LL grammars

recursive descent parsers

LL parsers

LL grammars are those than can be parsed using a LL parser \Rightarrow parses by scanning the input from Left to right and building a Leftmost derivation

They can be parsed by a (top-down) *recursive descent parser*; LL(k) grammars correspond to parser that take their decision based on a look-ahead of k symbols (and without backtracking)

We look at an example of LL(1) grammars next

LL parsers: example

- 1. $S \rightarrow a S b T$
- 2. $S \rightarrow c T$
- 3. $S \rightarrow d$
- 4. $T \rightarrow a T$
- 5. $T \rightarrow b S$

6. $T \rightarrow c$

$$w = a c c b b a d b c$$
$$S \to a \circ S b T \qquad (1)$$

LL parsers

1. $S \rightarrow a \ S \ b \ T$ 2. $S \rightarrow c \ T$ 3. $S \rightarrow d$ 4. $T \rightarrow a \ T$ 5. $T \rightarrow b \ S$ 6. $T \rightarrow c$ w = a c c b b a d b c

 $S \rightarrow a \circ S b T$ (1) $\rightarrow a c \circ T b T$ (2) $\rightarrow a c c \circ b T$ (6) $\rightarrow a c c b \circ T$ $\rightarrow a c c b b \circ S$ (5) (1) $\rightarrow a c c b b a \circ S b T$ $\rightarrow a c c b b a d \circ b T$ (3) $\rightarrow a c c b b a d b \circ T$ $\rightarrow a c c b b a d b c \circ \epsilon$ (6)

Questions

- What is a suitable *accepting device* for this example ?
- How can I check that my grammar is LL(1)?
- If it is not, is there a way to repair it ?

LL Parser

At each step we have a derivation of the form $u \circ \alpha$ where u is a prefix of w of length i (u = w[:i]) \Rightarrow we match the suffix w[i:] with α

We decide what rule to match by looking at the next symbol (say w[i + 1] = a)

 ⇒ the choice should be unique, depending only on the top symbol (w[i]) and the start of α
 ⇒ we could encode this "function" in a table

LL Parser

At each step, we try to match a suffix, w[i:], with a pattern α

(SHIFT) $\alpha = b \gamma$ and w[i] = bwe try to match word w[i + 1:] with pattern γ

(REDUCE)
$$\alpha = X \gamma$$

we need to match symbol *a* with $X \rightarrow \beta$ we continue with w[i:] and the pattern $\beta \gamma$

(STOP) we matched the whole word and $\alpha = \epsilon$, or when we have no rules to match (ERROR)

LL Parser: amelioration

To make sure we match the axiom, *S*, we add a new symbol, \$, and a new top-level axiom rule $S' \rightarrow S$ \$ \Rightarrow the initial pattern is *S* \$

Possible cases for errors are:

- we "shift" a bad symbol: $\alpha = b \gamma$ and $w[i] \neq b$
- we reach the end of the input (\$) and $\alpha \neq$ \$
- we reach the end of the pattern $\alpha =$ and $w[i] \neq$

Parsing Table

To match a symbol a, and a non-terminal, X, to a rule, $X \rightarrow \beta$, we assume that we computed a parsing table

	а	b	С	d
S	aSbT		с Т	d
T	a T	b S	С	

	а	b	С	d
S	aSbT		c T	d
T	a T	b S	С	

a c c b a c \$ a a b c d d d \$ a a d c a a c c \$ parse successful illegal input illegal input

Recursive descent parser

```
func member(u []byte) bool {
    st, i := stack("S", "$"), 0
    for {
      if i == len(u) || len(stack) == 0 {
         return false
       }
       \alpha := stack.pop()
       switch {
        case \alpha == "$" && u[i] == "$": // accept
            return true
        case \alpha == u[i]: i++
                                 // shift
         case \alpha.(nterm):
                                         // reduce
            stack := stack.push(reduce(\alpha, u[i]))
        default : return false // error
```

Recursive parser

We shall see that *(deterministic) Pushdown Automata* provide an adequate notion of accepting devices for LL grammars

	а	b	С	d
S	a S b T		c T	d
Т	a T	b S	С	

LL grammars

building a parsing table

Questions

• What is a suitable *accepting device* for this example ?

