LL grammars

recursive descent parsers

LL parsers

LL grammars are those than can be parsed using a LL
parser = parses by scanning the input from Left to
right and building a Leftmost derivation

They can be parsed by a (top-down) recursive
descent parser ; LL(k) grammars correspond to parser
that take their decision based on a look-ahead of k
symbols (and without backtracking)

We look at an example of LL(1) grammars next

LL parsers: example

S SaShT w=accbbadbc

S —-cT
S —=>d
T -»aT
T -bS
T —c

S >2a0oShbT (1)

o A W NN

LL parsers

S =-aShbT
S —-cT

S —=>d

T -»aT

T -bS

T —c

o A W NN

S >aoSbT
—-acoThbT
—-accobT
—-acc boT
—acc bbo§

—accbbaoSbT
—accbbadobT

—-accbbad
—accbbadb

oT
o€

(1)
(2)
(6)

(5)
(1)
(3)

(6)

Questions

* What is a suitable accepting device for this example ?
* How can | check that my grammar is LL(1) ?

* If it is not, is there a way to repair it ?

LL Parser

At each step we have a derivation of the form u o
where u is a prefix of w of length i (u = w|: i])

= we match the suffix wli: | with a

We decide what rule to match by looking at the next
symbol (say w|i + 1] = a)

= the choice should be unique, depending only
on the top symbol (w[i]) and the start of «
= we could encode this “ function” in a table

LL Parser

At each step, we try to match a suffix, w|i: |, with a pattern a

(SHIFT)
we try to match word w|i + 1:] with patterny

(REDUCE)
we need to

we continue with wli:] and the pattern §y

(STOP) we matched the whole word and a = ¢,
or when we have no rules to match (ERROR)

LL Parser: amelioration

To make sure we match the axiom, S, we add a new
symbol, $, and a new top-level axiomrule S' - S §

= the initial patternis S $

Possible cases for errors are:

« we “shift” a bad symbol: « = by and wli] # b

 we reach the end of the input ($) and a # $

* we reach the end of the patterna = $and wli] # $

. 5> S5%$
Parsing Table S > aShT | cT | d
T - aT | bS | c

To match a symbol a, and a non-terminal, X, to a rule,
X = [, we assume that we computed a

S aSbT cT d

a b C
aSbT cT
aT bS| c

S'"—> S$

S>aSbT | cT | d

T - aT

| bS | c

accbac$
aabcddd$
aadcaacc$

parse successful

illegal input
illegal input

Recursive descent parser

func member(u []byte) bool {
st, 1 := stack("s", "$"), ©
for {
if i == len(u) || len(stack) == 0 {
return false

}
a := stack.pop()
switch {
case a == "$" && u[i] == "$": // accept
return true
case a == u[i]: i++ // shift
case a.(nterm): // reduce
stack := stack.push(reduce(a, u[i]))
default : return false // error

Pk

Recursive parser

We shall see that (deterministic) Pushdown
Automata provide an adequate notion of accepting

devices for LL grammars

a b C
aSbT cT
aT bS | c

LL grammars

building a parsing table

Questions

—> How can | check that my grammar is LL(1) ?

Building the parsing table

A grammar is LL
< we can build a LL parser from it
< we can build a (LL) parsing table

Next we show how to build this table by computing
three different relations: FIRST, NULL and FOLLOW

LL Parser: FIRST

To build a table, we need to know: what symbols can

“ ” at the beginning of a non-terminal X
and to which production X — « it belongs

E.g. we want to match a w with pattern X y and we
havearule X - a?Y

Also, we should nothave X - aYandX - aZ

LL Parser; NULL

Therefore we should also know when a non-terminal
Xis thatis X =™ €

E.g. we want to match a with pattern X y and we are
in a situation where X =~ ¢

Also, we should not match symbol a with Z when
Z > XY withX »ay |AandY »ay’

LL Parser: FOLLOW

Meaning, we should know the symbols that can
a non-terminal X.

