i and U(

~

P

0

; �) � P

0

. �

A.5 Proof of Proposition 3.4

Given Lemmas A.14, A.15, and A.16 below, we prove Proposition 3.4, that the

redu
tion relation de�ned on 
losures simulates the redu
tion relation de�ned

on pro
esses.

Lemma A.14 Let h

~

P ;�fx Mgi be a normal 
losure su
h that all the o�sets

o o

urring in

~

P are set to 0. Then U(

~

P ; �fx Mg) � U(

~

P ; �)fx Mg.

Proof The proof goes by indu
tion over the stru
tures of pro
esses and

primes. Most of the 
ases simply uses the de�nition of U and the appli
ation of

a substitution. We detail here the only two 
ases that are not straightforward.

For primes �:

- 
ase where � = (y):

~

P

0

:

37



U((y):

~

P

0

; �)fx Mg � ((y):U(

~

P

0

; �))fx Mg

� ((y)fx Mg):(U(

~

P

0

; �)fx Mg)

� (y):(U(

~

P

0

; �)fx Mg)

� (y):(U(

~

P

0

; �fx Mg))

� U((y):

~

P

0

; �fx Mg)

The �rst and the last equivalen
es follow from the de�nition of U ; the se
ond

one 
orresponds simply to the appli
ation of the substitution fx Mg. For

the third one, the 
losure h

~

P ;�fx Mgi being normal, by Proposition A.1,

the 
losure hf�g;�fx Mgi is normal too. Therefore, as y is a bound variable

and bn(

~

P ) \ dom(�fx Mg) = ?, x and y are di�erent. So, yfx Mg = y.

The fourth equivalen
e appeals to the indu
tion hypothesis.

- 
ase where � =M

0

(o):

~

P

0

:

U(M

0

(o):

~

P

0

; �)fx Mg � (M

0

�:U(

~

P

0

; �))fx Mg

� M

0

�fx Mg:U(

~

P

0

; �)fx Mg

� M

0

�fx Mg:U(

~

P

0

; �fx Mg)

� U(M

0

(o):

~

P

0

; �fx Mg)

The �rst equivalen
e uses the de�nition of U and the fa
t that by hypothesis,

o is equal to 0; the se
ond one is simply the appli
ation of the substitution

fx Mg. The third equivalen
e is due to the indu
tion hypothesis. Finally,

the last equivalen
e is a dire
t 
onsequen
e of the de�nition of U and of o = 0.

�

Lemma A.15 Let h

~

P ; fx Mg�i be a normal 
losure su
h that all the o�sets

o o

urring in

~

P are set to 0. Then U(

~

P ; fx Mg�) � U(

~

P ; �)fx M�g.

Proof The proof goes by indu
tion on the length of the sequential substitu-

tion �.

For � being the empty substitution �: U(

~

P ; fx Mg�) � U(

~

P ; �fx Mg)

sin
e � 
orresponds to the identity. So, by Lemma A.14, U(

~

P ; fx Mg�) �

U(

~

P ; �)fx Mg.

For � being of the form �

0

fy M

0

g:

U(

~

P ; fx Mg�

0

fy M

0

g) � U(

~

P ; fx Mg�

0

)fy M

0

g

� (U(

~

P ; �

0

)fx M�

0

g)fy M

0

g

The �rst equivalen
e follows from Lemma A.14 and the se
ond one from the

indu
tion hypothesis.

Now, the fa
t that h

~

P ; fx Mg�

0

fy M

0

gi is normal implies that x 6= y and

that x does not o

ur inM

0

. Let us 
onsider now the pro
ess U(

~

P ; �

0

)fx M�

0

g.

As x 6= y, the o

urren
es of y in U(

~

P ; �

0

) are preserved in U(

~

P ; �

0

)fx M�

0

g

and some new o

urren
es of y may appear in this latter, due to the possible

o

urren
es of y inM�

0

. As x does not o

ur inM

0

, we 
an �rst repla
e U(

~

P ; �

0

)

the o

urren
es of y with M

0

and then, repla
e the o

urren
es of x with an
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expression L; this expression L is the expression M� in whi
h the o

urren
es

of y are repla
ed by M

0

. Hen
e,

(U(

~

P ; �

0

)fx M�

0

g)fy M

0

g � (U(

~

P ; �

0

)fy M

0

g)fx M�

0

fy M

0

gg

By Lemma A.14, this latter is equivalent to U(

~

P ; �

0

fy M

0

g)fx M�

0

fy M

0

gg

and so, to U(

~

P ; �)fx M�g. �

Lemma A.16 Suppose h

~

P ;�i is a normal 
losure su
h that all the o�sets o

o

urring in

~

P are set to 0 and x o

urs neither in � nor in bn(

~

P ). Then

U(norm(

~

P ; fx Mg�); fx Mg�) � U(

~

P ; �)fx M�g.

Proof First, observe that normality of h

~

P ;�i and the assumption about x im-

ply normality of hnorm(

~

P ; fx Mg�); fx Mg�i. Therefore, by Lemma A.15,

U(norm(

~

P ; fx Mg�); fx Mg�) � U(norm(

~

P ; fx Mg�); �)fx M�g. So,

it is enough to prove that

U(norm(

~

P ; fx Mg�); �)fx M�g � U(

~

P ; �)fx M�g:

Let us 
onsider two 
ases: len(M;�) 6= 0 and len(M;�) = 0. In the �rst 
ase,

norm(

~

P ; fx Mg�) =

~

P and there is nothing to prove. In the se
ond 
ase, nor-

mality of h

~

P ;�i implies that norm(

~

P ; fx Mg�) di�ers from

~

P only by some

o

urren
es of x(0). The equivalen
e U(norm(

~

P ; fx Mg�); �)fx M�g �

U(

~

P ; �)fx M�g follows then by indu
tion on the stru
ture of M� using the


ongruen
e rule (Stru
t �). �

Restatement of Proposition 3.4 Assume h

~

P ;�i is a normal 
losure. If

h

~

P ;�i ! h

~

P

0

;�

0

i then U(

~

P ; �) ! U(

~

P

0

; �

0

). If U(

~

P ; �) ! P

0

then there exists

h

~

P

0

;�

0

i su
h that h

~

P ;�i ! h

~

P

0

;�

0

i and U(

~

P

0

; �

0

) � P

0

.