\rightarrow How can I check that my grammar is LL(1)?

• If it is not, is there a way to repair it ?

Building the parsing table

A grammar is LL

- \Leftrightarrow we can build a LL parser from it
- \Leftrightarrow we can build a (LL) parsing table

Next we show how to build this table by computing three different relations: FIRST, NULL and FOLLOW

LL Parser: FIRST

To build a table, we need to know: what symbols can "appear first", at the beginning of a non-terminal X and to which production $X \rightarrow \alpha$ it belongs

E.g. we want to match a w with pattern $X \gamma$ and we have a rule $X \rightarrow a Y$

Also, we should not have $X \rightarrow a Y$ and $X \rightarrow a Z$

LL Parser: NULL

Therefore we should also know when a non-terminal X is *nullable*, that is $X \Rightarrow^* \epsilon$

E.g. we want to match *a* with pattern $X \gamma$ and we are in a situation where $X \Rightarrow^* \epsilon$

Also, we should not match symbol a with Z when $Z \rightarrow X Y$ with $X \rightarrow a \gamma \mid \Lambda$ and $Y \rightarrow a \gamma'$

LL Parser: FOLLOW

Meaning, we should know the symbols that can follow a non-terminal X.

E.g. when we want to match symbol a with pattern X Y, a possible solution is that $X \Rightarrow^* \epsilon$ and $Y \Rightarrow^* a \gamma$

NULL, FIRST and FOLLOW

We have $FIRST(\alpha) = \{ b \in \Sigma \mid \alpha \Rightarrow^* b \gamma \}$

We say that $\operatorname{null}(\alpha)$ when $\alpha \Rightarrow^* \epsilon$ this is decidable

We have FOLLOW(X) = { $a \in \Sigma \mid S \Rightarrow^* \beta X a \gamma$ }

Ambiguity \Rightarrow we should not find two rules $X \rightarrow \alpha$ and $X \rightarrow \beta$ such that FIRST $(\alpha) \cap$ FIRST $(\beta) \neq \emptyset$

a FIRST-FIRST conflict

Ambiguity revisited

Actually, we can prove that the grammar is LL(1) when, for every non-terminal X with productions $X \rightarrow \alpha_1 \mid ... \mid \alpha_n$, we have that:

For every pair $X \to \alpha$ and $X \to \beta$ we have FIRST $(\alpha) \cap FIRST(\beta) = \emptyset$

if NULL(X) then FIRST(α_i) \cap FOLLOW(X) = Ø

no FIRST-FOLLOW conflicts

LL Parser: FIRST

We have $FIRST(\alpha) = \{ b \in \Sigma \mid \alpha \Rightarrow^* b \gamma \}$

$$FIRST(\epsilon) = \emptyset$$

$$FIRST(\alpha) = \{ a \}$$

$$FIRST(\alpha_1 \dots \alpha_n) = \bigcup_{i \in 1..n} \{ FIRST(\alpha_i) \mid null(\alpha_j), j < i \}$$

Equivalently: FIRST is the smallest relation such that $X \rightarrow Y_1 \dots Y_n Z \beta$ implies FIRST $(Z) \subseteq$ FIRST(X) when Y_1, \dots, Y_n are all nullable.

LL Parser: FOLLOW

We have FOLLOW(X) = { $a \in \Sigma | S \Rightarrow^* \beta X a \gamma$ } (and we assume FOLLOW(S) \supseteq { \$ }) FOLLOW is the smallest relation such that:

 $A \rightarrow \alpha X Y_1 \dots Y_n Z \beta$ implies FIRST(Z) \subseteq FOLLOW(X) when Y_1, \dots, Y_n nullable.

 $A \rightarrow \alpha X Y_1 \dots Y_n Z$ implies FOLLOW(A) \subseteq FOLLOW(X) when Y_1, \dots, Y_n nullable.

