The Complexity of Model Checking Mobile Ambients

Witold Charatonik!-2 Silvano Dal Zilio®
Andrew D. Gordon? Supratik Mukhopadhyay'
Jean-Marc Talbot!*

May 2001

Technical Report
MSR-TR~-2001-03

Microsoft Research
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052

IMax-Planck-Institut fiir Informatik, Germany.

2University of Wroclaw, Poland.

3Microsoft Research, United Kingdom.

4Laboratoire d’Informatique Fondamentale de Lille, France.



Publication History

A portion of this work appears in the book Foundations of Software Science
and Computation Structures: 4th International Conference, FOSSACS 2001,
F. Honsell, M. Miculan (Eds.), Springer Lecture Notes in Computer Science
2030:152-167, 2001.



Abstract

We settle the complexity bounds of the model checking problem for the
replication-free ambient calculus with public names against the ambient
logic without parallel adjunct. We show that the problem is PSPACE-
complete. For the complexity upper-bound, we devise a new representa-
tion of processes that remains of polynomial size during process execution;
this allows us to keep the model checking procedure in polynomial space.
Moreover, we prove PSPACE-hardness of the problem for several quite
simple fragments of the calculus and the logic; this suggests that there
are no interesting fragments with polynomial-time model checking algo-
rithms.
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1 Introduction

The ambient calculus of Cardelli and Gordon (1999a, 1999b, 2000a) is a formal-
ism for describing the mobility of both software and hardware. An ambient is
a named cluster of running processes and nested sub-ambients. Each computa-
tion state has a spatial structure, the tree induced by the nesting of ambients.
Mobility is abstractly represented by re-arrangement of this tree: an ambient
may move inside or outside other ambients.

The ambient logic (Cardelli and Gordon 2000b) is a modal logic designed
to specify properties of distributed and mobile computations programmed in
the ambient calculus. As well as standard temporal modalities for describing
the evolution of ambient processes, the logic includes novel spatial modalities
for describing the tree structure of ambient processes. Serendipitously, these
spatial modalities can also usefully describe the tree structure of semistructured
databases (Cardelli and Ghelli 2001). Other work on the ambient logic includes
a study of the process equivalence induced by the satisfaction relation (Sangiorgi
2001) and a study of the logic extended with constructs for describing private
names (Cardelli and Gordon 2001).

The model checking problem is to decide whether a given object (in our case,
an ambient process) satisfies (that is, is a model of) a given formula. Cardelli
and Gordon (2000b) show decidability of the model checking problem for a finite-
state fragment of the ambient calculus against the fragment of the ambient logic
without their parallel adjunct modality. This finite-state ambient calculus omits
the constructs for unbounded replication and dynamic name generation of the
full calculus. The parallel adjunct modality is omitted because it is defined as an
infinite quantification over processes. Cardelli and Gordon give no complexity
analysis for their algorithm. Still, given the various possible applications of
the logic, it is of interest to analyse the complexity of model checking mobile
ambients.

In fact, a naive analysis of the algorithm of Cardelli and Gordon gives only
a doubly exponential bound on its use of time and space. A more sophisticated
analysis based on results in this paper shows that their algorithm works in
single-exponential time on single-exponential space.

In this paper we settle the complexity bounds of the model checking prob-
lem for the finite-state ambient calculus (that is, the full calculus apart from
replication and name generation) against the logic without parallel adjunct.
Our main result (embodied in Theorems 3.11 and 4.2) is that the problem is
PSPACE-complete. Hence, this situates model checking the ambient logic in
the same complexity class as model checking concurrent programs against CTL
and CTL* (Kupferman, Vardi, and Wolper 2000).

As we discuss in Section 2, there are two reasons why Cardelli and Gordon’s
algorithm uses exponential space. One of them is that a process may grow
exponentially during its execution; the other is that there may be exponentially
many processes reachable from a given one.

In Section 3, we present a new model checking algorithm that avoids these
problems as follows.



e We avoid the first problem by devising a new representation of processes
using a form of closure. The main feature of this representation is that sub-
stitutions that occur when communications take place within an ambient
are not applied directly, but are kept explicit. These explicit substitu-
tions prevent the representation blowing up exponentially in the size of
the original process. The idea of using closures comes from DAG represen-
tations used in unification for avoiding exponential blow-up. A sequential
substitution that we use here can be seen as a DAG representation of the
substitution.

e To avoid the second problem, we first devise a non-deterministic algorithm
for testing reachability that does not have to store all the reachable pro-
cesses, but instead tests it on-the-fly, and then remove nondeterminism
using Savitch’s theorem (Savitch 1970). Hence we prove Theorem 3.11,
that the model checking problem is solvable in PSPACE.

We show this upper bound to be tight in Section 4; Theorem 4.2 asserts
that the model checking problem is PSPACE-hard. Actually, we give PSPACE-
hardness results for various fragments of the logic and of the calculus. For
instance, by Theorem 4.4, even for a calculus of purely mobile ambients (that
is, a calculus without communication or the capability to dissolve ambients)
and the logic without quantifiers, the problem is PSPACE-hard. Moreover, by
Theorem 4.6, for a calculus of purely communicative ambients (that is, a calculus
without the capabilities to move or to dissolve ambients) and the logic without
quantifiers, the problem is also PSPACE-hard. Often in the study of model
checking fixing the model or the formula makes the problem easier. Here this is
not the case. Even if we fix the process to be the constant 0, the model checking
problem remains PSPACE-hard. Although we do not prove PSPACE-hardness
for fixed arbitrary formulas, our result is not much weaker: Theorem 4.7 asserts
that for any level of the polynomial-time hierarchy we can find a fixed formula
such that the model checking problem is hard for that level.

We end the main part of the paper with conclusions in Section 5. Ap-
pendixes A and B contain proofs of properties stated without proof in Sections 3
and 4, respectively.

2 Review of the Ambient Calculus and Logic

We present a finite-state ambient calculus (that is, the full calculus (Cardelli and
Gordon 2000a) apart from replication and name generation) and the ambient
logic without parallel adjunct. This is the same calculus and logic for which
Cardelli and Gordon present a model checking algorithm (Cardelli and Gordon
2000Db).

2.1 The Ambient Calculus with Public Names

The following table describes the expressions and processes of our calculus.



Expressions and Processes:

I

M,N := expressions PQ,R = processes
n name 0 inactivity
in M can enter M PlQ composition
out M can exit M M|[P] ambient
open M can open M M.P action
€ null (n).P input
M.M' path (M) output

A name n is said to be bound in a process P if it occurs within an input prefix
(n). A name is said to be free in a process P if there is an occurrence of n outside
the scope of any input (n). We write bn(P) and fn(P) for respectively the set
of bound names and the set of free names in P. We say two processes are a-
equivalent if they are identical apart from the choice of bound names. We write
M{n<N} and P{n<N} for the outcomes of capture-avoiding substitutions
of the expression N for the name n in the expression M and the process P,
respectively.

The semantics of the calculus is given by the relations P = @ and P — Q.
The reduction relation, P — (), defines the evolution of processes over time.
The structural congruence relation, P = @), is an auxiliary relation used in the
definition of reduction. When we define the satisfaction relation of the modal
logic in the next section, we use an auxiliary relation, the sublocation relation,
P | @, which defines the spatial distribution of processes and holds when @
is the whole interior of a top-level ambient in P. We write —* and |* for the
reflexive and transitive closure of — and |, respectively.

Structural Congruence P = ()

I

P, Q) are a-equivalent = P = Q (Struct Refl)
Q=P=P=Q (Struct Symm)
P=Q,Q=R=P=R (Struct Trans)
P=Q=P|R=Q|R (Struct Par)
P=Q = M[P]=M[Q] (Struct Amb)
P=Q=MP=MQ (Struct Action)
P=Q=(n).P=(n).Q (Struct Input)
PlQ=Q|P (Struct Par Comm)
(P|Q)|R=P|(Q]|R) (Struct Par Assoc)
Plo=P (Struct Zero Par)
eP=P (Struct €)
(M.M'").P = M.M'.P (Struct .)

Reduction P — @@ and Sublocation P | :
I

nlin m.P | Q] | m[R] = m[n[P | Q] | R] (Red In)
m[nlout m.P | Q] | R] = n[P | Q] | m[R] (Red Out)



openn.P | n[Q] — P|Q
(M) | (n).P = P{n<M}

Red Open)
Red I/0)

(
(
P-@Q=P|R—>Q|R (Red Par)
P — Q= n[P] = n[Q)] (Red Amb)
P=PP-5Q0Q=0Q =P —Q (Red =)

(

P=n[P||P'=>P|P Loc)

The following example shows that the size of reachable processes may be
exponential, and that there may be a reduction path of exponential length. The
algorithm given in (Cardelli and Gordon 2000b) may use exponential space to
check properties of this example.

Consider the family of processes (Py)i>0, recursively defined by the equa-
tions Py = (n).(p[n] | ¢[0]) and Pri1 = (ngt1)-((ng+1.nk+1) | Pr)- Intuitively,
the process Pj41 inputs a capability, calls it ngy1, doubles it, and outputs
the result to the process P,. We have the following, where M' = M and
MF+1 = M.MF.

(m qoutq) | Py —! p[m q.out q] | ¢[0]
(inq.out q) | PL —? pl(in q.out q)?] | q[0]
(ing.outq) | P, =% pl(ing.outq)*] |q[0]
(inq.out q) | Po =" pl(in g.out ¢)*'] | q[0]

Since (in q.out q)2k is a sequence of 2* copies of in q.out g, the process
pl(in q.out q)zk] | ¢[0] reduces in 2¢*+1 steps to p[0] | ¢[0]. Therefore, we have
(in g.out g) | P, -2 pio] | gfo].

This example points out two facts. First, using a simple representation of
processes (such as the one proposed in (Cardelli and Gordon 2000b)), it may be
that the size of a process considered during model checking grows exponentially
bigger than the size of the initial process. Second, during the model checking
procedure, there may be an exponential number of reachable processes to con-
sider. Therefore, a direct implementation of the algorithm proposed in (Cardelli
and Gordon 2000b) may use space exponential in the size of the input process.

These remarks motivate the approach taken in this paper. First, we devise a
new representation for ambient processes that remains of polynomial size with
respect to to the input process. Second, we give a non-deterministic algorithm
for testing reachability that uses only polynomial space in the combined size
of the problem; then by an application of Savitch’s theorem (Savitch 1970) we
remove nondeterminism and obtain a deterministic version that itself uses only
polynomial space.

2.2 The Logic (for Public Names)

We describe the formulas and satisfaction relation of the logic.



Logical Formulas:
I

n a name n or a variable x
A, B = formula,
T true
-A negation
AV B disjunction
0 void
n[Al ambient match
A|B composition match
AQn location adjunct
dz. A existential quantification
oA sometime modality
0OA somewhere modality

We assume that names and variables belong to two disjoint vocabularies.
We write A{z<m} for the outcome of substituting each free occurrence of the
variable x in the formula 4 with the name m. We say a formula A is closed if
and only if it has no free variables (though it may contain free names).

Intuitively, we interpret closed formulas as follows. The formulas T, —A,
and AV B embed propositional logic. The formulas 0, n[A], and A | B are
spatial modalities. A process satisfies 0 if it is structurally congruent to the
empty process 0. It satisfies n[A] if it is structurally congruent to an ambient
n[P] where P satisfies A. A process P satisfies A | B if it can be decomposed
into two subprocesses, P = @) | R, where () satisfies A, and R satisfies B. The
formula Jz.A is an existential quantification over names. The formulas ¢.4
(sometime) and 0. (somewhere) quantify over time and space, respectively. A
process satisfies QA if it has a temporal successor, that is, a process into which
it evolves, that satisfies A. A process satisfies OA if it has a spatial successor,
that is, a sublocation, that satisfies A. Finally, a process P satisfies the formula
AQ@n if the ambient n[P] satisfies A.

The satisfaction relation P = A formalizes these intuitions.

Satisfaction P = A (for A closed):
I

PET

PE-A 2 S(PEA)

PEAVB = P=AVPEB

PEO = P=0

PlEn[A] = 3P .P=n[P|AP A

PEA|B = 3P ,P'P=P |P'AP EAAP"=B
PE3dz.A = Im.P |l A{zem}

PEOA = FP.P*P AP EA

PEOA = 3P .PI*P AP EA

PEA@n = n[Pl=A




We use OA (everytime modality), OA (everywhere modality) and Vz.A (uni-
versal quantification) as abbreviations for —=(¢0-.A4), =(0-A4) and —(3z.-A),
respectively.

3 A Model Checking Algorithm

We show that the model checking problem can be decided in polynomial space by
devising a new representation of processes (Section 3.1) that remains polynomial
in the size of the initial process (Section 3.2). In Section 3.3 we present a new
model checking algorithm based on this representation.

Since the reduction relation is defined up to a-equivalence, we may assume
for the purposes of computing reachable processes that the free and bound names
of every ambient process are distinct, and moreover that the bound names are
pairwise distinct.

3.1 A Polynomial-Space Representation

We give in this section a new representation for ambient processes based on
normal closures (It is different from the normal form of processes introduced
in (Cardelli and Gordon 2000b)). We also present basic operations on closures
and prove that closures indeed simulate the processes they represent. All proofs
not in this section (in particular, proofs of Propositions 3.1-3.4) can be found
in the appendix.

Annotated Processes, Substitutions, Closures:

I
P = annotated process
[Licr ™ multiset of primes
prime
ambient
P action, with offset 0 > 0

= = li
e 9

[

(

n). input

M) output
ou={n1<M}--{np<M} sequential substitution, & > 0

P;o) closure
L ]

(
!

In a sequential substitution {ni<M;} - {ny< M}, the expression M; lies
in the scope of the bindings for the remaining names n;; 1, ..., ng. We denote by
¢ the empty sequence of substitutions and treat it as the identity substitution. A
sequential substitution o is said to be acyclic if either o = ¢ or 0 = {z+M}o’,
where = does not occur in ¢’ and ¢’ is an acyclic substitution.

For an annotated process P, we define free and bound names in the same
way as for ambient processes. Let names(o) be the set of all names occurring
in o.

We define a partial mapping U/ from closures to the set of ambient processes.
Intuitively, it unfolds a closure to the process it represents by applying the



substitution and cutting off the prefix defined by the offset. Roughly speaking,
the expression U(P, o) is defined if the offsets within the annotated process do
not exceed the length of the expression they are associated with. The unfolding
U(P, o) is defined as follows.

The Unfolding U(P, o) of a Closure (P;0):
I

L _JU(m,o) |- | U(TR,0) i T={1,...,n} #@
U(Tiermi,o) = {0 otherwise

U(M[P],0) = Mo[U(P,0)]

Noj1.-- NyU(P,o) if Mo =Ny.--- .Nj,0 <l and N;

= being either a name or of the form
UM(0).P,0) = cap N' with cap € {in, out, open}
undefined otherwise
U((n)-P,0) = (n).U(P,0)

U((M),0) = (Mo)

We are only interested in a particular kind of closure, which we refer to as
normal. Let a closure (P; o) be normal if U (P, o) is defined and if it meets some
technical conditions about free and bound names

Definition 1 A closure (P; o) is normal if:

(1) U(P,0) is defined,

2) bn(P) N (fn(P) U names(o)) = @,

)

3) every name n in P occurs at most once within an mnput,

4) every offset o occurring in the scope of an input in P is equal to 0, and
)

5) o s acyclic.

