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Abstract. A classical method for model-checking timed properties—
such as those expressed using timed extensions of temporal logic—is
to rely on the use of observers. In this context, a major problem is to
prove the correctness of observers. Essentially, this boils down to proving
that: (1) every trace that contradicts a property can be detected by the
observer; but also that (2) the observer is innocuous, meaning that it
cannot interfere with the system under observation. In this paper, we
describe a method for automatically testing the correctness of realtime
observers. This method is obtained by automating an approach often
referred to as wvisual verification, in which the correctness of a system
is performed by inspecting a graphical representation of its state space.
Our approach has been implemented on the tool Tina, a model-checking
toolbox for Time Petri Net.

1 Introduction

A classical method for model-checking timed behavioral properties—such as
those expressed using timed extensions of temporal logic—is to rely on the use of
observers. In this approach, we check that a given property, P, is valid for a sys-
tem S by checking the behavior of the system composed with an observer for the
property. That is, for every property P of interest, we need a pair (Obsp, ¢p) of a
system (the observer) and a formula. Then property P is valid if and only if the
composition of S with Obsp, denoted (S || Obsp), satisfies ¢ p. This approach is
useful when the properties are complex, for instance when they include realtime
constraints or involve arithmetic expressions on variables. Another advantage
is that we can often reduce the initial verification problem to a much simpler
model-checking problem, for example when ¢p is a simple reachability property.

In this context, a major problem is to prove the correctness of observers.
Essentially, this boils down to proving that every trace that contradicts a prop-
erty can be detected. But this also involves proving that an observer will never
block the execution of a valid trace; we say that it is innocuous or non-intrusive.
In other words, we need to assure that the “measurements” performed by the
observer can be made without affecting the system.

* This work was partly supported by the ITEA2 Project OpenETCS



In the present work, we propose to use a model-checking tool chain in order
to check the correctness of observers. We consider observers related to linear time
properties obtained by extending the pattern specification language of Dwyer et
al. [7] with hard, realtime constraints. In this paper, we take the example of the
pattern “Present a after b within [d;, d3[”, meaning that event a must occur after
dy units of time (u.t.) of the first occurrence of b, if any, but not later than ds.
Our approach can be used to prove both the soundness and correctness of an
observer when we fix the values of the timing constraints (the values of d; and
ds in this particular case).

Our method is not enough, by itself, to prove the correctness of a verifica-
tion tool. Indeed, to be totally trustworthy, this will require the use of more
heavy-duty software verification methods, such as interactive theorem proving.
Nonetheless our method is complementary to these approaches. In particular it
can be used to debug new or optimized definitions of an observer for a given
property before engaging in a more complex formal proof of its correctness.

Our method is obtained by automating an approach often referred to as visual
verification, in which the correctness of a system is performed by inspecting a
graphical representation of its state space. Instead of visual inspection, we check
a set of branching time (modal u-calculus) properties on the discrete time state
space of a system. These formulas are derived automatically from a definition
of the pattern expressed as a first-order formula over timed traces. The gist of
this method is that, in a discrete time setting, first-order formulas over timed
traces can be expressed, interchangeably, as regular expressions, LTL formulas
or modal p-calculus formulas.

This approach has been implemented on the tool Tina [4], a model-checking
toolbox for Time Petri Net [11] (TPN). This implementation takes advantage of
several components of Tina: state space exploration algorithms with a discrete
time semantics (using the option -F1 of Tina); model-checkers for LTL and for
modal p-calculus, called selt and muse respectively; a new notion of verification
probes recently added to Fiacre [3,5], one of the input specification language of
Tina. While model checkers are used to replace visual verification, probes are
used to ensure innocuousness of the observers.

