
Automates et Langages

Reg. Exp. finite
automata

Grammars,
transformations

& pushdown
automata

rational
languages

2019—2020 http://homepages.laas.fr/dalzilio/courses/ag/

http://homepages.laas.fr/dalzilio/courses/mccourse/
http://homepages.laas.fr/dalzilio/courses/ag/

méta-blague

Automata
quick refresher + an application to string searching

String searching

Problem: find the occurrences of a given word (the
needle) inside a, usually much larger, text (the
haystack)

• a simple problem (linear complexity)

• an important problem, with many applications: log
analysis ; security ; DNA and protein sequences,
string mining

An instance of a more general problem ⇒ pattern
matching

String searching: 𝑂(𝑛)

func simple(word, text []byte) int {
for i = 0; i < len(text); i++ {

for j = 0; j < len(word); j++ {
if i+j == len(text) { return -1 }
if text[i+j] != pattern[j] { break }

}
return i }

}

word

text

✓ ✗✓

String searching: 𝑘 × 𝑛

a a a a a a a a a a a a a a a c

a a c

i

j

Σ = 𝐴, 𝐶, 𝐺, 𝑇
We are in a case where the constants are
important; two 𝑂(𝑛) algorithms are not
equivalent.
Can we do it in time 𝑛 ?

✓ ✗✓

Idea: use a DFA

• Imagine we want to match the string 𝑎 𝑏 𝑎 𝑏

• We want to match every possible occurrences

here [^] means \Sigma (i.e. Σ ∖ ∅)

Idea: use a DFA

• Imagine we want to match the string 𝑎 𝑏 𝑎 𝑏

• We want to match every possible occurrences

Drawbacks:
• are we sure to match all occurrences? Imagine the

haystack 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 (that has 2 occurrences)

• non-deterministic ⇒ we need to use “4 registers” (not
optimal !?) or to use backtracking (not practical)

here [^] means Σ (i.e. Σ ∖ ∅)

Déterminization

det(𝒜) est un tuple (𝑄′, Σ, 𝛿′, 𝑞𝐼
′, 𝐹′) où :

• 𝑄′ = 2𝑄 = 𝒫(𝑄) (powerset)

• Σ = même alphabet que 𝒜

• 𝑞′𝐼 = 𝜖𝐹(𝐼)

• 𝐹′ = 𝑆 𝑆 ∩ 𝐹 ≠ ∅ }

• 𝛿′ ∈ 𝑄′ × Σ → 𝑄′: fonction de transition

Idea: determinization

preprocessing time in 𝑘. |Σ|

String matching: an observation

when we “fail” to match the next symbol, we do not
always need to start over

a a b a b b b a b a a b a

a b a

i

b

a b a b

…

i+3

j==0 j:=1

✓ ✗✓ ✓

✓

j==2

String matching: an observation

• When matching fails at position 𝑗, it is enough to
remember the longest prefix of word that is a suffix
of word[0..j]

𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑐 𝑎

𝑎 𝑏 𝑎 𝑏 𝑎

𝑏 𝑐 𝑎

prefix

suffix

String matching: an observation

• When matching fails at position 𝑗, it is enough to
remember the longest prefix of word that is a suffix
of word[0..j]

a a b a b a b a b c b b a

a b a b

…

j==4

✓ ✓✓ ✓

b

a c a

✓ ✗

a b a b

✓ ✓ ✓

a c a

j==2

We keep the length of
the prefix in a table, 𝜋

String matching: an observation

• When matching fails at position 𝑗, it is enough to
remember the longest prefix of word that is a suffix
of word[0..j]

if we have already matched 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 and fail at
matching the next 𝑎 (when j==6), the next “possibly
useful” shift is j==4

𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑐 𝑎

0 0 1 2 3 4 5 6 0 1𝜋

word

String matching: an observation

• When matching fails at position 𝑗, it is enough to
remember the longest prefix of word that is a suffix
of word[0..j]

𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑐 𝑎

0 0 1 2 3 4 5 6 0 1𝜋

word

𝜋 6 = 4𝑎 𝑏 𝑎 𝑏 𝑎

𝜋 4 = 2𝑎 𝑏 𝑎
𝜋 2 = 0𝑎

𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑑

String matching

• This approach ≡ Knuth-Morris-Pratt algorithm
(1970)

• Other algorithms use hashing ⇒ Karp
• good solution for approx./randomized pattern matching

• A state of the art algorithm is Boyer-Moore (1977)
• scans the needle from right → left
• part of the C++ STL, still used in grep, …

• Aho–Corasick algorithm
• search multiple strings: grep -F
• “[…] constructs a finite-state machine that resembles a

trie with additional links between internal nodes.”

