Grammaires régulières et algébriques

http://homepages.laas.fr/dalzilio/courses/ag/

2019-2020

Context-Free Grammars

grammaire algébrique [FR]

A grammar \equiv a set of rules for generating the elements of a language

We have already seen an example:

$$D \rightarrow \epsilon$$

$$D \rightarrow a D b$$

$$equivalently$$

$$S \rightarrow \epsilon \mid a S b S$$

$$D \rightarrow D D$$

$$word \in (V_t \cup V_{nt})^*$$

$$S \rightarrow \epsilon \mid a S b S$$

where we mix variables S, D, X, ... (denoting sets) and symbols $a, b \in ...$ (and hence "words") in the right of production rules

This is a tool for accepting/generating words, based on a notion of *derivations* (\neq runs)

 $D \rightarrow \overline{a \ D \ b}$

a a b a b b is part of the language

 $D \rightarrow a D b$

This is a tool for accepting/generating words, based on a notion of *derivations* (\neq runs)

 $\begin{array}{c} D \to \overline{a \ D \ b} \\ \to \overline{a \ D \ D} \ b \end{array}$

a a b a b b is part of the language

 $D \rightarrow D D$

This is a tool for accepting/generating words, based on a notion of *derivations* (\neq runs)

 $\begin{array}{c} D \to \overline{a \ D \ b} \\ \to \overline{a \ D \ D} \ b \\ \to \overline{a \ D \ b} D \ b \end{array}$

a a b a b b is part of the language

 $D \rightarrow a D b$

This is a tool for accepting/generating words, based on a notion of *derivations* (\neq runs)

 $D \rightarrow \overline{a \ D \ b}$ $\rightarrow a \ \overline{D \ D} \ b$ $\rightarrow a \ \overline{a \ D \ b} D \ b$ $\rightarrow a \ \overline{a \ D \ b} D \ b$ $\rightarrow a \ \overline{a \ \overline{D} \ b} D \ b$

a a b a b b is part of the language

 $D \rightarrow \epsilon$

This is a tool for accepting/generating words, based on a notion of *derivations* (\neq runs)

 $D \rightarrow \overline{a \ D \ b}$ $\rightarrow a \overline{D \ D} \ b$ $\rightarrow a \overline{a \ D \ b} D \ b$ $\rightarrow a a \overline{e} \ b \ D \ b$ $\rightarrow a a b \overline{a \ D \ b} b$

a a b a b b is part of the language

 $D \rightarrow a D b$

This is a tool for accepting/generating words, based on a notion of *derivations* (\neq runs)

 $D \rightarrow a D b$ $\rightarrow a D D b$ $\rightarrow a a D b D b$ $\rightarrow a \ a \ \overline{\epsilon} \ b \ D \ b$ $\rightarrow a a b a D b b$ $\rightarrow a a b a b b$

a a b a b b is part of the language

 $D \rightarrow \epsilon$

- Automaton ⇒ define languages in an operational way (they are machines, or programs)
- Regex ⇒ define languages in a *declarative* way (they are like functions or logical formulas)
- Grammars \Rightarrow define languages in an *inductive* way

This is best viewed as a derivation tree

1) $D \rightarrow a D b$ $\rightarrow a D D b$ $\rightarrow a a D h D h$ $\rightarrow a \ a \ \overline{\epsilon} \ b \ D \ b$ D $\rightarrow a a b a D b b$ $\rightarrow a a b a \overline{\epsilon} b b$ $a a \epsilon b a \epsilon$ b h

- a set of *production rules* of the form $X \rightarrow \alpha$
- with *non-terminal symbols* (variables in V_{nt})
- and *constants* (in V_t , sometimes denoted Σ)
- an *axiom*: distinguished symbol in V_t
- where α, β, \dots are words in $(V_{nt} \cup V_t)^*$

Non contextual grammars is the class obtained when we allow production rules of the form

$$\alpha \rightarrow \beta$$

Top-Down Derivations

Top-Down + Leftmost \equiv here we started from the axiom (the top) + we always decided to derive the leftmost non-terminal

Bottom-up Derivations

a a b a b b $\Leftarrow a a D b a b b$ $\leftarrow a D a b b$ $\Leftarrow a D a D b b$ $\Leftarrow a D D b$ $\Leftarrow a D b$ $\Leftarrow D$

Bottom-Up \equiv rules are considered in the order of a *reverse* rightmost derivation. In this case the tree is the same !

