
LL grammars
recursive descent parsers



LL parsers

LL grammars are those than can be parsed using a LL 
parser ⇒ parses by scanning the input from Left to 
right and building a Leftmost derivation

They can be parsed by a (top-down) recursive 
descent parser ; LL(k) grammars correspond to parser 
that take their decision based on a look-ahead of 𝑘
symbols (and without backtracking)

We look at an example of LL(1) grammars next



LL parsers: example

1. 𝑆 → 𝑎 𝑆 𝑏 𝑇

2. 𝑆 → 𝑐 𝑇

3. 𝑆 → 𝑑

4. 𝑇 → 𝑎 𝑇

5. 𝑇 → 𝑏 𝑆

6. 𝑇 → 𝑐

𝑤 = 𝑎 𝑐 𝑐 𝑏 𝑏 𝑎 𝑑 𝑏 𝑐

𝑆 → 𝑎 ∘ 𝑆 𝑏 𝑇 (1)



LL parsers

1. 𝑆 → 𝑎 𝑆 𝑏 𝑇

2. 𝑆 → 𝑐 𝑇

3. 𝑆 → 𝑑

4. 𝑇 → 𝑎 𝑇

5. 𝑇 → 𝑏 𝑆

6. 𝑇 → 𝑐

𝑤 = 𝑎 𝑐 𝑐 𝑏 𝑏 𝑎 𝑑 𝑏 𝑐

𝑆 → 𝑎 ∘ 𝑆 𝑏 𝑇 (1)
→ 𝑎 𝑐 ∘ 𝑇 𝑏 𝑇 (2)
→ 𝑎 𝑐 𝑐 ∘ 𝑏 𝑇 (6)
→ 𝑎 𝑐 𝑐 𝑏 ∘ 𝑇
→ 𝑎 𝑐 𝑐 𝑏 𝑏 ∘ 𝑆 (5)
→ 𝑎 𝑐 𝑐 𝑏 𝑏 𝑎 ∘ 𝑆 𝑏 𝑇 (1)
→ 𝑎 𝑐 𝑐 𝑏 𝑏 𝑎 𝑑 ∘ 𝑏 𝑇 (3)
→ 𝑎 𝑐 𝑐 𝑏 𝑏 𝑎 𝑑 𝑏 ∘ 𝑇
→ 𝑎 𝑐 𝑐 𝑏 𝑏 𝑎 𝑑 𝑏 𝑐 ∘ 𝜖 (6)



Questions

• What is a suitable accepting device for this example ?

• How can I check that my grammar is LL(1) ?

• If it is not, is there a way to repair it ?



LL Parser

At each step we have a derivation of the form 𝑢 ∘ 𝛼
where 𝑢 is a prefix of 𝑤 of length 𝑖 (𝑢 = 𝑤[: 𝑖])

⇒ we match the suffix 𝑤[𝑖: ] with 𝛼

We decide what rule to match by looking at the next 
symbol (say 𝑤 𝑖 + 1 = 𝑎) 

⇒ the choice should be unique, depending only 

on the top symbol (𝑤 𝑖 ) and the start of 𝛼

⇒ we could encode this “ function” in a table



LL Parser

(SHIFT)       𝛼 = 𝑏 𝛾 and 𝑤[𝑖] = 𝑏

we try to match word 𝑤[𝑖 + 1: ] with pattern 𝛾

(REDUCE)   𝛼 = 𝑋 𝛾

we need to match symbol 𝑎 with 𝑋 → 𝛽

we continue with 𝑤[𝑖: ] and the pattern  𝛽 𝛾

(STOP) we matched the whole word and 𝛼 = 𝜖, 

or when we have no rules to match (ERROR) 

At each step, we try to match a suffix, 𝑤[𝑖: ], with a pattern 𝛼



LL Parser: amelioration

To make sure we match the axiom, 𝑆, we add a new 
symbol, $, and a new top-level axiom rule 𝑆′ → 𝑆 $

⇒ the initial pattern is 𝑆 $

Possible cases for errors are:

• we “shift” a bad symbol: 𝛼 = 𝑏 𝛾 and 𝑤 𝑖 ≠ 𝑏

• we reach the end of the input ($) and 𝛼 ≠ $

• we reach the end of the pattern 𝛼 = $ and 𝑤 𝑖 ≠ $



Parsing Table

To match a symbol 𝑎, and a non-terminal, 𝑋, to a rule, 
𝑋 →𝛽, we assume that we computed a parsing table