Reg. Exp.

Regular Expressions and
Rational Languages

finite
automata

Grammars,
transformations

& pushdown
automata

rational
languages

http://homepages.laas.fr/dalzilio/courses/ag/ 2019—2020

http://homepages.laas.fr/dalzilio/courses/mccourse/
http://homepages.laas.fr/dalzilio/courses/ag/

Languages
quick refresher on words and languages

Monoid Σ⋆

• a word 𝑤 is a sequence of symbols in Σ

• we can concatenate two words 𝑤1. 𝑤2

• |𝑤| is the length of 𝑤

• 𝜖 is the empty sequence, 𝜖 = 0
𝜖 is the identity element, 𝑤. 𝜖 = 𝜖.𝑤 = 𝑤

• (Σ⋆, . , 𝜖) is the free monoid of Σ

• ⋆ is often referred to as the Kleene star

Properties of Σ⋆ (ex.)

When we have a total order between elements of Σ,
(say 𝑎 ≤ 𝑏 ≤ …), we obtain a (lexicographic) total
order on Σ⋆, e.g. 𝜖 ≤ 𝑎 𝑎 𝑏 ≤ 𝑎 𝑏

𝑢 is a prefix of 𝑤 if there is 𝑣 such that 𝑢 𝑣 = 𝑤

Likewise, 𝑣 is said to be a suffix of 𝑤

We can denote* the prefix order 𝑢 ⊑ 𝑤

Lemma (ex.): if 𝑢 ⊑ 𝑤 and 𝑣 ⊑ 𝑤 (𝑢 et 𝑣 are both
prefixes of 𝑤), then 𝑢 ⊑ 𝑣 iff u ≤ 𝑣 .

[*]: no need to order Σ

Languages over Σ

Languages are subsets of Σ⋆

Some examples of languages:
∅ also denoted 0

{ 𝜖 } also denoted Λ or 1

{ 𝑎 } also denoted 𝑎

Natural operations between languages
union: ℒ1 + ℒ2
concatenation: ℒ1. ℒ2 = 𝑢1 𝑢2 𝑢1 ∈ ℒ1, 𝑢2 ∈ ℒ2 }

exponentiation: ℒ𝑛 = 𝑢1… 𝑢𝑛 𝑢𝑖 ∈ ℒ }

ℒ0 = 𝟏

Kleene star: ℒ⋆ = 𝑛≥0ℒڂ
𝑛

Languages over Σ: algebraic laws

∅ also denoted 𝟎

{ 𝜖 } also denoted Λ or 𝟏

𝑎 also denoted 𝑎

ℒ + 𝟎 = 𝟎 + ℒ = ℒ

ℒ . 𝟏 = 𝟏 . ℒ = ℒ

𝑎⋆ = 𝟏 + 𝑎 . 𝑎⋆ = 𝜖 + 𝑎 + 𝑎𝑎 + …

ℒ . 𝟎 = 𝟎 . ℒ = 𝟎

(1 + ℒ)⋆= ℒ⋆

Languages over Σ: algebraic laws

ℒ + ℒ = ℒ

(ℒ1 + ℒ2). ℒ3 = (ℒ1. ℒ3) + (ℒ2. ℒ3)

ℒ⋆
⋆
𝑎 = ℒ⋆

…

Languages: other operations

intersection: ℒ1 ∩ ℒ2
complement: ҧℒ = Σ ∖ ℒ

mirror image: ෩ℒ = 𝑢 𝑢 ∈ ℒ }

residual: 𝑢−1ℒ = 𝑣 𝑢. 𝑣 ∈ ℒ }

(𝑐𝑜𝑛)−1 . ℒ

The notion of residuals is very
important to understand the
power of DFA.

What are we proving today ?