Symboles Directeurs (SD)

Dans les notations utilisées à l'ENSEEIHT, on fait usage de la notion de *symbole directeur* pour une production $X \rightarrow \alpha$.

$$SD(X \rightarrow \alpha) = FIRST(\alpha)$$
 si $\alpha \neq \Lambda$
 $SD(X \rightarrow \Lambda) = FOLLOW(X)$

conflits LL \equiv le même symbole dans deux règles SD $(X \rightarrow \alpha)$ et SD $(X \rightarrow \beta)$

Symboles Directeurs (SD)

Avantage 1: un critère unique pour reconnaître l'ambiguité d'une grammaire.

Avantage 2: si on veut matcher w[i:] (avec symbole de tête b) contre le non-terminal X; il suffit de choisir l'unique production $X \rightarrow \alpha$ telle que $b \in SD(X \rightarrow \alpha)$

	b	С	
X	α	Ø	
	•••	•••	

 $b \in SD(X \rightarrow \alpha)$

 $S \rightarrow A B S \mid d$ $A \rightarrow B \mid a$ $B \rightarrow c \mid \Lambda$

	NULL	FIRST	FOLLOW
S	no	{ <i>a</i> , <i>c</i> , <i>d</i> }	{ \$ }
A	yes	{ <i>a</i> , <i>c</i> }	{ a, c, d }
B	yes	{ <i>C</i> }	{ a, c, d }

Example: FIRST(S)

 $S \rightarrow A B S \mid d \qquad \longleftarrow \qquad \mathsf{FIRTS}(S) \supseteq \mathsf{FIRST}(A) \cup \{d\}$ $A \rightarrow B \qquad \mid a$ $B \rightarrow c \qquad \mid \Lambda$

	NULL	FIRST	FOLLOW
S	no	{ <i>a</i> , <i>c</i> , <i>d</i> }	{ \$ }
A	yes	{ <i>a</i> , <i>c</i> }	{ <i>a</i> , <i>c</i> , <i>d</i> }
B	yes	{ <i>c</i> }	{ a, c, d }

 $S \rightarrow A B S \mid d \qquad \longleftarrow \qquad \mathsf{FIRTS}(S) \supseteq \mathsf{FIRST}(A) \cup \{d\}$ $A \rightarrow B \qquad \mid a \qquad \longleftarrow \qquad \mathsf{FIRTS}(S) \supseteq \mathsf{FIRST}(B) \cup \{a, d\}$ $B \rightarrow c \qquad \mid \Lambda$

	NULL	FIRST	FOLLOW
S	no	{ <i>a</i> , <i>c</i> , <i>d</i> }	{ \$ }
A	yes	{ <i>a</i> , <i>c</i> }	{ a, c, d }
B	yes	{ <i>c</i> }	{ a, c, d }

 $S \rightarrow A B S \mid d \qquad \longleftarrow \qquad \mathsf{FIRTS}(S) \supseteq \mathsf{FIRST}(A) \cup \{d\}$ $A \rightarrow B \qquad \mid a \qquad \longleftarrow \qquad \mathsf{FIRTS}(S) \supseteq \mathsf{FIRST}(B) \cup \{a, d\}$ $B \rightarrow c \qquad \mid \Lambda \qquad \longleftarrow \qquad \mathsf{FIRTS}(S) \supseteq \mathsf{FOLLOW}(B) \cup \{a, d, c\}$

	NULL	FIRST	FOLLOW
S	no	{ <i>a</i> , <i>c</i> , <i>d</i> }	{ \$ }
A	yes	{ <i>a</i> , <i>c</i> }	{ a, c, d }
В	yes	{ <i>c</i> }	{ a, c, d }

Example: FOLLOW(A)

 $S \rightarrow A B S \mid d \longleftarrow \text{FOLLOW}(A) \supseteq \text{FIRST}(B)$ $A \rightarrow B \mid a \qquad \text{NULL}(B) \Rightarrow \text{FOLLOW}(A) \supseteq \text{FIRST}(S)$ $B \rightarrow c \quad | \Lambda \qquad \neg \text{NULL}(S) \Rightarrow \text{ } \notin \text{FOLLOW}(A)$