(
(
(
(

The next proposition says that our representation of ambient processes with
normal closures preserves their basic properties. We write {} and + for the
empty multiset and the multiset union operation, respectively.

Proposition 3.1 (Structural Equivalences) Let ([],.; mi;0) be a normal
closure. Then

(1) U([[;e;mi,0) =0 iff 1 = 2.

(2) U([L;ermis0) = MIQ] iff IM',Q : I is a singleton {i}, = = M'[Q],
M'o=M,UQ,0)=Q.
3) U(L;eymir0) = P' | P" iff LK : JUK =1, JNK = @, P' =
[Ijcsmi,0), P" =U([lex 7k, 0)-



(4) U([l;ermiso) = (M) iff IM" : T is a singleton {i}, m; = (M') and
M'o=M.

(5) U([Licr mir0) = (n).P iff 3P : I is a singleton {i}, m = (n).P and

U(P,o) = P.

Next, we present how the reduction and sublocation transitions —, | can
be defined on closures. Due to this particular representation and the fact that
some part of the ambient process is contained in the sequential substitution,
some auxiliary subroutines are needed.

One can see in the definition of U/ that only expressions M in the anno-
tated process are affected by the sequential substitution. For the sublocation
transition, it is important to extract the name represented by the expression M
under the substitution o. So, one of those subroutines, nam(M, o), consists in
recovering from an expression M the name it effectively represents within the
substitution o.

The reduction transition for a closure (P;o) requires some other auxiliary
subroutines, which are more specifically dedicated to the case where the substi-
tution applied on the expression M leads to a sequence of capabilities in M’,
out M', open M'. Intuitively, the outcome of applying the substitution o to an
expression M contained within P is a finite sequence of either capabilities of the
form in M', out M', open M', or names not bound by the substitution. We need
a subroutine to compute the length of this sequence in terms of capabilities. To
keep the algorithm in polynomial space, we must simply be able to compute
this length without applying explicitly o on M this is the role of len(M, o).

Now, from the definition of the reduction on ambient processes, one can
see that the reduction consumes one capability: once the reduction is done,
the involved capability disappears from the resulting process. This is slightly
different for the representation we have proposed: a sequence of capabilities can
be partially contained in a sequential substitution o. This substitution remains
fixed during the execution of capabilities and the offset attached to this sequence
plays the role of a program counter. Therefore, to perform a reduction step one
has to extract the first capability to execute from a sequence of capabilities, M,
a substitution, o, and an offset, 0. This is computed by fst(M,o,0).

The next subroutine introduced here, split(M (0).P, o), computes a pair from
a prime, M(o).IB, and a sequential substitution, . The first component of this
result is the first capability to be executed in ({M(0).P};o) (the one in head
position). The second component is the remaining annotated process once this
first capability has been executed.

The Auxiliary Functions nam, len, fst and split:

_ [nam(M,o) ifn=m
nam(n, {m«M}o) = {nam(n,a) otherwise

nam(n,t) =n

len(e,0) =0



len(M.N,o) = len(M,o0) + len(N, o)
len(M,o0) =1 if M € {in N, out N, open N}

_ [len(M,o) iftn=m
ten(n, {meM}o) = {len(n,a) otherwise
len(n,t) =

[ fst(M,0,0) if len(M,0) > o

fst(M.N,0,0) = fst(N,0 —len(M,0),0) otherwise
fst(cap N,0,0) = cap (nam(N, o)) for cap in {in, out, open}

[ fst(M,0,0) ifn=m
fSt(na 0, {m(—M}U) - {fst(n7 0, o') otherwise

i = [(fst(M,0,0),{M(0+ 1).P}) if len(M,0) >0+ 1
split(M{0).P,0) = {(fst(M, 0,0),P) otherwise

Notice that nam(M,o) is undefined if M is of the form ¢, N.N', in N,
out N, or open N. Therefore, the expression nam(M,o) is either undefined
or is evaluated to a name. Moreover, we can compute the name returned by
nam(M, o), or whether it is undefined, in linear time. The number returned
by len(M,o) can be computed in polynomial space!. We can compute the
capability returned by fst(M,o0,0) and the pair returned by split(M (0).P, o),
or whether they are undefined, in polynomial space.

Suppose (P;o) is a normal closure containing an action M(0).Q. From
the definition of a normal closure, len(M,0) > o, and if the action occurs
under an input variable n, then the offset 0 = 0. If n occurs in M and gets
bound to € by an I/O step, it may be that len(M,{n<-e}o) = 0. So, in the
transition rule for I/O, we need to re-normalize the closure representing the
outcome of the transition. We do so using the following subroutines, norm(P, o)
and norm(mw,o), that return the annotated process obtained by removing from
P and 7, respectively, any prefix M (o) such that len(M, o) = 0.

The Auxiliary Functions norm:

[lici.kmi0) = Y 1fk:Q
el norm(my,0) + - -+ + norm(my,0) otherwise

)
norm(M[P],o) = {M[norm(P, )]}
norm(P,o) if len(M,0) =0
{M(0).norm(P,0)} otherwise

.P,o) = {(n).norm(P,0)}

Next, we define a transition relation, (P;o) — (P';0’), and a sublocation

!We are not concerned here with time complexity; a naive algorithm for computing
len(M, o), as presented here, runs in exponential time in the worst case. However, it is
quite easy to provide a version of this function that runs in polynomial time.



relation, (P;o) | (P';0), on closures. These relations simulate the reduction
and the sublocation relations on processes defined in Section 2.1.

Transitions and Sublocations of Closures:
I 1

(Trans In) )
split(m,0) = (inm, P) nam(M,o) =m nam(N,c)=n

({N[{m} + QI M[R]};0) = ({M[{N[P + Q]} + R]};0)
(Trans Out) .
split(m, o) = (outzn,P) ~nam(M, o) = m naNm(N, (Z) =n
{MEN{r} + Ql} + Rl};0) = (NP + @], M[R]}; 0)
(Trans Open) )
split(m, o) = (?pen n, P) ~nam(NM, o)=mn
(m, {M[Q]}; o) = (P + Q;0)

(Trans I/0) (Trans Par)
P’ = norm(P, {n<M}o) (P;o) = (P';0")
({(n).P,(M)};0) = (P'; {neM}o) (P + Qi0) = (P! + Q;0')
(Trans Amb) (Loc)
(P;0)y = (P';0"Y nam(M,o) =n nam(M,c) =m
({M[P]};0) = ({M[P']};0") (Q + {M[P]};0) L (P;0)

The condition for (Loc) ensures simply that the expression M together with
o is a name. For two normal closures (P; o), (P';0'), deciding whether (P;o) |
(P';0') can be achieved in polynomial space. There is no rule corresponding to
(Red =) since we always keep closures in normal form. The two rules (Trans
Par) and (Trans Amb) correspond to the congruence rules (Red Par) and (Red
Amb) for reduction.

In the same way as for ambient processes, we define the relations —* and |*
(on closures) as the reflexive and transitive closures of — and |, respectively.

Proposition 3.2
(1) If (P;0) is normal and (P;o) |* (P';0) then (P';0) is normal.
(2) If (P;0) is normal and (P;o) —* (P';0") then (P';0") is normal.

The next proposition says that the representation of processes as closures
preserves sublocations and reductions.

Proposition 3.3 (Sublocation Equivalences) Assume (P;o) is a normal
o)

closure. If (P;o) | ~(Q;U) then UP,o) {U(Q,U). IfU(P,0) | Q then there
exists Q) such that (P;o) L (Q;0) and U(Q,0) = Q.

10



The following proposition is a counterpart of Proposition 3.3. It refers to
time in the same way as Proposition 3.3 refers to space.

Proposition 3.4 (Re(Niuction Equivalences)  Assume <P~ ) is a normal
closure. If (P;0) — (P';0') then U(P, o) = U(P', o). I U(P cr) — P' then
there exists (P';0') such that (P;0) — (P';0') and U(P',0") = P

Propositions 3.1-3.4 are enough to prove that normal closures indeed simu-
late the processes they represent.

3.2 Size of the Representation

We show that closures indeed give a polynomial representation of processes. To
do this, we have to bound the size of offsets that occur in closures.

For a given object (a closure or a process) O, by |O| we mean the length
of its string representation and by ||O|| the number of nodes in its tree repre-
sentation. We assume that an offset is represented by a single node in the tree
representation.

Lemma 3.5 Suppose that (P;o) — (P';0'). Then |[(P';a")|| < |[(P;0)]|.

Proof By a simple case analysis on the derivation of (P;o) — (P';¢'). In
cases (Trans In), (Trans Out) and (Trans Open), the transition either does
not change or decreases the representation’s size. In case (Trans I/0), the three
nodes representing input, output and process composition ((), (), .) together with
the representation of  and M are replaced with two nodes representing assign-
ment and substitution composition (+,{}) together with the representation of
x and M. Thus the tree decreases by one node. |

Proposition 3.6 Assume (P; o) is normal and (P;0) — (P';¢'). Then all off-
sets used in P and P' can be represented by the same number of bits, polynomial
in |[(P;0)| and, with such a representation, |(P';0")| < |(P;0)].

Proof A simple induction on the length of the substitution ¢’ proves that the
offsets in P’ are bounded by the value ||(P';o")||I{F"5". By Lemma 3.5, they
are also bounded by ||(P;o)||I'F5?)Il and then all offsets used in P and P’ are
bounded by this value, which can be represented on ||(P; o)]|| - ([log(||(P; o)||)] +
1) bits. With this representation of offsets, incrementing an offset does not
increase the size of its string representation. Thus no transitions can increase
the length of the string representations of closures. |

The following proposition is a key fact in the proof that our model check-
ing algorithm and also the algorithm of Cardelli and Gordon (2000b) terminate
in exponential time. It implies that the computation tree of a given process
might be very deep and very narrow (as in our example in Section 2) or not
so deep and wider; in any case the number of nodes in the tree remains ex-
ponentially bounded. A naive argument (without using closures) gives only a
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doubly exponential bound on the number of reachable processes: one can prove
that the computation tree of a given process is at most exponentially deep
(as our example in Section 2 shows, this bound is tight) and that the number
of successors for every node is at most polynomial. For example, the closure
({n[inn(0).Ry],...,n[inn(0).P]}; o) has at most k? different successors. These
two facts do not give, however, the exponential bound on the number of nodes
in the tree, which is given by the following proposition.

Proposition 3.7 Let (P;0) be a normal closure. Then there exist at most
exponentially many (P';0') such that (P;o) —* (P';0').

Proof This is a direct consequence of Proposition 3.6 and the observation
that there are only exponentially many strings of polynomial length. ]

Proposition 3.8 The reachability problem for normal closures is decidable in
PSPACE.

Proof Take any instance (P;o), (P';0') of the reachability problem. To de-
cide whether (P;o) —* (P';0'), we first define a nondeterministic algorithm
that starting from (P; o) guesses an immediate successor of the current closure
until it reaches (P'; o) or there are no further successors. By Proposition 3.6
the algorithm requires only polynomial space (we have to store only the cur-
rent closure and its one immediate successor); Proposition 3.7 implies termina-
tion. Finally, using the general statement of Savitch’s theorem (Savitch 1970)
(NPSPACE(S(n)) € PSPACE(S(n)?)), this non-deterministic algorithm can be

turned into a deterministic one. [ |

3.3 A New Algorithm

We propose a new algorithm, Check(ﬁ,a, A), to check whether the ambient
process simulated by (P;o) satisfies the closed formula A. For each ambient
process, P, we only consider the closure, F(P), obtained using the folding func-
tion defined as follows. We prove (Proposition 3.10), that P |= A if and only if
Check(F(P),t, A) returns the Boolean value T.

The Folding F(P) of a Process P:
7(0) = {}

) if len(M,1) =0
{M(0).F(P)} otherwise

For any process P, the closure (F(P);¢) is normal and U(F(P),t) is struc-
turally congruent to P. Furthermore, F(P) can be computed in linear time in
the size of P.
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For the model checking problem, P = A, we may assume without loss of
generality that the free names of A are disjoint from the bound names of P. We
denote by fn(P, o) the set (fn(P) U names(c)) \ dom(o).

Computing Whether a Process Satisfies a Closed Formula:
Check(l?, o,T)="T )

Check(P,0,=A) = ~Check(P, 0, A) )

Check(P,0, AV B) = Check(P,o0, A) vV Check(P,o,B)

T ifl=9o
Check(HieI m,0,0) = F otherwise

Check([1;c; mi, o, n[A]) = )
Check(Q,0,A) if I ={i}, m; = M[Q], nam(M,0) =n
F otherwise
Check([ ;e miso, A | B) =\ jc (Check([ T ;e 7j,0,A) A
) Check([1yer— s Ty 0, B))
Check(P,o,3x.A) = let {my,...,m} = fn(P,0) U fn(A) in
let mg ¢ {my,...,my} U bn(P) U dom (o) be fresh in
R Vico.x Check(P, o, A{zm;})
Check(lf’,a, QOA) = V(Is;a')%*(ls’;a") Check(NP’,o',A)
Check(lf’, o,04) = V(P;U)i*(f”;j) Check(P', 0, A)
Check(P, o, AQn) = Check(n[P], o, A)

An expression Check(ﬁ, 0, A) is said to be normal if and only if the closure
(P; o) is normal, A is a closed formula, and fn(A) N (bn(P) U dom (o)) = @.
Hence, for the model checking problem P |= A where A is a closed formula, the
expression Check(F(P),t, A) is normal and moreover we have:

Proposition 3.9 The model checking algorithm described above preserves the
normality of Check(P,o0,A).

Proposition 3.10 For all processes P and closed formulas A, we have P = A
if and only if Check(F(P),¢,A) =T.

Theorem 3.11 Model checking the ambient calculus and logic of this paper is
decidable in PSPACE.

Proof To test for a given process P and formula A whether P = A we simply
compute the value of Check(F(P),t,A). The only problem is to implement
Check in such a way that it works in polynomial space.

In the case of T, 0,n[A], AQn, —A, the algorithm can directly check whether
the respective conditions hold. In the case of AV B, A | B,3z.4,04,0A, we
have to be more careful about the space used to compute the value of disjunc-
tions. In a loop we iteratively compute the value of each disjunct, reusing the
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same space in every iteration. In the case of Q.A the subroutine computing
\/<15.0>_,*<13,.0,> Check(P',0', A) could look as follows.

result < F

for all (P';0') such that (P;o) —* (P';0")
if Check(P',0', A) = T then result < T

return(result)

By Propositions 3.6 and 3.8, every iteration requires only polynomial space.
The cases of AV B, A | B,3z.4, A are similar. Thus, the space S(k, |P|+ |o|)
used by the algorithm to compute Check(P, 0, A) for formulas A of depth not
exceeding k satisfies the inequality

S(k+1,|P|+ |o|) < S(k, |P| + c+|o]) + p(|P| + |o])

for some constant ¢ and some polynomial p (the constant ¢ comes from the fact
that in the case of A = B@n the size of n[P] is greater than the size of P; the
polynomial p estimates the space needed for testing reachability etc). Therefore,
Sk, 1P|+ |o]) < k- p(IP| + k- ¢ + |o]).