Proof The proof goes by indu
tion over the stru
ture of the 
ontext under

whi
h the redu
tion takes pla
e.

If the 
ontext is empty, then for the �rst point, the redu
tion applied 
or-

responds to one of the rules (Trans In), (Trans Out), (Trans Open) and (Trans

I/O).

For the �rst point and the rule (Trans In):

U(fN [

~

Q ++ f�g℄;M [

~

R℄g; �) � N�[U(

~

Q; �) j U(f�g; �)℄ jM�[U(

~

R; �)℄

� n[U(

~

Q; �) j U(f�g; �)℄ j m[U(

~

R; �)℄

� n[U(

~

Q; �) j in m:U(

~

P ; �)℄ j m[U(

~

R; �)℄

The �rst equivalen
e follows from the de�nition of U . The se
ond one is

a 
onsequen
e of the 
onditions of the rule (Trans In) and of Proposition A.6.

The third equivalen
e follows from the 
onditions of the rule (Trans In) and

from Proposition A.10.

On the other hand,
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U(M [N [

~

Q ++

~

P ℄ ++

~

R℄; �) � M�[N�[U(

~

Q; �) j U(

~

P ; �)℄ j U(

~

R; �)℄

� m[n[U(

~

Q; �) j U(

~

P ; �)℄ j U(

~

R; �)℄

The �rst equivalen
e follows from the de�nition of U and the se
ond one

from the 
onditions of the rule (Trans In) and from Proposition A.6. Therefore,

U(N [

~

Q ++ f�g℄ ++M [

~

R℄; �)! U(M [N [

~

Q ++

~

P ℄ ++

~

R℄; �).

The proof is similar for the rules (Trans Out) and (Trans Open). Now,

for the �rst point and the rule (Trans I/O): by the de�nition of U , we have

U(fhMi; (x):

~

P g; �) � hM�i j (x):U(

~

P ; �): Let

~

P

0

be norm(

~

P ; fx Mg�). By

Lemma A.15, the 
losure hfhMi; (x):

~

P g;�i being normal, U(

~

P

0

; fx Mg�) �

U(

~

P

0

; �)fx M�g. Therefore, U(fhMi; (x):

~

P g; �)! U(

~

P

0

; fx Mg�).

Let us 
onsider now the se
ond point with the assumption that the 
ontext

is empty, that is the redu
tion is made by (Red In), (Red Out), (Red Open) or

(Red I/O).

For the se
ond point and the rule (Red In): let us assume that U(

~

S; �)! S

0

by the rule (Red In). Therefore, S

0

� m[n[Q j P ℄ j R℄ for some m;n; P;Q;R and

U(

~

S; �) � n[Q j in m:P ℄ j m[R℄. So, by Proposition 3.1 and Proposition A.10,

there exists N;M;L

0

,

~

P ;

~

P

0

;

~

Q;

~

R su
h that

~

S = fN [

~

Q ++ fL

0

(o):

~

P

0

g℄;M [

~

R℄g,

N� = n, M� = m, U(

~

Q; �) � Q, U(

~

R; �) � R, split(L

0

(o):

~

P

0

) = (in m;

~

P )

and U(

~

P ; �) � P . Using Proposition A.6, we have nam(M;�) = m and

nam(N; �) = n. So, by de�nition for (Red In),

h

~

S;�i ! hfM [fN [

~

P ++

~

Q℄g ++

~

R℄g;�i

and furthermore,

U(M [N [

~

Q ++

~

P ℄ ++

~

R℄; �) � m[n[U(

~

Q; �) j U(

~

P ; �)℄ j U(

~

R; �)℄

� m[n[Q j P ℄ j R℄ � S

0

The proof is similar for the rules (Red Out) and (Red Open). Now, for

the se
ond point and the rule (Red I/O): let us assume that U(

~

S; �) ! S

0

by the rule (Red I/O). Therefore, S

0

� Pfx Mg and U(

~

S; �) � (x):P j

hMi. So, by Proposition 3.1, there exists M

0

;

~

P su
h that

~

S = fhM

0

i; (x):

~

P g,

M

0

� = M and U(

~

P ; �) � P . Therefore, h

~

S;�i ! h

~

P

0

; fx M

0

g�i where

~

P

0

= norm(

~

P ; fx Mg�). Furthermore, hfhM

0

i; (x):

~

P g;�i being normal, by

Lemma A.16

U(

~

P

0

; fx M

0

g�) � U(

~

P ; �)fx M

0

�g

� Pfx Mg:

Now, we investigate the 
ase where the 
ontext of redu
tion is non-empty:

for the �rst point, the rule used for redu
tion is either (Trans Par) or (Trans

Amb).

For the rule (Trans Amb): if h

~

P ;�i ! h

~

P

0

;�

0

i then hM [

~

P ℄;�i ! hM [

~

P

0

℄;�

0

i.

In this 
ase, U(M [

~

P ℄; �) =M�[U(

~

P ; �)℄ and U(M [

~

P

0

℄; �

0

) =M�

0

[U(

~

P

0

; �

0

)℄. By
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A.13, either �

0

= � or �

0

= fx Lg�. In this last 
ase, x is bound in

~

P and thus,

by normality, x does not o

ur in M . So in both 
ases, M�

0

=M�. Moreover,

by the rule (Red Amb), M�[U(

~

P ; �)℄ ! M�[U(

~

P

0

; �

0

)℄. So, U(M [

~

P ℄; �) !

U(M [

~

P

0

℄; �

0

)

For the rule (Trans Par): if h

~

P ;�i ! h

~

P

0

;�

0

i then h

~

P ++

~

Q;�i ! h

~

P

0

++

~

Q;�

0

i. In this 
ase, U(

~

P ++

~

Q; �) � U(

~

P ; �) j U(

~

Q; �) and U(

~

P

0

++

~

Q; �

0

) �

U(

~

P

0

; �

0

) j U(

~

Q; �

0

). By A.13, either �

0

= � or �

0

= fx Mg�. In this last


ase, x is bound in

~

P and thus, by normality does not o

ur in

~

Q. So, in

both 
ases, we have U(

~

Q; �

0

) � U(

~

Q; �). Moreover, by the rule (Red Par),

U(

~

P ; �) j U(

~

Q; �)! U(

~

P

0

; �

0

) j U(

~

Q; �). So, U(

~

P ++

~

Q; �)! U(

~

P

0

++

~

Q; �).