Outline and contributions. The rest of the paper is organized as follows. In
Sect. 2, we give a brief definition of Fiacre and the use of probes and observers
in this language. In Sect. 3, we introduce the technical notations necessary to
define the semantics of patterns and timed traces and focus on an example of
timed patterns. Before concluding, we describe the graphical verification method
and show how to use a model-checker to automate the verification process'.
The theory and technologies underlying our verification method are not new:
model-checking algorithms, semantics of realtime patterns, connection between
path properties and modal logics, ... Nonetheless, we propose a novel way to
combine these techniques in order to check the implementation of observers and

! Code is available at http://wuw.laas.fr/fiacre/examples/visualverif.html



in order to replace traditional “visual” verification methods that are prone to
human errors.

Our paper also makes some contributions at the technical level. In partic-
ular, this is the first paper that documents the notion of probe, that was only
recently added to Fiacre. We believe that our (language-level) notion of probes is
interesting in its own right and could be adopted in other specification languages.

2 The Fiacre Language

We consider systems modeled using the specification language Fiacre [3,5]. (Both
the system and the observers are expressed in the same language.) Fiacre is a
high-level, formal specification language designed to represent both the behav-
ioral and timing aspects of reactive systems.

Fiacre programs are stratified in two main notions: processes, which are well-
suited for modeling structured activities, and components, which describes a
system as a composition of processes. Components can be hierarchically com-
posed. We give in Fig. 1 a simple example of Fiacre specification for a computer
mouse button capable of emitting a double-click event. The behavior, in this
case, is to emit the event double if there are more than two click events in strictly
less than one unit of time (u.t.).

process Push [click : none, component Mouse [click : none,
single : none, single : none,
double : none, double : none] is

delay : none] is port delay : none in [1,1]

states s0, s1, s2 priority delay > click

var dbl : bool .= false ;

par
from sO click; to sl Push [click, single, double, delay]

from sl end

select

click; dbl := true; loop
[] delay; to s2
end

from s2
if dbl then double
else single end;
dbl := false; to s0

Fig. 1. A double-click example in Fiacre

Processes. A process is defined by a set of parameters and control states,
each associated with a set of complex transitions (introduced by the keyword
from). The initial state of a process is the state corresponding to the first from
declaration.



Complex transitions are expressions that declare how variables are updated
and which transitions may fire. They are built from deterministic constructs
available in classical programming languages (assignments, conditionals, sequen-
tial composition, . .. ); non-deterministic constructs (such as external choice, with
the select operator); communication on ports; and jump to a state (with the to
or loop operators).

For example, in Fig. 1, we declare a process named Push with four communi-
cation ports (click to delay) and one local boolean variable, dbl. Ports may send
and receive typed data. The port type none means that no data is exchanged;
these ports simply act as synchronization events. Regarding complex transitions,
the expression related to state sl of Push, for instance, declares two possible tran-
sitions from s1: (1) on a click event, set dbl to true and stay in state sl1; and (2)
on a delay event, change to state s2.

Components. A component is built from the parallel composition of processes
and/or other components, expressed with the operator par Py || ...|| P, end. In
a composition, processes can interact both through synchronization (message-
passing) and access to shared variables (shared memory).

Components are the unit for process instantiation and for declaring ports
and shared variables. The syntax of components allows to associate timing con-
straints with communications and to define priorities between communication
events. The ability to express directly timing constraints in programs is a distin-
guishing feature of Fiacre. For example, in the declaration of component Mouse
(see Fig. 1), the port statement declares a local event delay and asserts that a
transition from sl to s2 should take exactly one unit of time. (Time passes at the
same rate for all the processes.) Additionally, the priority statement asserts that
a transition on event click cannot occur if a transition on delay is also possible.

Probes and Observers. The Fiacre language has been extended, recently,
to allow the definition of observers, which are a distinguished category of sub-
programs that interact with other Fiacre components only through the use of
probes. A probe is used to observe modifications in the system without interfering
with it; probes react to the occurrence of an event without engaging in it.

