
Reg. Exp.

Grammaires régulières
et algébriques

finite
automata

Grammars,
transformations

& pushdown
automata

rational
languages

http://homepages.laas.fr/dalzilio/courses/ag/ 2019—2020

http://homepages.laas.fr/dalzilio/courses/mccourse/
http://homepages.laas.fr/dalzilio/courses/ag/

Context-Free Grammars
grammaire algébrique [FR]

Context-Free Grammars (CFG)

A grammar ≡ a set of rules for generating the
elements of a language

We have already seen an example:

𝐷 → 𝜖
𝐷 → 𝑎 𝐷 𝑏
𝐷 → 𝐷 𝐷

𝑆 → 𝜖 | 𝑎 𝑆 𝑏 𝑆
or

equivalently

൝

word ∈ V𝑡 ∪ 𝑉𝑛𝑡
⋆

where we mix variables 𝑆, 𝐷, 𝑋, … (denoting sets)
and symbols 𝑎, 𝑏 𝜖, … (and hence “words”) in the
right of production rules

Context-Free Grammars (CFG)

𝐷 → 𝑎 𝐷 𝑏

This is a tool for accepting/generating words, based
on a notion of derivations (≠ runs)

𝑎 𝑎 𝑏 𝑎 𝑏 𝑏
is part of the
language

𝐷 → 𝑎 𝐷 𝑏

Context-Free Grammars (CFG)

𝐷 → 𝑎 𝐷 𝑏

→ 𝑎 𝐷 𝐷 𝑏

This is a tool for accepting/generating words, based
on a notion of derivations (≠ runs)

𝑎 𝑎 𝑏 𝑎 𝑏 𝑏
is part of the
language

𝐷 → 𝐷 𝐷

Context-Free Grammars (CFG)

𝐷 → 𝑎 𝐷 𝑏

→ 𝑎 𝐷 𝐷 𝑏

→ 𝑎 𝑎 𝐷 𝑏𝐷 𝑏

This is a tool for accepting/generating words, based
on a notion of derivations (≠ runs)

𝑎 𝑎 𝑏 𝑎 𝑏 𝑏
is part of the
language

𝐷 → 𝑎 𝐷 𝑏

Context-Free Grammars (CFG)

𝐷 → 𝑎 𝐷 𝑏

→ 𝑎 𝐷 𝐷 𝑏

→ 𝑎 𝑎 𝐷 𝑏𝐷 𝑏

→ 𝑎 𝑎 ҧ𝜖 𝑏 𝐷 𝑏

This is a tool for accepting/generating words, based
on a notion of derivations (≠ runs)

𝑎 𝑎 𝑏 𝑎 𝑏 𝑏
is part of the
language

𝐷 → 𝜖

Context-Free Grammars (CFG)

𝐷 → 𝑎 𝐷 𝑏

→ 𝑎 𝐷 𝐷 𝑏

→ 𝑎 𝑎 𝐷 𝑏𝐷 𝑏

→ 𝑎 𝑎 ҧ𝜖 𝑏 𝐷 𝑏

→ 𝑎 𝑎 𝑏 𝑎 𝐷 𝑏 𝑏

This is a tool for accepting/generating words, based
on a notion of derivations (≠ runs)

𝑎 𝑎 𝑏 𝑎 𝑏 𝑏
is part of the
language

𝐷 → 𝑎 𝐷 𝑏

Context-Free Grammars (CFG)

𝐷 → 𝑎 𝐷 𝑏

→ 𝑎 𝐷 𝐷 𝑏

→ 𝑎 𝑎 𝐷 𝑏𝐷 𝑏

→ 𝑎 𝑎 ҧ𝜖 𝑏 𝐷 𝑏

→ 𝑎 𝑎 𝑏 𝑎 𝐷 𝑏 𝑏

→ 𝑎 𝑎 𝑏 𝑎 𝑏 𝑏

This is a tool for accepting/generating words, based
on a notion of derivations (≠ runs)

𝑎 𝑎 𝑏 𝑎 𝑏 𝑏
is part of the
language

𝐷 → 𝜖

Context-Free Grammars (CFG)

• Automaton ⇒ define languages in an operational
way (they are machines, or programs)

• Regex ⇒ define languages in a declarative way
(they are like functions or logical formulas)

• Grammars ⇒ define languages in an inductive way

Context-Free Grammars (CFG)

𝐷 → 𝑎 𝐷 𝑏
→ 𝑎 𝐷 𝐷 𝑏

→ 𝑎 𝑎 𝐷 𝑏𝐷 𝑏
→ 𝑎 𝑎 ҧ𝜖 𝑏 𝐷 𝑏

→ 𝑎 𝑎 𝑏 𝑎 𝐷 𝑏 𝑏
→ 𝑎 𝑎 𝑏 𝑎 ҧ𝜖 𝑏 𝑏

This is best viewed as a derivation tree

𝐷

𝑎 𝐷 𝑏

𝐷 𝐷

𝑎 𝐷 𝑏 𝑎 𝐷 𝑏

𝜖 𝜖𝑎 𝑏𝑎 𝑏 𝑎 𝑏

Context-Free Grammars (CFG)

