
A Verified Approach for Checking Real-Time
Specification Patterns

Nouha Abid Silvano Dal Zilio Didier Le Botlan
CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse

Univ de Toulouse, INSA, LAAS, F-31400 Toulouse, France
{nabid, dalzilio, dlebotla}@laas.fr

We propose a verified approach to the formal verification of timed properties using model-checking
techniques. We focus on properties expressed using real-time specification patterns, which can be viewed
as a subset of timed temporal logics that includes properties commonly found during the analysis of
reactive systems. Our model-checking approach is based on the use of observers in order to transform
the verification of timed patterns into the verification of simpler LTL formulas. While the use of observers
for model-checking is quite common, our contribution is original in several ways. First, we define a formal
framework to verify that our observers are correct and non-intrusive. Second, we define different classes of
observers for each pattern and use a pragmatic approach in order to select the most efficient candidate in
practice. This approach is implemented in an integrated verification tool chain for the Fiacre language.

Formal Methods. Verification. Model-Checking. Specification Patterns. Time Petri Nets.

1. INTRODUCTION

distinctive feature of real-time systems is to be
subject to severe time constraints that arise
from critical interactions between the system and
its environment. Since reasoning about real-time
systems is difficult, it is important to be able to
apply formal validation techniques early during the
development process and to define formally the
requirements that need to be checked.

In this work, we follow a classical approach to
model checking: (1) we use a high-level language to
describe a model of the system; (2) we use a logical-
based formalism to express requirements on the
system; and (3) the verification consists in compiling
the system’s model and requirements into a low-level
model for which we have the appropriate theory and
the convenient tooling. We propose a new treatment
for this traditional approach. In particular, for point
(2), we focus on a dense real-time model and we use
real-time patterns for the specification of the system
instead of timed extensions of temporal logic. Our
patterns can be interpreted as a real-time extension
to the specification patterns of Dwyer et al. (1999).
Time patterns can be used to express constraints on
the timing as well as the order of events, such as the
compliance to deadline or minimum time bounds on
the delay between events. Concerning verification,
point (3), we work with Time Transition Systems (see

Sect. 2), an extension of Time Petri Nets with data
variables and priorities.

Our first contribution is to propose a decidable
verification method for checking real-time patterns
on Time Transition Systems (TTS). The method is
based on the use of observers and model-checking
techniques in order to transform the verification of
patterns into the verification of simpler LTL formula.
Our observers are proved correct and non-intrusive,
meaning that they compute the correct answer and
have no impact on the system under observation.
This is why we say our approach is verified. The
formal framework we have defined is not only
useful for proving the validity of formal results but
also to check the soundness of optimisation in the
implementation.

Our second contribution is to provide a reference
implementation for these timed patterns. The
complete framework defined in this paper has
been integrated into a verification tool chain for
Fiacre (Berthomieu et al. 2008), a high-level
modelling language that can be compiled to TTS.
Fiacre can be used as input language for two
verification toolboxes: TINA, the TIme Petri Net
Analyzer tool set (Berthomieu et al. 2004), and
CADP (Garavel et al. 2011). In our tool chain
(described in Fig. 1) a Fiacre specification is
combined with patterns and compiled into a TTS

model using the Frac compiler (the Fiacre language
compiler). Then the model can be checked using
the TINA toolbox. This is not a toy example. Indeed,
Fiacre is the intermediate language used for model
verification in Topcased (Farail et al. 2006), an
Eclipse based toolkit for critical systems, where it is
used as the target of model transformation engines
from various languages, such as SDL, BPEL or
AADL (Berthomieu et al. 2009). Therefore, through
the connection with Fiacre, we can check timed
patterns on many different modelling languages.

Due to space limitations, we only give a partial
descriptions of our timed patterns and give only part
of our theoretical results. A complete catalogue of
timed specification patterns is given in Abid et al.
(2011a), while the complete formal framework is

defined in a long version of this paper (Abid et al.
2011b).

For the purpose of this work, we focus on a
simple deadline pattern, named leadsto , and define
different classes of observers that can be used
to check this pattern. We define observers for the
leadsto patterns that are based on the monitoring
of places or transitions. In addition to these two
traditional kind of observers, we propose a class
of TTS observers that monitor data modifications.
The goal is to choose the most efficient observer
in practice. We give some experimental results on
the impact of the choice of observer on the size
of the state graphs that need to be generated—
that is on the space complexity of our verification
method—and on the verification time. The goal of
this particular study is not to define a method for
automatically generating an observer from a pattern.
Instead, we define a set of possible observers that
are compared in order to choose the best one in
practice.

Outline
The paper is organised as follows. We start by
introducing our formal framework in Sect. 2. This
section is useful to define the notion of composition
and non-interference for our observers. In Sect. 3
and 4, we describe a subset of our real-time
specification patterns and the verification framework.
We describe the implementation of our tool chain
and give some experimental results on the use of the
leadsto pattern in Sect. 5. We conclude with a review
of the related work, an outline of our contributions
and some perspectives on future work.

2. FORMAL FRAMEWORK

We define some formal notations that are used
in the remainder of this paper. In our approach,
the observers and the systems are presented as

s0

click

s1 [1; 1]

τ

s2

double

pre: dbl == true

act: dbl := false

click
act: dbl := true

single

act: dbl := false

pre: dbl == false

Figure 2: The double-click example in TTS

Time Transition System (TTS), an extension of Time
Petri Nets (TPN) (see e.g. Merlin 1974) with data
variables and priorities. Our formal framework is
based on the work of Peres et al. (2011), where the
authors define formally the composition of two TPN.
Their presentation has been extended to the full TTS
model in Abid et al. (2011b).