A typical probe declaration is of the form path/obs, where obs denotes the
observable and path defines its context, that is a path to the component (or pro-
cess) instance where obs is defined (see for example http://www.laas.fr/fiacre/
properties.html). In our setting, observable events are instantaneous actions in-
volved in the evolution of the system: it can be a synchronization over a port p
(denoted event p); a process that enters the state s (denoted state s); or an expres-
sion including shared variables, say exp, that changes value (denoted value exp).
For instance, in the case of the Mouse component of Fig. 1, a probe triggered
when the (only instance of) process Push is in state s2 would have the form
(Mouse/1/state s2).

The use of probes greatly simplifies the proof of innocuousness of an observer.
In particular, with probes, an observer can only influence a system by “blocking



the evolution of time”, that is by performing an infinite sequence of actions in
finite time. Therefore, proving that an observer is innocuous amounts to proving
that it has no Zeno behaviors, which is always possible when a system is bounded.

process NeverTwice [a:sync] is component Obs is
states idle, once, error port p:sync is Mouse/event click
from idle a ; to once par NeverTwice [p] end

from once a ; to error

Fig. 2. A simple observer example

An observer is a Fiacre component where ports are associated to probes
(using the keyword is); ports associated with a probe have the reserved type sync.
We give a naive example of observer in Fig. 2, where the component Obs monitors
synchronizations on the event click. In this example, the process neverTwice will
reach the state error if its probe parameter, a, is triggered more than once.

In the remainder of the text, we use the notation (Mouse || Obs) to denote
the program obtained by concatenating the declaration of these two components
(i.e. the code from Fig. 1 with the code from Fig. 2). As a consequence, we are
able to detect if the system can emit two single click events just by checking if
the process neverTwice can reach the state error in (Mouse || Obs).

3 Timed Traces and First-Order Formulas over Traces

The semantics of Fiacre (and the properties we want to check) are based on
a notion of timed traces, which are sequences mixing events and time delays.
In this context, a “realtime property” can be defined as a set of timed traces,
which define timing and behavioral constraints on the acceptable execution of
a system. In this work, we consider properties derived from realtime patterns,
that can be expressed using first-order formulas over timed traces.

Timed Traces. In our context, observable events are: communication on a port;
the change of state of a process; and the change of value of a variable. We use
a dense time model, meaning that we consider rational time delays and work
both with strict and non-strict time bounds. Hence a timed trace is a (possibly
infinite) sequence of events a, b, ... and durations § € Q*:

ocu=¢€]oal od

Given a finite trace o and a—possibly infinite—trace ¢’, we denote oo’ the
concatenation of o and o’. We will also use the expression A(o) to denote the
duration (time length) of a trace o, that is the sum of the individual delays in
0. The semantics of a system expressed with Fiacre, say S, can be defined as a



set [[S] of timed traces. We use the notation o = S when the trace o is in the
set [S]. The semantics of a property (timed pattern) will be expressed as the set
of all timed traces where the pattern holds. We say that a system S satisfies a
timed requirement P if [S] C [P].

Realtime Properties and their Semantics. We propose to define properties
using First-Order Formulas over Timed Traces (FOTT). A FOTT formula ¢(x),
with free variables @ = (x1, ..., x,), is a first-order logic formula over traces with
equality between traces (¢ = ¢’), comparison between a duration and an interval
(A(o) € I) and concatenation (o = oy 02).

P(x) v= AP | =P | Jx. D | (x=0) | (x=yz) | (Ax)e])

For instance, when referring to a timed trace ¢ and an event a, the following
formula is a tautology if the event a does not occur in o:

(a¢o) = =31, 20,23 . (0= 22) A (22 = axs3))

Likewise, we can define the “scope” o after b—that determines the part of a
trace o located after the first occurrence of b—as the trace o’ denoted by the
first-order formula: Jz,y . (c =zy) A(y=bo’) A (b ¢ x).

