Grammaires regulieres
et algébrigues

Grammars,
finite transformations
automata

& pushdown
automata

rational
languages

http://homepages.laas.fr/dalzilio/courses/ag/ 2019—2020

http://homepages.laas.fr/dalzilio/courses/mccourse/
http://homepages.laas.fr/dalzilio/courses/ag/

Context-Free Grammars

grammaire algébrique [FR]

Context-Free Grammars (CFG)

A grammar = a set of rules for generating the
elements of a language

We have already seen an example:
word € (V, U V)"

D - e —
D - D equivc;rlently S - | S S
D —-DD

where we mix variables S, D, X, ... (denoting sets)
and symbols a, b €, ... (and hence “words”) in the
right of production rules

Context-Free Grammars (CFG)

This is a tool for accepting/generating words, based
on a notion of derivations (# runs)

—>aDDb aababb
is part of the

language

D -aDb

Context-Free Grammars (CFG)

This is a tool for accepting/generating words, based
on a notion of derivations (# runs)

—alDb aababb

— is part of the
—aDDDb language

D -DD

Context-Free Grammars (CFG)

This is a tool for accepting/generating words, based
on a notion of derivations (# runs)

—>aDDb aababb

— is part of the
—abDDb language
—aaDbDb

D-aDb

Context-Free Grammars (CFG)

This is a tool for accepting/generating words, based
on a notion of derivations (# runs)

—>aDDb aababb
— is part of the
—aDDDb language
—aal bDb
D —-e€

—>aa€ébDb

Context-Free Grammars (CFG)

This is a tool for accepting/generating words, based
on a notion of derivations (# runs)

—>aDDb aababb
— is part of the
—aDDDb language
—aaDbDb
D -aDb

—>aa€ébDb
—aabaDbb

Context-Free Grammars (CFG)

This is a tool for accepting/generating words, based
on a notion of derivations (# runs)

—>aDDb aababb
— is part of the
—aDDDb language
—aaDbDb
_ D —-e€
—-aa€ebDb

—aabalDbb
—aababb

Context-Free Grammars (CFG)

 Automaton = define languages in an operational
way (they are machines, or programs)

* Regex = define languages in a declarative way
(they are like functions or logical formulas)

* Grammars = define languages in an inductive way

Context-Free Grammars (CFG)

This is best viewed as a derivation tree

D
D—-aDb
—aDDb g
—-aaDbDb D D
—-aa€ébDb . ;
—aabaDbb

—-aabaéebb aaeb aeb b

Context-Free Grammars (CFG)

* a set of of the form X —» «
* with (variables in V ;)
e and (in Vi, sometimes denoted)
*an . distinguished symbol in V/;

* where a, 8, ... are words in (V,,; U V;,)*

Non contextual grammars is the class obtained when
we allow production rules of the form

a -0

Top-Down Derivations

D—-aDb P
—»aDDb D
—aaDbDb
—aa€ébDb b D
—aabaDbb D D

—aabaébb
aaeb aeb b

Top-Down + Leftmost = here we started from the axiom (the
top) + we always decided to derive the leftmost non-terminal

Bottom-up Derivations

aababb
caaDbabb
EaDabb
caDaDbb D D
&caDDb
caDb

<D aaeb aeb b

Bottom-Up = rules are considered in the order of a reverse
rightmost derivation. In this case the tree is the same |

CFG and Automata

We already saw derivation rules before, but in a
simpler setting:

Xo— 0X,
Xo—>1X,
Xg = A

X1 - 0X,
X1 - 1X,
X, = 0X4
X, »1X, 1 0 0 1 €

Questions

* Why (do we define CFG) ?
* What is the “power” of CFG ?
* s it possible to check whether a word is in a CFG ?

* What is the “accepting device” (operational model)
that corresponds to CFG ?

e Can we get rid of ambiguity ?
e Can we test if two grammars are = ?

Parsing (and lexing)

answering the “why ?”

Parsing

An important application of CFG theory is in parsing
programming language.

program { computer
text (assembly)

Human languages are a bit harder to parse ... and too
ambiguous |

(Extended) Backus-Naur form

A popular notation for CFG, used to define the syntax
of programs and expressions in C.S.

(D) . rrln | | rr9»
(DIGIT) ::= “©” | (D)
(INT) ::= (D) (DIGIT)*

extended means we can use *, + and ?