For the se
ond point, the rule used for redu
tion is either (Red Par) or (Red

Amb).

For (Red Amb): let us assume that U(

~

S; �) ! S

0

by (Red Amb). We

have S

0

= n[P

0

℄ and U(

~

S; �) � n[P ℄. So, by Proposition 3.1, there exists

N; � su
h that

~

S is a singleton f�g, � = N [

~

P ℄, N� = n and U(

~

P ; �) � P .

By hypothesis P ! P

0

, so U(

~

P ; �) ! P

0

. By indu
tion hypothesis, there

exists

~

P

0

; �

0

su
h that h

~

P ;�i ! h

~

P

0

;�

0

i and U(

~

P

0

; �

0

) � P

0

. Then by the

rule (Trans Amb), hfN [

~

P ℄g;�i ! hfN [

~

P

0

℄g;�

0

i; so, h

~

S;�i ! hfN [

~

P

0

℄g;�

0

i.

Finally, U(fN [

~

P

0

℄g; �

0

) � N�

0

[U(

~

P

0

; �

0

)℄. By Lemma A.13, either � = �

0

or

�

0

= fx Mg� with x a bound variable in

~

P . By normality x does not belong

toN , soN�

0

= N� = n. Therefore,N�

0

[U(

~

P

0

; �

0

)℄ � n[U(

~

P

0

; �

0

)℄ � n[P

0

℄ � S

0

.

For (Red Par): let us assume that U(

~

S; �) ! S

0

by (Red Par). We have

S

0

= P

0

j Q and U(

~

S; �) � P j Q. So, by Proposition 3.1, there exists

~

P;

~

Q

su
h that

~

S =

~

P ++

~

Q, U(

~

P ; �) � P and U(

~

Q; �) � Q. By hypothesis,

P ! P

0

, so U(

~

P ; �) ! P

0

. By indu
tion hypothesis, there exists

~

P

0

; �

0

su
h

that h

~

P ;�i ! h

~

P

0

;�

0

i and U(

~

P

0

; �

0

) � P

0

. Then by the rule (Trans Par),

h

~

P ++

~

Q;�i ! h

~

P

0

++

~

Q;�

0

i; so, h

~

S;�i ! h

~

P

0

++

~

Q;�

0

i. Finally, U(

~

P

0

++

~

Q; �

0

) � U(

~

P

0

; �

0

) j U(

~

Q; �

0

). Now, by Lemma A.13, either � = �

0

or �

0

=

fx Mg� with x a bound variable in

~

P . By normality x does not o

ur in

~

Q;

so, U(

~

Q; �

0

) � U(

~

Q; �). Therefore, U(

~

P

0

++

~

Q; �

0

) � P

0

j Q � S

0

. �

A.6 Proof of Proposition 3.9

Restatement of Proposition 3.9 The model 
he
king algorithm des
ribed

in Se
tion 3.3 preserves the normality of Che
k (

~

P ; �;A).

Proof By 
ase inspe
tion of the algorithm, we show that if Che
k (

~

P ; �;A)

is normal in the left-hand side of equality then any expression Che
k (

~

P

0

; �

0

;A

0

)

o

urring in the right-hand side is also normal.

- for the Boolean 
onne
tives :;_: sin
e in any 
ase,

~

P

0

=

~

P and � = �

0

and

A

0

is a 
losed formula su
h that and fn(A

0

) � fn(A), this is straightforward.

- for the ambient mat
h A = n[A

0

℄: in this 
ase,

~

P = fn[

~

Q℄g and � = �

0

.

By Proposition A.1 the 
losure h

~

Q;�i is normal. The remaining 
onditions

are ful�lled sin
e bn(P

0

) = bn(P ), �

0

= � and for the 
losed formula A

0

fn(A

0

) � fn(A).
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- for the 
omposition mat
h A = A

0

j A

00

: this proof is similar to the previous


ase.

- for the existential quanti�
ation 9x:A: in this 
ase,

~

P

0

=

~

P and � = �

0

and the

fa
t that Afx m

i

g is 
losed is straightforward. So, it is suÆ
ient to show that

whatever the ambient name m

i

is, fn(Afx m

i

g)\ (bn(

~

P )[dom(�)) = ?. By

noti
ing that fn(Afx m

i

g) is either equal to fn(9x:A) or to fn(9x:A)[fm

i

g

and using the normality for Che
k (

~

P ; �; 9x:A), this amounts to prove that

m

i

=2 bn(

~

P ) [ dom(�). A

ording to the value of m

i

:

� for mi = m

0

: straightforward.

� m

i

2 fn(

~

P ; �) [ fn(A): let us assume that m

i

2 fn(A). Then, m

i

2

fn(9x:A). So, by normality of Che
k (

~

P ; �; 9x:A), m

i

=2 bn(

~

P ) [ dom(�).

Let us assume now that m

i

2 fn(

~

P ; �): by de�nition, m

i

=2 dom(�). Now,

by normality of h

~

P ;�i, sin
e m

i

2 fn(

~

P ) or m

i

2 names(�), m

i

=2 bn(

~

P ).

- for the sometime modality �A:

� 
ase where Che
k (

~

P

0

; �

0

;A

0

) = Che
k (

~

P ; �;A): obvious sin
e fn(�A) =

fn(A).

� 
ase where Che
k (

~

P

0

; �

0

;A

0

) = Che
k (

~

P

0

; �

0

;�A) with h

~

P ;�i ! h

~

P

0

;�

0

i:

by Proposition 3.2(2), h

~

P

0

;�

0

i is normal. Now, a

ording to Lemma A.13:

{ � = �

0

, bn(

~

P ) = bn(

~

P

0

) and fn(�A) = fn(A): in this 
ase, the

requirement is trivially satis�ed.