The semantics of a formula @(x1,...,x,) is a set of valuation functions ¢
associating a trace o; = ¢(x;) to each of the variables x; with ¢ € 1..n, also
denoted [z; — 0;]ic1..n. The semantics of @ can be defined inductively as follows:

[2(x) A& (2)] = [@(z)] N [¥(2)] [z =0] ={c|c(z)=0}
[By - 2(@)] ={s|s+y—=ocl@@)]} [r=yz]={c]cx)=c(y)<(2)}
[Alz) e 1] ={c| Als(x)) € I}

With these definitions, a regular set of timed traces is the set of traces “so-
lutions” of an existential FOTT formula with a single free variable, ®(x); that
is the set of traces o such that the valuation [z +— o] is in [®(x)].

In this paper, we will mainly restrict ourselves to the special case of timed
traces where events occur at integer dates; i.e. we restrict delays § to be in
N rather than in Q7. These traces can be generated using a “discrete time”
abstraction of the models, where special transitions (labeled with t) are used to
model the flow of time. Label t stands for the “tick” of the logical clock.

The discrete time semantics will be enough to prove all the properties needed
in our study. Indeed, when a model contains only “closed timing constraints”
(of the kind [dy,ds] or [d1,00[), the discrete time semantics is enough to check
reachability properties.

With discrete time, a delay § can be replaced by sequences of § t’s, and there-
fore a finite timed trace can be simply interpreted as a word. In the remainder, we
also consider a special symbol, z, that stands for internal actions of the system.
Hence it is possible to interpret the semantics of (discrete) FOTT specification
as a language over the alphabet A = {z,t,a,b,... }. Actually, in the discrete case,
we can show that a regular set of timed traces is also a regular language. For



example, the semantics of the formula Jy, z,w . ((x =y2) A (z = aw)) is the
regular language corresponding to the expression A*-a- A*.

This connection between different type of logics is at the core of our ap-
proach. Our method could be applied to more high-level property languages,
such as timed extension of temporal logic [10], but would require a more com-
plex encoding into LTL when modalities can be nested.

Our Running Example: the Present Pattern. Users of Fiacre have access
to a catalog of specification patterns based on a hierarchical classification bor-
rowed from Dwyer [7]. Patterns are built from five basic categories—existence,
absence, universality, response and precedence—and can be composed using logi-
cal connectives. In each category, generic patterns may be specialized using scope
modifiers—such as before, after, between—that limit the range of the execution
trace over which the pattern must hold. Finally, timed patterns are obtained
using one of two possible kinds of timing modifiers that limit the possible dates
of events referred in the pattern: within /—used to constrain the delay between
two given events to be in the time interval /—and lasting d—used to constrain
the length of time during which a given condition holds (without interruption)
to be greater than d.

Due to limited space, we study only one example of timed pattern, namely
Present a after b within [d1,d2[. A complete catalog is available in [1]. This is
a simple example of existence patterns. Existence patterns are used to express
that, in every trace of the system, some events must occur. This pattern holds
for traces such that the event a occurs at a date tg after the first occurrence of
b with ¢ € [d1,ds[. The property is also satisfied if b never holds. Hence traces
o that satisfy this pattern are models of the existential FOTT formula:

Pres(z) = (bé¢z) V Jy,z,w. (x=ybzaw) A (b¢y)A(A(2) € [d1,da]))

process Present [a:sync, b:sync] is
states idle, start, watch, error, stop
from idle b; to start
from start wait [d1, d1]; to watch

from watch select
a; to stop
unless
wait [d2 —dy, ---[; to error
end

Listing 1.1. Observer for the pattern: Present a after b within [d1, da|

With the discrete semantics, formula Pres(z) matches exactly the words of
the form w; bwg aws where w; contains no occurrences of b and wy contains
exactly k occurrences of t with k € [dy, dz[. (This is a regular language.) We show




in the next section how to (semi-)automatically generate the regular expression
corresponding to such FOTT formulas.