CFG and Automata

We already saw derivation rules before, but in a simpler setting:

Questions

- Why (do we define CFG) ?
- What is the "power" of CFG ?
- Is it possible to check whether a word *is in* a CFG ?
- What is the "accepting device" (operational model) that corresponds to CFG ?
- Can we get rid of ambiguity ?
- Can we test if two grammars are \equiv ?

Parsing (and lexing)

answering the "why ?"

An important application of CFG theory is in *parsing* programming language.

Human languages are a bit harder to parse ... and too ambiguous !

(Extended) Backus-Naur form

A popular notation for CFG, used to define the syntax of programs and expressions in C.S.

extended means we can use *, + and ?

Another Example of BNF

Arithmetic expressions: $E \rightarrow E + E \mid E * E \mid (E) \mid n$ (EXP) ::= (EXP) '+' (EXP) $\mid \langle EXP \rangle$ '*' (EXP) $\mid \langle EXP \rangle$ ''' (EXP) $\mid \langle (VUM) \rangle$

How should we "parse" expression 1+2*3? (1+2)*3 or 1+(2*3)

A Real Example of BNF

ForStmt = "for" [Condition | ForClause | RangeClause] Block . Condition = Expression .

Expression = UnaryExpr | Expression binary_op Expression .
UnaryExpr = PrimaryExpr | unary_op UnaryExpr .
binary_op = "||" | "&&" | rel_op | add_op | mul_op .
rel_op = "==" | "!=" | "<" | "<=" | ">" | ">" | ">=" .
add_op = "+" | "-" | "!" | "^" .
mul_op = "*" | "/" | "%" | "<<" | ">>" | "&" | "&" | "&" .
unary_op = "+" | "-" | "!" | "^" | "*" | "&" | "<" | "<-" .</pre>

The Go Programming Language Specification

An important application of CFG theory is in *parsing* programming language.

Lexing + Parsing

An important application of CFG theory is in *parsing* programming language.

Lexing + Parsing

lexical analysis, lexing or *tokenization* is the process of converting a sequence of *symbols* (characters) into a sequence of *tokens*.

Parsing, or *syntax analysis* is the process of analyzing a string of tokens conforming to the rules of a formal grammar.

Example: C-like function

```
func member(u []byte) bool {
    st := q0
    for i = 0; i < len(u); i++ {
        st = delta(st, u[i])
        }
        return isfinal(st)
}</pre>
```

Lexing

- keyword
- identifiers
- separator
- operator
- literal
- comment

func, for, if, len, return
member, delta, u, ...
}, (, ;
+, <, =, ++
0, 1e999, "Hello, 世界"
/* [\w]* */</pre>

Example

```
func member(u []byte) bool {
    st := q0
    for i = 0; i < len(u); i++ {
        st = delta(st, u[i])
     }
    return isfinal(st)
}</pre>
```

func	member	(u	[]byte)	bool	{	•••
kw	id	_	id	type	_	type	_	

Example

```
func member(u []byte) bool {
    st := q0
    for i = 0; i < len(u); i++ {
        st = delta(st, u[i])
     }
    return isfinal(st)
}</pre>
```

func	member	(u	[]by	te)	boo	1	{	
kw	id	_	id	type	9	_	typ	е	_	
FUNC	ID("mem	ber")		LPAR	ID	("u")	•••		

EBNF specification

<pre><fundecl></fundecl></pre>	::= "func" (ID) "(" ")" (BLOCK)
(BLOCK)	::= "{" 〈EXPR〉* "}"
<pre>(EXPR)</pre>	::= "for" 〈FCOND〉 〈BLOCK〉 …
(ID)	::= [a-zA-Z][\w\d]*

```
func member(u []byte) bool {
    st := q0
    for i = 0; i < len(u); i++ {
        st = delta(st, u[i])
    }
    return isfinal(st)
}</pre>
```

Parsing

Error detection

	FUNC	<pre>ID("member")</pre>	LPAR	ID("u")	•••
ID("	'FUN")	ID("member")	LPAR	ID("u")	•••

It is generally during the syntactical analysis that we can spot errors.