{ �

0

= fx Mg�, bn(

~

P ) = bn(

~

P

0

) [ fxg: by hypothesis, fn(�A) \

(bn(

~

P ) [ dom(�)) = ?. So, fn(�A) \ (bn(

~

P

0

) [ dom(�

0

)) = ?.

- for the somewhere modality ✧A:

� 
ase where Che
k (

~

P

0

; �

0

;A

0

) = Che
k (

~

P ; �;A): obvious sin
e fn(�A) =

fn(A).

� 
ase where Che
k (

~

P

0

; �

0

;A

0

) = Che
k (

~

P

0

; �

0

;�A) with h

~

P ;�i # h

~

P

0

;�

0

i:

by Proposition 3.2, h

~

P

0

;�

0

i is normal. The last 
ondition holds sin
e

�

0

= � and fn(

~

P

0

) � fn(

~

P ).

- for the lo
ation adjun
t modality A�n: from the hypothesis of normality for

Che
k (

~

P ; �;A�n), sin
e n 2 fn(A), n =2 bn(

~

P ). Therefore, by Proposition A.1,

hn[P ℄;�i is normal. Moreover, A is a 
losed formula. Finally, by hypothesis,

fn(A�n) \ (bn(

~

P ) [ dom(�)) = ?, and bn(

~

P ) = bn(n[

~

P ℄), fn(A) � fn(A�n).

So, fn(A) \ (bn(n[

~

P ℄) [ dom(�)) = ?. �

A.7 Proof of Proposition 3.10

The 
orre
tness of our algorithm, Proposition 3.10, is a 
orollary of Lemma A.18

below, whi
h itself depends on the following fa
t.
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Lemma A.17 (Cardelli and Gordon (2000b)) For any ambient pro
ess P

and any ambient formula A, let fm

1

; : : : ;m

k

g = fn(P ) [ fn(A) and suppose

m

0

62 fm

1

; : : : ;m

k

g. Then P j= 9x:A i� P j= Afx m

i

g for some i in 0 : : : k.

Lemma A.18 For any normal 
losure h

~

P ;�i, U(

~

P ; �) j= A if and only if

Che
k (

~

P ; �;A) = T.

Proof The proof goes by indu
tion on the stru
ture of the ambient formula

A:

- the base 
ase A = T is trivial. The other base 
ase A = 0 is a 
onsequen
e

of Proposition 3.1.

- for Boolean 
onne
tives :;^, this is obvious from the indu
tion hypothesis

and the algorithm.

- for the ambient mat
h A = n[A

0

℄: a

ording to the algorithm, we have

Che
k (

Q

i21:::k

�

i

; �; n[A

0

℄) = T i� there exists

~

Q andM su
h that k = 1, �

1

=

M [

~

Q℄, nam(M;�) = n and Che
k (

~

Q; �;A

0

) = T. Then, by Proposition 3.1,

U(

Q

i21:::k

�

i

; �) � n[U(

~

Q; �)℄. By indu
tion hypothesis, Che
k (

~

Q; �;A

0

) = T

is equivalent to U(

~

Q; �) j= A

0

. So, it is equivalent to U(

Q

i21:::k

�

i

; �) j= n[A

0

℄.

- for the 
omposition mat
h A = A

0

j A

00

: a

ording to the algorithm, we

have Che
k (

Q

i21:::k

�

i

; �;A

0

j A

00

) = T i� there exists I; J su
h that I [ J =

1 : : : k, I \ J = ?, Che
k (

Q

i2I

�

i

; �;A

0

) = T and Che
k (

Q

j2J

�

j

; �;A

00

) =

T. Now, using the indu
tion hypothesis, Che
k (

Q

i2I

�

i

; �;A

0

) = T and

Che
k (

Q

j2J

�

j

; �;A

00

) = T are equivalent respe
tively to U(

Q

i2I

�

i

; �) j= A

0

and to U(

Q

j2J

�

j

; �) j= A

00

. Finally, by Proposition 3.1, it is equivalent to

U(

Q

i21:::k

�

i

; �) j= A

0

j A

00

.

- for the existential quanti�
ation 9x:A: let us assume Che
k (

~

P ; �; 9x:A) = T.

Let fm

1

; : : : ;m

k

g = fn(

~

P ; �) [ fn(A) and m

0

, an ambient name su
h that

m

0

=2 fm

1

; : : : ;m

k

g [ bn(

~

P ) [ dom(�). From the algorithm, this implies that

there exists i su
h that Che
k (

~

P ; �;Afx m

i

g) = T. So, by the indu
tion

hypothesis, U(

~

P ; �) j= Afx m

i

g. Now, a

ording to the value of m

i

:

� m

i

2 fm

1

; : : : ;m

k

g \ (fn(A) [ fn(U(

~

P ; �))): by Lemma A.17, we have

U(

~

P ; �) j= 9x:A.

� m

i

2 fm

1

; : : : ;m

k

g and m

i

=2 (fn(A)[ fn(U(

~

P ; �))): by Lemma A.17, we

have U(

~

P ; �) j= 9x:A.

� m

i

=2 fm

1

; : : : ;m

k

g: it is obvious then that m

i

=2 fn(A) [ fn(U(

~

P ; �)).

So, by Lemma A.17, we have U(

~

P ; �) j= 9x:A.

Conversely, let us assume that U(

~

P ; �) j= 9x:A. From Lemma A.17, this

is equivalent to that for fm

1

; : : : ;m

k

g = fn(U(

~

P ; �)) [ fn(A) and for any

arbitrary m

0

su
h that m

0

=2 fm

1

; : : : ;m

k

g, there exists i su
h that U(

~

P ; �) j=

Afx m

i

g. This latter is equivalent to that Che
k (

~

P ; �;Afx m

i

g) = T by

indu
tion hypothesis. Now a

ording to the value of m

i

:
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� m

i

2 fn(U(

~

P ; �)) [ fn(A): in this 
ase m

i

2 fn(

~

P ; �) [ fn(A). So, by the

algorithm, Che
k (

~

P ; �; 9x:A) = T.

� m

i

=2 fn(U(

~

P ; �)) [ fn(A) and m

i

2 fn(

~

P ; �) [ fn(A): on
e again, by the

algorithm, Che
k (

~

P ; �; 9x:A) = T.

