
Rational Languages
reminder

Equivalent characterization

For a language ℒ, the following conditions are
equivalent:

1. ℒ is denoted by a regex

2. ℒ is acceptable by a (finite) DFA

3. ℒ is acceptable by a (finite) NFA

4. the relation ≡ℒ is of finite index

5. ℒ is generated by a right-linear grammar

Equivalent characterizations

ℒ is denoted
by a regex

ℒ is
acceptable by
a (finite) DFA

ℒ is
acceptable by
a (finite) NFA

the relation
≡ℒ is of finite

index

Equivalent characterizations

ℒ is denoted
by a regex

ℒ is
acceptable by
a (finite) NFA

ℒ is
acceptable by
a (finite) DFA

relation ≡ℒ is
of finite index

(1) Determinization
(possible blow-up)

(3) syntax directed
construction (e.g.
Thompson’ s)
(4) use of derivatives
(result is DFA)

(3)

(4)

relation between ≡
and states in the

automaton

⊂

(5) relation
between ≡ and

residuals (𝑢−1 ℒ)

(2)

(2) Arden’s lemma
(possible blow-up)

Application of Myhill-Nerode th.

Are those languages rational ?

1. 𝑎𝑛𝑏𝑛 𝑛 ≥ 0 }

2. 𝑎𝑛𝑏𝑛 𝑛 < 1 000 000 }

3. 𝑎𝑛𝑏𝑚 𝑛,𝑚 ≥ 0 }

4. 𝑎𝑛𝑏𝑚 𝑛 +𝑚 ≡ 0 [5] }

5. Dyck languages, containing (well-parenthesized)
words of the form 𝜖, 𝑎 ത𝑎, 𝑎 ത𝑎 𝑎 ത𝑎, 𝑎 𝑎 ത𝑎 ത𝑎, …
if 𝑢, 𝑣 ∈ ℒ then 𝑎 𝑢 ത𝑎 ∈ ℒ et 𝑢 𝑣 ∈ ℒ

imagine that 𝑎 = ′(′ and ത𝑎 = ′)′

Dyck languages

Dyck languages ≡ containing (well-parenthesized)
words of the form 𝜖, 𝑎 ത𝑎, 𝑎 ത𝑎 𝑎 ത𝑎, 𝑎 𝑎 ത𝑎 ത𝑎, …

Imagine that 𝑎 = ′(′ and ത𝑎 = ′)′

words of the form 𝜖, (), ()(), (()), …

Equivalently: 𝑢, 𝑣 ∈ ℒ ⇒ 𝑎 𝑢 ത𝑎 ∈ ℒ and 𝑢 𝑣 ∈ ℒ

𝜖 () ()() (())

Automata
Equivalence and minimization

Minimality and DFA

• There can be many equivalent DFA

• A sureway method for minimality is to use ≡𝐿

• We can also use partition refining methods to find
equivalent states in a DFA

Minimization ≡ Equivalence

• Minimal DFA ⇒ we have a canonical DFA for each
rational language (up-to naming of the states)

• Hence, to test if two NFA 𝒜 and ℬ are equivalent
(they accept the same language), we can just test:

min det 𝒜 =? min det ℬ

• also work with regex !

Minimizing a DFA

• We want to find equivalent states, ≡

𝑝 ≡ 𝑞 meaning 𝒜 𝑝 = 𝒜 𝑞

• We have two necessary conditions
1. If 𝑝 ≡ 𝑞 and 𝑝 a final state (𝜖 ∈ 𝒜(𝑝)) then 𝑞 final

2. if 𝑝 ≡ 𝑞 then 𝛿 𝑝, 𝑎 ≡ 𝛿 𝑞, 𝑎 (same residuals)

Minimizing a DFA: Idea

We try to compute the equivalence classes for ≡

1. start: assume all states are equivalent

2. repeat: split a class when you find two states with
different transitions (up-to ≡)

3. end: until we rich a fix point

⇒ all the states in the same partition are

non distinguishable

Minimization: example

This automaton is deterministic

states: {0, 1, 2, 3, 4, 5}

Minimization: example

states : {0, 1, 2, 3, 4, 5}

we have {0, 3} finals and {1, 2, 4, 5} not finals

⇒ we need to split the initial partition in two.

Minimization: example

states: {0, 3} {1, 2, 4, 5} (2 partitions)

Minimization: example

states: {0, 3} {1, 2, 4, 5}

0
a
∎ and 1

a
∎, same for

b
: OK

2
b

∎ and 5
b

∎, but 1, 4 block : need to split ∎

Minimization: example

states: {0, 3} {1, 4} {2, 5} (3 partitions)

we have no more partitions to split

Minimization: example

states: {0, 3} {1, 4} {2, 5}

we obtain the minimal DFA by fusing states in the
same partition together

Minimization: Hopcroft

• This algorithm is due to Hopcroft (1971)
• requires a complete automaton

• We start from the coarsest relation {𝑄} and stop
when there are no more partition to split ⇒ so we
split at most 𝑛 times (𝑛 = |𝑄|)

this uses a coinductive proof principle.