Finally, the fact that F(P) is polynomial in the size of P and the statement
of Proposition 3.10 complete the proof. ]

4 Complexity Lower Bounds

Below we present lower bounds on the space complexity of model checking our
process calculus against our modal logic, and also for two significant fragments.

The results given here are based on known results about the complexity of
decision problems for Quantified Boolean Formulas (QBF). We can assume with-
out loss of generality that these Boolean formulas are in prenex and conjunctive
normal form. The alternation depth of a formula is the number of alternations
between existential and universal quantifiers in its prenex quantification.

Those known results are: (1) deciding the validity problem for a closed
quantified Boolean formula ¢ is PSPACE-complete; (2) deciding the validity
problem for a closed quantified Boolean formula ¢ of alternation depth k£ whose
outermost quantifier is 3 is ¥F-complete (Stockmeyer 1976), where Xf denotes
the k-th level of the polynomial-time hierarchy. In particular, ¥ = P and
¥P = NP.

We will use the following formula as a running example of a valid closed
QBF formula:

Vvl.avz.a’l}g.(’l}l VEV ’1}3) N (HV V2 \Y ’1}3) /\ﬁ

4.1 The Full Calculus and Logic

We define an encoding of QBF formulas into ambient formulas. This encoding
is then used to prove Theorem 4.2, that the complexity of model checking the
ambient logic is PSPACE-hard.
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In our encoding, we assume that the truth values ¢t and ff used in the
definition of QBF satisfaction are distinct ambient calculus names.

We also use a derived operator for name equality in the ambient logic first
defined by Cardelli and Gordon (2000b):

n=p = pT)apu

Then 0 = m = n if and only if the names m and n are equal. We encode the V
and 3 quantifiers over truth values as follows.

Vo e {ff,tt}A = Vo(z=fFVe=tt)=>A
Jz e {ff,tt}A = Tw(z=fFVr=t)AA

Encoding QBF Formulas as Ambient Logic Formulas:

[o] = (v = tt)

[7] = (v = £)

[V -VOG] =]V -V [k]
[CiA---ACLE[CI]A - A[C]
[Vo.o] = Vo € {ff, tt}.[4]

[Fv.0] = 3v € {f, 1t} [¢]

The following properties are proved in the appendix. The proof of Lemma 4.1
is by induction on the number of variables quantified in ¢.

Lemma 4.1 Consider a closed quantified boolean formula ¢ and its encoding
[] in the ambient logic. The formula ¢ is valid if and only if the model checking
problem 0 |= [¢] holds.

Theorem 4.2 The complezity of model checking the full logic (including name
quantification) is PSPACE-hard.

Proof Straightforward from Lemma 4.1 since for the fixed ambient process
0 solving the model checking problem 0 = ¢ is PSPACE-hard. So in fact the
expression complexity, that is, the complexity of checking formulas against a
fixed process, is PSPACE-hard. |

The theorem above holds for any fragment of the logic including boolean con-
nectives, name quantification, and the location and location adjunct modalities,
and for any fragment of the calculus including ambients. This might suggest
that the complexity of the model checking problem comes from the quantifica-
tion in the logic. Below we show that it is not the case: the problem remains
so complex even if we remove quantification from the logic and communication
or mobility from the calculus. This suggests there is little chance of finding
interesting fragments of the calculus and the logic that would admit a faster
model checking algorithm.
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4.2 Mobile Ambients Without I/O, No Quantifiers

In this section, we study the complexity of the model checking problem for the
fragment of the ambient calculus without I/O and the fragment of the logic
without quantification.

For every QBF variable, v, we assume that v, v' and v are distinct ambient
calculus names.

Encoding QBF Formulas as Ambient Processes and Formulas:
[v] = v[pos[O] | v'[0]] | T

[0] = v[neg[0] | v'[0]] | T

eV - VL] =[]V - VI[k]

[Ci A ACi] = (end[0], [CL] A -+ A[Ch])

Vu.p] = (v'[in v.n[out v".out v.P]],0((n[T] | T) = A)) where (n[P], A) = [¢]
[Fv.p] = (V'[in v.n[out v".out v.P]], O((n[T] | T) A A)) where (n[P], A) = [¢]

enc(p) = (vi[pos[0]] | vi[neg[O]] | - - - | va[pos[0]] | v,.[neg[O0]] | P, A)
where (P, A) =[] and ¢ = Q1v1..... Qnvp.CiNA---ANChy
where each @Q; € {3,V}.

Brief explanation. In the encoding enc(y) above, the parallel composition
v1[pos[0]] | ... | vn[neg[0]] represents the sequence vy, ...v, of (uninstantiated)
boolean variables and P is a process that instantiates them. An instantiated
variable v; is represented by a subprocess v;[pos[0] | v;[0]] | vi[neg[0]] (if its
value is #t) or v;[pos[0]] | vi[neg[0] | v}[0]] (if its value is ff). The process
P first instantiates v; by choosing one of the ambients v;[pos[0]] or v [neg[0]]
nondeterministically, going inside it, leaving the token v][0] inside the chosen
ambient and then returning to the top level. It then iteratively instantiates the
variables va, . .., vy, in the same way. The formula n[T] | T in the context of the
encoding for a quantified variable v; above (where n is v;41 or end for i = n)
expresses that the instantiation of v; has finished but that the instantiation of n
has yet to start; thus O(n[T] | T...) and ¢(n[T] | T...) express, respectively,
universal and existential quantifications over instantiations of v;.

In the case where ¢ is the formula defined previously as an example, one
would obtain enc(p) = (P, A), where P is the process depicted in Figure 1(a)
and where the formula A is of the form:

O((v[T] | T) = O((u3[T] | T) A O((end[T] | T) A B)))

where B is the formula given by [u1 V03 V v3] A [ V v2 V 3] A [U3].

More detailed explanation. We explain this encoding with reference to the
ambient process depicted in Figure 1(a). The ambients whose names range over
v; describe an interpretation for the Boolean variables v; whereas the ambients
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U1 U1 V2 V2 U3 U3

(posi]] | [negl] | [posl] | [negtl] | [pos0] | [nesn]
v
vy
v3
UL ut v} .out vy.in Vs. , . end
out vy.out v2.1n V3 .

(a) The process P in enc(y) = (P,.A)

[postl | wi0] | [eql] | [posl | 050] | [resl]

U3 U3 end

[post]) ! [meall 1 0] ! o]

(b) The irreducible process for the interpretation vi — tt,vs — tt,v3 — ff

Figure 1: Encoding for mobile ambients without I/O, no quantifiers

named v} are the “material” to extend this interpretation. In the initial ambi-
ent, the ambients v; encode the empty interpretation and the material is in an
ambient named v] marking the fact that vy is the first variable to treat. The
first step of reduction will move the ambient v] non-deterministically either in-
side v1[pos[]] (the Boolean variable v; takes the value ¢t) or inside vy [neg[]] (the
Boolean variable v; takes the value ff). The next two steps of reduction are
deterministic. They aim to leave a mark in one of the ambients v; according to
the first non-deterministic choice and to reach a situation in which the Boolean
variable v, is considered. For instance, if the first choice was to instantiate
v1 with ¢t then, one would obtain a parallel composition of v [pos]] | v{[] and
vi[neg[]]. The ambients named vy, vs are kept unchanged and the ambient con-
taining the rest of the interpretation would be of the form v}[in vs.v5[Q]] where
@ is the internal of v4 in the initial process. This computation, consisting of
one non-deterministic step followed by two deterministic ones, can be carried
on for the variables v and v3. Then, when no more reduction step is possible,
the resulting process is a parallel composition of the empty ambient end[] and,
for each i, of v;[n[] | vi[]] and v;[n'[]] where n,n' are distinct elements from
{pos, neg}. For instance, the irreducible process given in Figure 1(b) represents
the interpretation vy — tt, vy — tt ,v3 — ff.
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We said that the ambient processes encode interpretations. The Boolean
formula itself is encoded in the ambient formula 4. Once no more reduction
step is possible on the ambient process, this latter represents an interpretation
whose domain is the set of all variables in : this interpretation is given by the
places where the marks v} have been put. It is easy with an ambient formula to
test whether this interpretation renders true the quantifier-free part of ¢. This
role is played by the ambient formula B whereas the remaining part of A aims
to encode the quantifiers of .

Let us first consider the outermost quantifier Yv; in : this quantification
stands for “for all possible interpretations of the variable v;”. We have described
above the mechanism for the instantiation of the Boolean variable v; in the am-
bient process. It consists of first a non-deterministic step, then two deterministic
steps. Whatever the first step is, those three steps lead to a situation where
the ambient process is of the form R | v4[R']. It should be noticed that those
two processes (one for each possibility of the first step) are the only processes
of this form reachable from the initial process. Therefore, the statement “for
all possible interpretations of the variable v,” can be translated as “for all pro-
cesses of the form R | v4[R'] reachable from the initial process”. This rephrased
statement can be expressed in the ambient logic as O((v5[T] | T) = ...).

A dual reasoning can be applied then for Jvs, the following quantification of
the formula ¢. In that case, the statement “there exists an interpretation for
the variable vy” is translated into “there exists an ambient process of the form
T | v4[T"] reachable from the current process”. This current process is one of
the two processes after the instantiation of the variable vo, that is of the form
S | v4[S']. This statement can be expressed by means of the ambient logic by
the formula Q((v5[T] | T) A ...). Finally, the quantification Jvs is expressed by
O((end[T] | T)A...).

Lemma 4.3 Assume ¢ is a closed quantified Boolean formula, and (P, A) =
enc(p). Then P = A if and only if ¢ is valid.

Theorem 4.4 The complexity of model checking mobile ambients without 1/0
against the quantifier-free logic is PSPACE-hard.

Proof Straightforward from the PSPACE-completeness of the validity for
QBF and from Lemma 4.3, taking into account that for enc(y) = (P, A), both
P and A are of polynomial size with respect to . |

4.3 Immobile Ambients With I/O, No Quantifiers

In this section, we study the complexity of the model checking problem for the
fragment of the ambient calculus without action prefix.

We consider fixed names end, C', and D. For any QBF variable ambient
name v}, let

A

Inst(v}) = vj[T] | T Inst™ (v;) = vi[v}/[T] | T] | T
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and for the name end,
Inst(end) = end[T] | T Inst™ (end) = end[end'[T] | T] | T

Encoding QBF Formulas as Ambient Processes and Formulas:
I 1

[v] = v[0]
[v] =v[0]
[V ...V e]=D[0]| [6]]-.. ][]

enc(Cr A ... ANCy) = (end[C[[C1]] | ---
O((D[o] |
enc(Jv.p) = (v'[(#t) | () | (v)-(v"[] | (0)
T | v'[O( (Inst(n) A —Inst™(n)) AA)])
where enc(p) = (n]
enclvu.p) = (W'[(#t) | (F) | (0).(0"] |
T | v'[3( (Inst(n) A —~InstT(n)) = A)])
where enc(p) = (

Brief explanation. The idea of the encoding here is quite similar to that
from the previous section. A boolean variable v is represented here by two
ambients v]] and T[], which after the instantiation are named tt[] and ff[]. We
exploit here the nondeterminism of communication: the variable v reads either
the message (tt) or (ff); then its dual v has to read the other one. The names
v; and v} (similar to v} in the previous section) are used for distinguishing
the moment when the variable v; is already instantiated but v;4; is not. The
formula O((D[0] | T) = (#¢[0] | T)) requires that in the final state, each ambient
representing a clause (that is, an ambient containing D[0]) contains at least one
true literal (that is, an ambient #[0]).

For the formula ¢ used in our example, one would have enc(y) = (P, A),
where P is depicted in Figure 2(a).

More detailed explanation. The key idea of this encoding is to use (reduc-
tions of) communications for performing the instantiation of the quantifier-free
part of ¢ with respect to some interpretation. Therefore, the quantifier-free
formula C; A ... A C}, is encoded in the ambient process itself, inside an am-
bient named end. For instance, in Figure 2(a) for our example, the ambient
end[C[D[] | vo[] | w2]] [ ws[l] | CID[] | o1l | wall | wsll] | C[D]] | ws[]] encodes the
quantifier-free part of ¢: the ambient end contains a sub-ambient called C' for
each clause C; in ¢ and the ambient corresponding to C; contains an ambient
¢;[] for each literal ¢; from Cj;.

Starting from P described in Figure 2(a), let us inspect the behaviour of
processes through reductions. Two reductions can be performed on P: one
establishes a communication between (¢t) and (v;) and the other one between
(ff) and (v1). Once this reduction step is performed the name v; has been
replaced by either ¢t or ff uniformly at every position and in particular in the
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end

C
(D] il |70 | 0s])] !

(tty | (fF) | (tt) | () | (tt) | () |

CORCITRC) | PN ¢
2l (ST N 0 o411 | @)| [DI o8l | eall [esl]] !

C
D[] | 3]
(a) The process P in enc(p) = (P,.A)
end
C C C
B R R

(b) The process representing the instantiation of C1 A C2 A C3 by vi — tt,v2 —
tt, vz — ff

Figure 2: Encoding for immobile ambients with I/O, no quantifiers

ambient named end. Hence, the first step of computation is non-deterministic
and instantiates the literal v;. It has also a side-effect: it reveals an ambient
process v{'[] within the ambient v{; this process is a marker for the control
of computations. Its precise role will be explained later on. The second step
is deterministic: for each first step, only one second step is possible. This
second step aims to instantiate the literal 77 according to the instantiation of
v1. Indeed, if the first communication has consumed the output (tt) then for
the second one only the output (ff) remains and vice-versa. So, after the second
step, the name vy is globally replaced by a Boolean value. Moreover, at this
point there are no more actions prefixing the ambient named v} and so this
ambient can be now reduced using the rules (Red Par) and (Red Amb). The
next reduction steps are performed in a similar way: a non-deterministic step
follows by a deterministic one. This leads finally to replace in the ambient end
all the names corresponding to literals by Boolean values tt and ff. As an
example, in Figure 2(b), we have depicted the ambient end once the reductions
corresponding to the interpretation M = vy + tt, vy — tt,v3 — ff have been
performed.
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Now, using an ambient formula it is not difficult to test whether the inter-
pretation induced from the process in Figure 2(b) is a model for C; A Cs A Cs:
as C1 A Cy A Cs is in conjunctive normal form, M is a model for it if and
only if M renders at least one literal true in every clause C;. According to
the way reductions are performed and correspond to instantiations, this is
equivalent to the claim that in the process from Figure 2(b), every ambient
named C contains a sub-ambient #¢[]. This can be tested with the formula
B = 0O(D[0] | T) = (¢[0] | T)), which is exactly the formula given by
enc(C’1 N 02 A 03)

In the encoding enc(y) = (P, A), one part of A aims to test whether the
interpretation corresponding to the reductions is a model of ¢. The other part
of A is used to encode the quantification of ¢. Let us illustrate on our example
the ideas of this encoding: for the formula ¢ from our example, the formula A
is equal to

T | v} [O( (Inst(vh) A —Instt(vh)) =
(T | v5[O( (Inst(vy) A —~Inst™ (vh)) A
(T | v4[O(Inst(end) A =Inst™ (end) A B)]))]) )]

where B is the result of the encoding of the quantifier-free part of ¢. For the
variable v;, the intuitive reading of Inst(v}) is “the next variable to consider
is v;”7, that is, the instantiation of the variable v;_; has been completed. The
reading of Inst™(v}) is “the variable v; has been partially treated”, that is,
the instantiation has been performed for the positive literal v;. For the ambient
name end, Inst(end) refers to the completion of the instantiation of the variable
U

The first quantification Yv; stands for “for all possible interpretations of the
variable v;” and the part of ¢ related with this quantification is

T | v} [O( (Inst(vh) A —Inst™ (v})) = ...)]