• a set of production rules of the form 𝑋 → 𝛼

• with non-terminal symbols (variables in 𝑉𝑛𝑡)

• and constants (in 𝑉𝑡, sometimes denoted Σ)

• an axiom: distinguished symbol in 𝑉𝑡
• where 𝛼, 𝛽, … are words in 𝑉𝑛𝑡 ∪ 𝑉𝑡

⋆

Non contextual grammars is the class obtained when
we allow production rules of the form

𝛼 → 𝛽

Top-Down Derivations

𝐷 → 𝑎 𝐷 𝑏
→ 𝑎 𝐷 𝐷 𝑏

→ 𝑎 𝑎 𝐷 𝑏𝐷 𝑏
→ 𝑎 𝑎 ҧ𝜖 𝑏 𝐷 𝑏

→ 𝑎 𝑎 𝑏 𝑎 𝐷 𝑏 𝑏
→ 𝑎 𝑎 𝑏 𝑎 ҧ𝜖 𝑏 𝑏

𝐷

𝑎 𝐷 𝑏

𝐷 𝐷

𝑎 𝐷 𝑏 𝑎 𝐷 𝑏

𝜖 𝜖𝑎 𝑏𝑎 𝑏 𝑎 𝑏

Top-Down + Leftmost ≡ here we started from the axiom (the
top) + we always decided to derive the leftmost non-terminal

Bottom-up Derivations

𝑎 𝑎 𝑏 𝑎 𝑏 𝑏

⇐ 𝑎 𝑎 𝐷 𝑏 𝑎 𝑏 𝑏

⇐ 𝑎 𝐷 𝑎 𝑏 𝑏

⇐ 𝑎 𝐷 𝑎 𝐷 𝑏 𝑏

⇐ 𝑎 𝐷 𝐷 𝑏

⇐ 𝑎 𝐷 𝑏

⇐ 𝐷

𝐷

𝑎 𝐷 𝑏

𝐷 𝐷

𝑎 𝐷 𝑏 𝑎 𝐷 𝑏

𝜖 𝜖𝑎 𝑏𝑎 𝑏 𝑎 𝑏

Bottom-Up ≡ rules are considered in the order of a reverse
rightmost derivation. In this case the tree is the same !

CFG and Automata

We already saw derivation rules before, but in a
simpler setting:

𝑋0 → 0 𝑋0
𝑋0 → 1 𝑋1
𝑋0 → Λ

𝑋1 → 0 𝑋2
𝑋1 → 1 𝑋0
𝑋2 → 0 𝑋1
𝑋2 → 1 𝑋2

Σ = { 0, 1 }

𝑋0 𝑋1 𝑋2 𝑋1 𝑋0

1 0 0 1 𝜖

Questions

• Why (do we define CFG) ?

• What is the “power” of CFG ?

• Is it possible to check whether a word is in a CFG ?

• What is the “accepting device” (operational model)
that corresponds to CFG ?

• Can we get rid of ambiguity ?

• Can we test if two grammars are ≡ ?

• …

Parsing (and lexing)
answering the “why ?”

Parsing

An important application of CFG theory is in parsing
programming language.

Human languages are a bit harder to parse … and too
ambiguous !

program
text

computer
(assembly)

(Extended) Backus-Naur form

A popular notation for CFG, used to define the syntax
of programs and expressions in C.S.

〈D〉 ::= “1” | … | “9”
〈DIGIT〉 ::= “0” | 〈D〉
〈INT〉 ::= 〈D〉 〈DIGIT〉*

extended means we can use ∗, + and ?

Another Example of BNF

Arithmetic expressions:

𝐸 → 𝐸 + 𝐸 | 𝐸 ∗ 𝐸 | 𝐸 | n

〈EXP〉 ::= 〈EXP〉 ‘+’ 〈EXP〉

| 〈EXP〉 ‘*’ 〈EXP〉

| ‘(‘ 〈EXP〉 ‘)’

| 〈NUM〉

How should we “parse” expression 1+2*3 ?

(1+2)*3 or 1+(2*3)

A Real Example of BNF

The Go Programming Language Specification

Parsing

An important application of CFG theory is in parsing
programming language.

program
text

computer
(assembly)

tokens
(stream)

Control Flow
Graph +

Typed IL + …

AST
(abstract

syntax tree)

lexical
analysis

syntax
analysis

semantics
analysis

code
generation

Lexing + Parsing

An important application of CFG theory is in parsing
programming language.

program
text

computer
(assembly)

tokens
(stream)

AST
(abstract

syntax tree)

lexical
analysis

syntax
analysis

LEX YACC

Lexing + Parsing

lexical analysis, lexing or tokenization is the process
of converting a sequence of symbols (characters) into
a sequence of tokens.

Parsing, or syntax analysis is the process of analyzing
a string of tokens conforming to the rules of a formal
grammar.