Here a typo in the use of a keyword, because we have no rules of the form $\langle EXPR \rangle$::= $\langle ID \rangle \langle ID \rangle$.

Lexing + Parsing

- Lexing ≡ generate a sequence of *lexemes* use of regex / finite state automata
- Parsing ≡ generate an Abstract Syntax Tree use Context-Free Grammars / an extension of automata (non-deterministic pushdown automata)

Algebraic Grammars

formal definitions

Context-Free Grammar ${\cal G}$

G is a tuple (Σ , V, P, S) where :

- Σ : alphabet, set of *terminal symbols* (also V_t)
- V : set of non-terminal symbols (also V_{nt})
- $S \in V$ axiom
- P : set of production rules $X \rightarrow \alpha$

Derivation

- We say that $\alpha \Rightarrow \beta$ in G if we have: $\alpha = \alpha_1 X \alpha_2$ and $X \rightarrow \gamma \in P$ and $\beta = \alpha_1 \gamma \alpha_2$
- We use ⇒* (or simply ⇒) for the reflexive, transitive closure of ⇒

Language

The language of a grammar \mathcal{G} is the set of words

$$\mathcal{L}(\mathcal{G}) = \{ w \in \Sigma^* \mid S \Rightarrow^* w \}$$

i.e. start with the axiom, ends only with symbols
Derivation tree of (Σ, V, P, S)

- a (finite, ordered) tree where nodes are decorated with symbols in $\Sigma \cup V$
- the root is decorated by S
- the leaves are in Σ
- a node "X" has children $[\alpha_1, ..., \alpha_n]$ iff we have rule $X \rightarrow \alpha_1 \dots \alpha_n \in P$ and $\alpha_i \in \Sigma \cup V$ for all $i \in 1...n$

Derivation : example

 $\Sigma = \{ c, +, *, (,) \}$ $V = \{ E, F, T \}$ Eaxiom: productions: $E \rightarrow F$ $E \rightarrow E + F$ $F \rightarrow T$ $F \rightarrow F * T$ $T \rightarrow c$ $T \rightarrow (E)$

1 + 2 * 3 = 7 $E \rightarrow E + E$ $\rightarrow 1 + E$ $\rightarrow 1 + E * E$ $\rightarrow 1 + 2 * E$ $\rightarrow 1 + 2 * 3$

1 + 2 * 3 = 9 $E \rightarrow E * E$ $\rightarrow E * 3$ $\rightarrow E + E * 3$ $\rightarrow E + 2 * 3$ $\rightarrow 1 + 2 * 3$

- A grammar is ambiguous if we can accept (at least) one word with (at least) two different derivations; two different parse trees
- // with NFA and non-determinism
- For the same language, we can sometimes have both ambiguous and non-ambiguous grammars; but there are also ambiguous languages

There are ways to transform grammars:

$$\begin{array}{l} \langle \mathsf{E} \rangle & ::= \langle \mathsf{F} \rangle & | \langle \mathsf{E} \rangle `+` \langle \mathsf{F} \rangle \\ \langle \mathsf{F} \rangle & ::= \langle \mathsf{T} \rangle & | \langle \mathsf{F} \rangle `*` \langle \mathsf{T} \rangle \\ \langle \mathsf{T} \rangle & ::= \langle \mathsf{NUM} \rangle & | `(` \langle \mathsf{E} \rangle `)` \end{array}$$

How should we "parse" expression 1 + 2 * 3Answer: (1 + 2) * 3 or 1 + (2 * 3)

- A grammar G is ambiguous if we can find a word *w* ∈ L(G) that has two different derivation trees The set of all derivations for an ambiguous word is called a *parse forest*
- A (CFG) language is ambiguous if all the grammars that generate it are ambiguous

- Leftmost-derivation: we always apply rules on the first non-terminal symbol (reading left-to-right)
- Rightmost-derivation: what do you think !