This formula is model checked against the process P given in Figure 2(a).
As P =0 | P, the model checking problem is reduced to checking the interior
of v] against the sub-formula of the form OA;: all processes reachable from
the interior of v{ must satisfy A4;. Let us have a look at the form of those
reachable processes: the interior of v] is itself reachable as well as the two
processes corresponding to the instantiation of the literal vy (reachable in one
step). In those processes v; has been replaced by a Boolean value but none
of them satisfies v4[T] | T, that is, Inst(v). Now, the processes reachable in
two steps or more indeed satisfy the formula Inst(vh); but the ones reachable in
exactly two steps can be distinguished from the others since these former are the
only ones which do not satisfy vh[vy[T] | T] | T, that is, Inst™ (v}). Indeed, steps
beyond the second one reveal the marker v4[] inside the ambient v5. We have
already mentioned the fact that the two steps of computation correspond exactly
to the complete treatment of the variable v; which is the intended meaning of
Inst(vh) A—Inst™ (v}). Therefore, model checking continues by checking the two
processes (the second step of computation being deterministic), defined as the
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interior of v{ in which the literals v; and v7 have been replaced by Boolean
values, against the formula

T | v5[O( (Inst(vy) A ~Instt(v})) A ..)]

from the encoding of the quantification Jv,. It stands for “there exists an
interpretation for v5”. The process that is checked against this formula is of the
form v{'[] | v4[R]. Therefore, it amounts to check whether the process R, which
is the interior of v} in which names v1,7; have been replaced with Boolean
values, is a model for the sub-formula of the form ¢.4,. Equivalently, there
must exist a process reachable from R which satisfies A;. Let us inspect the
processes reachable from R. Of course, R itself is reachable as well as the two
processes reachable in one step of computation performing the instantiation for
the literal va. None of these processes satisfies the formula v4[T] | T, that
is, Inst(vy). Processes that are obtained with two steps or more from R do
satisfy Inst(vj) but only those obtained by strictly more than two steps reveal
the marker v4[] inside v§ and thus, satisfy vi[vf[T] | T] | T, that is Inst™ (v}).
Those computations from R of exactly two steps correspond to the complete
treatment of the variable v, and satisfy Inst(vi) A =(Inst™(v})). So, model
checking carries on by checking that one of these two processes reachable from
R in two steps and defined as the interior of vs in which the literals vy, o7, va,
2 have been replaced by Boolean values, is a model for the remaining part of
the encoding of the formula.
Finally, the quantification Jvs is encoded as

T | v5[0( (T | end[T]) A=~(T | end[end'[T] | T])) A...)]

and its treatment is similar to that of Jv,. It leads to model checking the process
named end given in Figure 2(b) against the formula B.

Lemma 4.5 Assume ¢ is a closed quantified Boolean formula, and (P, A) =
enc(p). Then P = A if and only if ¢ is valid.

Theorem 4.6 The complezxity of model checking immobile ambients with I/0
against the quantifier-free logic is PSPACE-hard.

Proof This follows from the PSPACE-completeness of validity for QBF, from
Lemma 4.5 taking into account that for enc(yp) = (P,.A), both P and A are of
polynomial size with respect to ¢. ]

We can strengthen this result by slightly modifying our encoding. Our pre-
vious encoding is based on an individual treatment for the variables in the
quantification. The improved encoding will be based on the alternation of quan-
tifiers: roughly, Jvy3vs can be grouped together by saying that “there exists an
interpretation for vs and v3”. As far as the previous encoding is concerned, the
ambient formula resulting from the encoding of Jvydvs will perform two suc-
cessive tests for reachability; this can be modified in such a way that only one
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test of reachability is performed. This will imply for the new encoding that the
markers used to control the model checking (namely, the ambients v') will no
longer be associated with the variables but with the alternation of quantifiers.
Those ambient names will range over a; where i is an integer. We define for
those a;’s:

Inst(a;) = a;[T] | T Inst™(a;) = a;la;[] | T] | T

The Revised Encoding:

I
enc(Vv.p) = enc(Vv.p, 1)
enc(Jv.p) = enc(Jv.p,1)

enc(vu.p,1) = (ail(tt) | () | (0)-(asl] | ()P,
T | a;[0( Inst(air1) A Instt (a;1) = A)])
where ency(p,i) = (P, A)
enc(@vp,i) = (ail(tt) | () | (0)-(asl | (2)).P,
T | a;[O( Inst(air1) A Instt (a;i1) AA)])
where encz(p,i) = (P, A)

ency(Jv.p,i) = enc(Ju.p,i + 1)

ency(Vv.p,7) = ((¢t) | (ff) | (v).(¥).P, A)  where ency(yp,i) = (P, A)
enca(Yv.p) = enc(Vv.p,i + 1)

enca(Mv.p,i) = ((¢t) | (ff) | (v).(©).P, A) where enc3(p,i) = (P, A)

enc(Cy A ... ACh,i) = (a;[C[[C1]] | --- | C[ICk] 1], B((D[O] | T) = t¢[0] | T))
[eaV...VL]=D[O]|[€:] ] --- ][]

[v] =[]

[l =71

The statement of Lemma 4.5 still holds for this new encoding. Furthermore,
in the encoding (P, A) of the Boolean formula ¢, the ambient logic formula .4
depends only on the alternation depth and the outermost quantifier of ¢; for
any two Boolean formulas ¢, ¢’ having the same alternation depth k& and the
same outermost quantifier @, if enc(¢) = (P, A) and enc(yp’) = (P', A’) then
A=A

Theorem 4.7 For every integer k there exists a formula Ag such that the com-
plexity of model checking processes against Ag is Zf—hard.

Proof Let Af be the formula such that for any closed quantified Boolean
formula ¢ of alternation depth k& whose outermost quantifier is 3, enc(y) =
(P,,A7). Due to the remark above, we know that this formula exists and
furthermore, is of size polynomial in k.

Now, by Lemma 4.5, every instance of the validity problem for a closed
quantified Boolean formula ¢ of alternation depth £ whose outermost quantifier
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is 3 can be reduced to the model checking problem P, |= A7 for enc(p) =
(P,, A7). Thus, since the size of P, is polynomial in the size of ¢, the theorem
follows. u

5 Conclusion

We show in this paper that the model checking problem of the replication-
free ambient calculus with public names against the ambient logic without
composition-adjunct is PSPACE-complete. In order to prove this complexity
bound, we have proposed a new representation for processes, called closures,
that prevents the exponential blow-up of the size. We use this representation
together with a new algorithm to prove the PSPACE upper bound.

We also have shown that there is little chance to find polynomial algorithms
for interesting subproblems: model checking remains PSPACE-hard even for
quite simple fragments of the calculus and the logic.

Possible directions for future work include investigations of the model check-
ing problem for extensions of the logic and the calculus. Recently, Cardelli and
Gordon (2001) have presented an extended version of the logic that allows rea-
soning about restricted names; it seems that there is no difficulty in extending
our algorithm to deal with name restriction.
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A Correctness Proofs

This appendix contains proofs of results stated in Section 3.

A.1 Proof of Proposition 3.1

Proposition 3.1 concerns the relationship between normal closures and struc-
tural congruence. In this appendix we develop enough facts about closures and
structural congruence to prove it.

We begin with a proposition that normality is preserved by decomposition
with ambient or parallel composition.

Proposition A.1

e (P;0) and (Q, o) are normal and fn(P) N bon(Q) = bn(P) N fn(Q) =
bn(P) N bn(Q) = @ iff (P + Q;0) is normal.

e for all expressions M such that M does not contain names from bn(P),
({M][P]};0) is normal iff (P;o) is normal.

Proof For the first point: from right to left, it is straightforward from the
definition of U that if U (P + Q,0) is defined then both U(P, o) and U(Q, o)
are s0. As fn(P + Q) = fn(P) U fn(Q) and bn(P + Q) = bn(ﬁ) U bn(Q), if
bn(P + Q)N (fn(P ++ Q)Unames( )) = @ then bn(P)N(fn(P)Unames(o)) =
bn(Q) N (frn(Q) U names(o)) = @. If for P ++ Q bound variables occur at most
once within an input and offsets in the scope of an input are equal to 0, then it
is so for P and Q. The last condition for normality on sequential substitution
is obvious. The three other conditions follow directly from the normality of
(P ++ Q;0). From left to right, the definition of / implies that if (P; o) and
(Q; o) are defined then (P -+ Q; o) is defined. Now, fa(P + Q)Nbn(P + Q) =
(fa(P)Ufn(Q))N (bn(P)Ubn(Q)). We have fn(P )ﬁbn(Q) = n(P)Nfn(Q) = @
by assumption and fn(P)Nbn(P) = fn(Q)ﬁ bn(Q) = @ as (P; o) and (Q;0) are
normal. So, fn(P + Q)N bn(P + Q) @. By normality of (P; a) and (Q o),
names(o)Nbn(R) = @ for R € {P,Q}. So, names (o )ﬂbn(P + Q) = 2. (P;0)
and (Q; o) being normal and as by assumption bn(P)N bn(Q) g, every input
variable occurs at most once within an input in P + Q. The last conditions
on offsets in the scope of an input and on sequential substitution is obvious.
For the second point: It is easy to see that U ({M[P]}, o) is defined iff U (P, o)
is so. The set of names occurring free in M is exactly the set fn({A[0]}). Now,
as bn({M[P]}) = bn(P) and fu({M[P]}) = fn(P) U fn({M[O]}), fn({M[PT}) O
bn({M[P]}) is empty iff fn(P) N bn(P) is empty (taking into account the
assumption that bn(P) N fn({M[0]}) = @) and bn({M[P]}) N names(c) =
bn(P) N names(c) = @. Finally, the last three statements are obvious to check.
]

In the proof of Proposition 3.1 we will have to show that some processes
are equivalent if and only if some conditions hold. In particular, we will have
to show that if these conditions do not hold, the processes are not equivalent.
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Although it is relatively easy to prove equivalence of processes, it is not so
easy to prove their inequivalence (which requires showing that no equivalence
proof exists). We use Theorem A.2 and Propositions A.3-A.5 below as tools for
proving inequivalences needed in Proposition 3.1.

Let us consider ¥ the signature used to build processes from the ambient
calculus with public names. The signature ¥ contains an infinite number of
constants used as names. It contains moreover 0 and e as constant symbols, the
capabilities in, out, open and () as unary function symbols. Finally, the binary
function symbols [, [], ., () belong to X.

Let us denote Tx the set of all terms over ¥. Any ambient process from
the ambient calculus with public names can be written as a term over this
vocabulary. And of course, some terms from Ty are not ambient process, as for
instance, (0 | 0).

The set Tx induces a canonical algebra that we denote Tyx: the algebra
Ts has for carrier the set Ty and each function symbols from ¥ is interpreted
syntactically in 7.

The structural congruence relation = defined in Section 2.1 over pairs of
ambient processes can be viewed as a relation defined over Ty, X T5;. One should
notice that the set of axioms defining = is a set of definite Horn clauses, and
thus, (7%,=) is a Herbrand model for this set of axioms. Moreover, as we
consider the least relation satisfying these axioms, the structure (7s,=) is the
least Herbrand model for this set of axioms. This implies that two processes P, Q)
are structurally equivalent if and only if P = @ belongs to the least Herbrand
model of these axioms.

Note that if = is not assumed to be the least relation satisfying the axioms
but for instance the greatest one, then one would have P = @@ whatever P, Q
are.

The following theorem is a direct consequence of two well-known facts (Lloyd
1987), that (1) every model of a set of Horn clauses can be translated to a
Herbrand model, and (2) that every Herbrand model contains the least Herbrand
model. Essentially, the theorem says that anything that does not belong to some
model cannot belong to the least model.

Theorem A.2 LetS be a set of definite Horn clauses defining a relation symbol

=. Then for all algebras A, for all structures R defined over A and giving an
interpretation for = such that R = S,

Res=tif(Te,=)Es=t

That is, if there exists a structure R such that R =S and R = s # ¢, then
(Ts,=) Es #t.

Let us consider now the algebra A defined over ¥; the carrier D 4 is the least
set such that

e the constants from ¥ except € and 0 belong to D;,

e the empty string and the empty multiset belong to Dj,
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for any di,d, € Dj, the items in dy, out dy, open dy, (di), (di)d> and
dy[d>] belong to D;,

for any dy,...,d, € D4, the string d; ... d,, and the multiset {di,...,d,}
belong to Dj.

The function symbols from ¥ are interpreted in A as follows.

The constants from ¥ except € and O are interpreted syntactically.

The constants € and 0 are interpreted respectively as the empty string and
as the empty multiset.

The function symbols in, out, open, (), () and [] are interpreted syntacti-
cally.

For the function symbol .: d;.ds is the string obtained by concatenation of
dy and ds if both d; and d» are strings. Otherwise, elements from {d;,d->}
that are not strings are transformed into a string of length one and then,
the concatenation is performed.

For the function symbol |: d; | do is the multiset obtained by union of d;
and ds if both d; and d, are multisets. Otherwise, elements from {d;,d>}
that are not multisets are transformed into a singleton multiset and then,
the union is performed.

The algebra A is extended into a structure R in which = is interpreted as
the binary relation = over D; x Dj. The relation = is defined recursively as
follows: d = d' iff

d and d' are both the empty string.

d and d’' are both composed strings such that dj, and d},, the first two
elements of d,d" satisty dp, = d}, and d; and d} the two strings obtained by
removing the first element in respectively d and d' satisfy d; = dj.

d and d' are both the empty multiset.

d and d' are both non-empty multiset and there exists d. and d] respec-
tively in d and d' such that d. = d, and d \d. =d' \ d.

d and d' are respectively of the form (d;) and (d}) and d; = d.

d and d' are respectively of the form cap d; and cap d} and d, = d| where
cap belongs to {in, out, open}.

d and d' are respectively of the form d; [d2] and d} [d}] and dy = d, dy = d).

d and d’' are respectively of the form (d;)d, and (d})d, and d; = df,
dy = dj.

