Rational Languages

reminder

Equivalent characterization

For a language L, the following conditions are
equivalent:

L is denoted by a regex

L is acceptable by a (finite) DFA
L is acceptable by a (finite) NFA
the relation = is of finite index

s W

Equivalent characterizations

L is denoted
by a regex

\

Lis

/

the relation

acceptable by
a (finite) DFA

/

=, is of finite
index

\

Lis

acceptable by
a (finite) NFA

Equivalent characterizations

(3) syntax directed
construction (e.g.
Thompson’ s)

(4) use of derivatives

(3) .
\ (result is DFA)

Lis
acceptable by
a (finite) NFA

C
relation between = \ (1) Determinization

and states in the Lis (possible blow-up)

acceptable by
automaton a (finite) DFA

(5) relation L is denoted
between = and
residuals (u™1! £) /

relation = is (2) (4)

by a regex

of finite index

(2) Arden’s lemma
(possible blow-up)

Application of Myhill-Nerode th.

Are those languages rational ?
1. {a™h" |n=>0}

2. {a™h™ |n< 1000000}
3. {a*h™ |nm =0}

4. {a"b™ |[n+m=0[5]}
5

. Dyck languages, containing (well-parenthesized)
words of theforme,aa,aaaa,aaaa, ..
ifuve Lthenaua€e LetuveL
imaginethata ='("anda = ')’

Dyck languages

Dyck languages = containing (well-parenthesized)
words of theforme,aa,aaaa,aaaa, ...

Imaginethata ='("anda = ")’
words of the forme, (), ()(), (()), ...

Equivalently: uyuveL=>aua€e Landuv e,

@ ¢ ® () @ 00 ® ()
@

@

@ @ O

Automata

Equivalence and minimization

Minimality and DFA

* There can be many equivalent DFA

a, b o b

* A sureway method for minimality is to use =;

* We can also use partition refining methods to find
equivalent states in a DFA

Minimization = Equivalence

* Minimal DFA = we have a canonical DFA for each
rational language (up-to naming of the states)

* Hence, to test if two NFA <A and B are equivalent
(they accept the same language), we can just test:

min(det(cﬁl)) =’ min(det(B))

* also work with regex |

Minimizing a DFA

* We want to find equivalent states, =
p = g meaning A(p) = A(q)

* We have two necessary conditions
1. If p = q and p afinal state (¢ € A(p)) then ¢ final
2. ifp= gthend(p,a) = 8(q,a) (same residuals)

Minimizing a DFA: |dea
We try to compute the equivalence classes for =

start: assume all states are equivalent

2. repeat: split a class when you find two states with
different transitions (up-to =)

3. end: until we rich a fix point

= all the states in the same partition are
non distinguishable

Minimization: example

This automaton is deterministic

states: {0, 1, 2, 3, 4, 5}

Minimization: example

states : {0, 1, 2, 3, 4, 5}

we have {0, 3} finals and {1, 2,4, 5} not finals
= we need to split the initial partition in two.

Minimization: example

states: {0,3} {1, 2, 4, 5} (2 partitions)

Minimization: example

states: {0,3} {1, 2, 4, 5}

a a b
0 — mand1l— m, same for — : OK

b b
2— mand5— m, but 1,4 block :need to split

Minimization: example

states: {0,3} {1, 4} {2, 5} (3 partitions)

we have no more partitions to split

Minimization: example

states: {0,3} {1, 4} {2, 5}

we obtain the minimal DFA by fusing states in the
same partition together

Minimization: Hopcroft

* This algorithm is due to Hopcroft (1971)

* requires a complete automaton

* We start from the coarsest relation {Q} and stop
when there are no more partition to split = so we
split at most n times (n = |Q|)

this uses a coinductive proof principle.

e complexity is n |Z| logn

* There is another ~ algorithm due to Moore
* In each case, it requires to work on DFA

Example

Example: = between regexes

R, =(a+b)*
R, =(a+ b*)”"
R;=(a"+b.a”)"
*R,=(@a" +b)".a"

o . . . D(R(D(R(A))))
Minimization: Brzozowski

 Start from a DFA A that is complete

* Reverse A (take its mirror image)
* switch the direction of the “arcs”
* the result may not be deterministic

* Determize the result
* the result is a minimal DFA for L(A)

* Reverse the automata and determinize again

= produces a minimal automata equivalent to A

Equivalence between NFA

* Minimization is not a solution: too complex

* Finding a solution without determinization is
complex, but some recent advances: Raskin (2006),
Pous (2013)

Automata

Conclusion

What you should have learned

* There are different views to the same problem:
operational, declarative, denotational

* We can better understand a problem when we
have different ways to look at it

e C.S. problems can (sometimes) be answered using
simple abstractions (discrete maths) and lead to
interesting questions about complexity

= what are the limits ?
* It has applications in practice, ...

... Or not

stackoverflow Products Customers Use cases Why does ab (Cd + C)*d
Home Why “ab(cd|c)*d” matches “abcdcdd” matCheS a b C d C d d

PUBLIC completely but “ab(c|cd)*d” does not matct

© stackovefiow | that? Whereas they're like each other com p I ete Iy
Tags Asked 21 days ago Active 18 days ago Viewed 123 times
Users
Jobs | tried this regex:

ab(cd|c)*d

TEAMS Whotztis?| D
o First 10 Free in the regex101 and RegExr websites. It matched this text completely B u t Clb (C + Cd) * d
matchesa bhcdcdd

Now let's swap "ed™ and "¢" in the regex:

This is a problem/question about ambiguity

Languages and
complexity

Some complexity theory

Languages

* (Formal) Languages are subsets of X*
* this is a very general definition

* we have concentrated on regular languages, but not all
languages are regular

* Regular/Rational languages = a class of languages
with good properties
* multiple (unrelated!) ways to define regularity
e closed by various operations: +, X, =, N, %, ., 7, ..
* many
* a “meaningful” , REG

Languages: questions

* What are some examples of
?

* What do you mean by
languages

e Can we define classes that are
than REG ?

and

of a set of

, OF

Languages: hierarchy

P

in between ?

Recursively

REG Enumerable

even simpler ?

Languages: problems

* We have often tried to prove whether two regex /
FSA “are the same”

* A more basic question if L, € Lp7?

Languages: problems

There are simpler questions:
isagivenworduin L, ?
isittruethat L, =07
does L, contains ¥ many words ?
does L, =X*7?

* Good news: almost all problems of interest are
decidable in REG

REG: complexity

Membership problem: u € L, ?

func member(u []byte) bool {
st := Qo
for i = 0; i < len(u); i++ {
st = delta(st, u[i])
}

return isfinal(st)

¥

We can test membership using a “machine” that has
one register (storing the current state) and a table for

storing 6 and F

REG: complexity of membership

Assume A is a DFA with n states.

We can test membership using a
“machine” that has

(storing the current state) and a
table for

Hence problem is in DLOGSPACE (also called L)

REG: complexity of membership

Membership for DFA is in DLOGSPACE-c

Membership for NFA is in NLOGSPACE (L =’ NL)
= membership for regex

Same complexity than deciding whether there exists
a path between given vertices in a directed graph

Considered feasible

Complexity

e Emptiness: £L =’ @
is in NLOGSPACE-c for both NFA and DFA

» Equivalence: £; =’ L,
is PSPACE-c for DFA, NFA and regex

Suspected infeasible

Languages hierarchy: star-free

star free languages =
corresponds to
generalized regex (é)
without *

e example: 0aa0
e count.-ex.: (aa)”