	NULL	FIRST	FOLLOW
S	no	{ <i>a</i> , <i>c</i> , <i>d</i> }	{ \$ }
A	yes	{ <i>a</i> , <i>c</i> }	{ <i>a</i> , <i>c</i> , <i>d</i> }
B	yes	{ <i>c</i> }	{ a, c, d }

 $S \rightarrow A B S \mid d$ $A \rightarrow B \mid a$ $B \rightarrow c \mid \Lambda$

 $SD(S \rightarrow A B S) \cap$ $SD(S \rightarrow d) = \{d\}$ FIRST-FIRST conflict

	NULL	FIRST	FOLLOW
S	no	{ <i>a</i> , <i>c</i> , <i>d</i> }	{ \$ }
A	yes	{ <i>a</i> , <i>c</i> }	{ a, c, d }
B	yes	{ <i>c</i> }	{ a, c, d }

 $SD(B \rightarrow c) \cap$ $SD(B \rightarrow \Lambda) = \{ c \}$

FIRST-FOLLOW conflict

 $S \rightarrow i E t S e S \mid c$ $E \rightarrow b$

	NULL	FIRST	FOLLOW
S	no	{ <i>i</i> , <i>c</i> }	{ <i>e</i> ,\$}
E	no	{ <i>b</i> }	$\{t\}$

 $S' \to \$$ $S \to i E t S e S \mid c$ $E \to b$

 $SD(S \rightarrow i E \dots) = \{i\}$ $SD(S \rightarrow c) = \{c\}$ $SD(E \rightarrow b) = \{b\}$

	NULL	FIRST	FOLLOW
S	no	{ <i>i</i> , <i>c</i> }	{ <i>e</i> ,\$}
E	no	{ <i>b</i> }	$\{t\}$

 $S' \to \$$ $S \to i E t S e S \mid c$ $E \to b$

$$SD(S \rightarrow i E \dots) = \{i\}$$

$$SD(S \rightarrow c) = \{c\}$$

$$SD(E \rightarrow b) = \{b\}$$

$$w = i b t c e c \$ \qquad \gamma_0 = S \$$$

	i	t	е	С	b
S	i E t S e S			С	
E					b

 $\begin{array}{l} X \rightarrow Y \ c \ \mid \ a \\ Y \rightarrow b \ Z \ \mid \ \Lambda \\ Z \ \rightarrow \Lambda \end{array}$

	NULL	FIRST	FOLLOW
X			
Y			
Z			

$$\begin{array}{l} X \rightarrow Y \ c \ \mid \ a \\ Y \rightarrow b \ Z \ \mid \ \Lambda \\ Z \ \rightarrow \Lambda \end{array}$$

$$SD(X \to Y c) = \{ b, c \}$$

$$SD(X \to a) = \{ a \}$$

$$SD(Y \to b Z) = \{ b \}$$

$$SD(Y \to \Lambda) = \{ c \}$$

$$SD(Z \to \Lambda) = \{ c \}$$

	NULL	FIRST	FOLLOW
X	no	{ <i>a</i> , <i>b c</i> }	{ \$ }
Y	yes	{ <i>b</i> }	{ <i>c</i> }
Z	yes	Ø	{ <i>c</i> }

 $\begin{array}{l} X \rightarrow Y \ c \ \mid \ a \\ Y \rightarrow b \ Z \ \mid \ \Lambda \\ Z \ \rightarrow \Lambda \end{array}$

$$SD(X \to Y c) = \{ b, c \}$$

$$SD(X \to a) = \{ a \}$$

$$SD(Y \to b Z) = \{ b \}$$

$$SD(Y \to \Lambda) = \{ c \}$$

$$SD(Z \to \Lambda) = \{ c \}$$

	а	b	С
X	а	Ү с	Y c
Y		b Z	Λ
Z			Λ
Eliminating conflicts

It is not always possible to eliminate ambiguities in a grammar (hint: undecidability!)