Proposition A.3 R is a model of the axioms for =.
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Proof By case inspection. ]

Proposition A.4 For any process P, for any M, for any name n, for any
cap € {in, out, open},

e for any process ), we have 0 Z M[P], 0 # (n).P, 0 Z (M), 0 Z cap M.P
and 0 ZP | Q if P #0.

e if P #£0, then for any processes Q, P' such that Q # 0, we have P | Q #
M[P'), P|Q # (n).P', P|Q # (M), P|Q % cap M.P".

e for any processes Q, P’ and for any M', we have M[P] # (n).Q, M[P] #
(M"Y, M[P] # cap M'.P" and M[P] # M'[P'] if M,M' are two different
sequences or if P # P'.

e for any M', we have (M) # cap M'.P, (M) #Z (n).P and (M) # (M') if
M, M' are two different sequences.

e for any process Q, for any names n,m, we have (n).P # cap M.Q and
(n).P £ (m).Q if n,m are two different names or if P Z Q.

e for any process Q, for any M' and for any capability cap’ € {in, out, open},
we have cap M.P # cap’ M'.QQ if either cap # cap’ or M, M’ are two dif-
ferent sequences or if Q Z Q.

Proof It is easy to check that all the statements above holds for R. Using
Proposition A.3 with Theorem A.2, those statements hold for ambient processes
and =. m

Proposition A.5 For any sequential substitution o, for any prime w such that
({r};0) is normal, U(w,0) Z 0.

Proof Straightforward from the definition of &/ and Proposition A.3 |

Restatement of Proposition 3.1  Let ([[;c; mi;0) be a normal closure.
Then

(1) U([l;e;mi,0) =0 6ff 1 = 2.

(2) U([1;e;mi,0) = MIQ] iff IM',Q : I is a singleton {i}, = = M'[Q],
Mo=M,UQ,0)=Q.

3) U(L;eymir0) = P' | P" iff LK : JUK =1, JNK = @, P' =
Z/{(HjEJWj,O'), P"=U([Tpek Tk, 0)-

(4) U([l;e; mi,0) = (M) iff IM' = I is a singleton {i}, m; = (M') and
M'o=M.

(5) U([l;e;miso) = (n).P iff 3P : I is a singleton {i}, m; = (n).P and

U(P,o) = P.
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Proof  For the first point, if I = & then P = {}; so, by definition for U,
U(P,0) = 0. Now for the other direction, the closure (P;o) being normal, if I
is not empty, then by Proposition A.4 and the definition for U, U([[.,; 7,0) Z 0.

For the second point, for the direction from right to left: U([[;c; mi,0) =

U({m;},0) =U{M'[Q]}, o) since I is a singleton {i} and 7; = M'[Q]. Now, by
definition for U, U([];c; mi,0) = M'o[U(Q,0)] = MU(Q, o)) since M'c = M.
So, U([T;e; mi,0) = M[Q]. From left to right: let us assume that I is not a
singleton. For I = @, according to the first point, (] [;c; mi,0) = 0 and thus,
by Proposition A4, U(]],c; mi,0) # M[Q] for any M,Q. Now, the closure
(]5; o) being normal, if I contains at least two elements then by definition of
U, U(P,0) = R' | R" for some R,R' # 0 by Propositions A.5 and A4 .
Thus, still by Proposition A.4, U(P,o) # M[Q] whatever M, @ are. So, I is
a singleton. Now, if m; # M'[Q] or M'c, M are two different sequences, once
again from the definition of ¢/ and Proposition A.4, U(P,o) # M[Q]. Finally,
since U([[;¢; mi,0) = MI[U(Q, 0)], we have U(Q,0) = Q.

For the third point, from right to left: we have P' | P" = U([];c; 7;,0) |
U(II ek T, 0). By definition of U, since J, K are disjoint and J U K = I,
P'"| P" = U(]T;c; mi,0). From left to right: by definition, U([[;c; mi,0) =
U(my,0) | ... | U(mg, o) where T is assumed to be {1,...,k} and the m;’s are
primes. Since U([[;c; mi,0) = P' | P", there must exist I, J two disjoint sets of
indices such that U J = 1.k, P' =U([[,c; mi,0) and P" =U([];c,; 7). 0).

For the fourth point, from right to left: from the definition of ¢/, we have
U([];c; mi,0) = U(mi,0) = (M'o). So, using the hypothesis, U([[;c; mi,0) =
(M). From left to right: similar to the second point.

For the fifth point, from right to left: from the definition of U, we have
U1, mir0) = U(m;,0) = (n).U(P,0). Using the hypothesis, U([];c; mi,0) =
(n).P. From left to right: similar to the second point. |

A.2 Properties of the Auxiliary Functions

Here, we state and prove correctness properties needed in subsequent sections
of the auxiliary functions nam, len, fst, and split.
First, the function nam is correct in the following sense.

Proposition A.6 nam(M,o) =n iff Mo =n.

Proof Straightforward by induction over the length of the sequential substi-
tution o. |

Second, the function len has the following property.

Proposition A.7 len(M,o) = 1 iff Mo = Ny..... N; with N; being either a
name or of the form cap N' with cap € {in, out, open}.

Proof The proof goes by induction on the length of the sequential substitu-
tion o.
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For o being the empty sequence t: Mt = M = Nj..... N,;. By definition,
len(Ny..... Ni,e) = Ei:l len(N;,t). Since each N; is either a name n or of the
form in N', out N’ or open N', we have len(N;,¢) = 1. This is equivalent to
len(Ny..... Ni,e) =1.

For o being the sequence {z<M'}o’ of length at least 1:

let M =Nj..... N|.. By induction over k:

- k =0: in this case, M =€ and M{z+M'}o = €. So, ! =0 and by definition
len(M,0) = 0.

- k =1: in this case M = N{ and we have three cases

e N is of the form cap N' for some cap € {in, out,open}: in this case,
M{xz+M'}o is of the form cap N'' and by definition, len(M,o{z+M}) =
1.

e N| is a name different from z: in this case, M{z+M'}oc = Mo and
len(M,{z<M'}o) = len(M, o). Using the induction hypothesis, Mo =
N{..... N/" iff len(M,0) = I, therefore M{x<M'}oc = N{..... N/ iff
len(M,{z+M'}o) = 1.

e N{ = z: in this case, M{z<M'}oc = M'oc and len(M,{z+<M'}o) =
len(M',0). By induction hypothesis M'c = N{'..... N/"iff len(M',0) =
l,so M{z+<M'}oc = N/..... N/"iff len(M,{z<M'}o) = L.

- k > 1: using the induction hypothesis, len(Nj..... Ni_ {z<M'}o) =1 iff
N{{z<M'}o..... Nj_{z<M'}o = N{..... Nj! and for the expression Ny,
len(Ng, {z<-M'}o) = 1" iff Ni{z<-M'}o = Ny ,..... Ny/ . By defini-
tion, len(M,{x<M'}o) is the sum of len(Nj..... N, _,,{z<M'}o) and of
len(Ny,,{x+M'}o). So, we can conclude that M{z<M'}oc = N{'..... Ny e

iff len(M, {z<M'}Yo) = 1" +1". ]

Third, we state the correctness of fst in Proposition A.9. To prove it, we
need the following lemma.

Lemma A.8 Let (P;{z<N}o) be a normal closure. Then (P{z<N};0) is
normal and U(P,{x<N}o) =U(P{z+N}, o).

Proof  For the normality of (P{z<N};0): we can show that U (P{z+N},0)
is defined by induction over the structure of processes and primes. The only non-
trivial case is for P = M(0).P": then, P{z+N} = M{z<N}(0).P'{z<N}.
Since U(P, {z<+N}0o) by assumption and U(P'{z<N},o) by induction hypoth-
esis are defined and (M {z<N})o = M({z+N}o), U(P{z+N},o) is defined.
For the second statement, since (P;{z<N}o) is normal, z and names from
N are not bound in P, so bn(P{z+N}) = bn(P) and fn(P{z«N}) con-
tains fn(P) and some possibly other names that do not belong to bn(P). So,
f(P{z<N}) N bn(P{z+<N}) = @. Moreover, as the bound names from P do
not occur in {z<N}o and bn(P{z<N}) = bn(P), bn(P{z+N})Nnames(c) =
@. Since z is not bound in P, occurrences of bound variables in P are not
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affected by the substitution {z<-N}. The requirement on offsets is trivially
preserved and finally, as {z<N}o is acyclic, o is so.

We show that U (P, {z<N}o) = U(P{x+N},0o) by induction over the struc-
tures of processes and primes taking into account that = in not a bound variable
in P. |

Proposition A.9 Let N be a capability of the form inn, outn or openn. Then
for all normal closures (Q); o), there exists Q) such that U(M(0).Q,0) = N.Q iff
fst(M,o0,0) = N.

Proof Let us assume that M = N;....N; and that N = cap n where cap
ranges over in, out, open. The proof goes by induction over the offset o.

Case where o = 0: we have fst(M,0,0) = cap n. We follow by induction
over the length of the sequential substitution o.

- case where the length of 0 is 0: 0 = ¢ and fst(M,0,¢) = capn. By definition of
fst, this is equivalent to fst(N1,0,t) = capn and to Ny = capn. Furthermore, as
UM(0).Q,1) = Ny..... N;.U(Q), this is equivalent to (M (0).Q, ) = cap n.Q
for some ().

- case where o is of the form {x+M'}o’ and the proposition holds for o': by
definition of fst, fst(M,0,0) = fst(N1,0,0) = cap n. Now, according to the
value of Np:

e N, is of the form cap L: so, nam(L,0) = n which is equivalent due to
Proposition A.6, to Lo = n. As U(M(0).Q,0) = Nio..... Niod(Q,0),
UM (0).Q,0) = capn.Noo ....N;jod(Q,0). Therefore, this is equivalent
to that (M (0).Q,0) = cap n.Q for some Q.

e N, is a name m: for each of the two cases in the definition of fst.

Case where m = z: we have fst(N1,0,0) = fst(m,0,{z<M'}o") =
fst(M',0,0") = capn. By induction hypothesis, it is equivalent to that for
any Q, U(M'(0).Q,0") = cap n.Q for some Q. In particular for some P,
cap n.P = U(M'(0).No{z+M'}. ... N{zeM'}(0).P{z+N'},0"), that
is capn.P = M'o' No{z<M'}o'.. ... N{z<M'}o' U(P{z+N'},0'). So
cap n.P = m{z+<M'}c’ .Nyo..... N;o.U(P,{z+N'}o"') by Lemma A.8.
And thus, by definition of U, this is equivalent to that for some P,
cap n.P = U(M(0).P,0).

Case where m # z: in this case, fst(M,0,0) = fst(m,0,0') = cap n. By
induction hypothesis, this is equivalent to that for any Q, /(m(0).Q,0") =
cap n.QQ for some (). The rest of the proof is similar to the previous case,
using the fact that mo’ = m{x+M'}o’ since m # x.

Case where the proposition holds for any o' < o: we have fst(M,o0,0) = capn.
By induction over the length of the sequential substitution o.

- case where the length of o is 0: ¢ = ¢ and fst(M,0,t) = cap n. Since
len(Ny..... Ny,t) = o, capn = fst(Nogq1..... N;,0,0). Using the base case,
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this latter is equivalent to that for any P, U(Nys1..... N;(0).P, t) = cap n.P
for some P. Now, this is equivalent to capn.P = Nyyq.. ... Ny.U(P, 1) by defi-
nition of U/. Finally, as Mt = N;..... Ny, by definition of U, it is equivalent to

that cap n.P = U(M (0).P,1) for some P.

- case where o is of the form {z<M'}o’ and the proposition holds for o':
since fst(M,o0,0) is defined, o < len(M,c). Let i be the unique integer
such that len(N;..... Ni_1,0) < o and len(Ny..... N;,0) > o and p be 0 —
len(Ny..... N;_1,0). Then we have capn = fst(M,o0,0) = fst(N;..... Ny, p,0).
Now, according to the value of N;:

e N; is of the form cap L: so, nam(L,0) = n which is equivalent due
to Proposition A.6, to Lo = n. Furthermore, since len(N;,0) = 1,
we have o = len(Ny..... N;_1,0) and thus, p = 0. Hence, cap n =

fst(N;..... N;,0,0). According to the base case, this is equivalent to that
for any P, U(N;..... N;(0).P,0) = cap n.P for some P. Let Mo be
Nj.....Nj. So by definition of &, U(M(0).P,0) = N!,,.....N},.U(P,0).
Now, as o = len(N;..... Ni_1,0), Nio..... N =N)yy..... Nj.. Hence,
U(M(0).P,0) = No.....Njod(P,o). Equivalently, U(M(0).P,0) =
U(N;..... N;(0).P, o) and so, U(M(0).P,0) = cap n.P for some P.

e N, is a name m: in this case, we have len(N;,0) > p. Hence, by definition
of fst, cap n = fst(M,o0,0) = fst(N;,p,{z+M'}c"). For each of the two
cases in the definition of fst:

Case where m = z: we have cap n = fst(M',p,o'). By induction hy-
pothesis, this is equivalent to that for any Q, U(M'(p).Q,¢") = cap n.Q
for some (). As a particular case, this latter holds for Q = P and for
Q = Ni{zeM'}. ... Ni{z+M'}(0).P{x+M'}. Now, from the defi-
nition of U and using that M' = N;{z<M'}, this is equivalent to that
UN{zM'}. ... Ni{z+M'}(p).P{x+M'},0") = cap n.P for some P.
Let Nj..... N;. be Njo. Then, still by definition of , it is equivalent
to that Npq..... N{.Niji0..... NioU(P{x+M'},0') = cap n.P. By
Lemma A.8, it is equivalent to Np q..... N{.Niti0..... NioU(P,o) =

cap n.P. Once again, by definition of U, we have U(N;.. ... Ny(p).P,o) =
cap n.P. Let p' be len(Ny..... N;_1,0). By definition of U, we have
UNy....Ni_1(p').N;. ... Ni(p).P,o) = cap n.P. By definition of U,
U(Ny....N;_1.N;. ... Ni(p+p').P,0) = cap n.P. Finally, as p+p' = o,
this latter is equivalent to that U(M (0).P, o) = cap n.P for some P.

Case where m # z: by definition of fst, cap n = fst(m,p, {z+M'}o")=
fst(m,p,o'). By induction hypothesis, this is equivalent to that for all @,
there exists Q such that U (m(p).Q,o) = cap n.Q. The rest of the proof
is similar to the previous case, using the fact that mo' = m{z«M'}o’
since m # x. u

Fourth, we prove that split is correct in the following sense.
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Proposition A.10 Let ([[;c; mi;0) be a normal closure, and let L be of the
form inn, out n or openn. Then U(][;c; mi,0) = L.P iff L', 0,P,P': I is a
singleton {i}, m; = L'(0).P', split(m;,0) = (L, P) and U(P,0) = P.

Proof  From right to left: we have U(][;c; mi,0) = U(m;,0), m = L'(0).P',
split(m;,0) = (L, P). By Proposition A.9, U(r;, o) = L.P for some P. Moreover,
for L'c being of the form L]..... Ly, U(mi,0) = Ly .. L;.U(P,o) and L, =
L. Note that U(m;,0) being defined, we have o < len(L',0) = [. Now, by the
definition of split, according to the values of o and len(L’, 0):

- len(L',0) > o+ 1: in this case, P = {L’~(0+1).15’}. So, by definition of
U, U{L'(o+1).P'},0) = L y..... LiU(P',0) and thus, U([];c,; mi,0) =
L U{L'(o+1).P'},0) = L.P for P =U({L'(0+1).P'},0) =U(P,0).