� m

i

=2 fn(

~

P ; �) [ fn(A): so, m

i

= m

0

. Sin
e m

0


an be 
hosen arbitrar-

ily, one 
an assume moreover that m

i

=2 bn(

~

P ) [ dom(�). So, by the

algorithm, Che
k (

~

P ; �; 9x:A) = T.

- for the Sometime modality �A: U(

~

P ; �) j= �A is by de�nition equivalent

to the fa
t that there exists P

0

; n su
h that U(

~

P ; �) !

n

P

0

and P

0

j= A. By

Proposition 3.4, this latter implies that there exists

~

P

0

; �

0

su
h that U(

~

P ; �)!

n

U(

~

P

0

; �

0

) and U(

~

P

0

; �

0

) � P

0

and thus, U(

~

P

0

; �

0

) j= A. Therefore, by in-

du
tion hypothesis, this implies Che
k (

~

P

0

; �

0

;A) = T. Now, let us show

by indu
tion over n that U(

~

P ; �) !

n

U(

~

P

0

; �

0

) and U(

~

P

0

; �

0

) j= A implies

Che
k (

~

P ; �;�A) = T.

For n = 0: h

~

P ;�i = h

~

P

0

;�

0

i and Che
k (

~

P ; �;�A) = Che
k (

~

P ; �;A) = T.

For 0 < n: in this 
ase, by Proposition 3.4, there exists

~

P

00

; �

00

su
h that

h

~

P ;�i ! h

~

P

00

;�

00

i !

n�1

h

~

P

0

;�

0

i. So, by indu
tion hypothesis using that

Che
k (

~

P

0

; �

0

;A) = T, Che
k (

~

P

00

; �

00

;�A) = T. Sin
e h

~

P ;�i ! h

~

P

00

;�

00

i, by

the algorithm we have Che
k (

~

P ; �;�A) = T.

Conversely, let us assume that Che
k (

~

P ; �;�A) = T and let us show that

there exists P

0

; n su
h that U(

~

P ; �) !

n

P

0

and P

0

j= A. The proof goes by

indu
tion on m the number of re
ursive 
alls of Che
k (

~

P

0

; �

0

;�A) = T.

Form = 0: in this 
ase, Che
k (

~

P ; �;�A) = T sin
e Che
k (

~

P ; �;A) = T. Then

by indu
tion hypothesis on the stru
ture of the formula, U(

~

P ; �) j= A. So, we


an 
hoose P

0

= U(

~

P ; �) and n = 0.

For m > 0: in this 
ase, Che
k (

~

P ; �;�A) = T due to the fa
t that for some

h

~

P

0

;�

0

i su
h that h

~

P ;�i ! h

~

P

0

;�

0

i, Che
k (

~

P

0

; �

0

;A) = T. By the indu
-

tion hypothesis, on the number of re
ursive 
alls, we have that there exists

P

0

; n su
h that U(

~

P

0

; �

0

) !

n

P

0

and P

0

j= A. By Proposition 3.4, we have

U(

~

P ; �)! U(

~

P

0

; �

0

). So, U(

~

P ; �)!

n+1

P

0

and P

0

j= A.

- for the Somewhere modality ✧A: the proof is similar to the previous 
ase

using Proposition 3.3 instead of Proposition 3.4.

- for the lo
ation adjun
t modality A�n: by de�nition, U(

~

P ; �) j= A�n i�

n[U(

~

P ; �)℄ j= A. By assumption n does not belong to dom(�). So, from the

de�nition for U , n[U(

~

P ; �)℄ = U(n[

~

P ℄; �). So, n[U(

~

P ; �)℄ j= A is equivalent to

that U(n[

~

P ℄; �) j= A. Using the indu
tion hypothesis, this latter is equivalent

to Che
k (n[

~

P ℄; �;A) = T, and thus by the algorithm to Che
k (

~

P ; �;A�n) =

T. �

Restatement of Proposition 3.10 For all pro
esses P and 
losed formulas

A, we have P j= A if and only if Che
k (F(P ); �;A) = T.

Proof As the 
losure hF(P ); �i is normal, this follows from Lemma A.18. �
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B Hardness Proofs

This appendix 
ontains proofs of results stated in Se
tion 4.

B.1 Proof of Lemma 4.1

Lemma 4.1 is the 
rux of 
orre
tness for the en
oding from Se
tion 4.1 of QBF

satisfa
tion in the full 
al
ulus and logi
.

Restatement of Lemma 4.1 Consider a 
losed quanti�ed boolean formula

' and its en
oding [['℄℄ in the ambient logi
. The formula ' is valid if and only

if the model 
he
king problem 0 j= [['℄℄ holds.

Proof Let us denote C

1

^ : : : ^C

k

by  . We 
onsider a 
losed QBF formula

Q

1

v

1

: : : Q

n

v

n

 . We are going to show that for any 0 � m � n, denoting '

0

the

formula Q

m+1

v

m+1

: : : Q

n

v

n

 ,

v

1

7! t

1

; : : : ; v

m

7! t

m

j= '

0

i� 0 j= [['

0

℄℄fv

1

 t

1

; : : : ; v

m

 t

m

g

Note that this statement obviously implies Lemma 4.1.

The proof of this statement goes by indu
tion on the number l of variables

that are quanti�ed in '

0

.

For the base 
ase l = 0: v

1

7! t

1

; : : : ; v

n

7! t

n

j=  i� for ea
h C

i

, there

exists `

j

in C

i

su
h that t

j

= tt i� l

j

= v

j

and t

j

= � i� `

j

= v

j

. This

is equivalent to saying that for ea
h C

i

, there exists `

j

in C

i

su
h that 0 j=

[[l

j

℄℄fv

1

 t

1

; : : : ; v

n

 t

n

g, whi
h is equivalent to 0 j=  fv

1

 t

1

; : : : ; v

n

 t

n

g.

For the indu
tion step 0 < l � n: let us denoteM the interpretation v

1

7!

t

1

; : : : ; v

n�l

7! t

n�l

, � the 
orresponding substitution fv

1

 t

1

; : : : ; v

n�l

 t

n�l

g

and '

0

the formula Q

n�l+2

v

n�l+2

: : : Q

n

v

n

 . Assuming that the statement

holds for l � 1, let us 
onsiderM j= Q

n�l+1

v

n�l+1

'

0

.