𝑎 𝑏 𝑐 𝑑

𝑆 𝑎 𝑆 𝑏 𝑇 𝑐 𝑇 𝑑

𝑇 𝑎 𝑇 𝑏 𝑆 𝑐

𝑆′ → 𝑆 $
𝑆 → 𝑎 𝑆 𝑏 𝑇 𝑐 𝑇 𝑑
𝑇 → 𝑎 𝑇 𝑏 𝑆 𝑐



𝑎 𝑐 𝑐 𝑏 𝑎 𝑐 $ parse successful

𝑎 𝑎 𝑏 𝑐 𝑑 𝑑 𝑑 $ illegal input

𝑎 𝑎 𝑑 𝑐 𝑎 𝑎 𝑐 𝑐 $ illegal input

𝑎 𝑏 𝑐 𝑑

𝑆 𝑎 𝑆 𝑏 𝑇 𝑐 𝑇 𝑑

𝑇 𝑎 𝑇 𝑏 𝑆 𝑐

𝑆′ → 𝑆 $
𝑆 → 𝑎 𝑆 𝑏 𝑇 𝑐 𝑇 𝑑
𝑇 → 𝑎 𝑇 𝑏 𝑆 𝑐



Recursive descent parser

func member(u []byte) bool { 
st, i := stack("S", "$"), 0
for { 

if i == len(u) || len(stack) == 0 { 
return false 

}
𝛼 := stack.pop()
switch {
case 𝛼 == "$" && u[i] == "$":  // accept

return true
case 𝛼 == u[i]: i++            // shift
case 𝛼.(nterm): // reduce

stack := stack.push(reduce(𝛼, u[i])) 
default : return false         // error

} } }



Recursive parser

We shall see that (deterministic) Pushdown 
Automata provide an adequate notion of accepting 
devices for LL grammars

𝑎 𝑏 𝑐 𝑑

𝑆 𝑎 𝑆 𝑏 𝑇 𝑐 𝑇 𝑑

𝑇 𝑎 𝑇 𝑏 𝑆 𝑐



LL grammars
building a parsing table



Questions

• What is a suitable accepting device for this example ?

→ How can I check that my grammar is LL(1) ?

• If it is not, is there a way to repair it ?



Building the parsing table

A grammar is LL 

⟺ we can build a LL parser from it

⟺ we can build a (LL) parsing table

Next we show how to build this table by computing 
three different relations: FIRST, NULL and FOLLOW



LL Parser: FIRST

To build a table, we need to know: what symbols can 
“appear first”, at the beginning of a non-terminal 𝑋
and to which production 𝑋 → 𝛼 it belongs

E.g. we want to match 𝑎 𝑤 with pattern 𝑋 𝛾 and we 
have a rule 𝑋 → 𝑎 𝑌

Also, we should not have 𝑋 → 𝑎 𝑌 and 𝑋 → 𝑎 𝑍



LL Parser: NULL

Therefore we should also know when a non-terminal 
𝑋 is nullable, that is 𝑋 ⇒⋆ 𝜖

E.g. we want to match 𝑎 with pattern 𝑋 𝛾 and we are 
in a situation where 𝑋 ⇒⋆ 𝜖

Also, we should not match symbol 𝑎 with 𝑍 when 
𝑍 → 𝑋 𝑌 with 𝑋 → 𝑎 𝛾 | Λ and  𝑌 → 𝑎 𝛾′



LL Parser: FOLLOW

Meaning, we should know the symbols that can 
follow a non-terminal 𝑋.

E.g. when we want to match symbol 𝑎 with pattern 
𝑋 𝑌, a possible solution is that 𝑋 ⇒⋆ 𝜖 and 𝑌 ⇒⋆ 𝑎 𝛾



NULL, FIRST and FOLLOW

We have FIRST 𝛼 = 𝑏 ∈ Σ 𝛼 ⇒⋆ 𝑏 𝛾 }

We say that null(𝛼) when 𝛼 ⇒⋆ 𝜖

We have FOLLOW 𝑋 = 𝑎 ∈ Σ 𝑆 ⇒⋆ 𝛽 𝑋 𝑎 𝛾 }

Ambiguity ⇒

this is decidable

we should not find two rules 
𝑋 → 𝛼 and 𝑋 → 𝛽 such that 
FIRST 𝛼 ∩ FIRST 𝛽 ≠ ∅

a FIRST-FIRST conflict



Ambiguity revisited

Actually, we can prove that the grammar is LL(1) 
when, for every non-terminal 𝑋 with productions 
𝑋 → 𝛼1 … 𝛼𝑛, we have that:

For every pair 𝑋 → 𝛼 and 𝑋 → 𝛽 we have 
FIRST 𝛼 ∩ FIRST 𝛽 = ∅

if NULL(𝑋) then FIRST 𝛼𝑖 ∩ FOLLOW 𝑋 = ∅

no FIRST-FIRST conflicts

no FIRST-FOLLOW conflicts



LL Parser: FIRST

We have FIRST 𝛼 = 𝑏 ∈ Σ 𝛼 ⇒⋆ 𝑏 𝛾 }

FIRST 𝜖 = ∅

FIRST 𝑎 = { 𝑎 }

FIRST 𝛼1 …𝛼𝑛 = 𝑖∈1..𝑛ڂ FIRST 𝛼𝑖 null 𝛼𝑗 , 𝑗 < 𝑖 }

Equivalently: FIRST is the smallest relation such that 
𝑋 → 𝑌1 …𝑌𝑛 𝑍 𝛽 implies FIRST 𝑍 ⊆ FIRST(𝑋) when 
𝑌1, … , 𝑌𝑛 are all nullable.