E.g. when we want to match symbol a with pattern
X Y, apossible solutionisthat X =* eandY =" avy

NULL, FIRST and FOLLOW

We have ={beX|a=>" by}
We Say that When o :* € this is decidable
We have ={a€eX|S=>"BXay}

Ambiguity = we should not find two rules
X > aand X — [such that
FIRST(a) N FIRST(B) + @

a FIRST-FIRST conflict

Ambiguity revisited

Actually, we can prove that the grammar is LL(1)
when, for every non-terminal X with productions
X - aq| .. | a,, we have that:

For every pair X — aand X — [we have
FIRST(“) n FIRST(ﬁ) — @ no FIRST-FIRST conflicts

if NULL(X) then FIRST(a;) N FOLLOW(X) = ¢

no FIRST-FOLLOW conflicts

LL Parser: FIRST
We have ={beX|la=" by}

FIRST(e) = @
FIRST(a) ={a}
FIRST(@; ... @y) = Ujer.o{ FIRST(a) | null(a;),j < i}

Equivalently: FIRST is the smallest relation such that
X - Y, .Y, Z [implies FIRST(Z) € FIRST(X) when
Yy, ..., Y, are all nullable.

LL Parser: FOLLOW

We have ={a€eX|S=>"BXay}
(and we assume)
FOLLOW is the smallest relation such that:

A-alXY, .Y, Z [implies
FIRST(Z) € FOLLOW(X) whenY;, ..., Y, nullable.

A-aXY, .Y, Zimplies
FOLLOW(A) € FOLLOW(X) when Y3, ..., Y, nullable.

Symboles Directeurs (SD)

Dans les notations utilisées a ’'ENSEEIHT, on fait
usage de la notion de symbole directeur pour une
production X - «.

SD(X — a) = FIRST(a) sia = A
SD(X — A) = FOLLOW(X)

conflits LL = le méme symbole dans deux regles
SD(X —» a)et SD(X — ()

Symboles Directeurs (SD)

Avantage 1: un critere unique pour reconnaitre
I'ambiguité d’'une grammaire.

Avantage 2: si on veut matcher w|i: | (avec symbole
de téte b) contre le non-terminal X; il suffit de choisir
I'unique production X — «a telle que b € SD(X — a)

X a | O | .. b eSD(X - a)

Example

S - ABS
A -
B - A

NULL FIRST |FOLLOW
S no {$}
A yes {a,c} {a,cd}
B yes {c} {a,cd}

Example: FIRST(S)

S - ABS « FIRTS(S) 2 FIRST(A) U {d}
A -
B - A

NULL FIRST |FOLLOW

o)

no |t 3 {$}

N

yes {a,c} {a,cd}

B yes fc} H{arcd}

Example

S - ABS « FIRTS(S) 2 FIRST(A) U {d}
A - . FIRTS(S) 2 FIRST(B) U {a,d }
B - A

NULL FIRST |FOLLOW

o)

no |t 3 {$}

N

yes {a,c} {a,cd}

B yes fc} H{arcd}

Example

S - ABS « FIRTS(S) 2 FIRST(A) U {d}
A - « FIRTS(S) 2FIRST(B) U {a,d}
B - A « FIRTS(S) 2 FOLLOW(B) U {a,d,c}

NULL FIRST |FOLLOW

o)

no |t 3 {$}

N

yes {a,c} {a,cd}

B | vyes {c} {acd}

Example: FOLLOW(A)

S - A d < FOLLOW(A) 2 FIRST(B)
A —-B a NULL(B) = FOLLOW(A) 2 FIRST(S)
B > A — NULL(S) = $ ¢ FOLLOW(A)

NULL FIRST |FOLLOW

o)

no |{acd}| {$)}

N

yes | {ac} [f }

B yes fc} H{arcd}

Example

SD(B - c¢c) N
SD(B - A) = {c)

FIRST-FOLLOW conflict

> —>ABS SD(S—>ABS)N
A-B a sp(S ->d)={d}
B - A
FIRST-FIRST conflict

NULL FIRST |FOLLOW
S no [{acd}| {$}
A yes {a,c} {a,cd}
B yes {c} {arcd}

Example

S ->iEtSeS | c

E - b

NULL FIRST |FOLLOW
S no {i,c} | {e$}
E no {b}

Example

AN SD(S - iE ..)={i}

S5 iEtSeS DS ~o) - ={c]

