Rational Languages

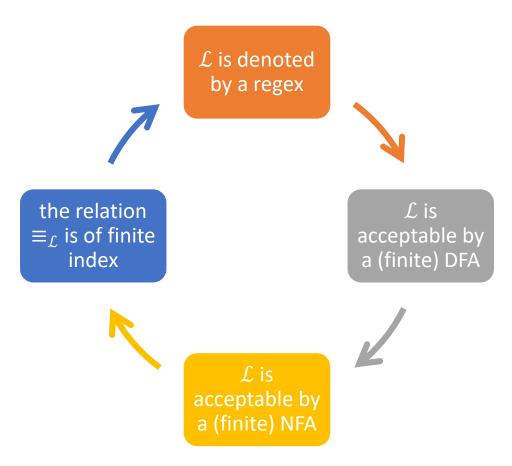
reminder

Equivalent characterization

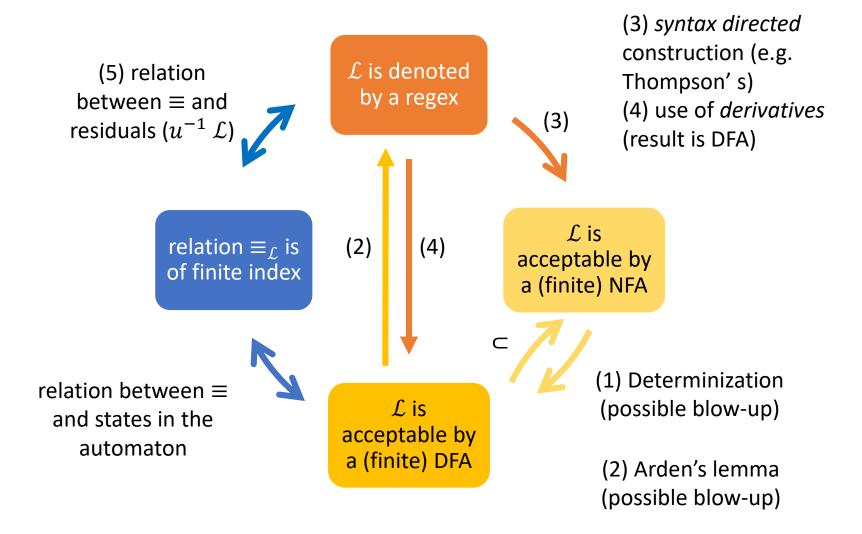
For a language \mathcal{L} , the following conditions are equivalent:

- 1. \mathcal{L} is denoted by a regex
- 2. \mathcal{L} is acceptable by a (finite) DFA
- 3. \mathcal{L} is acceptable by a (finite) NFA
- 4. the relation $\equiv_{\mathcal{L}}$ is of finite index
- 5. \mathcal{L} is generated by a right-linear grammar

Equivalent characterizations



Equivalent characterizations



Application of Myhill-Nerode th.

Are those languages rational ?

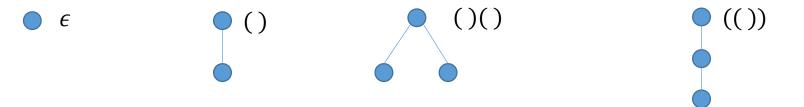
- 1. $\{a^n b^n \mid n \ge 0\}$
- 2. { $a^n b^n | n < 1\,000\,000$ }
- 3. $\{a^n b^m \mid n, m \ge 0\}$
- 4. { $a^n b^m | n + m \equiv 0 [5]$ }
- 5. Dyck languages, containing (well-parenthesized) words of the form ϵ , $a \overline{a}$, $a \overline{a} \overline{a} \overline{a}$, $a a \overline{a} \overline{a} \overline{a}$, ... if $u, v \in \mathcal{L}$ then $a u \overline{a} \in \mathcal{L}$ et $u v \in \mathcal{L}$ imagine that $a = '(' \text{ and } \overline{a} = ')'$

Dyck languages

Dyck languages \equiv containing (well-parenthesized) words of the form ϵ , $a \overline{a}$, $a \overline{a} a \overline{a}$, $a a \overline{a} \overline{a}$, ...

Imagine that $a = '(' \text{ and } \overline{a} = ')'$ words of the form ϵ , (), ()(), (()), ...