Reg.
Exp

FSA

Σ⋆

languages

Regular Expressions
Regex 101

Some people, when confronted with a problem,
think "I know, I'll use regular expressions." Now
they have two problems.

alt.religion.emacs

https://groups.google.com/groups?selm=33F0C496.370D7C45%40netscape.com

Regular Expression

A regular expression (regex) is either:

• the constant ∅ (matching nothing)

• the constant Λ (matching the empty word)

• a symbol 𝑎 in Σ

• a sequential composition: 𝑅1 𝑅2
• a union: 𝑅1 + 𝑅2
• a repetition: 𝑅⋆

𝑅1, 𝑅2 two regexes

Regular Expression

It is an expression built from the syntax:

Example: a*b + b a

𝑅, 𝑅1, 𝑅2, … := 0

| 1

| 𝑎

| 𝑅1 . 𝑅2
| 𝑅1 + 𝑅2
| 𝑅1

*

Regular Expression: notations

• we use indifferently + and | for choice

• we simply write 𝑅1𝑅2 instead of 𝑅1. 𝑅2
• [abc] means 𝑎 + 𝑏 + 𝑐

• [a-zA-Z] for range of symbols

• [^ab] every symbol but 𝑎 or 𝑏

• [^] every symbol in Σ

• 𝑅+ stands for 𝑅. 𝑅⋆ (at least one 𝑅)

• 𝑅? stands for 𝜖 + 𝑅 (zero or one occ.)

“syntactic sugar”

Regex Crosswords

You should all know about regular expression by
now, but this is a good opportunity for a refresher

https://regexcrossword.com/

https://regexcrossword.com/

Regex Golf

the expression:

/bu|[rn]t|[coy]e|[mtg]a|j|iso|n[hl]|

[ae]d|lev|sh|[lnd]i|[po]o|ls/

matches the last names of elected US presidents but not
their opponents

XKCD #1313

Regex Golf

Regex /m⎵|⎵ [tn]|b/ separates these two lists

XKCD #1313

The Motion Picture
The Wrath of Khan
The Search For Spock
The Voyage Home
The Final Frontier
The Undiscovered Country

The Phantom Menace
Attack of the Clones
Revenge of the Sith
A New Hope
The Empire Strikes Back
Return of the Jedi

/m⎵/
/⎵t/
/⎵t/
/⎵n/
/b/
/⎵t/

Regular Expression: semantics

A regex 𝑒 defines a language ℒ(𝑒) over Σ⋆ with the
following interpretation:

ℒ 𝑅1 𝑅2 = ℒ 𝑅1 . ℒ 𝑅2
ℒ 𝑅1 + 𝑅2 = ℒ 𝑅1 ∪ ℒ 𝑅2
ℒ 𝑅⋆ = ℒ 𝑅 ⋆

ℒ 𝟎 = ∅
ℒ 𝟏 = Λ
ℒ 𝑎 = { 𝑎 }

What are we proving next ?

Reg.
Exp

FSA

Σ⋆

languages

Regex

DFA

∅

DFA ⊆ Regex

NFA ⇒ Regex
sémantique

Intuition

• Call 𝒜(𝑖, 𝑗) the language of words recognized by 𝒜
when starting in state 𝑖 and ending in 𝑗

• Call 𝒜(𝑖) the language of words recognized by 𝒜 if
𝑖 was the initial state

• Then: ℒ 𝒜 = 𝒜(𝑞𝑖)

𝒜(𝑖) = ራ

𝑞𝑓 ∈𝐹

𝒜(𝑖, 𝑞𝑓)

Intuition: matrix format

$ 0 1 2 3

$ 𝜖 T - - -

0 - 𝜖 𝑎, 𝑏 - -

1 T - 𝜖 𝑏 -

2 T - 𝑎, 𝑏 𝜖, 𝑏 𝑏

3 - - - - 𝜖, 𝑎

× is concatenation

+ is set union (∪)

⋆ is transitive closure

Intuition: matrix format

words “accepted” starting from state 𝑖,
ending in 𝑗, in one step (𝑤 = 1)𝒜 𝑖, 𝑗 =

Intuition: “linear algebra”

the 𝑋𝑖’s are the words “accepted”
starting from state 𝑖.

the result in 𝑋𝑖 is the set 𝒜(𝑖)
defined before.

we have 𝜖 in 𝑋𝑖 iff state 𝑖 is final.