The notion of composition is important in our work
since we use TTS models for both the system
and the observer and, for verification, we use TTS
composition to graft the system with the observer.

This section is organised as follows: first, we
introduce informally a TTS example. Then, we give
a formal definition of TPN following the presentation
of Peres et al. (2011), which is then extended to
TTS. The semantics of TTS is defined using sets of
timed traces. Finally, we define the composition of
two TTS.

2.1. Informal Presentation of the TTS Model

We introduce next a graphical syntax of TTS using
a simple example that models the behaviour of a
mouse button with double-clicking, as pictured in
Fig. 2. The behaviour, in this case, is to emit the
event double if there are more than two click events
in strictly less than one unit of time (u.t.).

Ignoring at first side conditions and side effects (the
pre and act expressions inside dotted rectangles),
the TTS in Fig. 2 can be viewed as a TPN with one
token in place s0 as its initial marking. From this
“state”, a click transition may occur and move the
token from s0 to s1. With this marking, the internal
transition τ is enabled and will fire after exactly one
unit of time, since the token in s1 is not consumed
by any other transition. Meanwhile, the transition
labeled click may fire one or more times without
removing the token from s1, as indicated by the read

Figure 1: The global verification tool chain

arc (arcs ending with a black dot). After exactly one
unit of time, because of the priority arc (a dashed
arrow between transitions), the click transition is
disabled until the token moves from s1 to s2.

Data is managed within the act and pre expressions
that may be associated to each transition. These
expressions may refer to a fixed set of variables that
form the store of the TTS. Assume t is a transition
with guards act t and pre t. In comparison with a
TPN, a transition t in a TTS is enabled if there is both:
(1) enough tokens in the places of its pre-condition;
and (2) the predicate pre t is true. With respect to
the firing of t, the main difference is that we modify
the store by executing the action guard act t. For
example, when the token reaches the place s2 in the
TTS of Fig. 2, we use the value of the variable dbl to
test whether we should signal a double click or not.

2.2. Labeled Time Petri Nets and Time
Transition Systems

Labeled Time Petri Nets (or TPN) extend Time Petri
Nets (Merlin 1974) with an action alphabet and a
function labelling the transitions with those actions.

Notation : Let I+ be the set of nonempty real
intervals with non negative rational endpoints. For
i ∈ I+ , the symbol ↓i denotes the left end-point of
the interval i and ↑i its right end-point, if i is bounded,
or ∞ otherwise. We use N to denote the set of non
negative integers.

Definition 1 A labeled Time Petri Net (or TPN) is a
8-tuple (P, T,B, F,M0, Is,

∑
, L) in which:

• P is a finite set of places pi;

• T is a finite set of transitions ti;

• B is the backward incidence function
B : T → P → N;

• F is the forward incidence function
F : T → P → N;

• M0 is the initial marking function
M0 : P → N;

• Is is a function called the static interval function
Is : T → I+;

Function Is associates a temporal interval
Is(t) ∈ I+ with every transition of the
system. ↓Is(t) and ↑Is(t) are called the static
earliest and latest firing times of t, respectively.
Assuming that a transition t became enabled
at time τ , then t cannot fire before (τ + ↓Is(t))
and no later than (τ + ↑Is(t)) unless disabled
by firing some other transition.

•
∑

is a finite set of actions, or labels, not
containing the silent action ε;

• L : T →
∑
∪{ε} is a transition labelling

function.

A marking is a function M : P → N that records the
current (dynamic) value of the places in the net, as
transitions are fired. The transition t ∈ T is enabled
by M iff (M > B(t)). The dynamic interval function
I : T → I+ is a mapping from transitions to time
intervals. The dynamic interval function is used to
record the current timing constraints associated to
each transition, as time passes.

A transition t can fire from (M, I) if t is enabled at M
and instantly fireable, that is 0 ∈ I(t). In the target
state, the transitions that remained enabled while
t is fired (t excluded) keep their time interval, the
intervals of the others (newly enabled) transitions are
set to their respective static intervals. Together with
those “discrete” transitions, a time Petri Net adds the
ability to model the flowing of time. A transition of
amount d (i.e. taking d time units) is possible iff d is
less than ↑I(t) for all enabled transitions t.

The definition of TTS is a natural extension of
TPN that takes variables and priorities into account.
Details are presented in Abid et al. (2011b).

Definition 2 (Timed traces) A timed trace σ is a
possibly infinite sequence of events t ∈ T and
duration d with d ∈ R+. Formally, σ is a partial
mapping from N to Ṫ = T ∪ {d | d ∈ R+} such that
σ(i) is defined whenever σ(j) is defined and i ≤ j.

The domain of σ is written domσ. If domσ is finite,
the duration of σ, denoted ∆(σ), is the sum of the
delays in σ, that is

∑
i|σ(i)∈R+ σ(i).

The semantics of a TPN (resp. TTS) is the set of its
timed traces. (see details in Abid et al. (2011b)).

2.3. Composition of TTS and Timed Traces

We study the composition of two TTS and consider
the relation between traces of the composed system
and traces of both components. This operation is
particularly significant in the context of this work,
since both the system and the observer are TTS and
we use composition to graft the latter to the former.
In particular, we are interested in conditions ensuring
that the behaviour of the observer does not interfere
with the behaviour of the observed system.