We give an example of observer associated to this pattern in Listing 1.1. This
observer is composed of one process that monitors the system through the ports
a and b (that should be instantiated with the relevant probes). The process
is initially in state idle and moves to start when b is triggered. When in state
start for d; unit of time, the observer moves to state watch (this is the meaning
of the wait operator). The select operator is a non-deterministic choice, with
unless coding priorities. Hence, in state watch, the observer moves to stop if an
a occurs, unless a duration equals to (dy — dy) elapses, in which case it moves
to the state error. As a consequence, the pattern is false whenever the probe

(Present/state error) is reachable. Hence the formula associated to the pattern is

op = [] - (Present/state error).

To prove that an observer Obs for the pattern P is correct, we need to prove
that, for every system S, the program (S || Obs) satisfies the formula ¢p if and
only if [[S] C [P]. In [1], we have defined a mathematical framework to formally
prove these kind of properties, but this framework relies on manual proofs and is
not supported by any tooling. Efforts are also under way to completely mechanize
these proofs using the Coq proof assistant [8]. Nonetheless, formal proofs of
correctness can be quite tedious. Therefore, to detect possible problems with an
observer early on (that is, before spending a lot of efforts doing a formal proof
of correctness) we also rely on a “visual” verification method, that is akin to
debugging our observers.

In the next section, we show how to apply the visual verification approach on
our running example. One of the objectives of our work is to replace this visual
verification step with a more formal approach. This is done in Sect. 5.

4 Visual Verification of Observers

In the remainder of this section, we describe the visual verification method using
the particular case of the pattern Present a after b within [4, 5[; we assume that
Obs is the observer Present defined in Listing 1.1, that d; = 4 and that ds = 5.

To prove that the observer Present is correct, we need to prove, for every
system S, the equivalence between two facts: (1) the state (Present/state error) is
not reachable in the program (S || Present[a, b]); and (2) the traces of S are valid
for the property Pres, i.e. [S] C [Pres].

The first step is to get rid of the universal quantification on all possible
systems, S, that is introduced by our definition of correctness. The idea is to
check the observer on a particular Fiacre program—called Universal—that can
generate all possible combinations of delays and events a, b and z. We give
an example of universal process in Listing 1.2. The process Universal has only
one state and three possible transitions. Each transition changes the value of a
shared integer variable, x. The first and second transitions of Universal can be
fired without time constraints. In our context, the probe a will be triggered to



the event “setting x to 1”7 and b to “setting x to 2”. The third transition resets
the value of x to 0 immediately and corresponds to the internal event z.

process Universal (&« : nat) is

states s0
from sO select
x = 1; to sO /* setting x to 1 x/
[] x :=2; tos0 /* setting x to 2 %/
unless

on (x<> 0); wait [0,0]; x := 0; to sO
en
component Main is
var X : nat =0
port a : sync is value (x=1), b : sync is value (x=2)

par Universal (&) || Present [a, b] end

Listing 1.2. Universal program in Fiacre

We can now use our verification toolchain to generate the state graph for
the program (Universal || Present) using a discrete time exploration construction.
This can be obtained using the flag -F1 in Tina (it is possible to generate a state
graph with many different abstractions with Tina, including dense time models).

The resulting graph is displayed in Fig. 3. This state graph has been generated
and printed using the tool nd, which is also part of the Tina toolset; nd is an
editor and animator for extended Time Petri Nets that can export nets and state
graphs in several, machine readable formats. This graph has only 26 states and
can therefore be easily managed manually. The main factor commanding the
number of states is the value of the timing constraints used in the pattern; in
our observations, all the generated state graphs were of manageable size.

The transitions in the state graph are also quite straightforward: we find the
visible and internal transitions as before, labeled with a, b, z and t. For ease of
reading, we have also changed the labels of internal transitions in the observer
Present. For instance, the transition from state 2 to 3 corresponds to the observer
entering the state start; likewise for the transitions labeled with watch, stop and
error. The states where the observer is in state error (the states that contradict

the property ¢p = [] - (Present/state error)) are Errors = {20,22,23}.

We can already debug the pattern Present a after b within [4,5[ by visually
inspecting the state graph.