Another Example of BNF

Arithmetic expressions:
E-E+E|E=*E|(E)|n

(EXP) ::= (EXP) ‘+° (EXP)
(EXP) “*? (EXP)
r(r (EXP) r):
(NUM)

How should we “parse” expression 1+2*3 ?
or

A Real Example of BNF

Forstmt = "for"™ [Condition |
Condition = ExXpression
Expression UnaryExpr |

UnaryEXpr

binary op
rel op
add op
mul op

unary op

PrimaryExpr

'Fll |I|I | Il&&"

= L=+ | Ll=b

— TI+'II | m_mn I
— M m | "_I-"r n I
'FI_'_'II | m_mn I

ForClause | RangeClause] Block .

Expression binary op Expression .

| unary op UnaryEXpr .

| rel op | add op | mul op .
| Il{zl'l | 'II}IT | L3] }:" .

| 'II{II'

Tll'"

me w
o

woyomw

LIPS]

IT{{"

M.~ r

I TI}}IT | "&l'l | 'FI&.-“\..IT .

LS | "E:" I TI{_'II

The Go Programming Language Specification

Parsing

An important application of CFG theory is in parsing
programming language.

program computer
text (assembly)

lexical
analysis

AST
(abstract
syntax tree)

tokens syntax
(stream) analysis

Lexing + Parsing

An important application of CFG theory is in parsing

programming Ianguage.
program computer ,
text (assembly)

lexical tokens syntax AST
(abstract

syntax tree)

analysis (stream) analysis

LEX YACC

Lexing + Parsing

lexical analysis, lexing or tokenization is the process
of converting a sequence of symbols (characters) into
a sequence of tokens.

Parsing, or syntax analysis is the process of analyzing
a string of tokens conforming to the rules of a formal
grammar.

Example: C-like function

func member(u []byte) bool {
st := o
for 1 = 9; i < len(u); i++ {
st = delta(st, u[i])
}

return isfinal(st)

Lexing

e keyword func, for, if, len, return
* identifiers member, delta, u,

* separator }, (,

* operator +, <, =, ++

e literal 0, 1e999, "Hello, tHFR"

e comment /* [\w]* */

Example func member(u []byte) bool {

st := Qo

for i = 0; i < len(u); i++ {
st = delta(st, u[i])

}

return isfinal(st)

func member (u []byte) bool {
kw id id type _ type

Example func member(u []byte) bool {

st := Qo

for i = 0; i < len(u); i++ {
st = delta(st, u[i])

}

return isfinal(st)

func member (u []byte) bool {
kw id id type _ type

FUNC ID(“member”) LPAR ID(“u”)

Pa rS|ng func ﬁemberéu []Jbyte) bool {
st := ¢
for i = 0; i < len(u); i++ {
st = delta(st, u[i])
}

return isfinal(st)

(FUNDECL) ::= “func” (ID) “(” .. “)” (BLOCK)
(BLOCK) ::= “{” (EXPR)* “}”

(EXPR) “for”” (FCOND) (BLOCK) | ..
(ID) [a-zA-Z][\w\d]*

EBNF specification

Error detection

FUNC ID(“member?™) LPAR ID(“u”)

ID(“FUN”) ID(“member”) LPAR ID(“u”)

It is generally during the syntactical analysis that we
can spot errors.

Here a typo in the use of a keyword, because we
have no rules of the form (EXPR) ::= (ID) (ID).

Lexing + Parsing

* Lexing = generate a sequence of lexemes
use of regex / finite state automata

* Parsing = generate an Abstract Syntax Tree
use Context-Free Grammars / an
extension of automata

(non-deterministic pushdown automata)

/\551_ func member(u []byte) bool {

st := Qo

for i = 0; i < len(u); i++ {
st = delta(st, uf[i])

fundecl }
return isfinal(st)

member

assign

Algebraic Grammars

formal definitions

Context-Free Grammar §

Gisatuple (2, V, P, S) where:
* ¥ :alphabet, set of terminal symbols (also V)
* I/ : set of non-terminal symbols (also V,,;)
e S €V axiom
e P :setof productionrules X — «

Derivation

* We say that « = f in G if we have:
a=a;Xa,andX -y €Pandf =a; Yy a,

* We use =™ (or simply =) for the reflexive,
transitive closure of =

Language
The language of a grammar § is the set of words

LG ={weX|S=>"w}

i.e. start with the axiom, ends only with symbols

Derivation tree of (X, V, P, S)

* a (finite, ordered) tree where nodes are decorated
with symbols inX UV

* the root is decorated by S
* the leaves are in X

* a node "X“ has children [a4, ..., a;,] iff we have rule
X—> a; ...ap, EPanda; €XUVoralliel..n

Derivation : example

E={c+*()}

V={EF,T}

axiom: E

productions: £ — F
E- E+F
F - T

F xT

C

F
T
r - (F)