Example: C-like function

func member(u []byte) bool {
st := q0
for i = 0; i < len(u); i++ {
st = delta(st, u[i])
}
return isfinal(st)

}

Lexing

• keyword func, for, if, len, return

• identifiers member, delta, u, …

• separator }, (, ;

• operator +, <, =, ++

• literal 0, 1e999, "Hello, 世界"

• comment /* [\w]* */

Example func member(u []byte) bool {
st := q0
for i = 0; i < len(u); i++ {

st = delta(st, u[i])
}
return isfinal(st)

}

kw id type_ _type _id

func member bool()u []byte { …

Example func member(u []byte) bool {
st := q0
for i = 0; i < len(u); i++ {

st = delta(st, u[i])
}
return isfinal(st)

}

kw id type_ _type _id

func member bool()u []byte { …

FUNC ID(“member”) LPAR ID(“u”) …

Parsing

〈FUNDECL〉 ::= “func” 〈ID〉 “(” … “)” 〈BLOCK〉

〈BLOCK〉 ::= “{” 〈EXPR〉* “}”

〈EXPR〉 ::= “for” 〈FCOND〉 〈BLOCK〉 | …

〈ID〉 ::= [a-zA-Z][\w\d]*

func member(u []byte) bool {
st := q0
for i = 0; i < len(u); i++ {

st = delta(st, u[i])
}
return isfinal(st)

}

EBNF specification

Error detection

ID(“FUN”) ID(“member”) LPAR ID(“u”) …

FUNC ID(“member”) LPAR ID(“u”) …

It is generally during the syntactical analysis that we
can spot errors.
Here a typo in the use of a keyword, because we
have no rules of the form 〈EXPR〉 ::= 〈ID〉 〈ID〉.

Lexing + Parsing

• Lexing ≡ generate a sequence of lexemes

use of regex / finite state automata

• Parsing ≡ generate an Abstract Syntax Tree

use Context-Free Grammars / an

extension of automata

(non-deterministic pushdown automata)

AST func member(u []byte) bool {
st := q0
for i = 0; i < len(u); i++ {

st = delta(st, u[i])
}
return isfinal(st)

}
name body

seq

assign
seq

loop return

member

lhs expr

fundecl

Algebraic Grammars
formal definitions

Context-Free Grammar 𝒢

𝒢 is a tuple (Σ, V, 𝑃, 𝑆) where :
• Σ : alphabet, set of terminal symbols (also 𝑉𝑡)

• 𝑉 : set of non-terminal symbols (also 𝑉𝑛𝑡)

• 𝑆 ∈ 𝑉 axiom

• 𝑃 : set of production rules 𝑋 → 𝛼

Derivation

• We say that 𝛼 ⇒ 𝛽 in 𝒢 if we have:

𝛼 = 𝛼1 𝑋 𝛼2 and 𝑋 → 𝛾 ∈ 𝑃 and 𝛽 = 𝛼1 𝛾 𝛼2

• We use ⇒⋆ (or simply ⇒) for the reflexive,
transitive closure of ⇒

Language

The language of a grammar 𝒢 is the set of words

ℒ 𝒢 = 𝑤 ∈ Σ⋆ 𝑆 ⇒⋆ 𝑤 }

i.e. start with the axiom, ends only with symbols

Derivation tree of (Σ, 𝑉, 𝑃, 𝑆)

• a (finite, ordered) tree where nodes are decorated
with symbols in Σ ∪ 𝑉

• the root is decorated by 𝑆

• the leaves are in Σ

• a node "𝑋“ has children [𝛼1, … , 𝛼𝑛] iff we have rule
𝑋 → 𝛼1 … 𝛼𝑛 ∈ 𝑃 and 𝛼𝑖 ∈ Σ ∪ 𝑉 for all 𝑖 ∈ 1. . 𝑛

Derivation : example

Σ = 𝑐, +,∗, ,

𝑉 = { 𝐸, 𝐹, 𝑇 }

axiom: 𝐸

productions: 𝐸 → 𝐹

𝐸 → 𝐸 + 𝐹

𝐹 → 𝑇

𝐹 → 𝐹 ∗ 𝑇

𝑇 → 𝑐

𝑇 → (𝐸)

Ambiguity

𝐸 → 𝐸 + 𝐸

→ 1 + 𝐸

→ 1 + 𝐸 ∗ 𝐸

→ 1 + 2 ∗ 𝐸

→ 1 + 2 ∗ 3

〈EXP〉 ::= 〈EXP〉 + 〈EXP〉
| 〈EXP〉 * 〈EXP〉
| (〈EXP〉)
| 〈NUM〉

1 + 2 * 3 = 7

Ambiguity

𝐸 → 𝐸 ∗ 𝐸

→ 𝐸 ∗ 3

→ 𝐸 + 𝐸 ∗ 3

→ 𝐸 + 2 ∗ 3

→ 1 + 2 ∗ 3

〈EXP〉 ::= 〈EXP〉 + 〈EXP〉
| 〈EXP〉 * 〈EXP〉
| (〈EXP〉)
| 〈NUM〉

1 + 2 * 3 = 9

Ambiguity

• A grammar is ambiguous if we can accept (at least)
one word with (at least) two different derivations;
two different parse trees