The “parallel composition” of labeled Petri nets is a
fundamental operation that is used to model large
systems by incrementally combining smaller nets.
Basically, the composition of two labeled TPN N1

and N2 is a labeled net Ndef=(N1 ‖ N2) such that: the
places of N is the cartesian product of the places
of N1 and N2, and the transitions of N is the fusion
of the transitions in N1 and N2 that have the same
label. A formal definition for the composition of two
TPN is given in Peres et al. (2011). Composition
of TTS is basically the same (Abid et al. 2011b),
with the noticeable restriction that transitions which
have priority over other transitions may not be
synchronised across components. This is required
to ensure the compositionality theorem, which we
introduce below.

In the same way, we can define the composition
of timed traces as an operation that builds a timed
trace σ1 ‖ σ2 from two traces σ1 and σ2. The trace
σ1 ‖ σ2 is obtained by merging the events with the
same labels. This operation is well-defined for pairs
of composable traces. Let N1 (resp. N2) be a TPN,
and σ1 (resp. σ2) one of its traces. We say that σ1

and σ2 are composable iff domσ1 = domσ2, and for
all i ∈ domσ1, (1) σ1(i) = d ∧ d ∈ R+ ⇒ σ2(i) = d,
and (2) σ1(i) = t ∧ t ∈ T ⇒ L(σ1(i)) = L(σ2(i)).

The compositionality theorem states that the
behaviour of the composed system (expressed as

a set of timed traces) is a subset of the behaviour
of both components. In other terms, composing
a system with an observer cannot generate new
behaviour.

Theorem 1 (Compositionality) Let N1 and N2 be
two TTS and N = N1 ‖ N2 be their composition.
Then, for every timed trace σ of N , there exist two
timed traces, σ1 and σ2, such that: (1) σi is a trace of
Ni for i ∈ 1..2 and (2) σ = σ1 ‖ σ2.

In the compositionality theorem, the trace σ1 (resp.
σ2) is obtained from σ by “erasing” all transitions of
N2 (resp. N1). Due to lack of space, we omit the
proof here and invite the reader to consult Abid et
al. (2011b).

3. REAL-TIME SPECIFICATION PATTERNS

We have defined in Abid et al. (2011a) a set of
specification patterns that can express constraints
on the delays between the occurrences of two events
or on the duration of a given condition. In our context,
the event of a model can be: a transition that is fired;
the system entering or leaving a state; a change
in the value of variables; . . . The advantage of
proposing predefined patterns is to provide a simple
formalism to non-experts for expressing properties
that can be directly checked with our verification tool
chain. Our patterns can be viewed as a real-time
extension of Dwyer’s (1999) specification patterns.
In his seminal work, Dwyer shows through a study of
500 specification examples that 80% of the temporal
requirements can be covered by a small number of
“pattern formulas”. We follow a similar philosophy
and define a list of patterns that takes into account
timing constraints. At the syntactic level, this is
mostly obtained by extending Dwyer’s patterns with
two kind of timing modifiers: (1) P within I, which
states that the delay between two events declared in
the pattern P must fit in the time interval I; and (2)
P lasting D, which states that the condition defined
by P must hold for at least duration D. For example,
we define a pattern Present A after B within]0, 4]
to express that the event A must occur within 4 unit
of time of the first occurrence of event B, if any,
and not simultaneously with it. Although seemingly
innocuous, the addition of these two modifiers has a
great impact on the semantics of patterns and on the
verification techniques that are involved.

We describe our patterns using a hierarchical
classification borrowed from Dwyer et al. (1999),
with patterns arranged in categories such as
universality, absence, response, etc. In the following,
we give some examples of absence and response
patterns based on the TTS example of Fig. 2. Each
of these patterns can be checked using our tool

chain. A complete catalogue of patterns, with their
formal definition, is given in Abid et al. (2011a). In
this section, we focus on the “response pattern with
delay”, to give an example of how patterns can be
formally defined and to explain our different classes
of observers.

3.1. Absence Pattern with Delay

This category of patterns is used to specify delays
within which activities must not occur. A typical
pattern in this category is:

absent E2 after E1 for interval [d1; d2] , (absent)

which asserts that a transition (labeled with) E2

cannot occur between d1 and d2 units of time after
the first occurrence of a transition E1. An example of
use for this pattern would be the requirement that we
cannot have two double clicks in less than 2 units
of time (u.t.), that is: absent double after double
for interval [0; 2]. (This property is not true for our
example in Fig. 2.) A more contrived example is to
require that if there are no single clicks in the first 10
u.t. of an execution then there should be no double
clicks at all. This requirement can be expressed
using the composition of two absence patterns using
the implication operator and the reserved transition
init (that identifies the start of the system):(

absent single after init for interval [0; 10]
)

⇒
(

absent double after init for interval [0;∞[
)
.

3.2. Response Pattern with Delay

This category of patterns is used to express that
some (triggering) event must always be followed by
a given (response) event within a fixed delay of time.
The typical example of response pattern states that
every occurrence of a transition labeled with E1 must
be followed by an occurrence of a transition labeled
with E2 within a time interval I. (We consider the first
occurrence of E2 after E1.)

E1 leadsto E2 within I . (leadsto)

For example, using a disjunction between transition
labels, we can bound the time between a click and a
mouse event with the pattern: click leadsto (single∨
double) within [0, 1].

3.3. Other Examples of Patterns

To give a feel of the expressiveness of our patterns,
we briefly describe some other examples. For each
pattern, we give just a textual definition. In each
example, E1, E2 and E3 refer to events in the system
and d1 (resp. d2) stand for the left end-point (resp.
right end-point) of the time interval I.

Present E1 after E2 within I

Predicate E1 must hold between d1 and d2 u.t
after the first occurrence of E2. The pattern is also
satisfied if E2 never holds.