. SD(E - b) = {b}
NULL FIRST |FOLLOW

S no {e,3]

E NO

Example

S'">$

S >iEtSeS |

EF —

w=1ibtcec}$

SD(S —»iE ..)={i}

SD(S - ¢) ={c}

SD(E - b) = {b}
Yo=S53

l

)

LEtSeS

Example

X »Yc|a
Y -bZ | A
Z > A

NULL FIRST |FOLLOW

h<

Example
SD(X->Yc)={b,c}

X ->Yc|a SD(X »a) ={a}

Y -bZ | A SD(Y »bZ)={b}

7 A SD(Y - A) ={c}
SD(Z->A) ={c}

NULL FIRST |FOLLOW

X no |{abc}| {$)}

Y | yes {b} {c}

7 yes 1) {c}

Example

SD(X »Yc)={b,c}
X ->Yc|a SD(X »a) ={a}
Y -bZ | A SD(Y »bZ)={b}
7 A SD(Y - A) ={c}
SD(Z->A) ={c}
a b C
X Y c Yc
Y bZ A
Z A

Eliminating conflicts

It is not always possible to eliminate ambiguities in a
grammar (hint: undecidability!)

But we can always try to use substitution;
elimination and left-recursion elimination

Example: S >AS | b
A—->Aa | b

RecElim(A) + SUBST(A) + FACT + SUBST

Another example

S'">S$

S>A|B|A (AVBV{e})
A-oaAb | A (a"b™)

B ->bBa | A (b"a™)

Exercise: show that this grammar is LL(1)

Another example

S'">S5$%

S —>A| B (AV B)

A—-aAb |0 (a™0b™)
B —-aBbb| 1 (a™1b?M)

Exercise: can you think of a reason why this grammar
is not LL(k) ; can you think of a program to test if a
word is accepted by this grammar

Yet Another Example

E-E+T|E-T|T
T -T«xF |T/F |F
F ->id | (E)

Exercise: eliminate the left-recursion (on E and T')
and show that the resulting grammar is LL(1). Write a
recursive descent parser for this simple “expression
languages” using your programming language of
choice.

Yet Another Example

E-E+T|E-T|T
T -T«xF |T/F |F
F ->id | (E)

Exercise: give the derivations for the words,
id x(id+id) $

idid $

id)$

Pushdown Automata

automates a piles [FR]

Pushdown automata (PDA)

e A PDA is a finite state automata that can use a stack
to keep a list of symbols

 We extends FSA with:

* an alphabet for symbols in the stack (I)
* aninitial stack symbol Z € T’

 We extend the transition function, §, so that we
can read, test (pop) and write (push) to the stack

6(q,a,5) - (q',5)

meaning (q,aw,Sy) = (q’,w,B y)

Pushdown automata (PDA)

We extend the transition function, §, so that we can
read, test and write to the stack

5(q,a,S) = (q', B) means than, in state g, with
symbol S € I' at top of the stack, when reading
symbol a € X U {€}, we transition to state g’, pop S
and replace the top of the stack with § € T'*

This defines a transition relation of the form:
(g, w,a) =" (q",w',B)

PDA: graphical representation

d, d, dd
D@ e
initial final states
state 6(qy,b,a) = (qz,N)

We use label a, S ; B to represent transition
5(q,a,S) —» (q',B). Other notation:a,S / 8

Figure obtained using JFLAP

Pushdown automata (PDA)

There are four classes of configurations:

1.

(g,aw,Sy) = (q',w,By) shift + reduce
6(q,a,8) - (q',B)

(qw,Sy) = (g, w,BY) (a = €) reduce
6(q,€,5) - (q',B)

(g,aw,Sy)=(q,w, Sy) (B =S)shift
6(q,a,5) - (q',5)

(gw,Sy)=(q' w,y) pop
6(q,€,5) —~ (q',A)

Pushdown automata (PDA)

We can choose among many different (but
equivalent) accepting conditions:

c (q;,w,Z) =7 (qf, e, f) with qr € F
end in final state (arbitrary stack)