But we can always try to use substitution; elimination and left-recursion elimination

Example: $S \rightarrow A S \mid b$ $A \rightarrow A a \mid b$

RecElim(A) + SUBST(A) + FACT + SUBST

Another example

$$S' \to S \ S \to A \mid B \mid \Lambda \qquad (A \lor B \lor \{\epsilon\})$$
$$A \to a A b \mid \Lambda \qquad (a^n b^n)$$
$$B \to b B a \mid \Lambda \qquad (b^n a^n)$$

Exercise: show that this grammar is LL(1)

Another example

Exercise: can you think of a reason why this grammar is not LL(k) ; can you think of a program to test if a word is accepted by this grammar

Yet Another Example

$$E \rightarrow E + T \mid E - T \mid T$$
$$T \rightarrow T * F \mid T / F \mid F$$
$$F \rightarrow id \mid (E)$$

Exercise: eliminate the left-recursion (on E and T) and show that the resulting grammar is LL(1). Write a recursive descent parser for this simple "expression languages" using your programming language of choice.

Yet Another Example

$$E \rightarrow E + T \mid E - T \mid T$$
$$T \rightarrow T * F \mid T / F \mid F$$
$$F \rightarrow id \mid (E)$$

Exercise: give the derivations for the words, id * (id + id) \$ id id \$ id id \$ id) \$

Pushdown Automata

automates à piles [FR]

Pushdown automata (PDA)

- A PDA is a finite state automata that can use a *stack* to keep a list of symbols
- We extends FSA with:
 - an alphabet for symbols in the stack (Γ)
 - an initial stack symbol $Z \in \Gamma$
- We extend the transition function, δ , so that we can *read*, *test* (pop) and *write* (push) to the stack

 $\delta(q,a,S) \to (q',\beta)$

meaning $(q, a, w, S\gamma) \Rightarrow (q', w, \beta\gamma)$

Pushdown automata (PDA)

We extend the transition function, δ , so that we can *read, test* and *write* to the stack

 $\delta(q, a, S) = (q', \beta)$ means than, in state q, with symbol $S \in \Gamma$ at top of the stack, when reading symbol $a \in \Sigma \cup \{\epsilon\}$, we transition to state q', pop Sand replace the top of the stack with $\beta \in \Gamma^*$

This defines a transition relation of the form: $(q, w, \alpha) \Rightarrow^* (q', w', \beta)$

PDA: graphical representation

We use label a, S; β to represent transition $\delta(q, a, S) \rightarrow (q', \beta)$. Other notation: a, S / β

Figure obtained using JFLAP

Pushdown automata (PDA)

There are four classes of *configurations*:

1.
$$(q, a, w, S \gamma) \Rightarrow (q', w, \beta \gamma)$$
 shift + reduce
 $\delta(q, a, S) \rightarrow (q', \beta)$

2. $(q, w, S \gamma) \Rightarrow (q', w, \beta \gamma)$ $(a = \epsilon)$ reduce $\delta(q, \epsilon, S) \rightarrow (q', \beta)$

3.
$$(q, a, w, S, \gamma) \Rightarrow (q', w, S, \gamma)$$
 $(\beta = S)$ shift $\delta(q, a, S) \rightarrow (q', S)$

4.
$$(q, w, S \gamma) \Rightarrow (q', w, \gamma)$$
 pop
 $\delta(q, \epsilon, S) \rightarrow (q', \Lambda)$

Pushdown automata (PDA)

We can choose among many different (but equivalent) accepting conditions:

• $(q_I, w, Z) \Rightarrow^* (q_f, \epsilon, \beta)$ with $q_f \in F$ end in final state (arbitrary stack)

•
$$(q_I, w, Z) \Rightarrow^* (q', \epsilon, \epsilon)$$

end with empty stack (arbitrary state)