• // with NFA and non-determinism

• For the same language, we can sometimes have
both ambiguous and non-ambiguous grammars;
but there are also ambiguous languages

Ambiguity

There are ways to transform grammars:

〈E〉 ::= 〈F〉 | 〈E〉 ‘+’ 〈F〉

〈F〉 ::= 〈T〉 | 〈F〉 ‘*’ 〈T〉

〈T〉 ::= 〈NUM〉 | ‘(‘ 〈E〉 ‘)’

How should we “parse” expression 1 + 2 * 3

Answer: (1 + 2) * 3 or 1 + (2 * 3)

Ambiguity

• A grammar 𝒢 is ambiguous if we can find a word
𝑤 ∈ ℒ 𝒢 that has two different derivation trees

The set of all derivations for an ambiguous word is called a
parse forest

• A (CFG) language is ambiguous if all the grammars
that generate it are ambiguous

Ambiguity

• Leftmost-derivation: we always apply rules on the
first non-terminal symbol (reading left-to-right)

• Rightmost-derivation: what do you think !

Theorem: A CFG is non-ambiguous iff there is a
single leftmost (≡ rightmost) derivation

Ambiguity

Theorem: A CFG is non-ambiguous iff there is a
single leftmost (≡ rightmost) derivation

Corollary: 𝒢 non-ambiguous ⇒ we can easily test if a
word 𝑤 is in ℒ 𝒢 (no backtracking)

In practice, there are two main sources of ambiguity

• we lack priorities between operators

• we lack associativity rules for the operators

Parsing CFG

Parser ≡ an algorithm to test whether 𝑤 ∈ ℒ(𝒢)

There are three main classes of parsers:

1. Parser that works regardless of the CFG (no
restrictions), e.g. Earley parser.

2. Top-down parser (for restricted class of non-
ambiguous grammars), e.g. LL parsers.

3. Bottom-up parser (for a ≠ class of non-
ambiguous grammars), e.g. LR parsers.

2 + 3 are mainly used for (prog. lang.) compilers

1 are mainly used for computational linguistics

Avoiding ambiguity

Ambiguity should be avoided:

⇒ we want to predict what non-terminal (𝑋 ∈ 𝑉𝑛𝑡) to
match, at any given moment, just by looking a few
symbols ahead

⇒ we want to find deterministic CFG

Un fortunately, the problem of deciding whether a
CFG is unambiguous is undecidable

⇒ we should restrict to sub-classes of grammars

⇒ examples are LL(k), LR(k), …

Questions

• Why ? ⇒ programming language !?

• Is it possible to check whether a word is in a CFG ?

• What is the “power” of CFG ?

• What is the “accepting device” (operational model)
that corresponds to CFG ?

• Can we get rid of ambiguity ?

• Can we test if two grammars are ≡ ?

• …

Chomsky hierarchy
Chomsky-Schützenberger hierarchy

Noam Chomsky (1928—)

Marcel-Paul Schützenberger (1920—1996)

Grammar—Type 0

No constraints on the left/right part of production rules

Language: Recursively enumerable (R.E.)

Automaton: Turing machines

𝛼 𝑋 𝛽 → 𝛾

go check Wikipedia !

Grammar—Type 1

soft constraint on the right part of production rules

Language: Context sensitive

Automaton: Linear Bounded Automaton

𝛼 𝑋 𝛽 → 𝛼 𝛾 𝛽

Example: Type1

This grammar generates
words of the form: 𝑎𝑛 𝑏𝑛 𝑐𝑛

𝑆 → 𝑎 𝐴 𝑏 𝑐

→ 𝑎 𝑏 𝐴 𝑐

→ 𝑎 𝑏 𝐵 𝑏 𝑐 𝑐

→ 𝑎 𝐵 𝑏 𝑏 𝑐𝑐

→ 𝑎 𝑎 𝐴 𝑏 𝑏 𝑐 𝑐

𝑆 → 𝑎 𝑏 𝑐 | 𝑎 𝐴 𝑏 𝑐

𝑆 → Λ

𝐴 𝑏 → 𝑏 𝐴

𝐴 𝑐 → 𝐵 𝑏 𝑐 𝑐

𝑏 𝐵 → 𝐵 𝑏

𝑎 𝐵 → 𝑎 𝑎 𝐴 | 𝑎 𝑎

Grammar—Type 2

left part of production rules is in 𝑉𝑛𝑡
Language: Context Free

Automaton: non-dét. Pushdown Automata

𝑋 → 𝛼

context-free implies that ℒ 𝛼 𝛽 = ℒ 𝛼 ℒ(𝛽)

Example: Type2

This grammar generates
palindromes (words that
read the same from left-right
and right-left)