Theorem: A CFG is non-ambiguous iff there is a single leftmost (\equiv rightmost) derivation

Theorem: A CFG is non-ambiguous iff there is a single leftmost (\equiv rightmost) derivation

Corollary: \mathcal{G} non-ambiguous \Rightarrow we can easily test if a word w is in $\mathcal{L}(\mathcal{G})$ (no backtracking)

In practice, there are two main sources of ambiguity

- we lack *priorities* between operators
- we lack *associativity rules* for the operators

Parsing CFG

Parser \equiv an algorithm to test whether $w \in \mathcal{L}(\mathcal{G})$ There are three main classes of parsers:

- 1. Parser that works regardless of the CFG (no restrictions), e.g. *Earley parser*.
- 2. Top-down parser (for restricted class of nonambiguous grammars), e.g. *LL parsers*.
- 3. Bottom-up parser (for a ≠ class of nonambiguous grammars), e.g. *LR parsers*.

1 are mainly used for computational linguistics

2 + 3 are mainly used for (prog. lang.) compilers

Avoiding ambiguity

Ambiguity should be avoided:

 \Rightarrow we want to predict what non-terminal ($X \in V_{nt}$) to match, at any given moment, just by looking a few symbols ahead

 \Rightarrow we want to find *deterministic CFG*

Un fortunately, the problem of deciding whether a CFG is unambiguous is undecidable

- \Rightarrow we should restrict to sub-classes of grammars
- \Rightarrow examples are LL(k), LR(k), ...

Questions

•

- Why ? \Rightarrow programming language !?
- Is it possible to check whether a word *is in* a CFG ?
- What is the "power" of CFG ?
- What is the "accepting device" (operational model) that corresponds to CFG ?
- Can we get rid of ambiguity ?
- Can we test if two grammars are \equiv ?

Chomsky hierarchy

Chomsky-Schützenberger hierarchy

Noam Chomsky (1928-)

Marcel-Paul Schützenberger (1920-1996)

Grammar—Type 0

No constraints on the left/right part of production rules Language: Recursively enumerable (R.E.) Automaton: Turing machines

$$\alpha X \beta \to \gamma$$

Grammar—Type 1

soft constraint on the right part of production rulesLanguage:Context sensitiveAutomaton:Linear Bounded Automaton

$$\alpha X \beta \to \alpha \gamma \beta$$

Example: Type1

 $S \rightarrow a b c \mid a A b c$ $S \rightarrow \Lambda$ $A b \rightarrow b A$ $A c \rightarrow B b c c$ $b B \rightarrow B b$ $a B \rightarrow a a A \mid a a$

This grammar generates words of the form: $a^n b^n c^n$

$$S \rightarrow a \overline{A} \overline{b} c$$

$$\rightarrow a \overline{b} \overline{A} \overline{c}$$

$$\rightarrow a \overline{b} \overline{B} \overline{b} c c$$

$$\rightarrow \overline{a} \overline{B} \overline{b} \overline{b} c c$$

$$\rightarrow a \overline{A} \overline{b} \overline{b} c c$$

Grammar—Type 2

left part of production rules is in V_{nt} Language:Context FreeAutomaton:non-dét. Pushdown Automata

$$X \rightarrow \alpha$$

context-free implies that $\mathcal{L}(\alpha \beta) = \mathcal{L}(\alpha) \mathcal{L}(\beta)$