• $(q_I, w, Z) \Rightarrow^* (q_f, \epsilon, \epsilon)$ with $q_f \in F$ end with final state + empty stack

in each case we must entirely read the input word, w

Pushdown automata: example

$$\begin{split} \delta(p, a, Z) &\to (p, AZ) \\ \delta(p, a, A) &\to (p, AA) \\ \delta(p, b, A) &\to (q, \Lambda) \\ \delta(q, b, A) &\to (q, \Lambda) \\ \delta(q, \epsilon, Z) &\to (q, \Lambda) \end{split}$$

here we assume acceptance with empty stack

Pushdown automata: example

$$\begin{split} \delta(q_0, a, \Lambda) &\to (q_0, A) \\ \delta(q_0, c, \Lambda) &\to (q_1, \Lambda) \\ \delta(q_1, a, \Lambda) &\to (q_1, \Lambda) \\ \delta(q_1, \epsilon, Z) &\to (q_2, \Lambda) \end{split}$$

accepts: a b b c b b a

Notation: \widetilde{w} is the mirror image of w

Here we assume acceptance with empty stack

Equivalence PDA \leftrightarrow AG

A language \mathcal{L} is *algebraic* iff there is a PDA \mathcal{A} such that $\mathcal{L} = \mathcal{L}(\mathcal{A})$. Call ALG this class of languages.

We have REG \subseteq ALG (easy) We have CFG \subseteq ALG (build a PDA from a grammar) We have ALG closed by U, \star and \cdot (\approx automata)

But ALG is not closed by \cap and complement; while it is closed by \cap with regular languages.

$CFL \subseteq ALG$

Take a grammar with production $X \rightarrow \alpha$ and axiom S(We can always assume $\alpha = b \gamma$ or $\alpha = \epsilon \gamma$) We can build a (non-deterministic) PDA, with stack symbol S and a single state, q, that accepts (empty stack) the same language very easily

ust take:
$$\delta(q, b, X) \rightarrow (q, \alpha)$$

 $S \rightarrow \epsilon \Lambda$
 $S \rightarrow a S$
 $S \rightarrow b \Lambda$
 $\delta = b \Lambda$
 $\delta = b \Lambda$
 $\delta = b \Lambda$

Complexity of CFL problems

Many problems are undecidable for CFL

- Universality
- Language inclusion, equality
- Given a CFL, is there an equivalent Type-3 grammar

On the other hand, checking emptiness ($\mathcal{L} = {}^{?} \emptyset$) is decidable for CFL, whereas it is not the case with more complex models (e.g. context-sensitive languages)

Deterministic PDA

Like with DFA, we can very much accept to have many transitions for the same "input" (q, a, S); meaning that δ is a function in $Q \times \Sigma^{\perp} \times \Gamma \rightarrow Q \times 2^{\Gamma^{\star}}$

A PDA is *deterministic* when, for every $q \in Q, a \in \Sigma^{\perp}, S \in \Gamma$ we have:

- 1. $|\delta(q, a, S)| = 1$
- 2. if $\delta(q, \epsilon, S) \neq \emptyset$ then $\delta(q, b, S) = \emptyset$ for all $b \in \Sigma$

DCFL languages are "accepted" by DPDA

DPDA

Our previous example is a Deterministic-PDA

Limitations of DPDA

DCFL is an interesting class; in particular it includes LL(1) grammars.

There are some CFL which are not DCFL

 \Rightarrow DCFL \neq CFL

Idea: take words of the form $w \ \widetilde{w}$ (compare that with the words $w \ c \ \widetilde{w}$)

Also: DCFL are not closed by ∪ (idea?), but they are closed by complement (hard!).