𝑆 → 𝑎 ഥ𝑆 𝑎

→ 𝑎 𝑏 ഥ𝑆 𝑏 𝑎

→ 𝑎 𝑏 𝑏 ҧ𝑆 𝑏 𝑏 𝑎

→ 𝑎 𝑏 𝑏 𝑏 𝑏 𝑎

𝑆 → 𝑎

𝑆 → 𝑏

𝑆 → Λ

𝑆 → 𝑎 𝑆 𝑎

𝑆 → 𝑏 𝑆 𝑏

Grammar—Type 3

No constraints on the left/right part of production rules

Language: Regular

Automaton: DFA

𝑋 → 𝑎 𝑌

Type 3 grammars ≡
Rational Languages

Sketch of the proof: Type3 ⊆ REG

Build an automaton 𝒜 where

• states: 𝑄 = 𝑉𝑛𝑡 ∪ { 𝑞𝐹 }

• initial state: 𝑞𝐼 = 𝑆 (axiom)

• If 𝑋 → 𝑎 𝑌 then 𝛿 𝑋, 𝑎 = 𝑌

• If 𝑋 → 𝑎 then 𝛿 𝑋, 𝑎 = 𝑞𝐹
• If 𝑋 → 𝜖 then 𝛿 𝑋, 𝜖 = 𝑞𝐹
• final states: { 𝑞𝐹 }

We can build a run in 𝒜 from any derivation

Sketch of the proof: REG ⊆ Type3

Build a grammar from 𝒜 where

• 𝑉𝑛𝑡 = 𝑄 and 𝑉𝑡 = Σ

• axiom is 𝑞𝐼
• If 𝛿 𝑋, 𝑎 = 𝑌 then add 𝑋 → 𝑎 𝑌

• If 𝛿 𝑋, 𝑎 = 𝑌 and 𝑌 ∈ 𝐹 then add 𝑋 → 𝑎

We can build a run in 𝒜 from any derivation

Example

𝑆 → 𝑎 𝑆 𝑏 𝐸 Λ

𝐸 → 𝑏 𝐸 | Λ

This grammar generates words of the form 𝑎𝑛𝑏𝑚.

What about the Type-2 grammar:

𝑆 → 𝐴 𝐵

𝐴 → 𝑎 𝐴 | 𝐵

𝐵 → 𝐵 𝑏 𝐵 𝑏 𝑏 𝐵 Λ

Rewriting grammars
≡ operations that “preserve” the language of a grammar 𝒢

Notations

Without loss of generality, we can always write

production rules of the form 𝑋 → 𝛼 | 𝛽 as

“syntactic sugar” for the two rules:

𝑋 → 𝛼 and 𝑋 → 𝛽

Substitution

Assume all the production rules for 𝑋 in 𝒢 are

𝑋 → 𝛼1, …, 𝑋 → 𝛼𝑘

Then we can replace a production rule 𝑌 → 𝛽 𝑋 𝛾, in
𝒢, with the 𝑘 rules: 𝑌 → 𝛽 𝛼1 𝛾 , …, 𝑌 → 𝛽 𝛼𝑘 𝛾

𝑆 → 𝑎 𝑋 | 𝑐

𝑋 → 𝑌 𝑎 | Λ

𝑌 → 𝛼

⇛

𝑆 → 𝑎 𝑌 𝑎

𝑆 → 𝑎

𝑆 → Λ

…

Simplification

Assume it is not possible* to find a sequence of
reductions (from the axiom 𝑆) such that 𝑆 ⇒⋆ 𝛽 𝑋 𝛾

Then we can safely omit all the productions of the
form 𝑋 → 𝛼 from 𝒢

[*]: think reachability in a graph

𝑆 → 𝑎 𝑌 | Λ

𝑌 → 𝑎 𝑆

𝑋 → 𝑌 𝑌

𝑆 → 𝑎 𝑌 | Λ

𝑌 → 𝑎 𝑆

𝑋 → 𝑌 𝑌

⇛

Factorization

We can introduce new variables. For instance to
factorize common sub-terms

𝑋 → 𝛼 𝐴

𝑋 → 𝛼 𝐵
⇛

𝑋 → 𝛼 𝑌

𝑌 → 𝐴

𝑌 → 𝐵

Recursion elimination

Left recursion often poses problems for parsers, e.g.
it leads them into infinite recursion. Recursion can be
direct (e.g. 𝑋 → 𝑋 𝑋) or indirect.

Example: 𝑋 → 𝑌 and 𝑌 → 𝑋 𝑎

Recursion elimination

In the general case we have (where 𝛼𝑖 ≠ Λ and 𝛽𝑗
does not start with 𝑋)

Idea: introduce a “fresh” variable 𝑌 with the rules

𝑋 → 𝑋 𝛼1 … | 𝑋 𝛼𝑘 𝛽1 … 𝛽𝑛

𝑋 → 𝛽1 𝑌 … 𝛽𝑛 𝑌

𝑌 → 𝛼1 𝑌 … 𝛼𝑘 𝑌 | Λ

Left Recursion: example

Take the classical example of integer expressions

We obtain:

𝐸 → 𝐸 + 𝐸 | 𝑛

𝐸 → 𝑛 𝑌
𝑌 → + 𝐸 𝑌 | Λ

𝛼1 = + 𝐸
𝛽1 = 𝑛

𝐸 → 𝛽1 𝑌
𝑌 → 𝛼1 𝑌 | Λ

Questions

• Why ? ⇒ programming language !?