Equivalently: $u, v \in \mathcal{L} \Rightarrow a \ u \ \overline{a} \in \mathcal{L}$ and $u \ v \in \mathcal{L}$

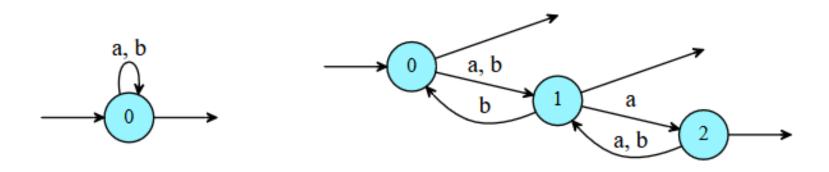


Automata

Equivalence and minimization

Minimality and DFA

• There can be many equivalent DFA



- A sureway method for minimality is to use \equiv_L
- We can also use *partition refining* methods to find equivalent states in a DFA

Minimization \equiv Equivalence

- Minimal DFA ⇒ we have a *canonical DFA* for each rational language (up-to naming of the states)
- Hence, to test if two NFA \mathcal{A} and \mathcal{B} are equivalent (they accept the same language), we can just test:

$$\min(\det(\mathcal{A})) = \min(\det(\mathcal{B}))$$

• also work with regex !

Minimizing a DFA

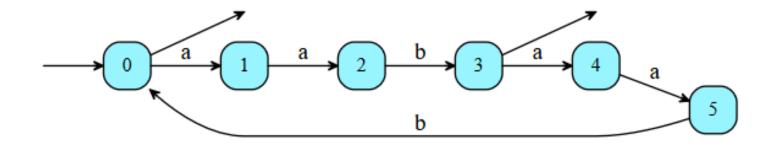
- We want to find equivalent states, $\equiv p \equiv q$ meaning $\mathcal{A}(p) = \mathcal{A}(q)$
- We have two necessary conditions
 - 1. If $p \equiv q$ and p a final state ($\epsilon \in \mathcal{A}(p)$) then q final
 - 2. if $p \equiv q$ then $\delta(p, a) \equiv \delta(q, a)$ (same residuals)

Minimizing a DFA: Idea

We try to compute the equivalence classes for \equiv

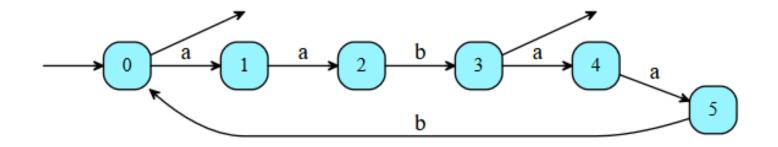
- 1. start: assume all states are equivalent
- 2. repeat: split a class when you find two states with different transitions (up-to \equiv)
- 3. end: until we rich a fix point

 \Rightarrow all the states in the same partition are *non distinguishable*



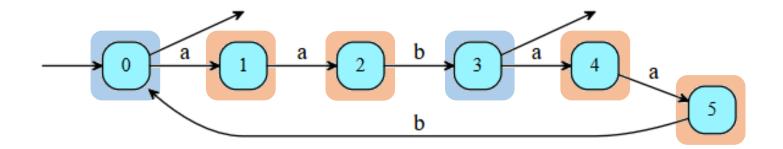
This automaton is deterministic

states: {0, 1, 2, 3, 4, 5}



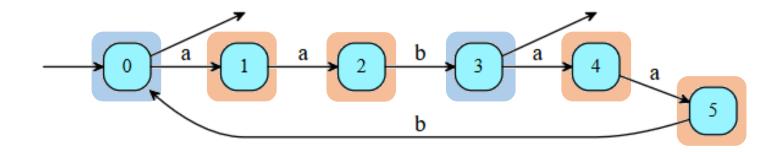
states : {0, 1, 2, 3, 4, 5}

we have $\{0, 3\}$ finals and $\{1, 2, 4, 5\}$ not finals \Rightarrow we need to split the initial partition in two.