solution to
𝑋 = 𝟏𝐹 +𝒜.𝑋

⇒

Arden’s rule

The solution is unique as soon as 𝜖 ∉ 𝐴

This can be extended to sets of equations of the form

𝑋𝑖 = 𝐴𝑖,1. 𝑋1 + …+ 𝐴𝑖,𝑛. 𝑋𝑛 + 𝐵

Theorem: the language 𝐴⋆. 𝐵 is the smallest
language that is a solution for 𝑋 in the (linear)
equation:

𝑋 = 𝐴. 𝑋 + 𝐵

From NFA to Regex

• Use one variable 𝑋𝑖 for every state 𝑖 ∈ 𝑄

• For every transition 𝛿 𝑖, 𝑎 = 𝑗 add the constraint
𝑋𝑖 = 𝑎. 𝑋𝑗 + 𝑋𝑖

• For every state 𝑖 ∈ 𝐹 add the constraint
𝑋𝑖 = 𝑋𝑖 + Λ

• Solve for 𝑋

we can make use of simplifications in order to
have one occurrence of each 𝑋𝑖 as a lhs, e.g.
𝑋 = 𝑋 + 𝑋, or 𝑅. 𝑋 + 𝑅′. 𝑋 = 𝑅 + 𝑅′ . 𝑋, etc.

From NFA to Regex

𝑋0 = 𝑎. 𝑋0 + 𝑏. 𝑋1
𝑋1 = 𝑏. 𝑋1 + 𝑎 𝑋2 + Λ

𝑋2 = (𝑎 + 𝑏). 𝑋1

From NFA to Regex

𝑋0 = 𝑎. 𝑋0 + 𝑏. 𝑋1
𝑋1 = 𝑏. 𝑋1 + 𝑎 𝑋2 + Λ

𝑋2 = (𝑎 + 𝑏). 𝑋1

From NFA to Regex

𝑋0 = 𝑎. 𝑋0 + 𝑏. 𝑋1
𝑋1 = 𝑏. 𝑋1 + 𝑎 𝑋2 + Λ

𝑋2 = (𝑎 + 𝑏). 𝑋1

𝑋0 = 𝑎. 𝑋0 + 𝑏. 𝑋1
𝑋1 = 𝑏. 𝑋1 + 𝑎(𝑎 + 𝑏). 𝑋1 + Λ = 𝑅. 𝑋1 + Λ

𝑋2 = (𝑎 + 𝑏). 𝑋1

⇒

substitution + factorization

where 𝑅 = 𝑏 + 𝑎(𝑎 + 𝑏)

From NFA to Regex

𝑋0 = 𝑎. 𝑋0 + 𝑏. 𝑋1
𝑋1 = 𝑅. 𝑋1 + Λ

𝑋2 = (𝑎 + 𝑏). 𝑋1

⇒

Arden’s rule

where 𝑅 = 𝑏 + 𝑎(𝑎 + 𝑏)

𝑋0 = 𝑎. 𝑋0 + 𝑏. 𝑋1
𝑋1 = 𝑅⋆

𝑋2 = (𝑎 + 𝑏). 𝑋1

From NFA to Regex

⇒

substitution

where 𝑅 = 𝑏 + 𝑎(𝑎 + 𝑏)

𝑋0 = 𝑎. 𝑋0 + 𝑏. 𝑋1
𝑋1 = 𝑅⋆

𝑋2 = (𝑎 + 𝑏). 𝑋1

𝑋0 = 𝑎. 𝑋0 + 𝑏. 𝑅⋆

𝑋1 = 𝑅⋆

𝑋2 = (𝑎 + 𝑏). 𝑅⋆

From NFA to Regex

⇒

Arden’s rule

where 𝑅 = 𝑏 + 𝑎(𝑎 + 𝑏)

𝑋0 = 𝑎. 𝑋0 + 𝑏. 𝑅⋆

𝑋1 = 𝑅⋆

𝑋2 = (𝑎 + 𝑏). 𝑅⋆

𝑋0 = 𝑎⋆. 𝑏. (𝑏 + 𝑎(𝑎 + 𝑏))⋆

𝑋1 = 𝑅⋆

𝑋2 = (𝑎 + 𝑏). 𝑅⋆

From NFA to Regex: remarks

• This construction can be used on automata that are
not deterministic and/or not complete

• The size of the resulting regex depends on the
order in which we “eliminates” variables

• The resulting regex can be exponentially larger than
the size of 𝒜

but there are DFA with “small” regex: 𝑎|𝑏 ⋆. 𝑎. 𝑎|𝑏 𝑛

Theorem: we have NFA = DFA ⊆ Regex

no real applications in practice ?