- len(L',0) = o+ 1: in this case, P :~15’. Therefore, U({L' (0 + 1).P'},0) =
LiU(P' o) = L, U(P' o) = LUP',0). Thus, U([],c;mi,0) = L.P for
P=U(P',0) =U(P,0).

iel

From left to right: let us assume that U(][,c; mi,0) = L.P. Using Proposi-
tion A.4, the set I has to be a singleton and m; has to be of the form L'(0).P".
Now, by Proposition A.9, we know that fst(L', 0,0) = L. Thus, it is sufficient to
prove that P = U(P, o) for split(r;,o) = (L, P). From the definitions of &/ and
split and from Proposition A.4, it is straightforward to see that P # U(P, o)
implies U (] [;c; mi,0) #Z L.P. [ ]

A.3 Proof of Proposition 3.2

Using Lemma A.11 below, we show Proposition 3.2(1), that |*, the reflexive and
transitive closure of the sublocation relation |, preserves normality of closures.

Lemma A.11 If (Pia) is normal, then for any (P';o) such that (P;o) |
(P';0), the closure (P';0) is normal.

Proof From the definition of |, we have P = Q + {M[ZE”L} for some Q, M.
Thus, by the first point of Proposition A.1, the closure ({M[P']}; o) is normal.
Now, the names from M occur freely in { M[P']}. So, ({M[P']}; o) being normal,

none of the names from M is in bn({M[I{”]}) and thus, in dn(P’'). Therefore,
by the second point of Proposition A.1, (P'; o) is normal. |

Restatement of Proposition 3.2(1) If (P;0) is normal and (P;o) |*
(P';0) then (P';0) is normal.

Proof A simple induction using Lemma A.11. |

Using Lemmas A.12 and A.13 below, we show Proposition 3.2(2), that —*,
the reflexive and transitive closure of the reduction relation —, preserves nor-
mality of closures.
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Lemma A.12 If ({r};0) is normal and split(w,o) = (N,S) then (S;o) is
normal.

Proof  Since split(m,0) = (N,S), 7 = M(0).5' for some expression M and
some annotated process S’. Furthermore, ({7}, o) being defined, U(S',0) is
defined. Now, according to the value of S: if S = M(o + 1).S’ then, from the
definition of split, o + 1 < len(M, o). So, from the definition of U, U(S',0)
being defined, U (M (o +1).5",0)=U(S,0) is defined. If S = S’ then U(S,0) is
defined.

Let us first notice that bn({r}) = bn({M(o+ 1).5'}) = bn(S") and that
m{r}) = fn({M(o +1).5'}) D fn(S’). Therefore, since by normality bn({7})N
(fn({7}) U names(c)) = @, we have bn(S) N (fn(S) U names(c) = .

The last three statements are obvious to check. [ ]

Lemma A.13 If (15;~cr> is normal, then for any (P';0) such that (P;o) —
(P';0), the closure (P';0) is normal, and moreover

o cither o' = o, bn(P) = bn(P') and fn(P") C fn(P),

e or for some x,M, o' = {x<M}o, bn(P) = bn(P') U {z} and fn(P") C
fn(P)u{z}.

Proof The proof goes by induction over the structure of the context under
which the reduction takes place.

If the context is empty, then the applied reduction corresponds to one of
the rules (Trans In), (Trans Out), (Trans Open) and (Trans I/O). For (Trans
In), (Trans Out) and (Trans Open) respectively, ({N[Q ++ {r}], M[R]};0),
{M[{N[Q + 7]} + R]};0) and ({M[P],n};0) are normal by assumption.

Concerning the second claim of the lemma: obviously, o/ = o, bn(P) =
bn(P'). For the rules (Trans In) and (Trans Out), fn(P) = fn(P') and for
(Trans Open) fn(P') C fn(P) (the execution of open may let an ambient name
disappeared).

Now for the first claim, by using Proposition A.1, (7;0) is normal. Then,
from Lemma A.12 together with the transition rules on closures, (P; o) is normal
(where split(r,0) = (N, P) and N being respectively in m, outm and open m).
Finally, using the fact that bn({r}) = bn(P) and that fn({r}) C fn(P) and by
applying once more Proposition A.1, the closures ({ M[{N[Q + 7|} + R]};0),
({N[Q ++ {n}], M[R]};0) and (P ++ Q; o) are normal.

For (Trans 1/0), ({{M), (z).P};0) is normal by assumption. Let us start
with the second claim of the lemma. We have ¢’ = {z<-M}o. Due to the
assumption of normality, z occurs at most once within an input in P and
bound and free names are disjoint in P. So, bn({(M), (z).P}) = bn(P) U {z}
and fn(P) C fa({(M),(x).P}) U {z}. Now, for the first claim, let us first
prove that U(norm(P, {z+M}c),{x<M}0o) is defined by induction over the
structure of P: this is obvious for P being the empty multiset or the single-
ton {(M')}. For the induction step, this is also straightforward for P be-
ing a multiset of primes or a singleton {(z').Q} or {M'[Q]}. Now, for P =
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{M'(0).Q}. By hypothesis, U(M'(0).Q,0) is defined. So, o < len(M',0). If
len(M', {z+M}o) = 0, then norm(P, {x+M}o) = norm(Q, {x+M }o) and so
U(norm (P, {z<M}o), {z+M}o) is defined by induction hypothesis. Other-
wise, len(M', o) < len(M',{z<M}o). So U(norm(P, {z+M}o), {z<M}o)=
UM (0).n0rm(Q, {x+M}o), {z<M}0o) is defined. Since every variable occurs
at most once within an input in the annotated process of a normal closure,
bn(P) = bn({(z).P,(M)}) ~ {z}; Moreover, since fn(P) C fn({(M), (z).P}) U
{z}, bn({(M), (z). P}) ﬂfn({( ), ().P}) = @. Let us show that names from
bn(P) do not occur in o' = {x+M}o. As bn(P ) C bn({(M), (z).P}), because
of the hypothesis of normality, names from bn(P) do not occur in o. Moreover,
we know that z € bn(P) and names occurring in M are free in {(M), (z).P} and
so, in P. It is straightforward that the property of the uniqueness of variable
within an input and the fact that offsets are equal to 0 in the scope of an input
are preserved. Finally, since ({(M), (z).P};o) is normal, o is acyclic and as z
is bound,  does not occur in o7; so the last point holds for (P; {z+M}o).

Now, we investigate the case where the context of reduction is non-empty,
that is the rule used for reduction is either (Trans Par) or (Trans Amb). We show
in this case that the second claim of the lemma holds and then that normality
is preserved.

For (Trans Amb): we assume the closure (M [P]; o) to be normal. For any S,
we have bn(M[S]) = bn(S), fa(M[S]) = fn(S) U fn(M][0 )]). Let us first consider
the case where o = o': by induction hypothesis bn(P) = bn(P'), fn(P') C
f(P). So, bn(M[P]) = bn(M[P']) and fn(M[P']) C fn(M[P]). Now, for the
case where o' = {z+-M}o: By induction hypothesis, bn(P) = bn(P'") U {z},
fa(P') = fn(P) U {z}. So, bn(M[P]) = bn(M[P']) U {z} and fn(M[P"]) =
fn(MIP) O {x}. ) N

Let us show now that (M[P'];0') is normal: since (M[P]; o) is normal, by
Proposition A.1, (P;o) is normal. Then, since (P;0) — (P';¢'), by induction
hypothesis, (P';¢') is normal. So, as bn(P') C bn(P), by Proposition A.1,
(M[P'];0") is normal.

For (Trans Par): we assume the closure (P + Q;0) to be normal. For
any S,5', we have bn(S + S’) = bn(S) U bn(S') and fn(S + S') = fn(S) U
fn(S"). Let us first consider the case where o = ¢': as by induction hypothesis
bn(ﬁ) = bn(P’) and fn(P’) C fn(P), we have bn(P ++ Q) = bn(P' + Q) and
(P + Q) C fu(P + Q) Now, for the case where o/ = {z<M}o: as by
induction hypothesis bn(P) = bn(P’) U{z} and fn(P’) C fn(P) U{z}, we have
bn(P + Q) = bn(P' + Q) U {z} and fn(P' + Q) C fn(P ++ Q) U {z}.

Let us show now that (P ++ Q;0¢') is normal: (P + Q;0¢') being normal,
by Proposition A.1, both (P;o) and (Q;0) are normal. Now, since (P;o) —
(P';0"), by induction hypothesis, (P’;0') is normal. Let us now prove that
(Q;0') is normal: we know that = € bn(P); so, by normality of (P + Q;0), =
does not occur in Q, so U(Q,0") = U(Q, o) and thus, U(Q, ') is defined. The
other points are obviously implied by the normality of (Q;0) and (P';0'). Fi-
nally, the fact that (P +H Q, o) and (Q; ¢') are normal together with Proposition
A.1 implies that (P' 4+ Q;0') is normal. |
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Restatement of Proposition 3.2(2) If (P;0) is normal and (P;o) —
(P';0") then (P';0') is normal.

Proof An induction with appeal to Lemma A.13. |

A.4 Proof of Proposition 3.3

We prove now that the sublocation relation defined on closures simulates the
sublocation relation defined on processes.

) is a normal closure. If

Restatement of Proposition 3.3  Assume (15;0 U
1 Q then there exists ) such

(P;o) L (Q;0) thenU(P,0) LU(Q,0). IfU(P,0)
that (P;0) L (Q;0) and U(Q,0) = Q.

Proof  For the first point, by definition for | on closures, we have P=Q +
{M[P']} for some Q, M, n such that nam(M,o) = n. Therefore by definition
of U, U(P,0) = U(Q,0) | Ma[U(P',o)]. Note that (P;c) being normal, both
(Q, o), (P’ o) are deﬁned and thus, processes. Now, for the two processes
U(P,o), U(P', ), there exists a process Q (namely U(Q, )) and a name n (n =
Mo by Proposition A.6) such that U(P,0) = Q | n[U(P',0)]. So, U(P,o) |
UP', o).

For the second point, by definition of | on processes, U(P, o) | P' iff there
exists Q,n such that U(P,0) = Q | n[P']. The annotated process P being of
the form [], ., 7k, by Proposition 3.1, there exists 7, J such that JTUJ = K, I'N
J =@ and U([[;¢;mi0) = Q, U(Hjerj,J) = n[P']. From Z/{(HjEJWj,U) =
n[P’'], by Proposition 3.1, there exists M',P' such that J is a singleton {7},
T = M’[f”] M'oc =n and U(P',0) = P'. Since M'c = n, by Proposition
A6, nam(M',0) = n. Furthermore, P is equal to [[;c; m + {M'[P']}. So,
(P;o) | (P';0) and U(P',0) = P'. [ |

A.5 Proof of Proposition 3.4

Given Lemmas A.14, A.15, and A.16 below, we prove Proposition 3.4, that the
reduction relation defined on closures simulates the reduction relation defined
on processes.

Lemma A.14 Let (P;o{z<M}) be a normal closure such that all the offsets
o occurring in P are set to 0. Then U(P,o{zM}) = U(P,0){z<M}.

Proof The proof goes by induction over the structures of processes and

primes. Most of the cases simply uses the definition of ¢/ and the application of

a substitution. We detail here the only two cases that are not straightforward.
For primes 7:

- case where 7 = (y).P":
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((9)-U(P', o)) {wM}

((y){M—M}) U(P', o){zeDM})

(y). U o) {zM})

().(U(P', o{zM}))

U((y).P', o{z+M})

The first and the last equivalences follow from the definition of i/; the second
one corresponds simply to the application of the substitution {z<M}. For
the third one, the closure (P;o{z<M?}) being normal, by Proposition A.I,
the closure ({7}; o{x+M}) is normal too. Therefore, as y is a bound variable
and bn(P) N dom(o{x<M}) = @, x and y are different. So, y{z+M} = y.
The fourth equivalence appeals to the induction hypothesis.

- case where 7 = M'(0).P':

U(M'(O).ZS',U){.T(—M} (M’o.U(f”,a)){x(—M}

M'o{z+M}U(P', o) {x<M}
M'o{x+M}U(P' o{xM})
U(M'(0).P',o{z+M})

The first equivalence uses the definition of ¢/ and the fact that by hypothesis,
o is equal to 0; the second one is simply the application of the substitution
{z+M}. The third equivalence is due to the induction hypothesis. Finally,

the last equivalence is a direct consequence of the definition of ¢/ and of o = 0.
[ ]

Lemma A.15 Let (P;{z+M}o) be a normal closure such that all the offsets
o occurring in P are set to 0. Then U(P,{z+M}o) = U(P,0){z<Mao}.

Proof The proof goes by induction on the length of the sequential substitu-
tion o.

For ¢ being the empty substitution ¢ U(P,{z<M}1) = U(P,{z<M})
since ¢ corresponds to the identity. So, by Lemma A.14, U(P, {zM}) =
U(P, 1) {xM}.

For o being of the form o'{y«M'}:

U(PN, {zM}o"){y«M'}
(UP,0"){zeMo'}){y«M'}

U(P, {x+M}o'{y+M'})

The first equivalence follows from Lemma A.14 and the second one from the
induction hypothesis.

Now, the fact that (P; {z M }o'{y<M'}) is normal implies that = # y and
that  does not occur in M. Let us consider now the process U (P, o"){z+Mo'}.
As z # y, the occurrences of y in U(P,¢') are preserved in U(P,o"){z+Mo'}
and some new occurrences of y may appear in this latter, due to the possible
occurrences of y in Mo'. As z does not occur in M’, we can first replace (P, o")
the occurrences of y with M’ and then, replace the occurrences of x with an
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expression L; this expression L is the expression Mo in which the occurrences
of y are replaced by M'. Hence,

U(P, 0" {aeMo' P{yeM'} = UP,0") {yM'P{zeMo'{yM'}}

By Lemma A.14, this latter is equivalent to U(P, o' {y+M'}){zMo'{y«+M'}}
and so, to U(P,o){z+Moc}. ]

Lemma A.16 Suppose (ﬁ’;o) is a normal closure such that all the offsets o
occurring in P are set to 0 and x occurs neither in o nor in bn(P). Then
U(norm(P,{z+M}o),{z<M}o) =U(P,0){z+Mo}.

Proof  First, observe that normality of (P;¢) and the assumption about z im-
ply normality of (norm(P, {z<M}o); {x< M }o). Therefore, by Lemma A.15,
U(norm (P, {z<M}o),{z+M}o) = U(norm(P,{z—M}o),0){z—Moc}. So,
it is enough to prove that

U(norm (P, {z<M}0o),0){z<Mo} =U(P,0){x+Mo}.

Let us consider two cases: len(M,o) # 0 and len(M, o) = 0. In the first case,
norm(P, {x+M}s) = P and there is nothing to prove. In the second case, nor-
mality of (P;o) implies that norm(P, {z< M }o) differs from P only by some
occurrences of z(0). The equivalence U(norm(P,{x<M}o),0){x+Mo} =
U(P,0){z+ Mo} follows then by induction on the structure of Mo using the
congruence rule (Struct €). [ ]

Restatement of Proposition 3.4  Assume (:; o) is a normal closure. If
(P;0) = (P';0") then U(P,0) — U(P',0"). IfU(P,0) — P' then there exists
(P';0") such that (P;0) = (P';0') and U(P',0') = P'.

Proof The proof goes by induction over the structure of the context under
which the reduction takes place.