By 
ase distin
tion over Q

n�l+1

:

Case where Q

n�l+1

= 9: in this 
ase, either M; v

n�l+1

7! tt j= '

0

or

M; v

n�l+1

7! � j= '

0

. By indu
tion hypothesis, this is equivalent to that either

0 j= [['

0

℄℄�fv

n�l+1

 ttg or 0 j= [['

0

℄℄�fv

n�l+1

 � g. This latter is equivalent to

0 j= 9v

n�l+1

2 ftt ;� g:[['

0

℄℄� whi
h is equivalent by de�nition of the en
oding

to 0 j= [[Q

n�l+1

v

n�l+1

'

0

℄℄�.

Case where Q

n�l+1

= 8: this 
ase is similar to the previous one. �

B.2 Proof of Lemma 4.3

Lemma 4.3 is the 
rux of 
orre
tness for the en
oding from Se
tion 4.2 of QBF

satisfa
tion in the 
al
ulus of mobile ambients without I/O.

To prove Lemma 4.3, let us �rst �x some notations and prove some auxiliary

lemmas.
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For a given 
losed QBF formula ' = Q

1

v

1

: : :Q

n

v

n

 in prenex and 
onjun
-

tive normal form, we denote  by C

1

^ : : : ^ C

k

and de�ne for all 0 � i � n

V

i

�

= v

i

[pos [℄℄ j v

i

[neg [℄℄

V

tt

i

�

= v

i

[pos [℄ j v

0

i

[℄℄ j v

i

[neg [℄℄

V

�

i

�

= v

i

[pos [℄℄ j v

i

[neg [℄ j v

0

i

[℄℄

For all 0 � m � n,M being equal to v

1

7! t

1

; : : : ; v

m

7! t

m

,

'

m

�

= Q

m+1

v

m+1

: : : Q

n

v

n

 

P

M

�

= V

t

1

1

j : : : j V

t

m

m

j V

m+1

j : : : j V

n

j P

'

m

assuming that [['

m

℄℄ = (P

'

m

;A

'

m

).

It should be noti
ed that due to the de�nition of [[ ℄℄, for all 0 � m < n,

P

'

m

j= v

0

m+1

[T℄ and P

'

n

j= end [T℄.

Lemma B.1 For all 0 � m < n,

P

M

!

3

P

M;v

m+1

7!tt

P

M

!

3

P

M;v

m+1

7!�

and there does not exist P

0

su
h that P

0

6� P

M;v

m+1

7!tt

, P

0

6� P

M;v

m+1

7!�

and

P

M

!

3

P

0

.

Proof For m < n � 1, we 
onsiderM to be v

1

7! t

1

; : : : ; v

m

7! t

m

and we

have '

m

= Q

m+1

v

m+1

: : : Q

n

v

n

 . Whatever Q

m+1

is, by de�nition of en
,

P

'

m

= v

0

m+1

[in v

m+1

:v

m+2

[out v

0

m+1

:out v

m+1

:R

'

m+1

℄℄

for P

'

m+1

= v

0

m+1

[R

'

m+1

℄. Now from the pro
ess P

M

equal to

V

t

1

1

j : : : j V

t

m

m

j V

m+2

j : : : j V

n

j v

m+1

[pos [℄℄ j v

m+1

[neg [℄℄ j

v

0

m+1

[in v

m+1

:v

0

m+2

[out v

0

m+1

:out v

m+1

:R

'

m+1

℄℄

only two redu
tion steps are possible leading either to

P

pos

M

�

V

t

1

1

j : : : j V

t

m

m

j V

m+2

j : : : j V

n

j v

m+1

[pos [℄℄ j

v

m+1

[neg [℄ j v

0

m+1

[v

0

m+2

[out v

0

m+1

:out v

m+1

:R

'

m+1

℄℄℄

or to

P

neg

M

�

V

t

1

1

j : : : j V

t

m

m

j V

m+2

j : : : j V

n

j v

m+1

[neg [℄℄ j

v

m+1

[pos [℄ j v

0

m+1

[v

0

m+2

[out v

0

m+1

:out v

m+1

:R

'

m+1

℄℄℄

Now, we have from ea
h of P

pos

M

and P

neg

M

two deterministi
 redu
tion steps:

P

pos

M

!

V

t

1

1

j : : : j V

t

m

m

j V

m+2

j : : : j V

n

j v

m+1

[neg [℄℄ j

v

m+1

[pos [℄ j v

0

m+1

[℄ j v

0

m+2

[out v

m+1

:R

'

m+1

℄℄
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!

V

t

1

1

j : : : j V

t

m

m

j V

m+2

j : : : j V

n

j v

m+1

[neg [℄℄ j

v

m+1

[pos [℄ j v

0

m+1

[℄℄ j v

0

m+2

[R

'

m+1

℄

� P

M;v

m+1

7!tt

and

P

neg

M

!

V

t

1

1

j : : : j V

t

m

m

j V

m+2

j : : : j V

n

j v

m+1

[pos [℄℄ j

v

m+1

[neg [℄ j v

0

m+1

[℄ j v

0

m+2

[out v

m+1

:R

'

m+1

℄℄

!

V

t

1

1

j : : : j V

t

m

m

j V

m+2

j : : : j V

n

j v

m+1

[pos [℄℄ j

v

m+1

[neg [℄ j v

0

m+1

[℄℄ j v

0

m+2

[R

'

m+1

℄

� P

M;v

m+1

7!�

The proof goes in a similar way for the 
ase where m = n� 1. �

Lemma B.2 For all m in f0; : : : ; n � 1g, M being the interpretation v

1

7!

t

1

; : : : ; v

m

7! t

m

, we have

� for 0 � m < n � 1, P

M;v

m+1

7!tt

and P

M;v

m+1

7!�

are the two unique

pro
esses rea
hable from P

M

that satisfy the ambient formula v

0

m+2

[T℄ j T.

� for m = n� 1, P

M;v

m+1

7!tt

and P

M;v

m+1

7!�

are the two unique pro
esses

rea
hable from P

M

that satisfy the ambient formula end [T℄ j T.