RN

(EXP) ::= (EXP) + (EXP)
| (EXP) * (EXP)

Ambiguity | C(Exp))

| (NUM)

1 +2 *3 =7

E -E+E B
>1+E +E | N
142 *E LB E

l l

- 1+2 %3 9 3

(EXP) ::= (EXP) + (EXP)
| (EXP) * (EXP)

Ambiguity | C(Exp))

| (NUM)

1+2 *3 =29

E > EvE AIN
— F %3 Eg * E

- E+E x3 /l\. i

- E+2 %3 l l
- 142 %3 1 2

Ambiguity

A grammar is ambiguous if we can accept (at least)
one word with (at least) two different derivations;
two different parse trees

 // with NFA and non-determinism

* For the same language, we can sometimes have
both ambiguous and non-ambiguous grammars;
but there are also ambiguous languages

Ambiguity

There are ways to transform grammars:

(E) ::= (F) (E) “+° (F)
(F) +:=(T) (F) 7 (T)
(T) =:= (NUM) | “(° (E))’

How should we “parse” expression 1 +2 * 3
Answer: or

Ambiguity

* A grammar G is ambiguous if we can find a word
w € L(G) that has two different derivation trees

The set of all derivations for an ambiguous word is called a
parse forest

* A (CFG) language is ambiguous if all the grammars
that generate it are ambiguous

Ambiguity

e Leftmost-derivation: we always apply rules on the
first non-terminal symbol (reading left-to-right)

* Rightmost-derivation: what do you think !

Theorem: A CFG is non-ambiguous iff thereis a
single leftmost (= rightmost) derivation

Ambiguity

Theorem: A CFG is non-ambiguous iff thereis a
single leftmost (= rightmost) derivation

Corollary: G non-ambiguous = we can easily test if a
word w is in L(G) (no backtracking)

In practice, there are two main sources of ambiguity
* we lack priorities between operators
* we lack associativity rules for the operators

Parsing CFG

Parser = an algorithm to test whether w € L(G)
There are three main classes of parsers:

1. Parser that works regardless of the CFG (no
restrictions), e.g. Earley parser.

2. Top-down parser (for restricted class of non-
ambiguous grammars), e.g. LL parsers.

3. Bottom-up parser (for a # class of non-
ambiguous grammars), e.g. LR parsers.

1 are mainly used for computational linguistics

2 + 3 are mainly used for (prog. lang.) compilers

Avoiding ambiguity

Ambiguity should be avoided:

= we want to predict what non-terminal (X € V) to
match, at any given moment, just by looking a few
symbols ahead

= we want to find deterministic CFG

Un fortunately, the problem of deciding whether a
CFG is unambiguous is undecidable

= we should restrict to sub-classes of grammars
= examples are LL(k), LR(k), ...

Questions

* Is it possible to check whether a word is in a CFG ?
 What is the “power” of CFG ?

Chomsky hierarchy

Chomsky-Schutzenberger hierarchy
Noam Chomsky (1928—)
Marcel-Paul Schitzenberger (1920—1996)

go check Wikipedia !

Grammar—Type O

No constraints on the left/right part of production rules
Language: Recursively enumerable (R.E.)
Automaton: Turing machines

aXp -y

Grammar—Type 1

soft constraint on the right part of production rules
Language: Context sensitive
Automaton: Linear Bounded Automaton

aXp >ayp

Example: Typel

This grammar generates

words of the form: a™ b™ c"
S —>abc|aAbc

S - A _
Ab - bA S—>aAE
Ac > Bbcc —>ab_Ac
bB - Bb _)ngCC
—aBbbcc

aB »aald | aa __
—aaAbbcc

Grammar—Type 2

left part of production rulesisin I/,;

Language: Context Free
Automaton: non-dét. Pushdown Automata
X o«

context-free implies that L(a) = L(a) L()

Example: Type2

L \”hh ”hh ”h Oy

I3 1 1]

asa
bSb

This grammar generates
palindromes (words that
read the same from left-right
and right-left)

S »>aS a
—»abS ba
—sabbSbba
—abbbba

Grammar—Type 3

No constraints on the left/right part of production rules
Language: Regular
Automaton: DFA

X—-oaY

Type 3 grammars =
Rational Languages

Sketch of the proof: Type3 € REG

Build an automaton A where

* states: Q =V, U{ qgr }

* initial state: g; = S (axiom)
*IfX »aY thend(X,a) =Y

*IfX > a thend(X,a)=qr

cIfX € thend(X,e) =qr

* final states: { g5 }

We can build a run in A from any derivation

Sketch of the proof: REG € Type3

Build a grammar from A where

*V,e=0Q and V; =X

* axiom is q;