LL Parser: FOLLOW

We have FOLLOW 𝑋 = 𝑎 ∈ Σ 𝑆 ⇒⋆ 𝛽 𝑋 𝑎 𝛾 }

FOLLOW is the smallest relation such that:

𝐴 → 𝛼 𝑋 𝑌1 …𝑌𝑛 𝑍 𝛽 implies 

FIRST 𝑍 ⊆ FOLLOW(𝑋) when 𝑌1, … , 𝑌𝑛 nullable.

𝐴 → 𝛼 𝑋 𝑌1 …𝑌𝑛 𝑍 implies 

FOLLOW 𝐴 ⊆ FOLLOW(𝑋) when 𝑌1, … , 𝑌𝑛 nullable.

(and we assume FOLLOW 𝑆 ⊇ $ )



Symboles Directeurs (SD)

Dans les notations utilisées à l’ENSEEIHT, on fait 
usage de la notion de symbole directeur pour une
production 𝑋 → 𝛼.

SD 𝑋 → 𝛼 = FIRST(𝛼) si 𝛼 ≠ Λ

SD 𝑋 → Λ = FOLLOW(𝑋)

conflits LL ≡ le même symbole dans deux règles

SD 𝑋 → 𝛼 et  SD 𝑋 → 𝛽



Symboles Directeurs (SD)

Avantage 1: un critère unique pour reconnaître
l’ambiguité d’une grammaire.

Avantage 2:  si on veut matcher 𝑤[𝑖: ] (avec symbole
de tête 𝑏) contre le non-terminal 𝑋; il suffit de choisir
l’unique production 𝑋 → 𝛼 telle que 𝑏 ∈ SD(𝑋 → 𝛼)

𝑏 𝑐 …

𝑋 𝛼 ∅ …

… … … …

𝑏 ∈ SD(𝑋 → 𝛼)



Example

𝑆 → 𝐴 𝐵 𝑆 | 𝑑

𝐴 → 𝐵 | 𝑎

𝐵 → 𝑐 | Λ

NULL FIRST FOLLOW

𝑆 no { 𝑎, 𝑐, 𝑑 } { $ }

𝐴 yes 𝑎, 𝑐 { 𝑎, 𝑐, 𝑑 }

𝐵 yes { 𝑐 } { 𝑎, 𝑐, 𝑑 }



Example: FIRST(𝑆)

𝑆 → 𝐴 𝐵 𝑆 | 𝑑

𝐴 → 𝐵 | 𝑎

𝐵 → 𝑐 | Λ

NULL FIRST FOLLOW

𝑆 no { 𝑎, 𝑐, 𝑑 } { $ }

𝐴 yes 𝑎, 𝑐 { 𝑎, 𝑐, 𝑑 }

𝐵 yes { 𝑐 } { 𝑎, 𝑐, 𝑑 }

FIRTS 𝑆 ⊇ FIRST 𝐴 ∪ { 𝑑 }



Example

𝑆 → 𝐴 𝐵 𝑆 | 𝑑

𝐴 → 𝐵 | 𝑎

𝐵 → 𝑐 | Λ

NULL FIRST FOLLOW

𝑆 no { 𝑎, 𝑐, 𝑑 } { $ }

𝐴 yes 𝑎, 𝑐 { 𝑎, 𝑐, 𝑑 }

𝐵 yes { 𝑐 } { 𝑎, 𝑐, 𝑑 }

FIRTS 𝑆 ⊇ FIRST 𝐴 ∪ { 𝑑 }

FIRTS 𝑆 ⊇ FIRST 𝐵 ∪ { 𝑎, 𝑑 }



Example

𝑆 → 𝐴 𝐵 𝑆 | 𝑑

𝐴 → 𝐵 | 𝑎

𝐵 → 𝑐 | Λ

NULL FIRST FOLLOW

𝑆 no { 𝑎, 𝑐, 𝑑 } { $ }

𝐴 yes 𝑎, 𝑐 { 𝑎, 𝑐, 𝑑 }

𝐵 yes { 𝑐 } { 𝑎, 𝑐, 𝑑 }

FIRTS 𝑆 ⊇ FIRST 𝐴 ∪ { 𝑑 }

FIRTS 𝑆 ⊇ FIRST 𝐵 ∪ { 𝑎, 𝑑 }

FIRTS 𝑆 ⊇ FOLLOW 𝐵 ∪ { 𝑎, 𝑑, 𝑐 }



Example: FOLLOW(𝐴)