* (quw,Z) =" (q',¢€,¢€)
end with empty stack (arbitrary state)

e (g, W, Z) =7 (qr, €, €) withqr €F

end with final state + empty stack

in each case we must entirely read the input word, w

Pushdown automata: example

5(p,a,Z) — (p,AZ)

5(p,a,A) - (p,AA)

6(p,b,A) - (q,A)

5(@.0,4) = (@A) A 2
6(q,6,Z2) - (q,N) A

here we assume acceptance with empty stack

Pushdown automata: example

6(qp,a,A) - (qg,A)
6(qo,c,A) — (q1,4)
6(q1,a,4) - (q1,1)
6(q1,€,Z) — (g, M)

acceptstabbcbba

Notation: w is the mirror image of w

Here we assume acceptance with empty stack

Equivalence PDA < AG

A language L is algebraic iff there is a PDA A such
that L = L(A). Call ALG this class of languages.

We have REG € ALG (easy)
We have CFG € ALG (build a PDA from a grammar)
We have ALG closed by U, * and - (= automata)

But ALG is not closed by N and complement; while it
is closed by N with regular languages.

CFL € ALG

Take a grammar with production X — a and axiom S
(We can always assumea = by ora = € y)

We can build a (non-deterministic) PDA, with stack
symbol S and a single state, g, that accepts (empty
stack) the same language very easily

Just take: 6(q, b, X) = (q,) b, b A

a,. 5.9
A STA ‘
S - el
S >aS$ }
S ->bA

Complexity of CFL problems

Many problems are undecidable for CFL

* Universality

* Language inclusion, equality

* Given a CFL, is there an equivalent Type-3 grammar

On the other hand, checking emptiness (£ =’ @) is
decidable for CFL, whereas it is not the case with
more complex models (e.g. context-sensitive
languages)

Deterministic PDA

Like with DFA, we can very much accept to have many
transitions for the same “input” (g, a, S); meaning

that § is a functionin Q X 2+ x T - Q x 2T

A PDA is deterministic when, for every g € Q,a €
1 S €T we have:

1. 16(q,a,8)| =1
2. ifd(q,e,S) #@thend(q,b,S) =@ forallb € X

DCFL languages are “accepted” by DPDA

DPDA

Our previous example is a Deterministic-PDA

Limitations of DPDA

DCFL is an interesting class; in particular it includes
LL(1) grammars.

There are some CFL which are not DCFL

= DCFL # CFL

Idea: take words of the form w w (compare that with
the words w ¢ w)

Also: DCFL are not closed by U (idea?), but they are
closed by complement (hard!).

More General Computation
Models

It is easy to extend PDA with an oo tape, prefilled
with blank symbols O, and with special actions (LEFT,
RIGHT and STAY moves) = Turing Machines

TM for a™b™c"

More General Computation
Models

It is easy to extend PDA so that they can use n (= 2)
stacks

O-PDA are automata

2-PDA stacks are more powerful than 1-PDA ... and
actually are universal

O-PDA C 1-PDA C 2-PDA = n-PDA =TM

Post Correspondence Problem

It may be hard to believe that problems become
(that much) complex with the introduction of a stack

Problem: you are given two lists (equal length) of
words uy, ..., U, and wy, ..., w,,. Decide whether
there is a sequence of indices iy, ..., I; in 1..7m such

that:

U; Ui, = Wil Wik

1 K

PCP is undecidable

This is “almost” like dominoes:

10111

10

111

10

111

Uy Un
Wy Wn
10111.1.1.10

10.111.111.0

LR grammars

LR parsers

LR grammars are those than can be parsed using a LR
parser = parses by scanning the input from Left to
right and building a Rightmost derivation (in reverse)

rightmost = replaces the right-hand side of
production rules (the ¢ in X — a) with their left-

hand side

We also use PDA and tables, but they are different.