For soundness, we need to check that, when the pattern is not satisfied—
for traces o that do not satisfy formula Pres—then the observer will detect a
problem (observer Present eventually reaches a state in the set Errors).

For innocuousness we need to check that, from any state, it is always pos-
sible to reach a state where event a (respectively b and t) can fire. Indeed, this
means that the observer cannot selectively remove the observation of a particular
sequence of external transitions or the passing of time.




Fig. 3. State graph for (Universal || Present)

This graphical verification method has some drawbacks. As such, it relies on
a discrete time model and only works for fixed values of the timing parameters
(we have to fix the value of dy and dy). Nonetheless, it is usually enough to catch
many errors in the observer before we try to prove the observer correct more
formally.

5 Automating the Visual Verification Method

A problem with the previous approach is that it essentially relies on an informal
inspection (and on human interaction). We show how to solve this problem by
replacing the visual inspection of the state graph by the verification of modal pu-
calculus formulas. (the Tina toolset includes a model-checker for the p-calculus
called muse.) The general idea rests on the fact that we can interpret the state
graph as a finite state automaton and (some) sets of traces as regular languages.
This analogy is generally quite useful when dealing with model-checking prob-
lems. We start by defining some useful notations.

Label Expressions, are boolean expressions denoting a set of (transition) la-
bels. For instance, Aext = (a V b) denotes the external transitions, while the
expression —-(aVbVt) is only matched by the silent transition label. We will
also use the expression T to denote the disjunction of all possible labels, e.g.



T = (-b) V b. The model checker muse allows the definition of label expressions
using the same syntax.

Regular (Path) Expressions. In the following, we consider regular expres-
sions built from label expressions. For example, the regular expression t - (- t)*
denotes traces of duration 1 with no events occurring at time 0.

Tick < ¢ (-t)* (1)

We remark that it is possible to define the set of (discrete) traces where the
FOTT formula Pres holds using the union of two regular languages: (1) the
traces where b never occurs, (- b)*; and (2) the traces where there is an a four
units of time after the first b. The latter corresponds to the regular expression
(2 =ybzaw) A(b¢y)A(A() € [4,5])

Pres = Ry V Ry (2)
Ry = (-b) (3)
Ry = (-b)*-b- (- t)* - Tick - Tick - Tick - Tick-a-T* (4)

By construction, the regular language associated to Ry V Rs is exactly the set of
finite traces matching (the discrete semantics) of Pres. In the most general case,
a regular expression can always be automatically generated from an existential
FOTT formula when the time constraints of delay expressions are fixed (the
intervals I in the occurrences of (A(z) € I)).

The next step is to check that the observer agrees with every trace conforming
to Rs. For this we simply need to check that, starting from the initial state of
(Universal || Present), it is not possible to reach a state in the set Errors by
following a sequence of transitions labeled by a word in Rs.

This is a simple instance of a language inclusion problem between finite state
automata. More precisely, if Present is the set of states visited when accepting
the traces in Ry V R, we need to check that Errors is included in the complement
of the set Present (denoted Present). In our example of Fig. 3, we have that
Present = {17,20,22,23}, and therefore Errors C Present.

This automata-based approach has still some drawbacks. This is what will
motivate our use of a branching time logic in the next section. In particular,
this method is not enough to check the soundness or the innocuousness of the
observer. For innocuousness, we need to check that every event may always even-
tually happen. Concerning soundness, we need to prove that Errors O Present;
which is false in our case. The problem lies in the treatment of time divergence
(and of fairness), as can be seen from one of the counter-example produced
when we use our LTL model-checker to check the soundness property, namely:
b.start.z.t.t.t.t.watch.t.t.--- (ending with a cycle of t transitions). This
is an example where the error transition is continuously enabled but never fired.