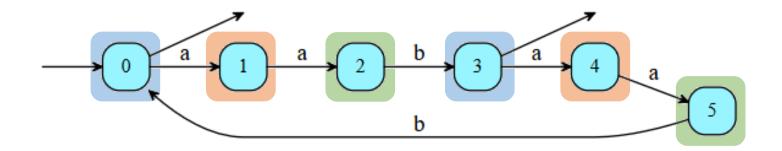


states: {0,3} {1, 2, 4, 5}

(2 partitions)

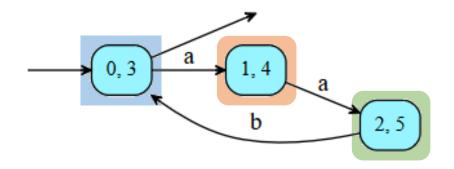


states:
$$\{0,3\}$$
 $\{1,2,4,5\}$
 $0 \xrightarrow{a}$ and $1 \xrightarrow{a}$, same for \xrightarrow{b} : OK
 $2 \xrightarrow{b}$ and $5 \xrightarrow{b}$, but 1, 4 block : need to split



states: {0,3} {1,4} {2,5} (3 partitions)

we have no more partitions to split



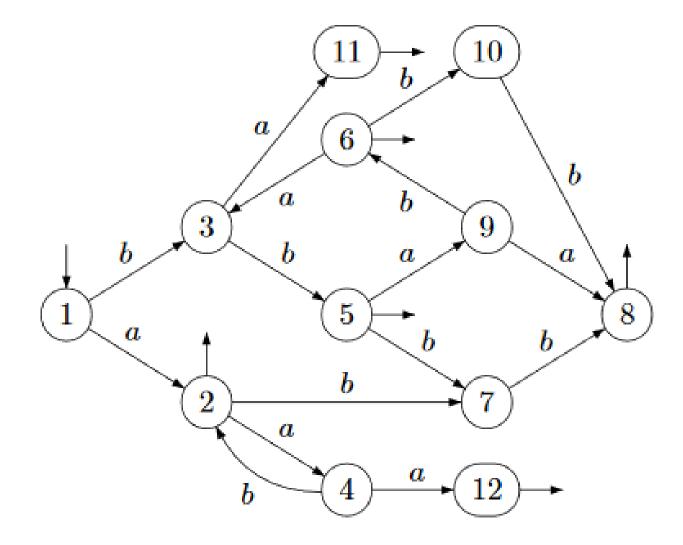
states: {0,3} {1,4} {2,5}

we obtain the minimal DFA by *fusing* states in the same partition together

Minimization: Hopcroft

- This algorithm is due to Hopcroft (1971)
 - requires a complete automaton
- We start from the *coarsest* relation {Q} and stop when there are no more partition to split ⇒ so we split at most n times (n = |Q|) this uses a *coinductive proof principle*.
- complexity is $n |\Sigma| \log n$
- There is another \sim algorithm due to Moore
- In each case, it requires to work on DFA

Example



Example: \equiv between regexes

- $R_1 = (a+b)^*$
- $R_2 = (a^* + b^*)^*$
- $R_3 = (a^* + b \cdot a^*)^*$
- $R_4 = (a^* + b)^* a^*$

$D(R(D(R(\mathcal{A}))))$

Minimization: Brzozowski

- Start from a DFA ${\mathcal A}$ that is complete
- Reverse \mathcal{A} (take its mirror image)
 - switch the direction of the "arcs"
 - the result may not be deterministic
- Determize the result
 - the result is a minimal DFA for $\widetilde{\mathcal{L}(\mathcal{A})}$
- Reverse the automata and determinize again
- \Rightarrow produces a minimal automata equivalent to \mathcal{A}

Equivalence between NFA

- Minimization is not a solution: too complex
- Finding a solution without determinization is complex, but some recent advances: Raskin (2006), Pous (2013)

Automata

Conclusion

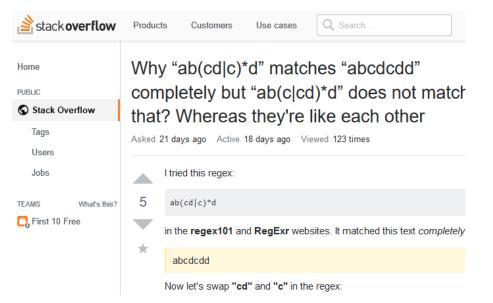
What you should have learned

- There are different views to the same problem: operational, declarative, denotational
- We can better understand a problem when we have different ways to look at it
- C. S. problems can (sometimes) be answered using simple abstractions (discrete maths) and lead to interesting questions about complexity

 \Rightarrow what are the limits ?

• It has applications in practice, ...