𝑆 → 𝐴 𝐵 𝑆 | 𝑑

𝐴 → 𝐵 | 𝑎

𝐵 → 𝑐 | Λ

NULL FIRST FOLLOW

𝑆 no { 𝑎, 𝑐, 𝑑 } { $ }

𝐴 yes 𝑎, 𝑐 { 𝑎, 𝑐, 𝑑 }

𝐵 yes { 𝑐 } { 𝑎, 𝑐, 𝑑 }

FOLLOW 𝐴 ⊇ FIRST 𝐵

NULL 𝐵 ⇒ FOLLOW 𝐴 ⊇ FIRST(𝑆)

¬ NULL 𝑆 ⇒ $ ∉ FOLLOW 𝐴



Example

𝑆 → 𝐴 𝐵 𝑆 | 𝑑

𝐴 → 𝐵 | 𝑎

𝐵 → 𝑐 | Λ

NULL FIRST FOLLOW

𝑆 no { 𝑎, 𝑐, 𝑑 } { $ }

𝐴 yes 𝑎, 𝑐 { 𝑎, 𝑐, 𝑑 }

𝐵 yes { 𝑐 } { 𝑎, 𝑐, 𝑑 }

SD 𝑆 → 𝐴 𝐵 𝑆 ∩
SD 𝑆 → 𝑑 = 𝑑

FIRST-FIRST conflict

SD 𝐵 → 𝑐 ∩
SD 𝐵 → Λ = 𝑐

FIRST-FOLLOW conflict



Example

𝑆 → 𝑖 𝐸 𝑡 𝑆 𝑒 𝑆 | 𝑐

𝐸 → 𝑏

NULL FIRST FOLLOW

𝑆 no { 𝑖, 𝑐 } { 𝑒, $ }

𝐸 no 𝑏 { 𝑡 }



Example

𝑆′ → $

𝑆 → 𝑖 𝐸 𝑡 𝑆 𝑒 𝑆 | 𝑐

𝐸 → 𝑏

NULL FIRST FOLLOW

𝑆 no { 𝑖, 𝑐 } { 𝑒, $ }

𝐸 no 𝑏 { 𝑡 }

SD 𝑆 → 𝑖 𝐸 … = { 𝑖 }
SD 𝑆 → 𝑐 = { 𝑐 }
SD 𝐸 → 𝑏 = { 𝑏 }



Example

𝑆′ → $

𝑆 → 𝑖 𝐸 𝑡 𝑆 𝑒 𝑆 | 𝑐

𝐸 → 𝑏

SD 𝑆 → 𝑖 𝐸 … = { 𝑖 }
SD 𝑆 → 𝑐 = { 𝑐 }
SD 𝐸 → 𝑏 = { 𝑏 }

𝑤 = 𝑖 𝑏 𝑡 𝑐 𝑒 𝑐 $ 𝛾0 = 𝑆 $

𝑖 𝑡 𝑒 𝑐 𝑏

𝑆 𝑖 𝐸 𝑡 𝑆 𝑒 𝑆 𝑐

𝐸 𝑏



Example

𝑋 → 𝑌 𝑐 | 𝑎

𝑌 → 𝑏 𝑍 | Λ

𝑍 → Λ

NULL FIRST FOLLOW

𝑋

𝑌

𝑍



Example

𝑋 → 𝑌 𝑐 | 𝑎

𝑌 → 𝑏 𝑍 | Λ

𝑍 → Λ

NULL FIRST FOLLOW

𝑋 no { 𝑎, 𝑏 𝑐 } { $ }

𝑌 yes 𝑏 { 𝑐 }

𝑍 yes ∅ 𝑐

SD 𝑋 → 𝑌 𝑐 = { 𝑏, 𝑐 }
SD 𝑋 → 𝑎 = { 𝑎 }
SD 𝑌 → 𝑏 𝑍 = { 𝑏 }
SD 𝑌 → Λ = { 𝑐 }
SD 𝑍 → Λ = { 𝑐 }



Example

𝑋 → 𝑌 𝑐 | 𝑎

𝑌 → 𝑏 𝑍 | Λ

𝑍 → Λ

𝑎 𝑏 𝑐

𝑋 𝑎 𝑌 𝑐 𝑌 𝑐

𝑌 𝑏 𝑍 Λ

𝑍 Λ

SD 𝑋 → 𝑌 𝑐 = { 𝑏, 𝑐 }
SD 𝑋 → 𝑎 = { 𝑎 }
SD 𝑌 → 𝑏 𝑍 = { 𝑏 }
SD 𝑌 → Λ = { 𝑐 }
SD 𝑍 → Λ = { 𝑐 }



Eliminating conflicts

It is not always possible to eliminate ambiguities in a 
grammar (hint: undecidability!)