Branching Time Specification. We show how to interpret regular expressions
over traces using a modal logic. In this case, the target logic is a modal u-
calculus with operators for forward and backward traversal of a state graph .
(Many temporal logics can be encoded in the p-calculus, including CTL+). In
this context, the semantics of a formula ¢ over a Kripke structure (a state graph)
is the set of states where ¢ holds.

o= gAY | Y | <A>Y [ Y<A> [ X | (min X [1))

The basic modalities in the logic are <A>y and ¥<A>, where A is a label
expression. A state s is in <A>1 if and only if there is a (successor) state s’ in
¥ and a transition from s to s’ with a label in A. Symmetrically, s is in ¥<A>
if and only if there is a (predecessor) state s’ in ¢ and a transition from s’ to s
with a label in A. In the following, we will also use two constants, T, the true
formula (matching all the states), and ‘0, that denotes the initial state of the
model; and the least fixpoint operator min X | ¥ (X).

For example, the formula <a>T matches all the states that are the source of an
a-transition, likewise Reach_a L min X | (<a>T V <Z>X) matches all the states
that can lead to an a-transition using only internal transitions. As a consequence,
we can test innocuousness by checking that the formula (Reach_a AReach_b
AReach_t) is true for all states.

The soundness proof relies on an encoding from regular path expressions
into modal formulas. We define two encodings: ((R)) that matches the states
encountered while firing a trace matching a regular expression R; and ((R)). that
matches the state reached (at the end) of a finite trace in R. These encodings rely
on two derived operators. (Again, we assume here that A is a label expression.)

VoA L P> Y*A = min X | ¢ V X<A>
(R-A)e = (R)co (R-4) = (R)V(R-A).
(R-A*). = <<R>>e (R-A*) = (R)V(R-A).
(R Tick)e = ((R)cot) *(-t) | (R Tick) = (R)V (R Tick)).
(R1V Ra))e j:j« De V (Ra2))e (R1V Ry)) = (R1) V (R2)

(€)e ‘0 ((€))

Lemma 1. Given a Kripke structure K, the states matching the formula (R)).
(respectively (R)) ) in K are the states reachable from the initial state after firing
(resp. all the states reachable while firing) a sequence of transitions matching R.

o

Proof (Sketch). By induction on the definition of R. For example, if we assume
that v correspond to the regular expression R, then 1 * A matches all the states
reachable from states where 1 is true using (finite) sequences of transition with
label in A; i.e. formula ¢ * A corresponds to R - A*. Likewise, we use the inter-
pretation of the empty expression, €, to prefix every formula with the constant
0 (that will only match the initial state). This is necessary since p-calculus for-
mulas are evaluated on all states whereas regular path expressions are evaluated
from the initial state. ad



For example, we give the formula for (Rz)). below, where 1 o Tick stands
for the expression () ot) * (-t):

(R2)e = <0 % (-b) o b * (-t) o Tick o Tick o Tick o Tick o a * T

If Y g is a modal p-calculus formula that matches the error condition of the
observer, then we can check the correctness and soundness of the observer Present
by proving that the equivalence (EQ), below, is a tautology (that it is true on
every states of (Universal || Present)).

(Pres)) < —vYprr (EQ)

Again, we can interpret the “error condition” using the p-calculus. The definition
of errors is a little bit more involved than in the previous case. We say that a state
is in error if the transition error is enabled (the formula <error>T is true) or if
the state can only be reached by firing the error transition (which corresponds to
the formula (T<error>*T) A (‘0* (- error)). Hence ¥ g, is the disjunction
of these two properties:

Ve =  <error>T V ((T<error>*T) A - (‘0% (-error)))

The formula (EQ) can be checked almost immediately (less than 1s on a standard
computer) for models of a few thousands states using muse. Listing 1.3 gives a
muse script file that can be used to test this equivalence relation.