... or not



Why does $ab(cd + c)^*d$ matches $a \ b \ c \ d \ c \ d \ d$ completely

But $ab(c + cd)^*d$ matches a b c d c d d

This is a problem/question about ambiguity

Languages and complexity

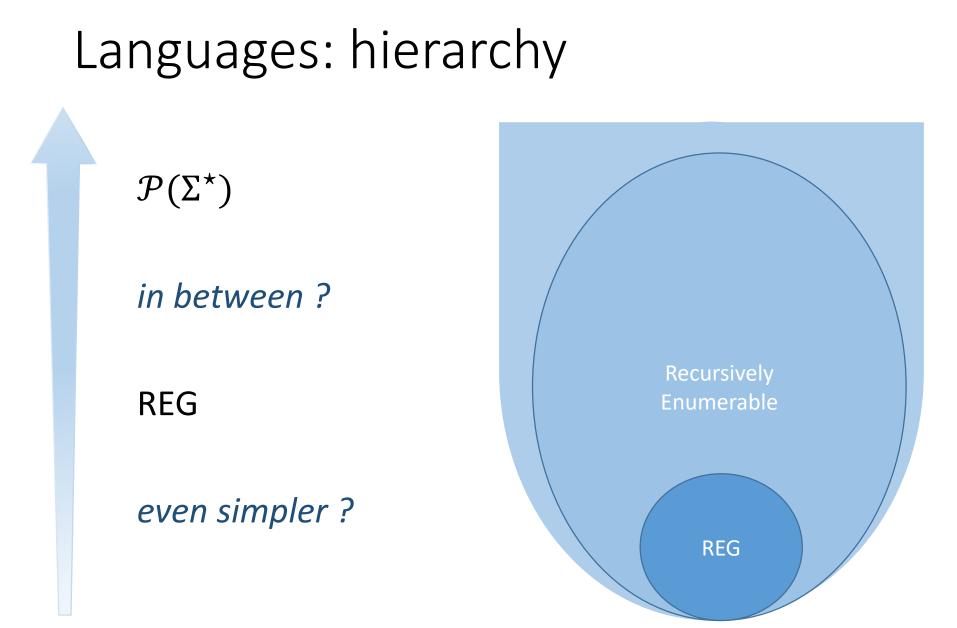
Some complexity theory

Languages

- (Formal) Languages are subsets of Σ^{\star}
 - this is a very general definition
 - we have concentrated on *regular languages*, but not all languages are regular
- Regular/Rational languages ≡ a class of languages with good properties
 - multiple (unrelated!) ways to define regularity
 - closed by various operations: +, \times , \div , \cap , \star , $\overline{\cdot}$, $\widetilde{\cdot}$, ...
 - many decidable properties
 - a "meaningful" complexity class, REG

Languages: questions

- What are some examples of properties and problems ?
- What do you mean by complexity class of a set of languages
- Can we define classes that are simpler, or more complex than REG ?



Languages: problems

- We have often tried to prove whether two regex / FSA "are the same"
- A more basic question if *containment* : $\mathcal{L}_A \subseteq^? \mathcal{L}_B$?

Languages: problems

There are simpler questions: **membership**: is a given word u in \mathcal{L}_A ? **emptiness**: is it true that $\mathcal{L}_A = \emptyset$? does \mathcal{L}_A contains ∞^{ly} many words? **universality**: does $\mathcal{L}_A = \Sigma^*$?

• Good news: almost all problems of interest are decidable in REG

REG: complexity

Membership problem: $u \in \mathcal{L}_A$?

```
func member(u []byte) bool {
    st := q0
    for i = 0; i < len(u); i++ {
        st = delta(st, u[i])
     }
    return isfinal(st)
}</pre>
```

We can test membership using a "machine" that has one register (storing the current state) and a table for storing δ and F

REG: complexity of membership

Assume \mathcal{A} is a DFA with n states.

We can test membership using a "machine" that has one register (storing the current state) and a table for storing δ and F

log *n* bits of writable data

non-writable data

Hence problem is in DLOGSPACE (also called L)

REG: complexity of membership

Membership for DFA is in DLOGSPACE-c

Membership for NFA is in NLOGSPACE (L = $^{?}$ NL) \equiv membership for regex

Same complexity than deciding whether there exists a path between given vertices in a directed graph

Considered feasible

Complexity

- Emptiness: $\mathcal{L} = \overset{?}{=} \emptyset$ is in NLOGSPACE-c for both NFA and DFA
- Equivalence: $\mathcal{L}_1 = \mathcal{L}_2$ is PSPACE-c for DFA, NFA and regex

Suspected infeasible

Languages hierarchy: star-free

star free languages \equiv corresponds to generalized regex (\bar{e}) without \star

- example: $\overline{\mathbf{0}} \ a \ a \ \overline{\mathbf{0}}$
- count.-ex.: (*aa*)*