More General Computation Models

It is easy to extend PDA with an ∞ *tape*, prefilled with *blank symbols* \Box , and with special actions (LEFT, RIGHT and STAY moves) \equiv Turing Machines

TM for $a^n b^n c^n$

More General Computation Models

It is easy to extend PDA so that they can use $n (\geq 2)$ stacks

0-PDA are automata

2-PDA stacks are more powerful than 1-PDA ... and actually are universal

$0-PDA \subset 1-PDA \subset 2-PDA = n-PDA = TM$

Post Correspondence Problem

It may be hard to believe that problems become (that much) complex with the introduction of a stack

Problem: you are given two lists (equal length) of words u_1, \ldots, u_n and w_1, \ldots, w_n . Decide whether there is a sequence of indices i_1, \ldots, i_k in $1 \ldots n$ such that:

$$u_{i_1} \dots \ u_{i_k} = w_{i_1} \dots \ w_{i_k}$$

PCP is undecidable

This is "almost" like dominoes:

$$\begin{array}{|c|c|c|c|c|}\hline u_1 & u_2 & u_n \\ \hline w_1 & w_2 & w_n \end{array}$$

LR grammars

LR parsers

LR grammars are those than can be parsed using a LR parser \Rightarrow parses by scanning the input from **Left** to right and building a **Rightmost** derivation (in reverse)

rightmost \Rightarrow replaces the right-hand side of production rules (the α in $X \rightarrow \alpha$) with their left-hand side

We also use PDA and tables, but they are different.

LR parsers are nice

- LR parsers can handle a large class of CFG; and more languages than LL grammars
- LR parser can detect syntax errors "as soon as they occur"
- LR parsing is the most general, non-back tracking, shift-reduce parsing method

LR parser have drawbacks

- It may be complex to build an unambiguous version of a grammar
- Once you have a suitable grammar, it is too complex to build a parser by hand ⇒ need a tool to generate it

LR parser: example

We build a table with 4 kinds of actions

- [SHIFT n] transfer look-ahead to the stack and move to state n
- [REDUCE k] replace α with X on the stack using rule number k
- [ACCEPT] terminate and answer OK
- [ERROR] terminate and answer KO

LR parser: example

Take the grammar $S \rightarrow a S b \mid b$ The LR(1) table obtained from this grammar is

LR parser: $a \ a \ b \ b$ init $(a_0, 0, \$_0)$

	а	b	\$	S
0	<i>s</i> 2	<i>s</i> 3		1
1			ОК	
2	s2	<i>s</i> 3		4
3		r2	r2	
4		<i>s</i> 5		
5		r1	r1	

We are in position 0 of the word, with look-ahead aWe start in state (row) 0; the stack contains state 0 and symbol \$

The stack is a sequence of pairs (state i) × symbol, which we write symbol $_i$

LR parser: $a \ a \ b \ b$ init $(a_0, 0, \$_0)$

	а	b	\$	S
0	<i>s</i> 2	<i>s</i> 3		1
1			ОК	
2	s2	<i>s</i> 3		4
3		r2	r2	
4		<i>s</i> 5		
5		<i>r</i> 1	<i>r</i> 1	

T[0, a] = s2, the first action is a shift to state 2

- the new state is 2
- we push the symbol and state, a_2 , in the stack
- we read the next symbol

init $(a_0, 0, \$_0)$

 $s2 \longrightarrow (a_1, 2, a_2 \$_0)$

	а	b	\$	S
0	s2	<i>s</i> 3		1
1			ОК	
2	<i>s</i> 2	<i>s</i> 3		4
3		r2	r2	
4		<i>s</i> 5		
5		<i>r</i> 1	<i>r</i> 1	

- init $(a_0, 0, \$_0)$
- $s2 \rightarrow (a_1, 2, a_2 \$_0)$
- $s2 \rightarrow (b_2, 2, a_2 a_2 \$_0)$
- $s3 \rightarrow (b_3, 3, b_3 a_2 a_2 \$_0)$

\$ а b S 0 *s*2 *s*3 1 1 OK 2 s2 s3 4 3 r2r24 *s*5 5 r1r1

T[3, b] = r2, the next action is a shift for rule 2, $S \rightarrow b$

- we pop b from the stack, it is at state 2
- we push S with state T[2, S] = 4
- and move to state 4

init $(a_0, 0, \$_0)$

- $s2 \rightarrow (a_1, 2, a_2 \$_0)$
- $s2 \rightarrow (b_2, 2, a_2 a_2 \$_0)$
- $s3 \rightarrow (b_3, 3, b_3 a_2 a_2 \$_0)$ r2 $\rightarrow (b_3, 4, S_4 a_2 a_2 \$_0)$

	a	b	\$	S
0	<i>s</i> 2	<i>s</i> 3		1
1			ОК	
2	<i>s</i> 2	<i>s</i> 3		4
3		r2	r2	
4		<i>s</i> 5		
5		<i>r</i> 1	<i>r</i> 1	