If the context is empty, then for the first point, the reduction applied cor-
responds to one of the rules (Trans In), (Trans Out), (Trans Open) and (Trans
I/0).

For the first point and the rule (Trans In):

No[U(Q,0) |U({x},0)] | Mo[U(R,0)]

U{NIQ ++ {m}], M[R]},0) = Nolu [
= aU(Q,0) | U{r},0)] [ mU(R,0)]
= alU(Q,0) | in mU(P,o)] | mU(R, )]

The first equivalence follows from the definition of ¢/. The second one is
a consequence of the conditions of the rule (Trans In) and of Proposition A.6.
The third equivalence follows from the conditions of the rule (Trans In) and
from Proposition A.10.

On the other hand,
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Mo[No[U(Q,0) | U(P,0)] |U(R,0)]
mnU(Q,0) |U(P,0)] |U(R,0)]

U(MIN[Q + P] + R],0)

The first equivalence follows from the definition of ¢/ and the second one
from the conditions of the rule (Trans In) and from Proposition A.6. Therefore,
UN[Q +H {r}] + M[R],0) = U(M[N[Q + P] + R],0).

The proof is similar for the rules (Trans Out) and (Trans Open). Now,
for the first point and the rule (Trans I/0): by the definition of U, we have
U{(M), (z).P},0) = (Mo) | (z ).U(P o). Let P' be norm(P, {:v(—M}o)
Lemma A.15, the closure ({(M), (z).P};0) _being normal, U(P', {a:(—M}J) E
U(P’,U){ﬂ?(—MO'}. Therefore, U({(M), (z).P},0) — U(P’,{M—M}J).

Let us consider now the second point with the assumption that the context
is empty, that is the reduction is made by (Red In), (Red Out), (Red Open) or
(Red I/0).

For the second point and the rule (Red In): let us assume that U(S, o) — S’
by the rule (Red In). Therefore, S = m[n[Q | P] | R] for some m,n, P,Q, R and

US,0) =nlQ | inm. Pl | m[R ] So, by Proposition 3.1 and Proposition A.10,
there exists N, M, L', P, P',Q, R such that S = {N[Q + {L'(o ).P'Y], M[R]}
No =n, Mo = m, U(Q, 0) = Q, U(R,0) = R, split(L'(0).P') = (in m, P)
and Z/{(P,O’) = P. Using Proposition A.6, we have nam(M,s) = m and
nam(N, o) = n. So, by definition for (Red In),

(S;0) = ({M{N[P + QI} + Rl};0)

and furthermore,

UMIN[Q + P] + E],0) mn[U(Q,0) | U(P,0)] | U(R,0)]

m[n[Q | P]| R] = 5'

The proof is similar for the rules (Red Out) and (Red Open). Now, for
the second point and the rule (Red I/0): let us assume that U(S,0) — S
by the rule (Red I/0). Therefore, S' = P{z+M} and U(S o) = (z).P |
(M). So, by Proposition 3.1, there exists M’, P such that S = {(M"), (x).P},
M'c = M and U(P,o) = P. Therefore, (S o) — (P';{z<M'}s) where
P' = norm(P,{z<M}o). Furthermore, ({(M'),(z).P};0) being normal, by
Lemma A.16

U {zM'}o) U(P,0){zeM'o}

P{x+M}.

Now, we investigate the case where the context of reduction is non-empty:
for the first point, the rule used for reduction is either (Trans Par) or (Trans
Amb).

For the rule (Trans Amb): if (P; o) — (P';0") then (M[P);0) = (M[P');0").
In this case, U(M[P)],0) = Mo[U(P,o)] andU(M[P'],o') = Mo'[U(P',c")]. By
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A.13, either o' = o or o' = {z<L}o. In this last case, 2 is bound in P and thus,
by normality, # does not occur in M. So in both cases, Mo’ = Mo. Moreover,
by the rule (Red Amb), Mo[U(P,0)] = Mo[U(P',¢")]. So, U(M[P),0) —
U(M[P'],0")

For the rule (Trans Par): if (P P; o) — (13 o') then (P + Q;0) — (P' ++
Q;o ) In this case, U(P ++ Q,0) = U(P,0) | L{(Q, o) and U(P' + Q,0") =
UP',o") | UQ,o ) By A.13, either o' = 0 or ¢/ = {x<M}o. In this last
case, x is bound in P and thus, by normality does not occur in Q. So, in
both cases, we have U(Q,0') = U(Q,c). Moreover, by the rule (Red Par)
UP, o) |UQ,0) > UP',0") |UQ,0). So,U(P + Q,0) = UP" + Q,0).

For the second point, the rule used for reduction is either (Red Par) or (Red
Amb).

For (Red Amb): let us assume that #(S,0) — S’ by (Red Amb). We
have S’ = n[P'] and U(S,0) = n[P]. So, by Proposition 3.1, there exists
N,o such that S is a singleton {7}, 7 = N[P] No = n and L{(P o) = P.
By hypothesis P — P’, so U(P,0) — P'. By induction hypothesis, there
exists P',o’ such that (P;o) — (P';0') and U(P',0') = P'. Then by the
rule (Trans Awb), ({N{P]}io) = ((N[P1ho')s so, (Si0) = (N[PT)ior).
Finally, U({N[P']},0') = No'[U(P',0")]. By Lemma A.13, either 0 = o’ or
o' = {z+M}o with z a bound variable in P. By normality = does not belong
to N,s0 No' = No = n. Therefore, No'[U(P',0")] = n[U(P',o")] = n[P'] = S'.

For (Red Par): let us assume that U(S,0) — S’ by (Red Par). We have
S'=P'| Q@ and Z/{(S,U) P | Q. So, by Proposition 3.1, there exists P,Q
such that S = P + Q, U(P,0) = P and U(Q,0) = Q By hypothesis,
P — P’ so U(P,0) — P'. By induction hypothesis, there exists P', o’ such
that (]5 o) = (P';0') and U(P', o') = P'. Then by the rule (Trans Par),
(P 4+ Q;0) = (P" ++ Q;0'); s0, (S;0) = (P' ++ Q;0'). Finally, U(P" ++
Q,0") = UP', o) | U(Q,0"). Now, by Lemma A.13, either 0 = ¢' or ¢/ =
{z+M}o with z a bound variable in P. By normality z does not occur in Q;
s0, U(Q,0") =U(Q, o). Therefore, U(P' ++ Q,0') =P |Q=S". [

A.6 Proof of Proposition 3.9

Restatement of Proposition 3.9  The model checking algorithm described
in Section 3.3 preserves the normality of Check(P, o, A).

Proof By case inspection of the algorithm, we show that if CheckN(]B, o, A)
is normal in the left-hand side of equality then any expression Check(P', o', A")
occurring in the right-hand side is also normal.

- for the Boolean connectives =, V: since in any case, P’ = P and ¢ = ¢’ and
A" is a closed formula such that and fn(A") C fn(A), this is straightforward.

- for the ambient match A = n[A’]: in this case, P = {n[Q]} and ¢ = o'
By Proposition A.1l the closure (@); o) is normal. The remaining conditions
are fulfilled since bn(P') = bn(P), ¢/ = o and for the closed formula A’

fn(A') € fn(A).
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- for the composition match A = A" | A”: this proof is similar to the previous
case.

- for the existential quantification 3z..4: in this case, P’ = P and o = ¢' and the
fact that A{z<m;} is closed is straightforward. So, it is sufficient to show that
whatever the ambient name m; is, fn(A{z<m;})N(bn(P)Udom(c)) = @. By
noticing that fn(A{z<m;}) is either equal to fn(3z.A) or to fn(Iz.A) U {m;}
and using the normality for Check(]s,a, Jz.A), this amounts to prove that

m; & bn(P) U dom (o). According to the value of m;:

e for mi = my: straightforward.

e m; € fu(P,0) Ufn(A): let us assume that m; € fn(A). Then, m; €
fn(3z.A). So, by normality of Check(P,0,3z.A), m; ¢ bn(P)U dom(o).
Let us assume now that m; € fn(P,0): by definition, m; ¢ dom (o). Now,
by normality of (P; o), since m; € fn(P) or m; € names(o), m; ¢ bn(P).

- for the sometime modality ¢.A:

e case where Check(P' o', A') = Check(P,0, A): obvious since fn(Q0.A) =
fn(A).
e case where Check(ﬁ’,o’l/l’) = Check(P',0',0.A) with (P;o) — (P';0'):
by Proposition 3.2(2), (P'; o) is normal. Now, according to Lemma A.13:
— 0 =o', bn(P) = bn(P') and fn(QA) = fn(A): in this case, the
requirement is trivially satisfied.
- o' = {z+M}o, bn(P) = bn(P') U {z}: by hypothesis, fn(0.4) N
(bn(P) U dom(o)) = @. So, fn(Q0.A) N (bn(P') U dom(o')) = 2.

- for the somewhere modality 0.A:

e case where Check(P' o', A') = Check(P,0, A): obvious since fn(Q0.A) =
fn(A).

e case where Check(ls’,g’,A’) = Check(P',0',0.A) with (P;0) | (P';0'):
by Proposition 3.2, (P';0') is normal. The last condition holds since
o' =0 and fn(P') C fn(P).

- for the location adjunct modality A@n: from the hypothesis of normality for
Check (P, o, AQn), since n € fn(A), n ¢ bn(P). Therefore, by Proposition A.1,
(n[P); o) is normal. Moreover, A is a closed formula. Finally, by hypothesis,
fn(AQn) N (bn(P) U dom (o)) = @, and bn(P) = bn(n[P]), fn(A) C fn(AQn).

So, fn(A) N (bn(n[P]) U dom(o)) = @. [ |

A.7 Proof of Proposition 3.10

The correctness of our algorithm, Proposition 3.10, is a corollary of Lemma A.18
below, which itself depends on the following fact.
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Lemma A.17 (Cardelli and Gordon (2000b)) For any ambient process P
and any ambient formula A, let {m1,...,m;} = fn(P) U fn(A) and suppose
mo & {ma,...,mg}. Then P |=3z. A iff P |= A{x<m;} for some i in0...k.

Lemma A.18 For any normal closure (P;0), U(P,o) |= A if and only if
Check(P,0,A) =T.

Proof The proof goes by induction on the structure of the ambient formula

A:

- the base case A = T is trivial. The other base case A = 0 is a consequence
of Proposition 3.1.

- for Boolean connectives —, A, this is obvious from the induction hypothesis
and the algorithm.

- for the ambient match A = n[A']: according to the algorithm, we have
Check([[;c1.. , mir 0, n[A']) = T iff there exists @) and M such that k =1, 7, =
M[Q], nam(M,o) = n and Check(Q, 0, A') = T. Then, by Proposition 3.1,
U([Tc1.  mi,0) = n[U(Q,0)]. By induction hypothesis, Check(Q,o,A") =T
is equivalent to U(Q, o) = A'. So, it is equivalent to U([[,, , 7, 0) | n[A'].

- for the composition match A = A" | A”: according to the algorithm, we
have Check(][];c, ,mi,0, A" | A") = T iff there exists I,.J such that I U.J =
l...k, INnJ =@, Check([[;,c; mi,0,A") = T and Check([[;c, 7j,0,A") =
T. Now, using the induction hypothesis, Check([[;c; mi,0,A") = T and
Check([];c; mj,0,A") = T are equivalent respectively to U([[;c; mi,0) F A’
and to U([[;c;mj,0) F A". Finally, by Proposition 3.1, it is equivalent to
U(Lier..xmir0) E A | A"

- for the existential quantification 3z..A: let us assume Check(P,o,3x.A) = T.
Let {mi,...,m;} = fa(P,o) U fn(A) and mg, an ambient name such that
mo ¢ {my,...,m} U bn(P)U dom (o). From the algorithm, this implies that
there exists i such that Check(P,o, A{z+m;}) = T. So, by the induction
hypothesis, U (P, o) = A{z<m;}. Now, according to the value of m;:

o m; € {my,...,my} N (fn(A) U fn(U(P,0))): by Lemma A.17, we have
U(P,o) |= Fz. A.

o m; € {my,...,my} and m; ¢ (fn(A) Ufn(U(P,0))): by Lemma A.17, we
have U(P,o) = 3z.A.

o m; ¢ {my,...,mg}: it is obvious then that m; ¢ fn(A) U fn(U(P,0)).
So, by Lemma A.17, we have U (P, o) |E Jz.A.

Conversely, let us assume that U(P,o) = 3z.A. From Lemma A.17, this
is equivalent to that for {my,...,my} = fn(U(P,0)) U fn(A) and for any
arbitrary mg such that mo ¢ {my,...,my}, there exists i such that U(P, o) |=
A{z+m;}. This latter is equivalent to that Check(P, o, A{z+m;}) = T by
induction hypothesis. Now according to the value of m;:
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o m; € fn(U(P,0)) U fn(A): in this case m; € fn(P,a) U fn(A). So, by the
algorithm, Check(P,o,3z.A) = T.

o m; ¢ fn(U(P,0)) Ufn(A) and m; € fn(P,o) U fn(A): once again, by the
algorithm, Check(P,o,3z.A) = T.

e m; ¢ fn(P,0) U fn(A): so, m; = mg. Since mg can be chosen arbitrar-
ily, one can assume moreover that m; ¢ bn(P) U dom(c). So, by the
algorithm, Check(P,o,3x.A) = T.

- for the Sometime modality 0.A: U(P,0) = O.A is by definition equivalent
to the fact that there exists P',n such that #(P,o) =™ P' and P’ |= A. By
Proposition 3.4, this latter implies that there exists P', o' such that U (P, o) —"
U(P',0") and U(P',0') = P' and thus, U(P',0') = A. Therefore, by in-
duction hypothesis, this implies Check(P’,0', A) = T. Now, let us show
by induction over n that U(P,o) =" U(P',o') and U(P',0') = A implies
Check(P,o,0A) = T.

For n =0: (P;0) = (P';0') and Check(P,0,0A) = Check(P,0, A) = T.

For 0 < n: in this case, by Proposition 3.4, there exists P",¢" such that
(P;o) — (P";0") =™ 1 (P';¢'). So, by induction hypothesis using that
Check(P',0',A) = T, Check(P",0",0A) = T. Since (P;o) — (P";0"), by
the algorithm we have Check(P,o,(0.A) = T.

Conversely, let us assume that Check(P,0,0A) = T and let us show that
there exists P',n such that {{(P,o) =™ P’ and P' |= A. The proof goes by
induction on 1 the number of recursive calls of Check(P’,o’,0.A) = T.

For m = 0: in this case, Check(P,0,.A) = T since Check(lf’,Na, A) =T. Then
by induction hypothesis on the structure of the formula, 4(P, o) = A. So, we
can choose P’ =U(P,o) and n = 0.

For m > 0: in this case, Check(P,o,0.A) = T due to the fact that for some
(P';0') such that (P;o) — (P';0'), Check(P',0',A) = T. By the induc-
tion hypothesis, on the number of recursive calls, we have that there exists
P’ n such that U(P',0') =" P' and P' = A. By Proposition 3.4, we have
U(P,o) = U(P',0"). So, U(P,0) ="t P' and P' = A.

- for the Somewhere modality O.4: the proof is similar to the previous case
using Proposition 3.3 instead of Proposition 3.4.