Example: Type2

 $S \rightarrow a$

- $S \rightarrow b$
- $S \rightarrow \Lambda$

 $S \rightarrow a S a$

 $S \rightarrow b S b$

This grammar generates palindromes (words that read the same from left-right and right-left)

$$S \rightarrow a \overline{S} a$$

$$\rightarrow a b \overline{S} b a$$

$$\rightarrow a b b \overline{S} b b a$$

$$\rightarrow a b b b b a$$

Grammar—Type 3

No constraints on the left/right part of production rules Language: Regular Automaton: DFA

$X \rightarrow a Y$

Type 3 grammars ≡ Rational Languages

Sketch of the proof: Type3 \subseteq REG

Build an automaton $\mathcal A$ where

- states: $Q = V_{nt} \cup \{ q_F \}$
- initial state: $q_I = S$

(axiom)

- If $X \to a Y$ then $\delta(X, a) = Y$
- If $X \to a$ then $\delta(X, a) = q_F$
- If $X \to \epsilon$ then $\delta(X, \epsilon) = q_F$
- final states: { q_F }

We can build a run in ${\mathcal A}$ from any derivation

Sketch of the proof: REG \subseteq Type3

Build a grammar from ${\mathcal A}$ where

- $V_{nt} = Q$ and $V_t = \Sigma$
- axiom is q_I
- If $\delta(X, a) = Y$ then add $X \to a Y$
- If $\delta(X, a) = Y$ and $Y \in F$ then add $X \to a$

We can build a run in ${\mathcal A}$ from any derivation

Example

 $S \rightarrow a S \mid b E \mid \Lambda$ $E \rightarrow b E \mid \Lambda$

This grammar generates words of the form $a^n b^m$. What about the Type-2 grammar:

 $S \rightarrow A B$ $A \rightarrow a A \mid B$ $B \rightarrow B b B \mid b b B \mid \Lambda$

Rewriting grammars

 \equiv operations that "preserve" the language of a grammar \mathcal{G}

Notations

Without loss of generality, we can always write production rules of the form $X \rightarrow \alpha \mid \beta$ as "syntactic sugar" for the two rules:

 $X \rightarrow \alpha \text{ and } X \rightarrow \beta$

Substitution

Assume all the production rules for X in G are $X \rightarrow \alpha_1, ..., X \rightarrow \alpha_k$

Then we can replace a production rule $Y \rightarrow \beta X \gamma$, in G, with the k rules: $Y \rightarrow \beta \alpha_1 \gamma$, ..., $Y \rightarrow \beta \alpha_k \gamma$

 $S \rightarrow a X \mid c$ $X \rightarrow Y a \mid \Lambda$ $Y \rightarrow \alpha$ $S \rightarrow a Y a$ $S \rightarrow a Y a$ $S \rightarrow a$ $S \rightarrow a$

Simplification

Assume it is not possible^{*} to find a sequence of reductions (from the axiom *S*) such that $S \Rightarrow^* \beta X \gamma$

Then we can safely omit all the productions of the form $X \rightarrow \alpha$ from \mathcal{G}

 $S \rightarrow a Y | \Lambda \qquad S \rightarrow a Y | \Lambda$ $Y \rightarrow a S \qquad \Longrightarrow \qquad Y \rightarrow a S$ $X \rightarrow Y Y \qquad \qquad X \rightarrow Y Y$

[*]: think reachability in a graph

Factorization

We can introduce new variables. For instance to factorize common sub-terms

$$\begin{array}{ccc} X \rightarrow \alpha \ A \\ X \rightarrow \alpha \ B \end{array} \qquad \Longrightarrow \qquad \begin{array}{ccc} X \rightarrow \alpha \ Y \\ \Rightarrow & Y \rightarrow A \\ Y \rightarrow B \end{array}$$

T 7

Recursion elimination

Left recursion often poses problems for parsers, e.g. it leads them into infinite recursion. Recursion can be direct (e.g. $X \rightarrow X X$) or indirect.