• Is it possible to check whether a word is in a CFG ?

• Can we build a “deterministic” parser ?

• What is the “accepting device” (operational model)
that corresponds to CFG ?

• Can we test if two grammars are ≡ ?

• …

LL grammars
recursive descent parsers

LL parsers

LL grammars are those than can be parsed using a LL
parser ⇒ parses by scanning the input from Left to
right and building a Leftmost derivation

They can be parsed by a (top-down) recursive
descent parser ; LL(k) grammars correspond to parser
that take their decision based on a look-ahead of 𝑘
symbols (and without backtracking)

We look at an example of LL(1) grammars next

LL parsers: example

1. 𝑆 → 𝑎 𝑆 𝑏 𝑇

2. 𝑆 → 𝑐 𝑇

3. 𝑆 → 𝑑

4. 𝑇 → 𝑎 𝑇

5. 𝑇 → 𝑏 𝑆

6. 𝑇 → 𝑐

𝑤 = 𝑎 𝑐 𝑐 𝑏 𝑏 𝑎 𝑑 𝑏 𝑐

𝑆 → 𝑎 ∘ 𝑆 𝑏 𝑇 (1)

LL parsers

1. 𝑆 → 𝑎 𝑆 𝑏 𝑇

2. 𝑆 → 𝑐 𝑇

3. 𝑆 → 𝑑

4. 𝑇 → 𝑎 𝑇

5. 𝑇 → 𝑏 𝑆

6. 𝑇 → 𝑐

𝑤 = 𝑎 𝑐 𝑐 𝑏 𝑏 𝑎 𝑑 𝑏 𝑐

𝑆 → 𝑎 ∘ 𝑆 𝑏 𝑇 (1)
→ 𝑎 𝑐 ∘ 𝑇 𝑏 𝑇 (2)
→ 𝑎 𝑐 𝑐 ∘ 𝑏 𝑇 (6)
→ 𝑎 𝑐 𝑐 𝑏 ∘ 𝑇
→ 𝑎 𝑐 𝑐 𝑏 𝑏 ∘ 𝑆 (5)
→ 𝑎 𝑐 𝑐 𝑏 𝑏 𝑎 ∘ 𝑆 𝑏 𝑇 (1)
→ 𝑎 𝑐 𝑐 𝑏 𝑏 𝑎 𝑑 ∘ 𝑏 𝑇 (3)
→ 𝑎 𝑐 𝑐 𝑏 𝑏 𝑎 𝑑 𝑏 ∘ 𝑇
→ 𝑎 𝑐 𝑐 𝑏 𝑏 𝑎 𝑑 𝑏 𝑐 ∘ 𝜖 (6)

Questions

• What is a suitable accepting device for this example ?

• How can I check that my grammar is LL(1) ?

• If it is not, is there a way to repair it ?

LL Parser

At each step we have a derivation of the form 𝑢 ∘ 𝛼
where 𝑢 is a prefix of 𝑤 of length 𝑖 (𝑢 = 𝑤[: 𝑖])

⇒ we match the suffix 𝑤[𝑖:] with 𝛼

We decide what rule to match by looking at the next
symbol (say 𝑤 𝑖 + 1 = 𝑎)

⇒ the choice should be unique, depending only

on the top symbol (𝑤 𝑖) and the start of 𝛼

⇒ we could encode this “ function” in a table

LL Parser

(SHIFT) 𝛼 = 𝑏 𝛾 and 𝑤[𝑖] = 𝑏

we try to match word 𝑤[𝑖 + 1:] with pattern 𝛾

(REDUCE) 𝛼 = 𝑋 𝛾

we need to match symbol 𝑎 with 𝑋 → 𝛽

we continue with 𝑤[𝑖:] and the pattern 𝛽 𝛾

(STOP) we matched the whole word and 𝛼 = 𝜖,

or when we have no rules to match (ERROR)

At each step, we try to match a suffix, 𝑤[𝑖:], with a pattern 𝛼

LL Parser: amelioration

To make sure we match the axiom, 𝑆, we add a new
symbol, $, and a new top-level axiom rule 𝑆′ → 𝑆 $

⇒ the initial pattern is 𝑆 $

Possible cases for errors are:

• we “shift” a bad symbol: 𝛼 = 𝑏 𝛾 and 𝑤 𝑖 ≠ 𝑏

• we reach the end of the input ($) and 𝛼 ≠ $

• we reach the end of the pattern 𝛼 = $ and 𝑤 𝑖 ≠ $

Parsing Table

To match a symbol 𝑎, and a non-terminal, 𝑋, to a rule,
𝑋 →𝛽, we assume that we computed a parsing table