- for the location adjunct modality A@n: by definition, (P, o) = AQn iff
n[U(P,o)] E A. By assumption n does not belong to dom(c). So, from the
definition for U, n[U(P, )] = U(n[P],o). So, n[U(P,0)] = A is equivalent to
that U(n[P],0) = A. Using the induction hypothesis, this latter is equivalent
to Check(n[P],0,A) = T, and thus by the algorithm to Check(P,o, A@Qn) =
T. ]

Restatement of Proposition 3.10  For all processes P and closed formulas
A, we have P = A if and only if Check(F(P),t,A) =T.

Proof  As the closure (F(P);¢) is normal, this follows from Lemma A.18. W
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B Hardness Proofs

This appendix contains proofs of results stated in Section 4.

B.1 Proof of Lemma 4.1

Lemma 4.1 is the crux of correctness for the encoding from Section 4.1 of QBF
satisfaction in the full calculus and logic.

Restatement of Lemma 4.1  Consider a closed quantified boolean formula
@ and its encoding [¢] in the ambient logic. The formula ¢ is valid if and only
if the model checking problem 0 |= [¢] holds.

Proof Let us denote C; A ... A Cy by ¢. We consider a closed QBF formula
Q101 ... Qpvnyp. We are going to show that for any 0 < m < n, denoting ¢’ the
formula Qi 1Vmy1 - - Qnon Y,

VIt Ut E iff 0 [¢'THviet1, .., vmstn}

Note that this statement obviously implies Lemma 4.1.

The proof of this statement goes by induction on the number [ of variables
that are quantified in ¢'.

For the base case | = 0: vy — t1,...,v, — t, |= ¢ iff for each C;, there
exists £; in C; such that t; = t¢t iff ; = v; and t; = ff iff {; = v;. This
is equivalent to saying that for each Cj, there exists ¢; in C; such that 0 |=
[il{vi¢t1,...,vpét,}, which is equivalent to 0 |= Y{vi¢t1,...,vn¢ 1t}

For the induction step 0 < [ < n: let us denote M the interpretation v; —
t1y. .., Upy > t,—y, o the corresponding substitution {vy¢t1,...,vp_1¢tn_i}
and ¢’ the formula Q, j12vn j12...Qnvn . Assuming that the statement
holds for I — 1, let us consider M = Qpn_j+1Un—i+1¢"

By case distinction over @, —;y1:

Case where Qp—;+1 = 3: in this case, either M,v,_;11 — &t | ¢ or
M, v, 141 = ff = ¢'. By induction hypothesis, this is equivalent to that either
0 E [¢'llo{vn_it1+tt} or 0 = [¢'|o{vn_i+1<ff}. This latter is equivalent to
0 = Juy—i+1 € {tt, ff}.[¢']o which is equivalent by definition of the encoding
to 0 |: [[Qn—H—l'Un—H-l(PI]]U-

Case where (J,—;+1 = V: this case is similar to the previous one. |

B.2 Proof of Lemma 4.3

Lemma 4.3 is the crux of correctness for the encoding from Section 4.2 of QBF
satisfaction in the calculus of mobile ambients without I/0O.

To prove Lemma 4.3, let us first fix some notations and prove some auxiliary
lemmas.
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For a given closed QBF formula ¢ = Qv ...Q,v,% in prenex and conjunc-
tive normal form, we denote ¥ by C; A ... A C} and define for all 0 < i < n

Vi = vilpos[l] | vilneg[]]

Vi = vilpos[] | vj[l] | vilneg[]]
A
V7 2 wilpos]]] | vilneg[] | o]
For all 0 <m < n, M being equal to vy = t1,...,Um = tm,

Pm éQn7,—i—1UnH-1---annw
Py =2V | Vi Vipsr | | Vi | P9

assuming that [p,,] = (P#™,A%™).
It should be noticed that due to the definition of [ ], for all 0 < m < n,
Pem =) [T] and P9 |= end[T].

Lemma B.1 For all 0 < m <n,

3
PM i PM,vm+1D—)tt

3
PM — PM,Um+1>—>ﬂ

and there does not exist P' such that P' Z Pagu,, 1stt: P' Z PM,vpi1ispg and
Py —3 P,

Proof For m < n —1, we consider M to be vy — t1,...,vp — t, and we
have ¢, = Qm+41Um+1 - - - Qnopty. Whatever Q41 is, by definition of enc,

m [ ' m
PP = w11 Ung1 - Omg2[out vy, -0ut Uy 1 R

for P¥m+1 =v; . [R¥m+']. Now from the process Py equal to

VI VE | Vinga | o | Vi | vmg1[pos]]] | vma [neg]]] |
Uy 1[I0 Vg1 Uy g o lOUt U] g 0UL Uy gy RE™H1]]

only two reduction steps are possible leading either to

pros — Vi1 LV [ Vinsa || Vi | omea[pos(] |
M U1 [negl] | V1 [Vngalout vp, . 0ut vy B2 41]]]
or to

VI LA Vi [ Vinga |- | V| O [neg(l] |

P =
M Um+1[POS[] | gy [V g [0ut U7 0Ut Uy RPmH1]]]
Now, we have from each of P{;* and Py{? two deterministic reduction steps:

VI L Vi [ Vinga |- | Vi | omer [neg[]] |

PP —
M g [posl] | vnpa ) | ingolout v R
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VI L Vi [ Vingz |- | Vo | v [neg )] |
Vmet1[pos[] | vp 1 [ | 052 [RE7 ]

= PM7vm+1Htt

and
pres VL VE Vi | Vi | v [pos] |
M U1 [negl] | vg, 41 [l | Op o [out vy R ]]
L VPV [ Vi || Va | vmea[pos(]] |
Umta[negl] | vp, g1 lll | 07 4o [RE42]
= PM,vm+1>—>jf
The proof goes in a similar way for the case where m =n — 1. ]

Lemma B.2 For all m in {0,...,n — 1}, M being the interpretation vy —
t1,...,Um > ty, we have

o for 0 < m < n—1, Pruoniioset 0nd Pagy, g are the two unique
processes reachable from Py that satisfy the ambient formula vy, »[T] | T.

o form=mn—1, Pru,ote 0nd Pr o, g are the two unique processes
reachable from Py that satisfy the ambient formula end[T] | T.

Proof For 0 <m < n—1, we know from the proof of Lemma B.1 that both
Prvmirstt and Pag oy, oo g satisfy the ambient formula v;, ,,[T] | T and do
not satisfy formulas v'[T] | T where v’ is a primed ambient name different from
Vp,i2- Now, still from the proof of Lemma B.1, we know that any reachable
process from Py is either Py for some extension M’ of M or an “intermediate”
process reachable from Py in one or two steps. It is easy to see that none of
these “intermediate” processes satisfies an ambient formula v'[T] | T whatever
the primed name v’ is. Finally, as M’ is different from M, Py, will satisfy a
formula v'[T] | T for some v' # v}, ,, but not the formula v;,  ,[T] | T.

The proof goes in a similar way for the case where m =n — 1. |

Restatement of Lemma 4.3  Assume @ is a closed quantified Boolean for-
mula, and that (P, A) = enc(p). Then P |= A if and only if ¢ is valid.

Proof We are going to show for any 0 < m < n that for the interpretation
M equal to vy = t1,..., 0, >ty

ME m iff Py A%

Note that for m = 0, M is the empty interpretation, ¢, = ¢, Ppy = P and
A¥m = A, so this statement obviously implies Lemma 4.3. The proof of this
statement goes by induction on the number [ = n — m of quantifiers in ¢,,.

For the base case l = 0: ¢, = C1 A ... A C} is an unquantified formula and
M =v = ty,...v, — t,. The interpretation M is a model for the formula
pm if and only if M renders true at least one literal ¢; in each of the clauses C}.
Now, depending on whether ¢; occurs positively or negatively in C;, we have
two cases:
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e /; = v;: by the encoding and the definition of P4, this is equivalent to
that [¢;] = vi[pos[0] | v;[0]] | T and Pry = wv;[pos[0] | v}[0]] | P’ for
some ambient process P’ which does not contain the ambient name v}.
Therefore, it is equivalent to that Py = [4i].

e (; = v;: this case is dual to the previous one.

Now, in both cases we have Py¢ |= [¢;], which means that Pa¢ is a model
for at least one literal in each of the [C;]’s, and thus it is equivalent to that
P M |: A¥m,

For the induction step 1 < [ < n (the particular base case where [ = 1 differs
only in the use of the ambient name end instead of vy, ,, and can be proved in
the same way) we assume that the statement holds for [ — 1 (that is, it holds for
m + 1). The formula ¢,,, has the form Q,+1Vm+19m+1, S0 we have to consider
two cases depending on whether (,;,+1 is 3 or V.

In the case of 3, we have that M |= ¢, is equivalent to the disjunction
M, i1 =t E omy1 or M vpmi1 = ff E @my1. By induction hypothesis,
this is equivalent to that either Pug,y,, .t [ AP+ OF Prg o, s [ AP
By Lemma B.2, we know that Pa,v,,.,—tt and Page,. ., are the two unique
processes reachable from Py satisfying the ambient formula v;,,,[T] | T.
Therefore, the last statement is equivalent to that

P |= 040 [T] | T) A AP+

The case where (11 = V is dual to the previous one and leads to the
equivalence with
Py = O(vp42[T] | T) = APm+L,

In both cases, by definition of enc, we have the equivalence with Py = A¢™.
[ |

B.3 Proof of Lemma 4.5

Lemma 4.5 is the crux of correctness for the encoding from Section 4.3 of QBF
satisfaction in the calculus of immobile ambients with I/O. To prove it, let us
first fix some notations and then prove some auxiliary lemmas.

We use notations similar to the previous section. For a given closed QBF
formula ¢ = Qqv; ... Q,v,Y in prenex and conjunctive normal form, we denote
Y by Cy A... ANCg. Let M be an interpretation vy +— t1,...,0, — ty. We
denote o the substitution {vi¢t1,01¢¢1,. .., Unétm, Um+tn} where T; is
the negated value of ¢;. If M is the empty interpretation, we let o to be the
identity.

For 0 < m <, let ¢, be the formula @, +1Vm+1 ... Qnvpy and enc(p,,) =
(P#m  A%™). For M = wv; > t1,...,0m = tm, let us denote Py the process
Q¥mom such that P9 = vy, [Q¥]. Note that in this notation P¥mop =
Upp1[Pm]. By MT and M~ we denote respectively M, vpq1 4 tt, Ump1<—ff
and M, v 11 ff, Umr1<tt.
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Lemma B.3 For all 0 < m < n,

Prg = () | a1 | (@) - P2 ) 0 M w0 4t

and
P — () [ o1 [ | @) -P2 )0 Mg 187

and there is no other P' such that P — P'.
Proof  Straightforward from the encoding. |

Lemma B.4 For all 0 < m < n, Py =2 (V) 1[] | PP )or+ and Py —2
(vl ([ | PPm+1)opq- and there is no other P' such that P —? P’

Proof  Straightforward from the encoding, Lemma B.3 and the definition of
P [ ]

Restatement of Lemma 4.5  Assume @ is a closed quantified Boolean for-
mula, and that (P, A) = enc(p). Then P = A if and only if ¢ is valid.

Proof LetVp=0andforalll <m < nletV, =uvl[]. We are going to show
for any 0 < m < n that for the interpretation M equal to vy — t1,..., 0 F tpy,

M= pm iff Vi | PPmop E AP

The particular case of this statement with m = 0 is equivalent to Lemma 4.5.
Its proof goes by induction over the number [ = n — m of quantified variables
in .

Case where [ = 0: the formula ¢, is equal to C; A... A Ck, M has the form
vy =ty tpand MECLA L. ACE. As Ci A...ACy is in conjunctive
normal form, for at least one literal ¢; in each C;, M(¥;) = tt. This is equivalent
to that for each C;, there exists at least one literal ¢; in C; such that

e v;<tt,v;ff belongs to o if ¢; = v; and
e v;<ff, U< tt belongs to o if {; = T5.

By the definition of enc(Ci A ... A C}), this is equivalent to that the interior of
each C ambient (each marked by a D ambient) in the process P o contains
a tt sub-ambient. This again is equivalent to P¥m o = O((D[0] | T) = (¢t[0] |
T)) that is, to P¥mopnm = A¥™. Since V,,, does not contain any subambient
DJ0], the statement follows.

Case where [ = 1 (that is, m = n — 1): the formula ¢,, is equal to Q,v,,
M is a the form vy = t1,...,v,_1 — t,—1. We follow according to the value of

Qn:

e case where @, = 3: M | ¢,, is equivalent to either M, v, +tt = ¢ or
M, vpff |E ¢. Using the case where [ = 0, this is equivalent to that
either P~o i+ = A% or Pro - = A%".
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By Lemma B.4, the processes v//[| | P*roxr+ and v)[] | P¥rop- are
the two unique ones reachable from Py, in two steps. Moreover, as P¥»
can not be reduced, there is no process reachable from Py, in strictly
more than two steps. It should be noticed that P¥»o+ and P¥"o -
both satisfy the formula Inst(end) A —Inst™ (end) whereas by Lemma B.3
the two unique successors of Py as well as Py itself do not satisfy the
formula Inst(end). Therefore, P¥»o 4+ |E A?™ or P¥ro - |= A%~ holds
iff Py = O((Inst(end) A—Inst™ (end))AA?"). And thus, this is equivalent
to v [ | va[Pm] E T | vn[O((Inst(end) A =Inst™ (end)) A A)], that is
Upa[] [ PEn=t = APn=r

e case where (), = V: this case is dual to the previous one.

Case where 1 < [ < n: the formula ¢, is equal to Q,,4+1Vm+1Pm+1, M has
the form vy — t1,...,v;, — t, and we assume that the statement holds for
[ — 1 (that is, it holds for m + 1). We follow according to the value of @, 41:

e case where Q41 = 32 M = @, is equivalent to either M, v, 41 tt |=
Ym+1 O M, vpi14ff E ©m+1- By induction hypothesis, this is equiva-
lent to that either vy, [] | Pt op+ = A¥Pmt1orwy, ] | P9mtiopm- |
APm+1,

Let us have a look now at processes reachable from Pxs: of course,
Py, itself is reachable, but by construction it does not satisfy the for-
mula Inst(v,,,,). By Lemma B.3, two processes are reachable in one
step from P, but they do not satisfy the formula Inst(v;,,,). By
Lemma B.4, two processes are reachable from Py in two steps, namely
(Uygil] | P9t )opm+ and (vy, 4[] | PPm+)or- and they both satisfy
the formulas Inst(v),,,) and =Inst*(v],,,) (by construction). Now, by
using once again Lemma B.3 for the internal of v;, ., in P¥m+10 1 and
P¥m+1g,,, all the processes reachable from one of those latter satisfy
Inst™ (v, ).

Therefore, the last statement is equivalent to that Pag = O(Inst(v;, o) A
—Instt (0!, ,5)) A APm+1. Thus, it is equivalent to Vi, [] | vl [Pr] E T |
0l 1 [O(Inst(v], o) A=Inst™t (0], ) AAPm+1], that is Vi, [] | P9 | A%,

e the case where ;41 = V is dual to the previous one. ]
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