6 Related Work and Conclusion

Few works consider the verification of model-checking tools. Indeed, most of
the existing approaches concentrate on the verification of the model-checking
algorithms, rather than on the verification of the tools themselves. For example,
Smaus et al. [16] provide a formal proof of an algorithm for generating Biichi
automata from a LTL formula using the Isabelle interactive theorem prover. This
algorithm is at the heart of many LTL model checkers based on an automata-
theoretic approach. The problem of verifying verification tools also appears in
conjunction with certification issues. In particular, many certification norms,
such as the DO-178B, requires that any tool used for the development of a critical
equipment be qualified at the same level of criticality than the equipment. (Of
course, certification does not necessarily mean formal proof!) In this context,
we can cite the work done on the certification of the SCADE compiler [15], a
tool-suite based on the synchronous language Lustre that integrates a model-
checking engine. Nonetheless, only the code-generation part of the compiler is
certified and not the verification part. Finally, another possibility is to rely on a
kind of “Proof-Carrying Code” approach, where the model checker can produce
a deductive proof on either success or failure [12]. This proof can then be checked
separately, using a tool independent from the model checker.

Concerning observer-based model-checking, most of the works rely on an
automatic way to synthesize observers from a formal definition of the properties.



# Results are displayed as set of states. Use "output card" to see the cardinality
output set;

# definition of derived operators

infix X« L =minY | X VY(L); infix X oL =X(L);

op TICK X =min Y | X(t) VY(—t); op NEVER L =('0) * (—L);
op EXT =a Vb Vt; # labels of the external transitions

op REACH L =min X | ((L)T) VvV (—EXT)X;

# INNOCUOUSNESS
op Innocuous = (REACH a) A (REACH b) A (REACH t);
4 SOUNDNESS

op A0 =(NEVER b) o b; op SO =(NEVER b) V AQ;
op Al =A x (—t); op S1 =S50 VAL,
op A2 =TICK(A1); op S2 =S1 VA2,

op A3 = TICK(A2):
op A4 =TICK(A3): op 54 =53 V A4;

op A5 =TICK(A4); op S5 =S54 Vv Ab;
op A6 =A5 o a; op S6 =S5 V A6;
op A7 =A6 % T, op S7 =S6 VAT,
op R1 =NEVER b; op R2 =57

op Pres =R1 VR2;
op ERRORS = (error) T V (((T(error)) = T) A— ((‘0) * (—error)));

Pres < (— ERRORS); # this is a tautology if all the states are listed

Listing 1.3. Script file for muse to check that (Pres)) < — g, is a tautology

For instance, Aceto et al. [2] propose a method to verify properties based on the
use of test automata. In this framework, verification is limited to safety and
bounded liveness properties since the authors focus on properties that can be
reduced to reachability checking. In the context of Time Petri Net, Toussaint
et al. [17] also propose a verification technique based on “timed observers”,
but they only consider four specific kinds of time constraints. None of these
works consider the complexity or the correctness of the verification problem.
Another related work is [9], where the authors define observers based on Timed
Automata for each pattern. Our approach is quite orthogonal to the “synthesis
approach”. Indeed we seek, for each property, to come up with the best possible
observer in practice. To this end, using our toolchain, we compare the complexity
of different implementations on a fixed set of representative examples and for a
specific set of properties and kept the best candidates. The need to check multiple
implementations for the same patterns has motivated the need to develop a
lightweight verification method for checking their correctness.

Compared to these works, we make several contributions. We define a com-
plete verification framework for checking observers with hard realtime constraints.
This framework has been tested on a set of observers derived from high-level
timed specification patterns. This work is also our first public application of the
probe technology, that was added to Fiacre only recently. To the best of our
knowledge, the notion of probes is totally new in the context of formal spec-
ification language. Paun and Chechik propose a somewhat similar mechanism
in [6,14]—in an untimed setting—where they define new categories of events.




However our approach is more general, as we define probes for a richer set of
events, such as variables changing state. We believe that this (language-level)
notion of probes is interesting in its own right and could be adopted by other for-
mal specification languages. Finally, we propose a formal approach that can be
used to gain confidence on the implementation of our model-checking tools and
that replaces traditional “visual verification methods” that are prone to human
errors.
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