What are we proving next ?

Reg.
Exp

FSA

Σ⋆

languages

DFA = Regex

Rational

Lang

Automata &
Closure properties

Product of automata

Given two NFA 𝒜1 and 𝒜2, we define the
product NFA 𝒜1 ×𝒜2 such that

• set of states 𝑄1 × 𝑄2

• initial state is (𝑞𝐼
1, 𝑞𝐼

2)

• final states 𝐹1 × 𝐹2

• 𝛿 𝑞1, 𝑞2 , 𝑎 = (𝑞1
′ , 𝑞2

′) whenever both
𝛿1 𝑞1, 𝑎 = 𝑞1

′ and 𝛿2 𝑞2, 𝑎 = 𝑞2
′

𝒜𝑖 = 𝑄𝑖 , Σ, 𝛿𝑖 , 𝑞𝐼
𝑖 , 𝐹𝑖 , 𝑖 ∈ 1. . 2

Product of automata

We can prove that a word 𝑢 is in ℒ(𝒜1 ×𝒜2) iff
both 𝑢 ∈ ℒ(𝒜1) and 𝑢 ∈ ℒ(𝒜2)

The definition still works when Σ1 ≠ Σ2 (⇒ synchronous product)

× =

This gives a simple construction for computing the “intersection” of two languages

Product of automata

Theorem: DFA are closed by intersection.

Therefore Regex are also closed by intersection.

not obvious by direct means !

Complement of an automata

Given a complete + deterministic FSA 𝒜, we can
define its complement 𝒜𝑐 such that

• set of states 𝑄

• initial states is 𝑞𝐼
• final states 𝑄 ∖ 𝐹

• same 𝛿

𝒜 = 𝑄, Σ, 𝛿, 𝑞𝐼 , 𝐹

Complement of an automata

We can prove that a word 𝑢 is in ℒ(𝒜) iff 𝑢 ∉ ℒ(𝒜𝑐)

This construction entails 𝒜 complete (easy) AND deterministic (costly)

The result is also complete and deterministic

𝒜 ≡ 𝑎 + 𝑏 𝒜𝑐 ≡ 𝜖 + 𝑐 + ^ . ^ ⋆

Complement of an automata

Theorem: DFA are closed by complement.

Therefore Regex are also closed by negation.

even less obvious by direct means !

Mirror image of automata

Given a complete DFA 𝒜, we can define its
mirror image ሚ𝒜 such that

• set of states 𝑄

• initial states is …

• final states …

• transition function is ሚ𝛿 such that …

𝒜 = 𝑄, Σ, 𝛿, 𝑞𝐼 , 𝐹left has an exercise !

Shuffle of two automata

• The shuffle of two words, 𝑢 # 𝑣, is the set of words
obtained by interlacing 𝑢 and 𝑣
≈ concatenation for concurrent activities

• The shuffle of two languages ℒ1 # ℒ2 is the set of
words 𝑢1 # 𝑢2 with 𝑢𝑖 ∈ ℒ𝑖 , 𝑖 ∈ 1. . 2

• “DFA” are closed by shuffle

left has an exercise !

Union of automata

Given two NFA 𝒜1 and 𝒜2, we define the union
NFA 𝒜1 ∪𝒜2 such that

• set of states 𝑄1 ∪ 𝑄2 ∪ { 𝑞𝐼 }

• initial state is 𝑞𝐼
• final states 𝐹1 ∪ 𝐹2
• 𝛿 𝑞, 𝑎 = 𝑞′ if 𝛿𝑖 𝑞, 𝑎 = 𝑞′ for some 𝑖 ∈ 1. . 2

• 𝛿 𝑞𝐼 , 𝜖 = 𝑞𝐼
1 and 𝛿 𝑞𝐼 , 𝜖 = 𝑞𝐼

2

𝒜𝑖 = 𝑄𝑖 , Σ, 𝛿𝑖 , 𝑞𝐼
𝑖 , 𝐹𝑖 , 𝑖 ∈ 1. . 2

Standard form

• We can always assume a unique initial state

• no incoming transition on the initial state

• a single final state and no back transitions from it

Union of automata

𝒜1

𝒜2

Union of automata

Theorem: DFA are closed by +.