If5(X,a) =Y then add X - a/Y
*If5(X,a) =Y andY € F then add X - a

We can build a run in A from any derivation

Example

S—>aS|bE | A
E->bE | A

This grammar generates words of the form a™b™.
What about the Type-2 grammar:

S - AB
A-aA |B
B ->BbB|bbB | A

Rewriting grammars

= operations that “preserve” the language of a grammar §

Notations

Without loss of generality, we can always write
production rules of the form as
“syntactic sugar” for the two rules:

and

Substitution

Assume all the production rules for X in G are
X 2> aq, .. X = ag

Then we can replace a productionruleY — [Xy, in
G,withthekrules:Y > fa;y,..Y=>0a,y

S »>aYa
S —»aX | c
X >vala = ¢

S > A

Y -«

Simplification

Assume it is not possible” to find a sequence of
reductions (from the axiom S) such that S =™ S Xy

Then we can safely omit all the productions of the
formX — afrom(

S ->aY|A S ->aY|A
Y - aSs = Y - as
X oYY X =YY

[*]: think reachability in a graph

Factorization

We can introduce new variables. For instance to
factorize common sub-terms

X oaY
X oaA

X oaB
Y - B

Recursion elimination

Left recursion often poses problems for parsers, e.g.
it leads them into infinite recursion. Recursion can be
direct (e.g. X — X X) or indirect.

Example: X = Y andY = Xa

Recursion elimination

In the general case we have (where a; # A and f3;
does not start with X)

X >Xay|.. | Xag| Bl | Bn

Idea: introduce a “fresh” variable Y with the rules

X _)Bly | | ,BnY
Y ;Y | .| ayY | A

Left Recursion: example

Take the classical example of integer expressions

E>E+E |n @ =+E
p1=n
We obtain:
E->nY E->p(Y

Y S+EY | A Y >a, Y | A

Questions

* Can we build a “deterministic” parser ?

LL grammars

recursive descent parsers

LL parsers

LL grammars are those than can be parsed using a LL
parser = parses by scanning the input from Left to
right and building a Leftmost derivation

They can be parsed by a (top-down) recursive
descent parser ; LL(k) grammars correspond to parser
that take their decision based on a look-ahead of k
symbols (and without backtracking)

We look at an example of LL(1) grammars next

LL parsers: example

S SaShT w=accbbadbc

S —-cT
S —=>d
T -»aT
T -bS
T —c

S >2a0oShbT (1)

o A W NN

LL parsers

S =-aShbT
S —-cT

S —=>d

T -»aT

T -bS

T —c

o A W NN

S >aoSbT
—-acoThbT
—-accobT
—-acc boT
—acc bbo§

—accbbaoSbT
—accbbadobT

—-accbbad
—accbbadb

oT
o€

(1)
(2)
(6)

(5)
(1)
(3)

(6)

Questions

* What is a suitable accepting device for this example ?
* How can | check that my grammar is LL(1) ?

* If it is not, is there a way to repair it ?

LL Parser

At each step we have a derivation of the form u o
where u is a prefix of w of length i (u = w|: i])

= we match the suffix wli: | with a

We decide what rule to match by looking at the next
symbol (say w|i + 1] = a)

= the choice should be unique, depending only
on the top symbol (w[i]) and the start of «
= we could encode this “ function” in a table

LL Parser

At each step, we try to match a suffix, w|i: |, with a pattern a

(SHIFT)
we try to match word w|i + 1:] with patterny

(REDUCE)
we need to

we continue with wli:] and the pattern §y

(STOP) we matched the whole word and a = ¢,
or when we have no rules to match (ERROR)

LL Parser: amelioration

To make sure we match the axiom, S, we add a new
symbol, $, and a new top-level axiomrule S' - S §

= the initial patternis S $

Possible cases for errors are:

« we “shift” a bad symbol: « = by and wli] # b

 we reach the end of the input ($) and a # $

* we reach the end of the patterna = $and wli] # $

. 5> S5%$
Parsing Table S > aShT | cT | d
T - aT | bS | c

To match a symbol a, and a non-terminal, X, to a rule,
X = [, we assume that we computed a

S aSbT cT d

a b C
aSbT cT
aT bS| c

S'"—> S$

S>aSbT | cT | d

T - aT

| bS | c

accbac$
aabcddd$
aadcaacc$

parse successful

illegal input
illegal input

Recursive descent parser

func member(u []byte) bool {
st, 1 := stack("s", "$"), ©
for {
if i == len(u) || len(stack) == 0 {
return false

}
a := stack.pop()
switch {
case a == "$" && u[i] == "$":
return true
case a == u[i]: i++

case a.(nterm):
stack := stack.push(reduce(a, u[i]))
default : return false

Pk

LL grammars

building a parsing table

Questions

—> How can | check that my grammar is LL(1) ?