Present first E1 before E2 within I

The first occurrence of E1 should be between d1 and
d2 u.t. before the first occurrence of E2. The pattern
also holds if E2 never occurs.

Present E1 lasting D

Starting from the first occurrence when the predicate
E1 holds, it remains true for at least duration D.
This pattern makes sense only if E1 is a predicate
on states (that is, on the marking or store); since
transitions are instantaneous, they have no duration.

Absent E1 before E2 for duration D

No E1 can occur less than D u.t. before the first
occurrence of E2. The pattern holds if there are no
occurrence of E2.

E1 leadsto first E2 within I before E3

Before the first occurrence of E3, each occurrence of
E1 is followed by an occurrence of E2 which occurs
both before E3, and in the time interval I after E1.
The pattern holds if E3 never occurs.

E1 leadsto first E2 within I after E3

Same than with the pattern “E1 leadsto first E2

within I” but only considering occurrences of E1

after the first E3.

3.4. Interpretation of Patterns

We can use different formalisms to define the
semantics of patterns. In this work, we focus on
a denotational interpretation, based on first-order
formulas over timed traces (with equality and trace
composition). We illustrate our approach using the
pattern E1 leadsto E2 within I.

For the “denotational” definition, we say that the
pattern E1 leadsto E2 within I is true for a TTS N if
and only if, for every timed-trace σ of N , we have:

∀σ1, σ2 . (σ = σ1E1σ2)⇒
(
∃σ3, σ4 . σ2 = σ3E2σ4

∧∆(σ3) ∈ I ∧ E2 /∈ σ3

)
where ∆(σ3) is the sum of all the duration in σ3. The
denotational approach is very convenient for a “tool
developer” (for instance to prove the soundness of
an observer implementing a pattern) since it is self-
contained.

For another example, the denotational definition for
the pattern absent E2 after E1 for interval I is given
by the following condition on the traces σ of a

system:

∀σ1, σ2, σ3 .(σ = σ1E1σ2E2σ3)
∧(E1 /∈ σ1)⇒ (∆(σ2) /∈ I)

On our complete catalogue of patterns (Abid et
al. 2011a), we provide an alternative (equivalent)
semantics for patterns based on MTL, a timed
extension of linear temporal logic (see e.g. Maler et
al. 2006 for a definition of the logic). For instance,
for the leadsto pattern, the equivalent MTL formula
is @

(
E1 ⇒ ((¬E2) UI E2)

)
, which reads like a LTL

formula enriched by a time constraint on the until
modality U.

4. PATTERNS VERIFICATION

We define different types of observers at the TTS
level that can be used for the verification of patterns.
It is important to note that we do not give an
automatic method to generate observers. Rather, we
define a set of observers for each patterns and, after
selecting the “most efficient one”, we prove that it
is correct (see the discussion in Sect. 5). We make
use of the whole expressiveness of the TTS model
to build observers: synchronous or asynchronous
rendez-vous (through places and transitions); shared
memory (through data variables); and priorities. We
believe that an automatic method for generating
the observer, while doable, will be detrimental for
the performance of our approach. Moreover, when
compared to a “temporal logic” approach, we are in
a more favorable situation because we only have to
deal with a finite number of patterns.

4.1. Observers for the Leadsto Pattern

We focus on the example of the leadsto pattern.
We assume that some events of the system are
labeled with E1 and some others with E2. We
give three examples of observers for the pattern:
E1 leadsto E2 within [0,max [. The first observer
monitors transitions and uses a single place; the
second observer monitors places; the third observer
monitors shared, boolean variables injected into the
system (by means of composition). We define our
TTS observers using a classical graphical notation
for Petri Nets, where arcs with a black circle denote
read arcs, while arcs with a white circle are inhibitor
arcs. (These extra categories of arcs can be defined
in TTS and are supported in our tool chain.) The
use of a data observer is quite new in the context of
TTS systems. The results of our experiments seem
to show that, in practice, this is the best choice to
implement an observer.

4.1.1. Transition Observer
The observer Ot, see Fig. 3, uses a place, obs, to
record the time since the last transition E1 occurred.

E1

error

[max ,max] E2

obs

E1 E2

Figure 3: Transition Observer: Ot

The place obs in Ot is emptied if a transition labeled
E2 is fired, otherwise the transition error is fired
after max unit of time. The priority arc (dashed
arrow) between error and E2 is used to observe the
transition error even in the case where a transition E2

occurs exactly max u.t. after the place obs was filled.

By definition of the TTS composition operator, the
composition of the observer Ot with the system N
duplicates each transitions in N that is labeled E1:
one copy can fire if obs is empty—as a result of the
inhibitor arc—while the other can fire only if the place
is full. As a consequence, in the TTS N ‖ Ot, the
transition error can fire if and only if the place obs
stays full—there has been an instance of E1 but not
of E2—for a duration of max . Then, to prove that N
satisfies the leadsto pattern, it is enough to check
that the system N ‖ Ot cannot fire the transition
error. This can be done by checking the LTL formula
@(¬error) on the system N ‖ Ot.

The observer Ot given in Fig. 3 is deterministic
and will “react” to the first occurrence of E2

that miss a deadline. It is also possible to
define a non-deterministic observer, such that some
occurrences of E1 or E2 may be disregarded. This
approach is safe since model-checking performs
an exhaustive exploration of the states of the
system; it considers all possible scenarios. This
non-deterministic behaviour is quite close to the
treatment obtained when compiling an (untimed) LTL
formula “equivalent” to the leadsto pattern, namely
@(E1 ⇒ ♦E2), into a Büchi automaton (Gastin et al.
2001). We have implemented the deterministic and
non-deterministic observers and compared them
taking in account their impact on the size of
the state graphs that need to be generated and
on the verification time. Experiments have shown
that the deterministic observer is more efficient,
which underlines the benefit of singling out the
best possible observer and looking for specific
optimisation.