LR parsers are nice

* LR parsers can handle a large class of CFG; and
more languages than LL grammars

* LR parser can detect syntax errors “as soon as they
occur”

* LR parsing is the most general, non-back tracking,
shift-reduce parsing method

LR parser have drawbacks

* It may be complex to build an unambiguous version
of a grammar

* Once you have a suitable grammar, it is too
complex to build a parser by hand = need a tool to
generate it

LR parser: example

We build a table with 4 kinds of actions

e [SHIFT n] transfer look-ahead to the stack
and move to state n

* [REDUCE k] replace a with X on the stack
using rule number k

 [ACCEPT] terminate and answer OK

 [ERROR] terminate and answer KO

LR parser: example

Take the grammarS = aSb | b

The LR(1) table obtained from this grammar is

derivations #

a b $
0 s2 s3
1 OK
2 s2 s3
3 T2 T2
4 S5
5 rl rl

ru{s$}

move to row 4

LR parser: table

S"> oS$
S ->o0aSh
S >o0b

\ 4

S > aShbo

s2

s3

OK

s2

s3

r2

r2

G|]|WIN|[-=]O

s5

rl

rl

rl

S'"> S$o | OK

b

s2

s3

LR parser:aa b b b

OK

s2

s3

r2

r2

init (ao, O, $())

s5

G|]|WIN|[-=]O

rl

rl

We are in position 0 of the word, with look-ahead a
We start in state (row) O; the stack contains state 0

and symbol $

The stack is a sequence of pairs (state i) X symbol,

which we write symbol ;

LR parser:aa b b b

init (ao, O, $0)

T[O, a] = s2, the first action is a shift to state 2

* the new state is 2

b

s2

s3

OK

s2

s3

r2

r2

s5

G|]|WIN|[-=]O

rl

rl

* we push the symbol and state, a,, in the stack

e we read the next symbol

LR parser:aa b b b

init
Ss2

(Cl(), O’ $O)
- (a11 2) a $O)

0 s2 s3
1 OK
2 s2 s3
3 r2 r2
4 s5
5 rl | rl

a b $ S
LR parser:aabbb 11 =
nit (ag,0,$0) AT
S2 - (a,2,a, $y) > m 1=

s2 - (by,2,a5 a; $p)
s3 - (b3,3,b3 a; a, $y)

T[3, b] = r2, the next action is a shift forrule2,S — b
* we pop b from the stack, it is at state 2

 we push S with state T[2,S5] = 4

* and move to state 4

LR parser:aa b b b

init (ap,0,%0)

S2 - (ay,2,a; $o)

S2 — (b3, 2,05 a; $)
s3 — (b3, 3,b3 a, a, $p)
T2 — (b3,4,54 a; a; $)

s2

s3

OK

s2

s3

r2

r2

G|]|WIN|[-=]O

s5

rl

rl

LR parser:aa b b b

init (ag, 0,%,)

s2 - (ay,2,a, $p)

S2 — (by,2,a;3 a; $)

s3 — (b3, 3,b3 a, a, $p)
r2 — (b3, 4,5, a5 a, $p)
s5 — (by,5,bs Sy a5 a; $o)
rl — (b4, 4,84 az $)

s2

s3

OK

s2

s3

r2

r2

s5

G|]|WIN|[-=]O

rl

rl

S -aSh

LR parser:aa b b b

init (agy,0,%,)

Y/ - (ay,2,a; $)

Y - (bs,2,a;5 a; $)

s3 — (b3, 3,b3a, a, $y)
T2 — (b3,4,84 a; a; $o)
s5 — (by,5,bs S, a, a, $)
rl — (by, 4,5, a5, $p)

s5 — ($5, 5, b5 54 a, $0)
rl - ($5, 1,51 $o)

OK

s2

s3

OK

s2

s3

r2

r2

G|]|WIN|[-=]O

s5

rl

rl

S ->aShb

S -aShb

LR parser:aa b b b

init
S2
S2
s3
r2
s5
rl
s5
rl
OK

(ao, $)
- (a,a$)
— (by,aas$)
— (bg,baa?l)
— (b3, Saa¥$)
— (by,bSaa}$)
— (b4,Sa$)
- ($5,bSa$)
- ($5,5 %)

s2

s3

OK

s2

s3

r2

r2

G|]|WIN|[-=]O

s5

rl

rl

becauseS — b

becauseS —aShbh

becauseS - aShbh

LR parser

We have not discussed:

* how to check whether the grammar is LR (finding
conflicts between rules)

* what are the possible kind of conflicts
* how to solve conflicts (when possible)