Example: $X \rightarrow Y$ and $Y \rightarrow X a$

Recursion elimination

In the general case we have (where $\alpha_i \neq \Lambda$ and β_j does not start with X)

$$X \to X \alpha_1 \mid \dots \mid X \alpha_k \mid \beta_1 \mid \dots \mid \beta_n$$

Idea: introduce a "fresh" variable Y with the rules

Left Recursion: example

Take the classical example of integer expressions

$$E \rightarrow E + E \mid n \qquad \qquad \begin{array}{c} \alpha_1 = + E \\ \beta_1 = n \end{array}$$

We obtain:

Questions

- Why ? \Rightarrow programming language !?
- Is it possible to check whether a word *is in* a CFG ?
- Can we build a "deterministic" parser ?
- What is the "accepting device" (operational model) that corresponds to CFG ?
- Can we test if two grammars are \equiv ?

•

LL grammars

recursive descent parsers

LL parsers

LL grammars are those than can be parsed using a LL parser \Rightarrow parses by scanning the input from Left to right and building a Leftmost derivation

They can be parsed by a (top-down) *recursive descent parser*; LL(k) grammars correspond to parser that take their decision based on a look-ahead of k symbols (and without backtracking)

We look at an example of LL(1) grammars next

LL parsers: example

- 1. $S \rightarrow a S b T$
- 2. $S \rightarrow c T$
- 3. $S \rightarrow d$
- 4. $T \rightarrow a T$
- 5. $T \rightarrow b S$

6. $T \rightarrow c$

$$w = a c c b b a d b c$$
$$S \to a \circ S b T \qquad (1)$$

LL parsers

1. $S \rightarrow a \ S \ b \ T$ 2. $S \rightarrow c \ T$ 3. $S \rightarrow d$ 4. $T \rightarrow a \ T$ 5. $T \rightarrow b \ S$ 6. $T \rightarrow c$ w = a c c b b a d b c

 $S \rightarrow a \circ S b T$ (1) $\rightarrow a c \circ T b T$ (2) $\rightarrow a c c \circ b T$ (6) $\rightarrow a c c b \circ T$ $\rightarrow a c c b b \circ S$ (5) (1) $\rightarrow a c c b b a \circ S b T$ $\rightarrow a c c b b a d \circ b T$ (3) $\rightarrow a c c b b a d b \circ T$ $\rightarrow a c c b b a d b c \circ \epsilon$ (6)
Questions

- What is a suitable *accepting device* for this example ?
- How can I check that my grammar is LL(1)?
- If it is not, is there a way to repair it ?

LL Parser

At each step we have a derivation of the form $u \circ \alpha$ where u is a prefix of w of length i (u = w[:i]) \Rightarrow we match the suffix w[i:] with α

We decide what rule to match by looking at the next symbol (say w[i + 1] = a)

 ⇒ the choice should be unique, depending only on the top symbol (w[i]) and the start of α
 ⇒ we could encode this "function" in a table

LL Parser

At each step, we try to match a suffix, w[i:], with a pattern α

(SHIFT) $\alpha = b \gamma$ and w[i] = bwe try to match word w[i + 1:] with pattern γ

(REDUCE)
$$\alpha = X \gamma$$

we need to match symbol *a* with $X \rightarrow \beta$ we continue with w[i:] and the pattern $\beta \gamma$

(STOP) we matched the whole word and $\alpha = \epsilon$, or when we have no rules to match (ERROR)

LL Parser: amelioration

To make sure we match the axiom, *S*, we add a new symbol, \$, and a new top-level axiom rule $S' \rightarrow S$ \$ \Rightarrow the initial pattern is *S* \$

Possible cases for errors are:

- we "shift" a bad symbol: $\alpha = b \gamma$ and $w[i] \neq b$
- we reach the end of the input (\$) and $\alpha \neq$ \$
- we reach the end of the pattern $\alpha =$ and $w[i] \neq$

Parsing Table

To match a symbol a, and a non-terminal, X, to a rule, $X \rightarrow \beta$, we assume that we computed a parsing table

	а	b	С	d
S	aSbT		с Т	d
T	a T	b S	С	

	а	b	С	d
S	aSbT		c T	d
T	a T	b S	С	

a c c b a c \$ a a b c d d d \$ a a d c a a c c \$ parse successful illegal input illegal input