4.1.2. Data Observer
We define the data observer Od in Fig. 4. The data
observer has a transition error conditioned by the
value of a boolean variable, flag, that “takes the role”
of the place obs in Ot (every boolean variable is
considered to be initially set to false). Indeed, flag is

act: flag := true

E1

error

pre: flag == true
[max,max]

act: flag := false

E2

Figure 4: Data Observer: Od

true between an occurrence of E1 and the following
transition E2. Therefore, like in the previous case, to
check if a system N satisfies the pattern, it is enough
to check the reachability of the event error. Notice
that the whole state of the data observer is encoded
in its store, since the underlying net has no place.

4.1.3. Place Observer
We define the place observer Op in Fig. 5. In this
section, to simplify the presentation, we assume that
the events E1 and E2 are associated to the system
entering some given states S1 and S2. (But we can
easily adapt this net to observe events associated
to transitions in the system.) We also rely on a
composition operator that composes TTS through
their places instead of their transitions (Peres et al.
2011) and that is available in our tool chain. In Op,
we use a transition labeled τ1 whenever a token
is placed in S1 and a transition τ2 for observing
that the system is in state S2 (we assume that the
labels τ1 and τ2 are fresh—private to the observer—
and should not be composed with the observed
systems). The remaining component of Op is just like
the transition observer. We consider both a place
and a transition observer since, depending on the
kind of events that are monitored, one variant may
be more efficient than the other.

S1

[0, 0]
τ1

obs
error

[max,max]

[0, 0]
τ2S2

Figure 5: Place Observer: Op

4.2. Proving Innocuousness and Soundness of
Observers

The goal of this section is to show how to prove that
an observer for a pattern is correct. We demonstrate

our approach on the particular examples of ob-
servers for the pattern E1 leadsto E2 within [0,max[,
given in the previous section.

We say that an observer O for this pattern is sound
if it can “detect” the traces of a system N that do not
hold for the pattern. More formally, if there is a trace
σ of N such that: σ = σ1E1σ2E2σ3 with ∆(σ2) ≥ max
andE2 /∈ σ2, then there should be a trace σ′ inN ‖ O
such that error ∈ σ′. (The condition on the trace σ
directly follows from the denotational definition of the
pattern, see Sect. 3.4) On the opposite, the observer
is correct if it can detect that a system satisfies a
pattern: if for all trace σ′ of N ‖ O we have error /∈ σ′
then for all trace σ of N the pattern holds.

From our compositionality theorem, see Sect. 2.3,
we have that every trace σ′ of N ‖ O can be defined
as the composition σ ‖ σo of a trace σ of the system
N with a trace σo of the observer O. Therefore, to
prove that an observer is correct, it is enough to
prove that the pattern does not hold for a trace σo
in O iff error ∈ so. Indeed, if there is a trace σ in N
that does not hold for the pattern, then we obtain a
trace σ ‖ σo in N ‖ O that does not hold either.

We can use our formal framework to prove the
soundness of an observer (work is currently under
way to mechanise these proofs using the Coq
interactive theorem prover). Correctness proofs are
more complicated, since they require to reason on
the traces of a system composed with the observer
to figure out the behaviour of the system alone.
Therefore, instead of proving that an observer is
correct, we prove a stronger assumption, that is that
observers should be innocuous. A net is said to be
innocuous if it cannot interfere with a system placed
in parallel. More formally, the TTS O is innocuous if
for all TTS N and for all trace σ in N there exists
a trace σo in O such that σ ‖ σo is a trace in N ‖
O. Innocuousness means that the observer cannot
restrict the behaviour of another system. This is
particularly useful in our case since, with innocuous
observer, any trace σ of the observed system N
is preserved in the composed system N ‖ O: the
observer does not obstruct the behaviour of the
system (see Lemma 1 below).

Instead of proving that observers are non-intrusive in
a case by case basis, we can give a set of sufficient
conditions for an observer O to be innocuous. These
conditions are met by the three observers given in
Fig. 3–5.

Given a TTS N , we say that a transition t of
the observer is synchronised when there exists a
labeled transition t′ of N such that L(t) = L(t′)
(and the label L(t) is not ε). We write Tsync the
set of synchronised transitions of the observer and

Lsync the labels of the synchronised transitions.
The transitions in Tsync are the transitions used
by the observer to probe the system. In the
examples defined in the previous section, the only
synchronised transitions are the ones labeledE1 and
E2 in the data (Od) and transition (Ot) observers. We
define Timm as the set of transitions of the observer
whose static time interval is [0, 0]. By construction,
no transiton in Tsync can also be part of Timm.

Lemma 1 Assume O satisfies the following three
conditions:

• all synchronised transitions have a trivial static
time interval and no priority (that is, for every t
in Tsync, Its = [0; +∞[and t has no priority over
another transition in O);

• from any state of the observer, and for every
label l ∈ Lsync, there is at least one transition t
in O with label l that can fire immediately;

• from any state of the observer, there is no
infinite sequence of transitions in Timm.

then, for all timed trace σ in N there exists a timed
trace σ ‖ σo in N ‖ O such that σo is a trace of O.