Proof For 0 � m < n� 1, we know from the proof of Lemma B.1 that both

P

M;v

m+1

7!tt

and P

M;v

m+1

7!�

satisfy the ambient formula v

0

m+2

[T℄ j T and do

not satisfy formulas v

0

[T℄ j T where v

0

is a primed ambient name di�erent from

v

0

m+2

. Now, still from the proof of Lemma B.1, we know that any rea
hable

pro
ess from P

M

is either P

M

0

for some extensionM

0

ofM or an \intermediate"

pro
ess rea
hable from P

M

0

in one or two steps. It is easy to see that none of

these \intermediate" pro
esses satis�es an ambient formula v

0

[T℄ j T whatever

the primed name v

0

is. Finally, asM

0

is di�erent from M, P

M

0

will satisfy a

formula v

0

[T℄ j T for some v

0

6= v

0

m+2

, but not the formula v

0

m+2

[T℄ j T.

The proof goes in a similar way for the 
ase where m = n� 1. �

Restatement of Lemma 4.3 Assume ' is a 
losed quanti�ed Boolean for-

mula, and that (P;A) = en
('). Then P j= A if and only if ' is valid.

Proof We are going to show for any 0 � m � n that for the interpretation

M equal to v

1

7! t

1

; : : : ; v

m

7! t

m

M j= '

m

i� P

M

j= A

'

m

Note that for m = 0,M is the empty interpretation, '

m

= ', P

M

= P and

A

'

m

= A, so this statement obviously implies Lemma 4.3. The proof of this

statement goes by indu
tion on the number l = n�m of quanti�ers in '

m

.

For the base 
ase l = 0: '

m

= C

1

^ : : : ^ C

k

is an unquanti�ed formula and

M = v

1

7! t

1

; : : : v

n

7! t

n

. The interpretation M is a model for the formula

'

m

if and only ifM renders true at least one literal `

i

in ea
h of the 
lauses C

i

.

Now, depending on whether `

i

o

urs positively or negatively in C

i

, we have

two 
ases:
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� `

i

= v

i

: by the en
oding and the de�nition of P

M

, this is equivalent to

that [[`

i

℄℄ = v

i

[pos [0℄ j v

0

i

[0℄℄ j T and P

M

= v

i

[pos [0℄ j v

0

i

[0℄℄ j P

0

for

some ambient pro
ess P

0

whi
h does not 
ontain the ambient name v

0

i

.

Therefore, it is equivalent to that P

M

j= [[`

i

℄℄.

� `

i

= v

i

: this 
ase is dual to the previous one.

Now, in both 
ases we have P

M

j= [[`

i

℄℄, whi
h means that P

M

is a model

for at least one literal in ea
h of the [[C

i

℄℄'s, and thus it is equivalent to that

P

M

j= A

'

m

.

For the indu
tion step 1 < l � n (the parti
ular base 
ase where l = 1 di�ers

only in the use of the ambient name end instead of v

0

n+1

and 
an be proved in

the same way) we assume that the statement holds for l�1 (that is, it holds for

m+1). The formula '

m

has the form Q

m+1

v

m+1

'

m+1

, so we have to 
onsider

two 
ases depending on whether Q

m+1

is 9 or 8.

In the 
ase of 9, we have that M j= '

m

is equivalent to the disjun
tion

M; v

m+1

7! tt j= '

m+1

or M; v

m+1

7! � j= '

m+1

. By indu
tion hypothesis,

this is equivalent to that either P

M;v

m+1

7!tt

j= A

'

m+1

or P

M;v

m+1

7!�

j= A

'

m+1

.

By Lemma B.2, we know that P

M;v

m+1

7!tt

and P

M;v

m+1

7!�

are the two unique

pro
esses rea
hable from P

M

satisfying the ambient formula v

0

m+2

[T℄ j T.

Therefore, the last statement is equivalent to that

P

M

j= �(v

0

m+2

[T℄ j T) ^ A

'

m+1

:

The 
ase where Q

n�l+1

= 8 is dual to the previous one and leads to the

equivalen
e with

P

M

j= �(v

m+2

[T℄ j T) ) A

'

m+1

:

In both 
ases, by de�nition of en
, we have the equivalen
e with P

M

j= A

'

m

.

�

B.3 Proof of Lemma 4.5

Lemma 4.5 is the 
rux of 
orre
tness for the en
oding from Se
tion 4.3 of QBF

satisfa
tion in the 
al
ulus of immobile ambients with I/O. To prove it, let us

�rst �x some notations and then prove some auxiliary lemmas.

We use notations similar to the previous se
tion. For a given 
losed QBF

formula ' = Q

1

v

1

: : : Q

n

v

n

 in prenex and 
onjun
tive normal form, we denote

 by C

1

^ : : : ^ C

k

. Let M be an interpretation v

1

7! t

1

; : : : ; v

m

7! t

m

. We

denote �

M

the substitution fv

1

 t

1

; v

1

 t

1

; : : : ; v

m

 t

m

; v

m

 t

m

g where t

i

is

the negated value of t

i

. IfM is the empty interpretation, we let �

M

to be the

identity.

For 0 � m � n, let '

m

be the formula Q

m+1

v

m+1

: : :Q

n

v

n

 and en
('

m

) =

(P

'

m

;A

'

m

). For M = v

1

7! t

1

; : : : ; v

m

7! t

m

, let us denote P

M

the pro
ess

Q

'

m

�

M

su
h that P

'

m

� v

0

m+1

[Q

'

m

℄. Note that in this notation P

'

m

�

M

=

v

0

m+1

[P

M

℄. By M

+

and M

�

we denote respe
tively M; v

m+1

 tt ; v

m+1

 �

andM; v

m+1

 � ; v

m+1

 tt .
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Lemma B.3 For all 0 � m < n,

P

M

! (h� i j v

00

m+1

[℄ j (v

m+1

):P

'

m+1

)�

M;v

m+1

 tt

and

P

M

! (htti j v

00

m+1

[℄ j (v

m+1

):P

'

m+1

)�

M;v

m+1

 �

and there is no other P

0

su
h that P ! P

0

.

Proof Straightforward from the en
oding. �

Lemma B.4 For all 0 � m < n, P

M

!