		-		l
init	$(a_0, 0, \$_0)$	4		<i>s</i> 5
c?	$\rightarrow (a 2 a \ (b))$	5		<i>r</i> 1
52	$\rightarrow (u_1, 2, u_2, \mathfrak{s}_0)$			
<i>s</i> 2	$\rightarrow (b_2, 2, a_2 \ a_2 \ \$_0)$			
<i>s</i> 3	$\rightarrow (b_3, 3, b_3 a_2 a_2 \$_0)$			
r2	$\rightarrow (b_3, 4, S_4 \ a_2 \ a_2 \ \$_0)$	S	\rightarrow	b
<i>s</i> 5	$\rightarrow (b_4, 5, b_5 S_4 a_2 a_2 \$_0)$			
r1	$\rightarrow (b_4, 4, S_4 \ a_2 \ \$_0)$	S	\rightarrow	а

	а	b	\$	S
0	s2	<i>s</i> 3		1
1			ОК	
2	s2	<i>s</i> 3		4
3		r2	r2	
4		<i>s</i> 5		
5		<i>r</i> 1	r1	

S b
LR parser: *a a b b b*

		5		12	/
init	$(a_0, 0, \$_0)$	4		<i>s</i> 5	
<i>s</i> 2	$\rightarrow (a_1, 2, a_2 \$_0)$	5		<i>r</i> 1	r
<i>s</i> 2	$\rightarrow (b_2, 2, a_2 \ a_2 \ \$_0)$				
<i>s</i> 3	$\rightarrow (b_3, 3, b_3 a_2 a_2 \$_0)$				
<i>r</i> 2	$\rightarrow (b_3, 4, S_4 a_2 a_2 \$_0)$	S	\rightarrow	b	
<i>s</i> 5	$\rightarrow (b_4, 5, b_5 S_4 a_2 a_2 \$_0)$				
r1	$\rightarrow (b_4, 4, S_4 \ a_2 \ \$_0)$	S	\rightarrow	a S	b
<i>s</i> 5	\rightarrow (\$ ₅ , 5, $b_5 S_4 a_2 $ \$ ₀)				
r1	\rightarrow (\$ ₅ , 1, S ₁ \$ ₀)	S	\rightarrow	a S	b
ОК					

	а	b	\$	S
0	s2	<i>s</i> 3		1
1			ОК	
2	s2	<i>s</i> 3		4
3		<i>r</i> 2	<i>r</i> 2	
4		<i>s</i> 5		
5		<i>r</i> 1	<i>r</i> 1	

LR parser: a a b b b

init $(a_0, \$)$ *s*2 \rightarrow (*a*₁, *a* \$) <u>s</u>2 \rightarrow (b₂, a a \$) *s*3 \rightarrow (b₃, b a a \$) r2 \rightarrow (b₃, S a a \$) *s*5 \rightarrow (b₄, b S a a \$) r1 \rightarrow (b₄, S a \$) \rightarrow (\$5, b S a \$) *s*5 \rightarrow ($\$_5, S$ \$) r1OK

	a	b	\$	S
0	s2	<i>s</i> 3		1
1			ОК	
2	<i>s</i> 2	<i>s</i> 3		4
3		r2	r2	
4		<i>s</i> 5		
5		r1	r1	

because $S \rightarrow b$

because $S \rightarrow a S b$

because $S \rightarrow a S b$

LR parser

We have not discussed:

- how to check whether the grammar is LR (finding conflicts between rules)
- what are the possible kind of conflicts
- how to solve conflicts (when possible)