The proof of Lemma 1 can be found in Abid et
al. (2011b). A few comments on these conditions.
The first condition is necessary for defining the
composition of two TTS (see Sect. 2.3). The second
condition ensures that the observer cannot delay the
firing of a synchronised transition “for a non-zero
time”. Assume s is a state of the observer O and σ
a finite trace of O starting from state s. We define
O(s, σ) to be the (necessarily unique) state reached
by the observer after trace σ has been executed.
From the second condition, in every reachable state
s of O, and for every label l in L(Tsync), there
exists a (possibly empty) finite trace σ not containing
transitions in Tsync such that the duration of σ is 0
and there exists t ∈ Tsync with L(t) = l, which is
fireable in state O(s, σ). Note also that the observer
cannot involve other synchronised transitions while
reaching a state where l is firable, since this would
abusively constrain the behaviour of the main system
N , not to mention deadlock issues. This condition is
true for the observer Ot in Fig. 3 since, at any time,
exactly one of the two transitions labeled E1 (resp.
E2) can fire.

5. EXPERIMENTAL RESULTS

Our verification framework has been integrated
into a prototype extension of frac, the Fiacre
compiler for the TINA toolbox. This extension
supports the addition of real time patterns and
automatically compose a system with the necessary

observers. (Software and examples are available
at http://homepages.laas.fr/~nabid.) In case the
system does not meet its specification, we obtain
a counter-example that can be converted into a
timed sequence of events exhibiting a problematic
scenario. This sequence can be played back using
two programs provided in the TINA tool set, nd and
play. The first program is a graphical animator for
Time Petri Net, while the latter is an interactive (text-
based) animator for the full TTS model.

We define the empirical complexity of an observer
as its impact on the augmentation of the state space
size of the observed system. For a system S, we
define size(S) as the size (in bytes) of the State
Class Graph (SCG) (Berthomieu et al. 2004) of S
generated by our verification tools. In TINA, we use
SCG as an abstraction of the state space of a TTS.
State class graphs exhibit good properties: an SCG
preserves the set of discrete traces—and therefore
preserves the validation of LTL properties—and the
SCG of S is finite if the Petri Net associated with
S is bounded and if the set of values generated
from S is finite. We cannot use the “plain” labeled
transition system associated to S to define the size of
S; indeed, this transition graph maybe infinite since
we work with a dense time model and we have to
take into account the passing of time.

The size of S is a good indicator of the memory
footprint and the computation time needed for
model-checking the system S: the time and
space complexity of the model-checking problem is
proportional to size(S). Building on this definition, we
say that the complexity of an observer O applied
to the system S, denoted CO(S), is the quotient
between the size of (S ‖ O) and the size of S.

We resort to an empirical measure for the complexity
since we cannot give an analytical definition of CO
outside of the simplest cases. However, we can give
some simple bounds on the function CO. First of
all, since our observers should be non-intrusive, we
can show that the SCG of S is a sub graph of the
SCG of S ‖ O, and therefore CO(S) ≥ 1. Also,
in the case of the leadsto pattern, the transitions
and places-based observers add exactly one place
to the net associated to S. In this case, we can
show that the complexity of these two observers is
always less than 2; we can at most double the size
of the system. We can prove a similar upper bound
for the leadsto observer based on data. While the
three observers have the same (theoretical) worst-
case complexity, our experiments have shown that
one approach was superior to the others. We are
not aware of previous work on using experimental
criteria to select the best observer for a real-time
property. In the context of “untimed properties”,

http://homepages.laas.fr/~nabid

 0

 10

 20

 30

 40

 50

 60

 70

 80

TRAIN APOTA CAR

S
ta

te
 S

pa
ce

 S
iz

e
G

ro
w

th
 (

%
)

Place Observer
Data Observer

 0

 10

 20

 30

 40

 50

 60

 70

 80

TRAIN APOTA CAR

S
ta

te
 S

pa
ce

 S
iz

e
G

ro
w

th
 (

%
)

Place Observer
Data Observer

Figure 6: Compared complexity of the data and place observers (in percentage of system size growth)—average time for
invalid properties (right) and valid properties (left).

this approach may be compared to the problem of
optimising the generation of Büchi Automata from
LTL formulas, see e.g. Gastin et al. (2001).

We have used our prototype compiler to experiment
with different implementations for the observers.
The goal is to find the most efficient observer
“in practice”, that is the observer with the lowest
complexity. To this end, we have compared the
complexity of different implementations on a fixed
set of representative examples and for a specific
set of properties (we consider both valid and invalid
properties). The results for the leadsto pattern are
displayed in Fig. 6. For the experiments used in this
paper, we use three examples of systems selected
because they exhibit very different features (size
of the state space, amount of concurrency and
symmetry in the system, . . .):

• TRAIN is a model of a train gate controller.
The example models a system responsible for
controlling the barriers protecting a railroad
crossing gate. When a train approaches, the
barrier must be lowered and then raised after
the train’s departure. The valid property, for the
TRAIN example, states that the delay between
raising and lowering a barrier does not exceed
100 unit of time. For the invalid property, we
use the same requirement, but shortening the
delay to 75.

• APOTA is an industrial use case that models
the dynamic architecture for a network protocol
in charge of data communications between an
air plane and ground stations (Berthomieu et
al. 2010). This example has been obtained
using an translation from AADL to Fiacre.
In this case, timing constraints arise from
timeouts between requests and periods of the
tasks involved in the protocol implementation.

The property, in this case, is related to
the worst-case execution time for the main
application task.