• complexity is 𝑛 Σ log 𝑛

• There is another ∼ algorithm due to Moore

• In each case, it requires to work on DFA

Example

Example: ≡ between regexes

• 𝑅1 = 𝑎 + 𝑏 ⋆

• 𝑅2 = 𝑎⋆ + 𝑏⋆ ⋆

• 𝑅3 = 𝑎⋆ + 𝑏. 𝑎⋆ ⋆

• 𝑅4 = 𝑎⋆ + 𝑏 ⋆. 𝑎⋆

Minimization: Brzozowski

• Start from a DFA 𝒜 that is complete

• Reverse 𝒜 (take its mirror image)
• switch the direction of the “arcs”

• the result may not be deterministic

• Determize the result
• the result is a minimal DFA for ෫ℒ(𝒜)

• Reverse the automata and determinize again

⇒ produces a minimal automata equivalent to 𝒜

Equivalence between NFA

• Minimization is not a solution: too complex

• Finding a solution without determinization is
complex, but some recent advances: Raskin (2006),
Pous (2013)

Automata
Conclusion

What you should have learned

• There are different views to the same problem:
operational, declarative, denotational

• We can better understand a problem when we
have different ways to look at it

• C. S. problems can (sometimes) be answered using
simple abstractions (discrete maths) and lead to
interesting questions about complexity

⇒ what are the limits ?

• It has applications in practice, …

… or not

Why does 𝑎𝑏 𝑐𝑑 + 𝑐 ⋆𝑑
matches 𝑎 𝑏 𝑐 𝑑 𝑐 𝑑 𝑑
completely

But 𝑎𝑏 𝑐 + 𝑐𝑑 ⋆𝑑
matches 𝑎 𝑏 𝑐 𝑑 𝑐 𝑑 𝑑

This is a problem/question about ambiguity

Languages and
complexity
Some complexity theory

Languages

• (Formal) Languages are subsets of Σ⋆

• this is a very general definition

• we have concentrated on regular languages, but not all
languages are regular

• Regular/Rational languages ≡ a class of languages
with good properties
• multiple (unrelated!) ways to define regularity

• closed by various operations: +, ×, ÷, ∩, ⋆, ഥ. , ෥. , …

• many decidable properties

• a “meaningful” complexity class, REG

Languages: questions

• What are some examples of properties and
problems ?

• What do you mean by complexity class of a set of
languages

• Can we define classes that are simpler, or more
complex than REG ?

Languages: hierarchy

𝒫(Σ⋆)

in between ?

REG

even simpler ?

Recursively
Enumerable

REG

Languages: problems

• We have often tried to prove whether two regex /
FSA “are the same”

• A more basic question if containment : ℒ𝐴 ⊆
? ℒ𝐵 ?

Languages: problems

There are simpler questions:

membership: is a given word 𝑢 in ℒ𝐴 ?

emptiness: is it true that ℒ𝐴 = ∅ ?

does ℒ𝐴 contains ∞ly many words ?

universality: does ℒ𝐴 = Σ⋆ ?

• Good news: almost all problems of interest are
decidable in REG

REG: complexity

Membership problem: 𝑢 ∈ ℒ𝐴 ?

We can test membership using a “machine” that has
one register (storing the current state) and a table for
storing 𝛿 and 𝐹

func member(u []byte) bool {
st := q0
for i = 0; i < len(u); i++ {

st = delta(st, u[i])
}
return isfinal(st)

}

REG: complexity of membership

Assume 𝒜 is a DFA with 𝑛 states.

Hence problem is in DLOGSPACE (also called L)

log 𝑛 bits of
writable data

non-writable
data

We can test membership using a
“machine” that has one register
(storing the current state) and a
table for storing 𝛿 and 𝐹

REG: complexity of membership

Membership for DFA is in DLOGSPACE-c

Membership for NFA is in NLOGSPACE (L =? NL)

≡ membership for regex

Same complexity than deciding whether there exists
a path between given vertices in a directed graph

Considered feasible

Complexity

• Emptiness: ℒ =? ∅

is in NLOGSPACE-c for both NFA and DFA

• Equivalence: ℒ1 =
? ℒ2

is PSPACE-c for DFA, NFA and regex

Suspected infeasible

Languages hierarchy: star-free

star free languages ≡
corresponds to
generalized regex (ҧ𝑒)
without ⋆

• example: ഥ𝟎 𝑎 𝑎 ഥ𝟎

• count.-ex.: 𝑎𝑎 ⋆ REG

⋆-free