But we can always try to use substitution; 
elimination and left-recursion elimination

Example: 𝑆 → 𝐴 𝑆 | 𝑏
𝐴 → 𝐴 𝑎 | 𝑏

RecElim(A) + SUBST(A) + FACT + SUBST



Another example

𝑆′ → 𝑆 $

𝑆 → 𝐴 𝐵 Λ (𝐴 ∨ 𝐵 ∨ { 𝜖 })

𝐴 → 𝑎 𝐴 𝑏 | Λ (𝑎𝑛𝑏𝑛)

𝐵 → 𝑏 𝐵 𝑎 | Λ (𝑏𝑛𝑎𝑛)

Exercise: show that this grammar is LL(1) 



Another example

𝑆′ → 𝑆 $

𝑆 → 𝐴 | 𝐵 (𝐴 ∨ 𝐵)

𝐴 → 𝑎 𝐴 𝑏 | 0 (𝑎𝑛0𝑏𝑛)

𝐵 → 𝑎 𝐵 𝑏 𝑏 | 1 (𝑎𝑛1𝑏2𝑛)

Exercise: can you think of a reason why this grammar 
is not LL(k) ; can you think of a program to test if a 
word is accepted by this grammar



Yet Another Example

𝐸 → 𝐸 + 𝑇 𝐸 − 𝑇 𝑇

𝑇 → 𝑇 ∗ 𝐹 𝑇 / 𝐹 𝐹

𝐹 → 𝑖𝑑 | ( 𝐸 )

Exercise: eliminate the left-recursion (on 𝐸 and 𝑇)
and show that the resulting grammar is LL(1). Write a 
recursive descent parser for this simple “expression 
languages” using your programming language of 
choice.



Yet Another Example

𝐸 → 𝐸 + 𝑇 𝐸 − 𝑇 𝑇

𝑇 → 𝑇 ∗ 𝐹 𝑇 / 𝐹 𝐹

𝐹 → 𝑖𝑑 | ( 𝐸 )

Exercise: give the derivations for the words,

𝑖𝑑 ∗ 𝑖𝑑 + 𝑖𝑑 $

𝑖𝑑 𝑖𝑑 $

𝑖𝑑 ) $



Pushdown Automata
automates à piles [FR]



Pushdown automata (PDA)

• A PDA is a finite state automata that can use a stack 
to keep a list of symbols

• We extends FSA with:
• an alphabet for symbols in the stack (Γ)

• an initial stack symbol 𝑍 ∈ Γ

• We extend the transition function, 𝛿, so that we 
can read, test (pop) and write (push) to the stack

meaning 𝑞, 𝑎 𝑤, 𝑆 𝛾 ⇒ (𝑞′, 𝑤, 𝛽 𝛾)

𝛿 𝑞, 𝑎, 𝑆 → 𝑞′, 𝛽



Pushdown automata (PDA)

We extend the transition function, 𝛿, so that we can 
read, test and write to the stack 

This defines a transition relation of the form:

𝑞, 𝑤, 𝛼 ⇒⋆ (𝑞′, 𝑤′, 𝛽)

𝛿 𝑞, 𝑎, 𝑆 = (𝑞′, 𝛽) means than, in state 𝑞, with 
symbol 𝑆 ∈ Γ at top of the stack, when reading 
symbol 𝑎 ∈ Σ ∪ 𝜖 , we transition to state 𝑞′, pop 𝑆
and replace the top of the stack with 𝛽 ∈ Γ⋆.



PDA: graphical representation

initial 
state

final states
𝛿 𝑞1, 𝑏, 𝑎 → 𝑞2, Λ

We use label 𝑎 , 𝑆 ; 𝛽 to represent transition 
𝛿 𝑞, 𝑎, 𝑆 → 𝑞′, 𝛽 . Other notation: 𝑎 , 𝑆 / 𝛽

Figure obtained using JFLAP



Pushdown automata (PDA)

There are four classes of configurations:

1. 𝑞, 𝑎 𝑤, 𝑆 𝛾 ⇒ 𝑞′, 𝑤, 𝛽 𝛾 shift + reduce
𝛿 𝑞, 𝑎, 𝑆 → (𝑞′, 𝛽)

2. 𝑞,𝑤, 𝑆 𝛾 ⇒ (𝑞′, 𝑤, 𝛽 𝛾) (𝑎 = 𝜖) reduce
𝛿 𝑞, 𝜖, 𝑆 → (𝑞′, 𝛽)

3. 𝑞, 𝑎 𝑤, 𝑆 𝛾 ⇒ 𝑞′, 𝑤, 𝑆 𝛾 (𝛽 = 𝑆) shift
𝛿 𝑞, 𝑎, 𝑆 → (𝑞′, 𝑆)

4. 𝑞,𝑤, 𝑆 𝛾 ⇒ (𝑞′, 𝑤, 𝛾) pop
𝛿 𝑞, 𝜖, 𝑆 → (𝑞′, Λ)



Pushdown automata (PDA)

We can choose among many different (but 
equivalent)  accepting conditions:

• 𝑞𝐼 , 𝑤, 𝑍 ⇒⋆ (𝑞𝑓 , 𝜖, 𝛽) with 𝑞𝑓 ∈ 𝐹

end in final state (arbitrary stack)

• 𝑞𝐼 , 𝑤, 𝑍 ⇒⋆ (𝑞′, 𝜖, 𝜖)

end with empty stack (arbitrary state)

• 𝑞𝐼 , 𝑤, 𝑍 ⇒⋆ (𝑞𝑓 , 𝜖, 𝜖) with 𝑞𝑓 ∈ 𝐹

end with final state + empty stack

in each case we must entirely read the input word, 𝑤



Pushdown automata: example

𝛿 𝑝, 𝑎, Z → 𝑝, 𝐴𝑍

𝛿 𝑝, 𝑎, A → 𝑝, 𝐴𝐴

𝛿 𝑝, 𝑏, 𝐴 → 𝑞, Λ

𝛿 𝑞, 𝑏, 𝐴 → 𝑞, Λ

𝛿 𝑞, 𝜖, 𝑍 → 𝑞, Λ

here we assume acceptance with empty stack 



Pushdown automata: example

𝛿 𝑞0, 𝑎, Λ → 𝑞0, 𝐴

𝛿 𝑞0, 𝑐, A → 𝑞1, 𝐴

𝛿 𝑞1, 𝑎, 𝐴 → 𝑞1, Λ

𝛿 𝑞1, 𝜖, Z → 𝑞2, Λ

accepts: 𝑎 𝑏 𝑏 𝑐 𝑏 𝑏 𝑎

Here we assume acceptance with empty stack 

Notation: ෥𝑤 is the mirror image of 𝑤



Equivalence PDA ↔ AG

A language ℒ is algebraic iff there is a PDA 𝒜 such 
that ℒ = ℒ 𝒜 . Call ALG this class of languages.

We have REG ⊆ ALG (easy)

We have CFG ⊆ ALG (build a PDA from a grammar)

We have ALG closed by ∪, ⋆ and ∙ (≈ automata)

But ALG is not closed by ∩ and complement; while it 
is closed  by ∩ with regular languages.



CFL ⊆ ALG

Take a grammar with production 𝑋 → 𝛼 and axiom 𝑆

(We can always assume 𝛼 = 𝑏 𝛾 or 𝛼 = 𝜖 𝛾)

We can build a (non-deterministic) PDA, with stack 
symbol 𝑆 and a single state, 𝑞, that accepts (empty 
stack) the same language very easily

Just take: 𝛿 𝑞, 𝑏, 𝑋 → (𝑞, 𝛼)

𝑆 → 𝜖 Λ
𝑆 → 𝑎 𝑆
𝑆 → 𝑏 Λ



Complexity of CFL problems

Many problems are undecidable for CFL

• Universality

• Language inclusion, equality

• Given a CFL, is there an equivalent Type-3 grammar

On the other hand, checking emptiness (ℒ =? ∅) is 
decidable for CFL, whereas it is not the case with 
more complex models (e.g. context-sensitive 
languages)



Deterministic PDA

Like with DFA, we can very much accept to have many 
transitions for the same “input” (𝑞, 𝑎, 𝑆); meaning 
that 𝛿 is a function in 𝑄 × Σ⊥ × Γ → 𝑄 × 2Γ

⋆

A PDA is deterministic when, for every 𝑞 ∈ 𝑄, 𝑎 ∈
Σ⊥, 𝑆 ∈ Γ we have: 

1. 𝛿 𝑞, 𝑎, 𝑆 = 1

2. if 𝛿 𝑞, 𝜖, 𝑆 ≠ ∅ then 𝛿 𝑞, 𝑏, 𝑆 = ∅ for all 𝑏 ∈ Σ

DCFL languages are “accepted” by DPDA



DPDA

Our previous example is a Deterministic-PDA



Limitations of DPDA

DCFL is an interesting class; in particular it includes 
LL(1) grammars.

There are some CFL which are not DCFL 

⇒ DCFL ≠ CFL

Idea: take words of the form 𝑤 ෥𝑤 (compare that with 
the words 𝑤 𝑐 ෥𝑤)  

Also: DCFL are not closed by ∪ (idea?), but they are 
closed by complement (hard!).