• CAR is a system modelling an automated
rail car system taken from Dong et al.
(2008). The system is composed of four
terminals connected by rail tracks in a cyclic
network. Several rail cars, operated from a
central control center, are available to transport
passengers between terminals. When a car
approaches its destination, it sends a request
to the terminal to signal its arrival. Passengers
in the terminal can then book a travel in the
car. The valid property, for the CAR example,
states that a passenger arriving in a terminal,
must have a car ready to transport him within
15 unit of time. For the invalid property, we
use the same requirement, but shortening the
delay to 2 unit of time.

In Fig. 6, we compare the growth in the state space
size—that is the value of Co(S)—for the place and
data observers defined in Sect. 4.1 and our three
running examples. We do not consider the transition
observer in these results since the events used in
the requirements are all related to a system entering
a state (and therefore our benchmark favor the place
observer over the transition observer). We use one
chart to display the result for patterns that are invalid
and another for valid patterns.

In Fig. 7 (page 10), we give results on the total
verification time for the APOTA example. The value
displayed in the table refer to the time spent
generating the complete state space of the system
and verifying the property. The row SYSTEM gives
the time needed for exploring the complete state
space of the system (without adding any observer)
while “VALID” and “INVALID” refer to the state space

of the system synchronised with data observer and
state observer in the case of valid and invalid
property respectively.

In our experiments, we have consistently observed
that the observer based on data is the best choice;
it is the observer giving the minimal execution time
in almost all the cases and that seldom gives the
worst result. We can explain the efficiency of the data
observer by the fact that it adds less transitions than
the state observer; which means that it adds less
intermediary states to the state space of (N ‖ O).

Example State
observer

Data
observer

SYSTEM 2.861 2.861
VALID 11.662 10.652
INVALID 11.611 10.179

Figure 7: Total verification time for APOTA (in seconds)

6. RELATED WORK

Two broad approaches coexist for the definition
and verification of real-time properties: (1) real-time
extensions of temporal logic (Henzinger 1998);
and (2) observer-based approaches, such as the
Context Description Languages (CDL) of Dhaussy et
al. (Raji et al. 2010) or approaches based on timed
automata (Maler et al. 2006; Aceto et al. 1998,
2003).

Obviously, the logic-based approach provides most
of the theoretically well-founded body of works,
such as complexity results for different fragments
of real-time temporal logics (Henzinger 1998):
Temporal logic with clock constraints (TPTL);
Metric Temporal Logic—with or without interval
constrained operators—; Event Clock Logic; etc. The
algebraic nature of logic-based approaches make
them expressive and enable an accurate formal
semantics. However, it may be impossible to express
all the necessary requirements inside the same logic
fragment if we ask for an efficient model-checking
algorithm (with polynomial time complexity). For
example, Uppaal (Behrmann et al. 2004) chose
a restricted fragment of TCTL with clock variables,
while Kronos provide a more expressive framework,
but at the cost of a much higher complexity. As
a consequence, selecting this approach requires
to develop model-checkers for each interesting
fragment of these logics—and a way to choose
the right tool for every requirement—which may be
impractical.

Pattern-based approaches propose a user-friendly
syntax that facilitates their adoption by non-experts.
However, in the real-time case, most of these

approaches lack in theory or use inappropriate
definitions. One of our goal is to reverse this
situation. In the seminal work of Dwyer et al.
(1999), patterns are defined by translation to formal
frameworks, such as LTL and CTL. There is no
need to provide a verification approach, in this case,
since efficient model-checkers are available for these
logics. This work on patterns has been extended to
the real-time case. For example, Konrad et al. (2005)
extends the patterns language with time constraints
and give a mapping from timed pattern to TCTL
and MTL, but they do not study the decidability of
the verification method (the implementability of their
approach). Another related work is (Gruhn et al.
2006), where the authors define observers based
on Timed Automata for each pattern. However, they
do not provide a formal framework for proving the
correctness or the innocuousness of their observers
and they have not integrated their approach inside a
model-checking tool chain.

Concerning observer-based approaches, Aceto et
al. (2003, 1998) use test automata to check
properties of reactive systems. The goal is to identify
properties on timed automata for which model
checking can be reduced to reachability checking. In
this framework, verification is limited to safety and
bounded liveness properties. In the context of Time
Petri Net, a similar approach has been experimented
by Toussaint et al. (1997), but they propose a
less general model for observers and consider
only two verification techniques over four kinds of
time constraints. Bayse et al. (2005) propose a
method to verify the correctness of their approach
formally. However, they do not prove formally all their
invariants (patterns in our case).

7. CONTRIBUTIONS AND PERSPECTIVES

In contrast to these related works, we make the
following contributions. We reduce the problem of
checking real-time properties to the problem of
checking LTL properties on the composition of the
system with an observer. We define also a real-time
patterns language based on the work of Dwyer et
al. (1999) and inspired from real-case studies. To
choose the best way to verify a pattern, we defined,
for each pattern, a set of non-intrusive observers.
We are based on a formal framework to verify the
correctness of an observer, whether it can interfere
with the behaviour of the system under observation.

Our approach has been integrated into a complete
verification tool chain for the Fiacre modelling
language and can therefore be used in conjunction
with Topcased (Farail et al. 2006). We give several
experimental results based on the use of this tool
chain in Sect. 5. The fact that we implemented

our approach has influenced our definition of the
observers. Indeed, another contribution of our work
is the use of a pragmatic approach for comparing
the effectiveness of different observers for the same
property. Our experimental results seem to show that
data observers look promising.