𝑎 𝑏 𝑐 𝑑

𝑆 𝑎 𝑆 𝑏 𝑇 𝑐 𝑇 𝑑

𝑇 𝑎 𝑇 𝑏 𝑆 𝑐

𝑆′ → 𝑆 $
𝑆 → 𝑎 𝑆 𝑏 𝑇 𝑐 𝑇 𝑑
𝑇 → 𝑎 𝑇 𝑏 𝑆 𝑐

𝑎 𝑐 𝑐 𝑏 𝑎 𝑐 $ parse successful

𝑎 𝑎 𝑏 𝑐 𝑑 𝑑 𝑑 $ illegal input

𝑎 𝑎 𝑑 𝑐 𝑎 𝑎 𝑐 𝑐 $ illegal input

𝑎 𝑏 𝑐 𝑑

𝑆 𝑎 𝑆 𝑏 𝑇 𝑐 𝑇 𝑑

𝑇 𝑎 𝑇 𝑏 𝑆 𝑐

𝑆′ → 𝑆 $
𝑆 → 𝑎 𝑆 𝑏 𝑇 𝑐 𝑇 𝑑
𝑇 → 𝑎 𝑇 𝑏 𝑆 𝑐

Recursive descent parser

func member(u []byte) bool {
st, i := stack("S", "$"), 0
for {

if i == len(u) || len(stack) == 0 {
return false

}
𝛼 := stack.pop()
switch {
case 𝛼 == "$" && u[i] == "$":

return true
case 𝛼 == u[i]: i++
case 𝛼.(nterm):

stack := stack.push(reduce(𝛼, u[i]))
default : return false

} } }

LL grammars
building a parsing table

Questions

• What is a suitable accepting device for this example ?

→ How can I check that my grammar is LL(1) ?

• If it is not, is there a way to repair it ?

Building the parsing table

A grammar is LL

⟺ we can build a LL parser from it

⟺ we can build a (LL) parsing table

Next we show how to build this table by computing
three different relations: FIRST, NULL and FOLLOW

LL Parser: FIRST

To build a table, we need to know: what symbols can
“appear first”, at the beginning of a non-terminal 𝑋
and to which production 𝑋 → 𝛼 it belongs

E.g. we want to match 𝑎 𝑤 with pattern 𝑋 𝛾 and we
have a rule 𝑋 → 𝑎 𝑌

Also, we should not have 𝑋 → 𝑎 𝑌 and 𝑋 → 𝑎 𝑍

LL Parser: NULL

Therefore we should also know when a non-terminal
𝑋 is nullable, that is 𝑋 ⇒⋆ 𝜖

E.g. we want to match 𝑎 with pattern 𝑋 𝛾 and we are
in a situation where 𝑋 ⇒⋆ 𝜖

Also, we should not match symbol 𝑎 with 𝑍 when
𝑍 → 𝑋 𝑌 with 𝑋 → 𝑎 𝛾 | Λ and 𝑌 → 𝑎 𝛾′

LL Parser: FOLLOW

Meaning, we should know the symbols that can
follow a non-terminal 𝑋.

E.g. when we want to match symbol 𝑎 with pattern
𝑋 𝑌, a possible solution is that 𝑋 ⇒⋆ 𝜖 and 𝑌 ⇒⋆ 𝑎 𝛾

NULL, FIRST and FOLLOW

We have FIRST 𝛼 = 𝑏 ∈ Σ 𝛼 ⇒⋆ 𝑏 𝛾 }

We say that null(𝛼) when 𝛼 ⇒⋆ 𝜖

We have FOLLOW 𝑋 = 𝑎 ∈ Σ 𝑆 ⇒⋆ 𝛽 𝑋 𝑎 𝛾 }

Ambiguity ⇒

this is decidable

we should not find two rules
𝑋 → 𝛼 and 𝑋 → 𝛽 such that
FIRST 𝛼 ∩ FIRST 𝛽 ≠ ∅

a FIRST-FIRST conflict

Ambiguity revisited

Actually, we can prove that the grammar is LL(1)
when, for every non-terminal 𝑋 with productions
𝑋 → 𝛼1 … 𝛼𝑛, we have that:

For every pair 𝑋 → 𝛼 and 𝑋 → 𝛽 we have
FIRST 𝛼 ∩ FIRST 𝛽 = ∅

if NULL(𝑋) then FIRST 𝛼𝑖 ∩ FOLLOW 𝑋 = ∅

no FIRST-FIRST conflicts

no FIRST-FOLLOW conflicts

LL Parser: FIRST

We have FIRST 𝛼 = 𝑏 ∈ Σ 𝛼 ⇒⋆ 𝑏 𝛾 }

FIRST 𝜖 = ∅

FIRST 𝑎 = { 𝑎 }

FIRST 𝛼1 …𝛼𝑛 = 𝑖∈1..𝑛ڂ FIRST 𝛼𝑖 null 𝛼𝑗 , 𝑗 < 𝑖 }

Equivalently: FIRST is the smallest relation such that
𝑋 → 𝑌1 …𝑌𝑛 𝑍 𝛽 implies FIRST 𝑍 ⊆ FIRST(𝑋) when
𝑌1, … , 𝑌𝑛 are all nullable.