Recursive descent parser

```
func member(u []byte) bool {
    st, i := stack("S", "$"), 0
    for {
       if i == len(u) || len(stack) == 0 {
          return false
        }
       \alpha := stack.pop()
        switch {
         case \alpha == "$" && u[i] == "$":
             return true
         case \alpha == u[i]: i++
         case \alpha.(nterm):
             stack := stack.push(reduce(\alpha, u[i]))
         default : return false
} } }
```

LL grammars

building a parsing table

Questions

• What is a suitable *accepting device* for this example ?

\rightarrow How can I check that my grammar is LL(1)?

• If it is not, is there a way to repair it ?

Building the parsing table

A grammar is LL

- \Leftrightarrow we can build a LL parser from it
- \Leftrightarrow we can build a (LL) parsing table

Next we show how to build this table by computing three different relations: FIRST, NULL and FOLLOW

LL Parser: FIRST

To build a table, we need to know: what symbols can "appear first", at the beginning of a non-terminal X and to which production $X \rightarrow \alpha$ it belongs

E.g. we want to match a w with pattern $X \gamma$ and we have a rule $X \rightarrow a Y$

Also, we should not have $X \rightarrow a Y$ and $X \rightarrow a Z$

LL Parser: NULL

Therefore we should also know when a non-terminal X is *nullable*, that is $X \Rightarrow^* \epsilon$

E.g. we want to match *a* with pattern $X \gamma$ and we are in a situation where $X \Rightarrow^* \epsilon$

Also, we should not match symbol a with Z when $Z \rightarrow X Y$ with $X \rightarrow a \gamma \mid \Lambda$ and $Y \rightarrow a \gamma'$

LL Parser: FOLLOW

Meaning, we should know the symbols that can follow a non-terminal X.

E.g. when we want to match symbol a with pattern X Y, a possible solution is that $X \Rightarrow^* \epsilon$ and $Y \Rightarrow^* a \gamma$

NULL, FIRST and FOLLOW

We have $FIRST(\alpha) = \{ b \in \Sigma \mid \alpha \Rightarrow^* b \gamma \}$

We say that $\operatorname{null}(\alpha)$ when $\alpha \Rightarrow^* \epsilon$ this is decidable

We have FOLLOW(X) = { $a \in \Sigma \mid S \Rightarrow^* \beta X a \gamma$ }

Ambiguity \Rightarrow we should not find two rules $X \rightarrow \alpha$ and $X \rightarrow \beta$ such that FIRST $(\alpha) \cap$ FIRST $(\beta) \neq \emptyset$

a FIRST-FIRST conflict

Ambiguity revisited

Actually, we can prove that the grammar is LL(1) when, for every non-terminal X with productions $X \rightarrow \alpha_1 \mid ... \mid \alpha_n$, we have that:

For every pair $X \to \alpha$ and $X \to \beta$ we have FIRST $(\alpha) \cap FIRST(\beta) = \emptyset$

if NULL(X) then FIRST(α_i) \cap FOLLOW(X) = Ø

no FIRST-FOLLOW conflicts

LL Parser: FIRST

We have $FIRST(\alpha) = \{ b \in \Sigma \mid \alpha \Rightarrow^* b \gamma \}$

$$FIRST(\epsilon) = \emptyset$$

$$FIRST(\alpha) = \{ a \}$$

$$FIRST(\alpha_1 \dots \alpha_n) = \bigcup_{i \in 1..n} \{ FIRST(\alpha_i) \mid null(\alpha_j), j < i \}$$

Equivalently: FIRST is the smallest relation such that $X \rightarrow Y_1 \dots Y_n Z \beta$ implies FIRST $(Z) \subseteq$ FIRST(X) when Y_1, \dots, Y_n are all nullable.