2

(v

00

m+1

[℄ j P

'

m+1

)�

M

+
and P

M

!

2

(v

00

m+1

[℄ j P

'

m+1

)�

M

�
and there is no other P

0

su
h that P !

2

P

0

.

Proof Straightforward from the en
oding, Lemma B.3 and the de�nition of

P

M

. �

Restatement of Lemma 4.5 Assume ' is a 
losed quanti�ed Boolean for-

mula, and that (P;A) = en
('). Then P j= A if and only if ' is valid.

Proof Let V

0

= 0 and for all 1 � m � n let V

m

= v

00

m

[℄. We are going to show

for any 0 � m � n that for the interpretationM equal to v

1

7! t

1

; : : : ; v

m

7! t

m

,

M j= '

m

i� V

m

j P

'

m

�

M

j= A

'

m

:

The parti
ular 
ase of this statement withm = 0 is equivalent to Lemma 4.5.

Its proof goes by indu
tion over the number l = n �m of quanti�ed variables

in '

m

.

Case where l = 0: the formula '

m

is equal to C

1

^ : : :^C

k

,M has the form

v

1

7! t

1

; : : : ; v

n

7! t

n

andM j= C

1

^ : : :^C

k

. As C

1

^ : : :^C

k

is in 
onjun
tive

normal form, for at least one literal `

i

in ea
h C

i

,M(`

i

) = tt . This is equivalent

to that for ea
h C

i

, there exists at least one literal `

i

in C

i

su
h that

� v

j

 tt ; v

j

 � belongs to �

M

if `

i

= v

j

and

� v

j

 � ; v

j

 tt belongs to �

M

if `

i

= v

j

.

By the de�nition of en
(C

1

^ : : : ^C

k

), this is equivalent to that the interior of

ea
h C ambient (ea
h marked by a D ambient) in the pro
ess P

'

m

�

M


ontains

a tt sub-ambient. This again is equivalent to P

'

m

�

M

j= ❏((D[0℄ j T)) (tt [0℄ j

T)) that is, to P

'

m

�

M

j= A

'

m

. Sin
e V

m

does not 
ontain any subambient

D[0℄, the statement follows.

Case where l = 1 (that is, m = n� 1): the formula '

m

is equal to Q

n

v

n

 ,

M is a the form v

1

7! t

1

; : : : ; v

n�1

7! t

n�1

. We follow a

ording to the value of

Q

n

:

� 
ase where Q

n

= 9: M j= '

m

is equivalent to either M; v

n

 tt j=  or

M; v

n

 � j=  . Using the 
ase where l = 0, this is equivalent to that

either P

'

n

�

M

+
j= A

'

n

or P

'

n

�

M

�
j= A

'

n

.
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By Lemma B.4, the pro
esses v

00

n

[℄ j P

'

n

�

M

+
and v

00

n

[℄ j P

'

n

�

M

�
are

the two unique ones rea
hable from P

M

in two steps. Moreover, as P

'

n


an not be redu
ed, there is no pro
ess rea
hable from P

M

in stri
tly

more than two steps. It should be noti
ed that P

'

n

�

M

+
and P

'

n

�

M

�

both satisfy the formula Inst(end)^:Inst

+

(end) whereas by Lemma B.3

the two unique su

essors of P

M

as well as P

M

itself do not satisfy the

formula Inst(end). Therefore, P

'

n

�

M

+
j= A

'

n

or P

'

n

�

M

�
j= A

'

n

holds

i� P

M

j= �((Inst(end)^:Inst

+

(end))^A

'

n

). And thus, this is equivalent

to v

00

n�1

[℄ j v

n

[P

M

℄ j= T j v

n

[�((Inst(end) ^ :Inst

+

(end)) ^ A

'

n

)℄, that is

v

00

n�1

[℄ j P

'

n�1

j= A

'

n�1

.

� 
ase where Q

n

= 8: this 
ase is dual to the previous one.

Case where 1 < l � n: the formula '

m

is equal to Q

m+1

v

m+1

'

m+1

,M has

the form v

1

7! t

1

; : : : ; v

m

7! t

m

and we assume that the statement holds for

l � 1 (that is, it holds for m+ 1). We follow a

ording to the value of Q

m+1

:

� 
ase where Q

m+1

= 9: M j= '

m

is equivalent to either M; v

m+1

 tt j=

'

m+1

orM; v

m+1

 � j= '

m+1

. By indu
tion hypothesis, this is equiva-

lent to that either v

00

m+1

[℄ j P

'

m+1

�

M

+
j= A

'

m+1

or v

00

m+1

[℄ j P

'

m+1

�

M

�
j=

A

'

m+1

.

Let us have a look now at pro
esses rea
hable from P

M

: of 
ourse,

P

M

itself is rea
hable, but by 
onstru
tion it does not satisfy the for-

mula Inst(v

0

m+2

). By Lemma B.3, two pro
esses are rea
hable in one

step from P

M

, but they do not satisfy the formula Inst(v

0

m+2

). By

Lemma B.4, two pro
esses are rea
hable from P

M

in two steps, namely

(v

00

m+1

[℄ j P

'

m+1

)�

M

+
and (v

00

m+1

[℄ j P

'

m+1

)�

M

�
and they both satisfy

the formulas Inst(v

0

m+2

) and :Inst

+

(v

0

m+2

) (by 
onstru
tion). Now, by

using on
e again Lemma B.3 for the internal of v

0

m+2

in P

'

m+1

�

M

+
and

P

'

m+1

�

M

�
, all the pro
esses rea
hable from one of those latter satisfy

Inst

+

(v

0

m+2

).

Therefore, the last statement is equivalent to that P

M

j= �(Inst(v

0

m+2

) ^

:Inst

+

(v

0

m+2

)) ^A

'

m+1

. Thus, it is equivalent to V

m

[℄ j v

0

m+1

[P

M

℄ j= T j

v

0

m+1

[�(Inst(v

0

m+2

)^:Inst

+

(v

0

m+2

))^A

'

m+1

℄, that is V

m

[℄ j P

'

m

j= A

'

m

.

� the 
ase where Q

m+1

= 8 is dual to the previous one. �
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