Building the parsing table

A grammar is LL
< we can build a LL parser from it
< we can build a (LL) parsing table

Next we show how to build this table by computing
three different relations: FIRST, NULL and FOLLOW

LL Parser: FIRST

To build a table, we need to know: what symbols can

“ ” at the beginning of a non-terminal X
and to which production X — « it belongs

E.g. we want to match a w with pattern X y and we
havearule X - a?Y

Also, we should nothave X - aYandX - aZ

LL Parser; NULL

Therefore we should also know when a non-terminal
Xis thatis X =™ €

E.g. we want to match a with pattern X y and we are
in a situation where X =~ ¢

Also, we should not match symbol a with Z when
Z > XY withX »ay |AandY »ay’

LL Parser: FOLLOW

Meaning, we should know the symbols that can
a non-terminal X.

E.g. when we want to match symbol a with pattern
X Y, apossible solutionisthat X =* eandY =" avy

NULL, FIRST and FOLLOW

We have ={beX|a=>" by}
We Say that When o :* € this is decidable
We have ={a€eX|S=>"BXay}

Ambiguity = we should not find two rules
X > aand X — [such that
FIRST(a) N FIRST(B) + @

a FIRST-FIRST conflict

Ambiguity revisited

Actually, we can prove that the grammar is LL(1)
when, for every non-terminal X with productions
X - aq| .. | a,, we have that:

For every pair X — aand X — [we have
FIRST(“) n FIRST(ﬁ) — @ no FIRST-FIRST conflicts

if NULL(X) then FIRST(a;) N FOLLOW(X) = ¢

no FIRST-FOLLOW conflicts

LL Parser: FIRST
We have ={beX|la=" by}

FIRST(e) = @
FIRST(a) ={a}
FIRST(@; ... @) = Ujer.o{ FIRST(ay) | null(q;),j < i}

Equivalently: FIRST is the smallest relation such that
X - Y, .Y, Z [implies FIRST(Z) € FIRST(X) when
Yy, ..., Y, are all nullable.

LL Parser: FOLLOW

We have ={a€eX|S=>"BXay}
(and we assume)
FOLLOW is the smallest relation such that:

A-alXY, .Y, Z [implies
FIRST(Z) € FOLLOW(X) whenY;, ..., Y, nullable.

A-aXY, .Y, Zimplies
FOLLOW(A) € FOLLOW(X) when Y3, ..., Y, nullable.

Symboles Directeurs (SD)

Dans les notations utilisées a ’'ENSEEIHT, on fait
usage de la notion de symbole directeur pour une
production X - «.

SD(X — a) = FIRST(a) sia = A
SD(X — A) = FOLLOW(X)

conflits LL = le méme symbole dans deux regles
SD(X —» a)et SD(X — ()

Symboles Directeurs (SD)

Avantage 1: un critere unique pour reconnaitre
I'ambiguité d’'une grammaire.

Avantage 2: si on veut matcher w|i: | (avec symbole
de téte b) contre le non-terminal X; il suffit de choisir
I'unique production X — «a telle que b € SD(X — a)

X a | O | .. b eSD(X - a)

Example

S - ABS
A -
B - A

NULL FIRST |FOLLOW
S no {$}
A yes {a,c} {a,cd}
B yes {c} {a,cd}

Example

SD(B - c¢c) N
SD(B - A) = {c)

FIRST-FOLLOW conflict

> —>ABS SD(S—>ABS)N
A-B a sp(S ->d)={d}
B - A
FIRST-FIRST conflict

NULL FIRST |FOLLOW
S no [{acd}| {$}
A yes {a,c} {a,cd}
B yes {c} {arcd}

Example

S ->iEtSeS | c

E - b

NULL FIRST |FOLLOW
S no {i,c} | {e$}
E no {b}

Example

AN SD(S - iE ..)={i}

S5 iEtSeS DS ~o) - ={c]

. SD(E - b) = {b}
NULL FIRST |FOLLOW

S no {e,3]

E NO

Example

S'">$

S >iEtSeS |

EF —

w=1ibtcec}$

SD(S —»iE ..)={i}

SD(S - ¢) ={c}

SD(E - b) = {b}
Yo=S53

l

)

LEtSeS

Example

X »Yc|a
Y -bZ | A
Z > A

NULL FIRST |FOLLOW

h<