More General Computation 
Models
It is easy to extend PDA with an ∞ tape, prefilled
with blank symbols □, and with special actions (LEFT, 
RIGHT and STAY moves) ≡ Turing Machines

TM for 𝑎𝑛𝑏𝑛𝑐𝑛



More General Computation 
Models

It is easy to extend PDA so that they can use 𝑛 (≥ 2)
stacks

0-PDA are automata

2-PDA stacks are more powerful than 1-PDA … and 
actually are universal

0-PDA ⊂ 1-PDA ⊂ 2-PDA = 𝑛-PDA = TM



Post Correspondence Problem

It may be hard to believe that problems become 
(that much) complex with the introduction of a stack

Problem: you are given two lists (equal length) of 
words 𝑢1, … , 𝑢𝑛 and 𝑤1, … , 𝑤𝑛. Decide whether 
there is a sequence of indices 𝑖1, … , 𝑖𝑘 in 1. . 𝑛 such 
that:

𝑢𝑖1 … 𝑢𝑖𝑘= 𝑤𝑖1 … 𝑤𝑖𝑘



PCP is undecidable

This is “almost” like dominoes:
𝑢1

𝑤1

𝑢2

𝑤2

𝑢𝑛

𝑤𝑛

10111

10

1

111

10

0

1

111

10111.1.1.10

10.111.111.0
=



LR grammars



LR parsers

LR grammars are those than can be parsed using a LR 
parser ⇒ parses by scanning the input from Left to 
right and building a Rightmost derivation (in reverse)

rightmost ⇒ replaces the right-hand side of 
production rules (the 𝛼 in 𝑋 → 𝛼) with their left-
hand side

We also use PDA and tables, but they are different. 



LR parsers are nice

• LR parsers can handle a large class of CFG; and 
more languages than LL grammars

• LR parser can detect syntax errors “as soon as they 
occur”

• LR parsing is the most general, non-back tracking, 
shift-reduce parsing method



LR parser have drawbacks

• It may be complex to build an unambiguous version 
of a grammar

• Once you have a suitable grammar, it is too 
complex to build a parser by hand ⇒ need a tool to 
generate it 



LR parser: example

We build a table with 4 kinds of actions

• [SHIFT 𝑛]      transfer look-ahead to the stack 

and move to state 𝑛

• [REDUCE 𝑘] replace 𝛼 with 𝑋 on the stack 

using rule number 𝑘

• [ACCEPT]      terminate and answer OK

• [ERROR]       terminate and answer KO



LR parser: example

Take the grammar 𝑆 → 𝑎 𝑆 𝑏 | 𝑏

The LR(1) table obtained from this grammar is

𝑎 𝑏 $ 𝑆

0 𝑠2 𝑠3 1

1 OK

2 𝑠2 𝑠3 4

3 𝑟2 𝑟2

4 𝑠5

5 𝑟1 𝑟1

Γ ∪ $

derivations #

move to row 4



LR parser: table
𝑎 𝑏 $ 𝑆

0 𝑠2 𝑠3 1

1 OK

2 𝑠2 𝑠3 4

3 𝑟2 𝑟2

4 𝑠5

5 𝑟1 𝑟1𝑆′ → ∘ 𝑆 $
𝑆 → ∘ 𝑎 𝑆 𝑏
𝑆 → ∘ 𝑏

𝑆 → 𝑎 ∘ 𝑆 𝑏
𝑆 → ∘ 𝑎 𝑆 𝑏
𝑆 → ∘ 𝑏

𝑆′ → 𝑆 ∘ $

𝑆′ → 𝑆 $ ∘𝑆 → 𝑏 ∘

𝑆 → 𝑎 𝑆 ∘ 𝑏 𝑆 → 𝑎 𝑆 𝑏 ∘

𝑎
𝑏

𝑏

𝑏

$

𝑆

𝑆

𝑎

0
1

2

4 5

3

𝑟2

𝑟1

𝑂𝐾



LR parser: 𝑎 𝑎 𝑏 𝑏 𝑏

init             𝑎0, 0, $0

We are in position 0 of the word, with look-ahead 𝑎

We start in state (row) 0; the stack contains state 0
and symbol $

The stack is a sequence of pairs (state 𝑖) × symbol, 
which we write symbol 𝑖

𝑎 𝑏 $ 𝑆

0 𝑠2 𝑠3 1

1 OK

2 𝑠2 𝑠3 4

3 𝑟2 𝑟2

4 𝑠5

5 𝑟1 𝑟1



LR parser: 𝑎 𝑎 𝑏 𝑏 𝑏

init            𝑎0, 0, $0

T[0, a] = 𝑠2, the first action is a shift to state 2

• the new state is 2

• we push the symbol and state, 𝑎2, in the stack

• we read the next symbol

𝑎 𝑏 $ 𝑆

0 𝑠2 𝑠3 1

1 OK

2 𝑠2 𝑠3 4

3 𝑟2 𝑟2

4 𝑠5

5 𝑟1 𝑟1



LR parser: 𝑎 𝑎 𝑏 𝑏 𝑏

init            𝑎0, 0, $0
𝑠2 → (𝑎1, 2, 𝑎2 $0)

𝑎 𝑏 $ 𝑆

0 𝑠2 𝑠3 1

1 OK

2 𝑠2 𝑠3 4

3 𝑟2 𝑟2

4 𝑠5

5 𝑟1 𝑟1



LR parser: 𝑎 𝑎 𝑏 𝑏 𝑏

init            𝑎0, 0, $0
𝑠2 → (𝑎1, 2, 𝑎2 $0)