LL Parser: FOLLOW

We have FOLLOW(X) = { $a \in \Sigma | S \Rightarrow^* \beta X a \gamma$ } (and we assume FOLLOW(S) \supseteq { \$ }) FOLLOW is the smallest relation such that:

 $A \rightarrow \alpha X Y_1 \dots Y_n Z \beta$ implies FIRST(Z) \subseteq FOLLOW(X) when Y_1, \dots, Y_n nullable.

 $A \rightarrow \alpha X Y_1 \dots Y_n Z$ implies FOLLOW(A) \subseteq FOLLOW(X) when Y_1, \dots, Y_n nullable.

Symboles Directeurs (SD)

Dans les notations utilisées à l'ENSEEIHT, on fait usage de la notion de *symbole directeur* pour une production $X \rightarrow \alpha$.

$$SD(X \rightarrow \alpha) = FIRST(\alpha)$$
 si $\alpha \neq \Lambda$
 $SD(X \rightarrow \Lambda) = FOLLOW(X)$

conflits LL \equiv le même symbole dans deux règles SD $(X \rightarrow \alpha)$ et SD $(X \rightarrow \beta)$

Symboles Directeurs (SD)

Avantage 1: un critère unique pour reconnaître l'ambiguité d'une grammaire.

Avantage 2: si on veut matcher w[i:] (avec symbole de tête b) contre le non-terminal X; il suffit de choisir l'unique production $X \rightarrow \alpha$ telle que $b \in SD(X \rightarrow \alpha)$

	b	С	
X	α	Ø	
	•••	•••	

 $b \in SD(X \rightarrow \alpha)$

 $S \rightarrow A B S \mid d$ $A \rightarrow B \mid a$ $B \rightarrow c \mid \Lambda$

	NULL	FIRST	FOLLOW
S	no	{ <i>a</i> , <i>c</i> , <i>d</i> }	{ \$ }
A	yes	{ <i>a</i> , <i>c</i> }	{ a, c, d }
B	yes	{ <i>C</i> }	{ a, c, d }

 $S \rightarrow A B S \mid d$ $A \rightarrow B \mid a$ $B \rightarrow c \mid \Lambda$

 $SD(S \rightarrow A B S) \cap$ $SD(S \rightarrow d) = \{d\}$ FIRST-FIRST conflict

	NULL	FIRST	FOLLOW
S	no	{ <i>a</i> , <i>c</i> , <i>d</i> }	{ \$ }
A	yes	{ <i>a</i> , <i>c</i> }	{ a, c, d }
B	yes	{ <i>c</i> }	{ a, c, d }

 $SD(B \rightarrow c) \cap$ $SD(B \rightarrow \Lambda) = \{ c \}$

FIRST-FOLLOW conflict

 $S \rightarrow i E t S e S \mid c$ $E \rightarrow b$

	NULL	FIRST	FOLLOW
S	no	{ <i>i</i> , <i>c</i> }	{ <i>e</i> ,\$ }
E	no	{ <i>b</i> }	$\{t\}$

 $S' \to \$$ $S \to i E t S e S \mid c$ $E \to b$

 $SD(S \rightarrow i E \dots) = \{i\}$ $SD(S \rightarrow c) = \{c\}$ $SD(E \rightarrow b) = \{b\}$

	NULL	FIRST	FOLLOW
S	no	{ <i>i</i> , <i>c</i> }	{ <i>e</i> ,\$}
E	no	{ <i>b</i> }	$\{t\}$

 $S' \to \$$ $S \to i E t S e S \mid c$ $E \to b$

$$SD(S \rightarrow i E \dots) = \{i\}$$

$$SD(S \rightarrow c) = \{c\}$$

$$SD(E \rightarrow b) = \{b\}$$

$$w = i b t c e c \$ \qquad \qquad \gamma_0 = S \$$$

	i	t	е	С	b
S	i E t S e S			С	
E					b

 $\begin{array}{l} X \rightarrow Y \ c \ \mid \ a \\ Y \rightarrow b \ Z \ \mid \ \Lambda \\ Z \ \rightarrow \Lambda \end{array}$

	NULL	FIRST	FOLLOW
X			
Y			
Z			