LL Parser: FOLLOW

We have FOLLOW 𝑋 = 𝑎 ∈ Σ 𝑆 ⇒⋆ 𝛽 𝑋 𝑎 𝛾 }

FOLLOW is the smallest relation such that:

𝐴 → 𝛼 𝑋 𝑌1 …𝑌𝑛 𝑍 𝛽 implies

FIRST 𝑍 ⊆ FOLLOW(𝑋) when 𝑌1, … , 𝑌𝑛 nullable.

𝐴 → 𝛼 𝑋 𝑌1 …𝑌𝑛 𝑍 implies

FOLLOW 𝐴 ⊆ FOLLOW(𝑋) when 𝑌1, … , 𝑌𝑛 nullable.

(and we assume FOLLOW 𝑆 ⊇ $)

Symboles Directeurs (SD)

Dans les notations utilisées à l’ENSEEIHT, on fait
usage de la notion de symbole directeur pour une
production 𝑋 → 𝛼.

SD 𝑋 → 𝛼 = FIRST(𝛼) si 𝛼 ≠ Λ

SD 𝑋 → Λ = FOLLOW(𝑋)

conflits LL ≡ le même symbole dans deux règles

SD 𝑋 → 𝛼 et SD 𝑋 → 𝛽

Symboles Directeurs (SD)

Avantage 1: un critère unique pour reconnaître
l’ambiguité d’une grammaire.

Avantage 2: si on veut matcher 𝑤[𝑖:] (avec symbole
de tête 𝑏) contre le non-terminal 𝑋; il suffit de choisir
l’unique production 𝑋 → 𝛼 telle que 𝑏 ∈ SD(𝑋 → 𝛼)

𝑏 𝑐 …

𝑋 𝛼 ∅ …

… … … …

𝑏 ∈ SD(𝑋 → 𝛼)

Example

𝑆 → 𝐴 𝐵 𝑆 | 𝑑

𝐴 → 𝐵 | 𝑎

𝐵 → 𝑐 | Λ

NULL FIRST FOLLOW

𝑆 no { 𝑎, 𝑐, 𝑑 } { $ }

𝐴 yes 𝑎, 𝑐 { 𝑎, 𝑐, 𝑑 }

𝐵 yes { 𝑐 } { 𝑎, 𝑐, 𝑑 }

Example

𝑆 → 𝐴 𝐵 𝑆 | 𝑑

𝐴 → 𝐵 | 𝑎

𝐵 → 𝑐 | Λ

NULL FIRST FOLLOW

𝑆 no { 𝑎, 𝑐, 𝑑 } { $ }

𝐴 yes 𝑎, 𝑐 { 𝑎, 𝑐, 𝑑 }

𝐵 yes { 𝑐 } { 𝑎, 𝑐, 𝑑 }

SD 𝑆 → 𝐴 𝐵 𝑆 ∩
SD 𝑆 → 𝑑 = 𝑑

FIRST-FIRST conflict

SD 𝐵 → 𝑐 ∩
SD 𝐵 → Λ = 𝑐

FIRST-FOLLOW conflict

Example

𝑆 → 𝑖 𝐸 𝑡 𝑆 𝑒 𝑆 | 𝑐

𝐸 → 𝑏

NULL FIRST FOLLOW

𝑆 no { 𝑖, 𝑐 } { 𝑒, $ }

𝐸 no 𝑏 { 𝑡 }

Example

𝑆′ → $

𝑆 → 𝑖 𝐸 𝑡 𝑆 𝑒 𝑆 | 𝑐

𝐸 → 𝑏

NULL FIRST FOLLOW

𝑆 no { 𝑖, 𝑐 } { 𝑒, $ }

𝐸 no 𝑏 { 𝑡 }

SD 𝑆 → 𝑖 𝐸 … = { 𝑖 }
SD 𝑆 → 𝑐 = { 𝑐 }
SD 𝐸 → 𝑏 = { 𝑏 }

Example

𝑆′ → $

𝑆 → 𝑖 𝐸 𝑡 𝑆 𝑒 𝑆 | 𝑐

𝐸 → 𝑏

SD 𝑆 → 𝑖 𝐸 … = { 𝑖 }
SD 𝑆 → 𝑐 = { 𝑐 }
SD 𝐸 → 𝑏 = { 𝑏 }

𝑤 = 𝑖 𝑏 𝑡 𝑐 𝑒 𝑐 $ 𝛾0 = 𝑆 $

𝑖 𝑡 𝑒 𝑐 𝑏

𝑆 𝑖 𝐸 𝑡 𝑆 𝑒 𝑆 𝑐

𝐸 𝑏

Example

𝑋 → 𝑌 𝑐 | 𝑎

𝑌 → 𝑏 𝑍 | Λ

𝑍 → Λ

NULL FIRST FOLLOW

𝑋

𝑌

𝑍