We are following several directions for future work.
A first goal is to define a new low-level language for
observers—adapted from the TTS model—equipped
with more powerful optimisation techniques and with
easier soundness proofs. On the theoretical side,
we are currently looking into the use of mechanised
theorem proving techniques to support the validation
of observers. On the experimental side, we need
to define an improved method to select the best
observer. For instance, we would like to provide a
tool for the “syntax-directed selection” of observers
that would choose (and even adapt) the right
observers based on a structural analysis of the target
system.

8. REFERENCES

Abid, N. and Dal Zilio, S. and Le Botlan, D. (2011) A
Real-Time Specification Patterns Language. LAAS
Tech. Report 11364.
Abid, N. and Dal Zilio, S. and Le Botlan, D. (2011)
Verification of Real-Time Specification Patterns on
Time Transitions Systems. LAAS Tech. Report
11365.
Aceto, L. and Burgueño, A. and Larsen, K. (1998).
Model Checking via Reachability Testing for Timed
Automata. In proc. of TACAS’98–4th Int. Conf. on
Tools and Alg. for Constr. and Analysis of Systems.
Aceto, L. and Bouyer, P. and Burgueño, A. and
Larsen, K. (2003). The power of reachability testing
for timed automata. Theor. Comput. Sci.
Bayse, E. and Cavalli, A. and Nunez, M. and Zaı̈di,
F. (2005). A passive testing approach based on
invariants: application to the WAP. Int. Journal of
Computer and Telecommunications Networking.
Behrmann, G. and David, A. and Larsen, K. (2004).
A Tutorial on Uppaal. Theor. Comput. Sci
Berthomieu, B. and Ribet, P.-O. and Vernadat, F.
(2004) The tool TINA–Construction of Abstract State
Spaces for Petri Nets and Time Petri Nets Int.
Journal of Production Research.
Berthomieu, B. and Bodeveix, J.P. and Farail, P. and
Filali, M. and Garavel, H. and Gaufillet, P. and Lang,
F. and Vernadat, F. (2008) Fiacre: an Intermediate
Language for Model Verification in the Topcased
Environment ERTS 2008.
Berthomieu, B. and Bodeveix, J-P. and Chaudet,
C. and Dal Zilio, S. and Filali, M. and Vernadat, F.
(2009). Formal Verification of AADL Specifications in

the Topcased Environment Int. Journal of Production
Research.
Berthomieu, B. and Bodeveix, J-P. and Dal Zilio,
S. and Dissaux, P. and Filali, M. and Heim, S.
and Gaufillet, P. and Vernadat, F. (2010) Formal
Verification of AADL models with Fiacre and Tina,
5th Int. Congress and Exhibition on Embedded Real-
Time Software and Systems.
Dong, J. S. and Hao, P. and Qin, S. C. and Sun,
J. and Yi, W (2008) Timed automata patterns, IEEE
Transactions on Software Engineering, 52(1), 2008.
Dwyer, M-B. and Avrunin, G-S and Corbett, J.C
(1999) Patterns in Property Specifications for Finite-
State Verification ICSE, pp.411-420.
Farail, P. and Gaufillet, P. and Canals, A.and
Le Camus, C. and Sciamma, C. and Michel, P. and
Crégut, X. and Pantel, M. (2006) The TOPCASED
project: a Toolkit in OPen source for Critical
Aeronautic SystEms Design, In Proc. of ERTS—
Embedded Real Time Software.
Garavel, H. and Lang, F. and Mateescu, R. and
Serwe, W. (2011) CADP 2010: A Toolbox for the
Construction and Analysis of Distributed Processes,
In Proc. of TACAS—17th Int. Conf. on Tools and
Algorithms for the Construction and Analysis of
Systems.
Gastin, P. and Oddoux, D. (2001) Fast LTL to Büchi
Automata Translation, In Proc. of CAV—13th Int.
Conf. on Computer Aided Verification.
Gastin, P. and Oddoux, D. (2006) Patterns for
Timed Property Specifications, Electr. Notes Theor.
Comput. Sci., pp.117-133.
Henzinger, T-H. (1998) It’s About Time: Real-Time
Logics Reviewed, 9th Int. Conf. on Concurrency
Theory.
Konrad, S. and Cheng, B-H-C. (2005) Real-time
specification patterns, 27th Int. Conf. on Software
Engineering.
Maler, O. and Nickovic, D. and Pnueli, A. (2005) From
MITL to Timed Automata, 4th Int. Conf. on Formal
Modeling and Analysis of Timed Systems.
Merlin, P-M. (1974) A study of the recoverability of
computing systems, PhD thesis, Dept. of Inf. and
Comp. Sci., Univ. of California, Irvine, CA, 1974.
Peres, F. and Berthomieu B. and Vernadat, F.
(2011) On the composition of time Petri nets, journal
Discrete Event Dynamic Systems.
Raji, A. and Dhaussy, P. and Aizier, B. (2010)
Automating Context Description for Software Formal
Verification, Workshop MoDeVVa
Toussaint, J. and Simonot-Lion, F. and Thomesse,
J-P. (1997) Time Constraints Verification Methods
Based on Time Petri Nets, 6th IEEE Workshop on
Future Trends of Distributed Computer Systems.

	Introduction
	Formal framework
	Informal Presentation of the TTS Model
	Labeled Time Petri Nets and Time Transition Systems
	Composition of TTS and Timed Traces

	Real-Time Specification Patterns
	Absence Pattern with Delay
	Response Pattern with Delay
	Other Examples of Patterns
	Interpretation of Patterns

	Patterns Verification
	Observers for the Leadsto Pattern
	Transition Observer
	Data Observer
	Place Observer

	Proving Innocuousness and Soundness of Observers

	Experimental Results
	Related Work
	Contributions and Perspectives
	References