𝑠2 → (𝑏2, 2, 𝑎2 𝑎2 $0)

𝑠3 → (𝑏3, 3, 𝑏3 𝑎2 𝑎2 $0)

T[3, 𝑏] = 𝑟2, the next action is a shift for rule 2, 𝑆 → 𝑏

• we pop 𝑏 from the stack, it is at state 2

• we push 𝑆 with state T[2, 𝑆] = 4

• and move to state 4

𝑎 𝑏 $ 𝑆

0 𝑠2 𝑠3 1

1 OK

2 𝑠2 𝑠3 4

3 𝑟2 𝑟2

4 𝑠5

5 𝑟1 𝑟1



LR parser: 𝑎 𝑎 𝑏 𝑏 𝑏

init            𝑎0, 0, $0
𝑠2 → (𝑎1, 2, 𝑎2 $0)

𝑠2 → (𝑏2, 2, 𝑎2 𝑎2 $0)

𝑠3 → (𝑏3, 3, 𝑏3 𝑎2 𝑎2 $0)

𝑟2 → (𝑏3, 4, 𝑆4 𝑎2 𝑎2 $0)

𝑎 𝑏 $ 𝑆

0 𝑠2 𝑠3 1

1 OK

2 𝑠2 𝑠3 4

3 𝑟2 𝑟2

4 𝑠5

5 𝑟1 𝑟1



LR parser: 𝑎 𝑎 𝑏 𝑏 𝑏

init            𝑎0, 0, $0
𝑠2 → (𝑎1, 2, 𝑎2 $0)

𝑠2 → (𝑏2, 2, 𝑎2 𝑎2 $0)

𝑠3 → (𝑏3, 3, 𝑏3 𝑎2 𝑎2 $0)

𝑟2 → (𝑏3, 4, 𝑆4 𝑎2 𝑎2 $0) 𝑆 → 𝑏

𝑠5 → (𝑏4, 5, 𝑏5 𝑆4 𝑎2 𝑎2 $0)

𝑟1 → (𝑏4, 4, 𝑆4 𝑎2 $0) 𝑆 → 𝑎 𝑆 𝑏

𝑎 𝑏 $ 𝑆

0 𝑠2 𝑠3 1

1 OK

2 𝑠2 𝑠3 4

3 𝑟2 𝑟2

4 𝑠5

5 𝑟1 𝑟1



LR parser: 𝑎 𝑎 𝑏 𝑏 𝑏

init            𝑎0, 0, $0
𝑠2 → (𝑎1, 2, 𝑎2 $0)

𝑠2 → (𝑏2, 2, 𝑎2 𝑎2 $0)

𝑠3 → (𝑏3, 3, 𝑏3 𝑎2 𝑎2 $0)

𝑟2 → (𝑏3, 4, 𝑆4 𝑎2 𝑎2 $0) 𝑆 → 𝑏

𝑠5 → (𝑏4, 5, 𝑏5 𝑆4 𝑎2 𝑎2 $0)

𝑟1 → (𝑏4, 4, 𝑆4 𝑎2 $0) 𝑆 → 𝑎 𝑆 𝑏

𝑠5 → ($5, 5, 𝑏5 𝑆4 𝑎2 $0)

𝑟1 → ($5, 1, 𝑆1 $0) 𝑆 → 𝑎 𝑆 𝑏

OK

𝑎 𝑏 $ 𝑆

0 𝑠2 𝑠3 1

1 OK

2 𝑠2 𝑠3 4

3 𝑟2 𝑟2

4 𝑠5

5 𝑟1 𝑟1



LR parser: 𝑎 𝑎 𝑏 𝑏 𝑏

init            (𝑎0, $)

𝑠2 → (𝑎1, 𝑎 $)

𝑠2 → (𝑏2, 𝑎 𝑎 $)

𝑠3 → (𝑏3, 𝑏 𝑎 𝑎 $)

𝑟2 → (𝑏3, 𝑆 𝑎 𝑎 $) because 𝑆 → 𝑏

𝑠5 → (𝑏4, 𝑏 𝑆 𝑎 𝑎 $)

𝑟1 → (𝑏4, 𝑆 𝑎 $) because 𝑆 → 𝑎 𝑆 𝑏

𝑠5 → ($5, 𝑏 𝑆 𝑎 $)

𝑟1 → ($5, 𝑆 $) because 𝑆 → 𝑎 𝑆 𝑏

OK

𝑎 𝑏 $ 𝑆

0 𝑠2 𝑠3 1

1 OK

2 𝑠2 𝑠3 4

3 𝑟2 𝑟2

4 𝑠5

5 𝑟1 𝑟1



LR parser

We have not discussed:

• how to check whether the grammar is LR (finding 
conflicts between rules)

• what are the possible kind of conflicts

• how to solve conflicts (when possible)