Concatenation of automata

𝒜1 𝒜2

Concatenation of automata

Theorem: DFA are closed by concatenation.

Iteration of automata

𝒜

Iteration of automata

Theorem: DFA are closed by ⋆.

Closure properties

DFA are closed by . , +, and ⋆

There is a DFA for 𝟏

⇒ we prove that
Regex ⊆ DFA

There is a DFA for 𝟎

There is a DFA for 𝑎

What we have proved so far

Reg.
Exp

FSA

Σ⋆

languages

Rational

Lang

Regex ⇒ NFA

Regex ⇒ NFA: compositionally

• The previous results give a simple and
compositional method for computing a NFA
equivalent to a regex ⇒ Thompson’s method

• The result is in standard form

• If regex 𝑒 has 𝑐 concatenation and 𝑠 symbols then
the resulting NFA has 2 𝑠 − 𝑐 states

• Hence we can do pattern matching of 𝑒 on a word
𝑢 with “linear” complexity 𝑂(𝑒 2. 𝑢)

Regex ⇒ NFA: compositionally

• The resulting NFA has a lot of 𝜖-transitions ⇒ we
can do better (see Glushkov’s construction)

• The result is non-det. ⇒ we can do better

Thompson’s construction for 𝑎 + 𝑏 ⋆. 𝑎

Regex ⇒ DFA
Brzozowski derivative

Residuals and derivative

Residual: 𝑢−1ℒ = 𝑣 𝑢. 𝑣 ∈ ℒ }

we have 𝑎. 𝑢 −1ℒ = 𝑢−1(𝑎−1ℒ)

the language 𝑎−1ℒ is called a derivative

(𝑐𝑜𝑛)−1 . ℒ

think 𝑓 ∘ 𝑔 −1 = 𝑔−1 ∘ 𝑓−1

Intuition

• Take a complete DFA 𝒜 with 𝑛 states

• Each word 𝑢 leads to one state, say 𝑞𝑢, meaning
that 𝑞𝐼 , 𝑢 ⇒ 𝑞𝑢

• The set of words accepted by 𝒜 when starting from
𝑞𝑢, denoted 𝒜(𝑞𝑢) before, is exactly 𝑢−1ℒ(𝒜)

There is a mapping (surjection) from 𝑄
↦ the set of residuals of 𝒜

Intuition (2)

• The set of words accepted by 𝒜 when starting from
𝑞𝑢, denoted 𝒜(𝑞𝑢) before, is exactly 𝑢−1ℒ(𝒜)

• If 𝛿 𝑞, 𝑎 = 𝑞′ then: 𝒜 𝑞 = 𝑎.𝒜(𝑞′) and
𝒜 𝑞′ = 𝑎−1𝒜(𝑞)

There is a mapping (bijection) between the
transitions in 𝒜 ↦ and the set of residuals of 𝒜

the relation is ∝ in the case of a NFA

Derivates of a Regex

• We can define the notion of residuals/derivates
directly at the level of Regex

• D𝑎 𝑒 = regex matching the words in 𝑎−1ℒ(𝑒)

• D𝑎 𝑒 = “what we match in 𝑒 after reading an 𝑎”

Derivatives of a Regex

• D𝑎 𝟎 = 𝟎

• D𝑎 𝟏 = 𝟎

• D𝑎 a = 𝟏

• D𝑎 b = 𝟎

• D𝑎 e1 + e2 = D𝑎 e1) + D𝑎(e2

• D𝑎 e1. e2 = D𝑎 e1 . e2 + 𝜖? e1 . D𝑎(e2)

• D𝑎 e⋆ = D𝑎 e . e⋆

where 𝜖? e = 1 if 𝜖 ∈ e, otherwise 𝟎

Derivatives ≈ Differentials

• 𝑓 constant
𝑑𝑐

𝑑𝑥
= 𝟎

• 𝑓 linear
𝑑𝑓

𝑑𝑥
= 𝟏 or 𝟎 (think of 𝑓 𝑥, 𝑦 = 𝑦)

• addition:
𝑑(𝑓+𝑔)

𝑑𝑥
=

𝑑𝑓

𝑑𝑥
+

𝑑𝑔

𝑑𝑥

• product:
𝑑(𝑓.𝑔)

𝑑𝑥
=

𝑑𝑓

𝑑𝑥
. 𝑔 + 𝑓.

𝑑𝑔

𝑑𝑥

• iteration: 𝑓⋆ = 𝟏 + 𝑓. 𝑓⋆

Derivatives: rule for .

• What are the words, matched by 𝑒1. 𝑒2, starting
with an 𝑎 (this is D𝑎(𝑒1. 𝑒2)).

• These are words of the form 𝑢 = 𝑎 𝑣1 𝑣2
(1) 𝑒1matches 𝑎 (and the start of 𝑢)

𝑎 𝑣1 𝑣2
𝜖 𝑎

(2) 𝑒1 can match 𝜖, then we can also match 𝑢 with 𝑒2

𝑎 𝑣1 𝑣2
𝐷𝑎(𝑒1) 𝑒2𝑎

𝐷𝑎(𝑒2)

Derivatives: examples

• D𝑎 𝑎 + 𝑏 𝑛 = 𝑎 + 𝑏 𝑛−1 with 𝑛 ≥ 1

• D𝑎 𝑎 + 𝑏 ⋆ = 𝑎 + 𝑏 ⋆

• De Bruijn expression: 𝐽𝑛 = 𝑎 + 𝑏 ⋆𝑎 𝑎 + 𝑏 𝑛

• D𝑎 𝐽𝑛 = 𝐽𝑛 + 𝟏 .D𝑎 𝑎 𝑎 + 𝑏 𝑛

= 𝐽𝑛+ 𝑎 + 𝑏 𝑛

• D𝑏 𝐽𝑛 = 𝐽𝑛 + 𝟏 . D𝑏 𝑎 𝑎 + 𝑏 𝑛

= 𝐽𝑛 + 𝟎

Regex ⇒ DFA: Brzozowski

• We can build an DFA from 𝑒0 using derivatives

• We have an initial state ≡ 𝑒0
• We have one state for each residuals of 𝑒0

• there are finitely many (TBD)

• We have a transition from 𝑒𝑖 to 𝑒𝑗, labeled 𝑎,
whenever D𝑎 𝑒𝑖 = 𝑒𝑗
• ensure both deterministic + complete

• Final states are regex matching 𝜖 (i.e. 𝜖? 𝑒𝑖 = 𝟏)
• because we can stop there !

drawback: two derivatives may
correspond to = languages

Example

communication protocol:
𝑏 𝑡⋆ 𝑒 + 𝑏 + 𝑏 𝑡+ 𝑡 𝑡 𝑐 ⋆𝑒𝑠

Rational Languages
petit rappel sur le cours précédent

Language: ≡ modulo ℒ

residual: 𝑢−1ℒ = 𝑣 𝑢. 𝑣 ∈ ℒ }

Definition: We say that 𝑢 ≡𝐿 𝑣 if 𝑢 and 𝑣 have
the same residuals in ℒ.

𝑢 ≡𝐿 𝑣 iff 𝑢−1ℒ = 𝑣−1ℒ

Rational Languages

Definition: a language ℒ is said to be rational, ℒ ∈
𝑅𝑎𝑡, if ∃ 𝒜 such that ℒ = ℒ(𝒜)

Definition: a language ℒ is said to be rational, ℒ ∈
𝑅𝑎𝑡, if ∃ 𝑒 such that ℒ = ℒ(𝑒)

or equivalently

Rational Languages

Definition: a language ℒ is said to be rational, ℒ ∈
𝑅𝑎𝑡, if ∃ 𝒜 such that ℒ = ℒ(𝒜)

Theorem (Myhill-Nerode): a language ℒ is
rational iff the relation ≡𝐿 has a finite number of
equivalent classes.

moreover each class ↦ (bijectively) the states of the
minimal DFA accepting ℒ.

Why is it called rational

ൗ1 7 = 0 . 142857 142857 142...

𝑝

