
Introduction to
Model-Checking

Theory and Practice

Beihang International Summer School 2019

http://homepages.laas.fr/dalzilio/courses/mccourse/

Talking about computer science
Computer Science is the study of computers and
computational systems this includes their theory,
design, and application.

CS principal areas of study include networking,
security, database systems, graphics, numerical
analysis, software engineering, …

This course is about a part of Theoretical
Computer Science called formal verification

Talking about computer science
Computer Science is the study of computers and
computational systems this includes their theory,
design, and application.

“ Computer science is not about machines, in the same way
that astronomy is not about telescopes.”

Talking about computer science
Computer Science is the study of computers and
computational systems this includes their theory,
design, and application.

Computer scientists design and analyze algorithms
to solve problems and study their complexity.

Talking about computer science
Computer Science is the study of computers and
computational systems this includes their theory,
design, and application.

Computer scientists design and analyze algorithms
to solve problems and study their complexity.

Informatique: CS is about information and how to
store and process it

CS is concerned with information in much the same sense that
physics is concerned with energy

Talking about computer science

CS principal areas of study include networking,
security, database systems, graphics, numerical
analysis, software engineering, …

This course is about formal verification, that is the
domain of Theoretical Computer Science interested
by questions such as:

• How do we define the (expected) behavior of a program,
protocol, system, … ?

• How can we say (and trust) that a system is correct ?
• How do we prove it ? (proof testing)

Talking about computer science

In this course, we show a small part of the underlying
mathematics of Computer Science

How to model systems and
describe their behavior (how
they evolve)

languages and semantics

How to reason and express
properties on systems logics “the systematic study of the

form of valid inference”

How to implement these ideas algorithms

The goal is explainable trust: how can we gain trust on a system

Talking about computer science
We can draw a parallel with
mathematics (analysis)

mathematics has … computer science has …

numbers, function (graphs) … graphs and automata

equations, (stoch.) processes formal languages

questions (how many zeroes?) questions (does it terminate?)

theorems … and tools

Architects use math to know if
their bridge won’t collapse

Architects use CS to know if
their software won’t collapse

Some examples: IEEE Futurebus

• In 1992 Clarke et al used SMV to verify the cache coherence
protocol in the IEEE Futurebus+ Standard

• They modeled the protocol and attempted to show that it
satisfied a formal specification of cache coherence.

• They found a number of previously undetected errors in the
design of the protocol.

• Although development started in 1988, all previous
attempts to validate Futurebus+ were based on informal
techniques

see E. Clarke, J. Wing, et al. Formal methods: State of the art
and future directions. ACM Computing Surveys, 28(4), 1996

Some examples: HDLC

• Design of a High-level Data Link Controller (HDLC) by AT&T.
• In 1996 researchers at Bell Labs offered to check some

properties of the design. The design was almost finished, so
no errors were expected.

• Within five hours, six properties were specified and five
were verified, using the FormalCheck verifier.

• The sixth property failed, uncovering a bug that would have
reduced throughput or caused lost transmissions.

• The error was corrected in a few minutes and formally
verified.

Some Examples: Little Book of
Semaphores
• A particularly difficult synchronization problem,

known as the “room party problem”, has been
defined by Downey in his Little Book of
Semaphores.

• A student of an introductory course on operating
systems, where model-checkers where used, found
a bug. A discussion with the book’s author resulted
in yet another proposal.

• Alas, also this model does not satisfy the required
property

The need for formal methods

Formal verification—Awards

• 1996 ACM Turing Award:
Pnueli for his work on Temporal Logic

• 2007 ACM Turing Award:
Clarke, Emerson & Sifakis for Model-Checking

Outline of the Course

1. Some examples of systems and problems

2. What you need to know about graphs, automata

3. Basic properties of systems

4. Modeling systems (Petri nets)

5. Model-Checking

6. Real-time models

Talking about computer science

CS principal areas of study include networking,
security, database systems, graphics, numerical
analysis, software engineering, …

This course is about formal verification but we leave
out many questions:

• Behavioral equivalences (when are two models “the
same”) and formal equivalence checking

• Automated theorem proving and other deductive
approaches, refinement, …

• formal verification of software, abstract interpretation,
...

A Tale of Four Systems
and their associated problems

Concurrent Access to
Shared Memory
Example 1/4

Software System

• A sequential software system performs (visible)
actions by updating the memory

• Behavior depends on the state of the variables (the
environment)

Sequential system
Prog. Pointer instruction action

read R

write W

end

INC :=

INC

pc=read
reg=0

Store

A=6

INC

pc=write
reg=6

Store

A=6

read

INC

pc=end
reg=7

Store

A=7

write

A=6

Sequential system

A=6

Prog. Pointer instruction action

read R

write W

end _

INC :=

A=7

pc=read
reg=0

pc=write
reg=6

pc=end
reg=7R W

Sequential system
Prog. Pointer instruction action

read R

write W

end _

INC :=

R W

an execution is a “sequence”; it is a trace; it is a word (R.W) …
the trace can be infinite (e.g. it has a loop)

a sequential system performs (visible) actions in a sequence

Concurrency

• A sequential system performs (visible)
actions/events

• Behavior depends on the order of events

Concurrent systems

INC :=

Prog. Pointer instruction action

read R

write W

end

a concurrent system is the composition of several sequential subsystems

INC INC 😄

Race condition

A=6

pc=read
reg=0

pc=read
reg=0

A=7

pc=end
reg=7

pc=read
reg=0

pc=end
reg=7

A=8

pc=end
reg=8

R2 . W2R1 . W1

trace : R1. W1. R2. W2

INC INC 😄

Race condition

R2
A=6

pc=read
reg=0

pc=read
reg=0

A=6

pc=read
reg=0

pc=write
reg=6

pc=read
reg=0

A=7

pc=end
reg=7

W2

pc=write
reg=7

A=7

pc=end
reg=7

R1 W1 8

R1
A=6

pc=read
reg=0

pc=read
reg=0

A=6

pc=write
reg=6

pc=read
reg=0

pc=write
reg=6

A=6

pc=write
reg=6

R2

pc=end
reg=7

A=7

pc=write
reg=6

W1 W2 7

R2. W2. R1. W1

R1. R2. W1. W2

Race condition

pc=write
reg=6

A=6

pc=read
reg=0

606

≡

😄 😄😢

Race condition (alternate)

pc=write
reg=6

A=7

pc=write
reg=6

≡

6w0r6

pc=write
reg=6

A=6

pc=read
reg=0

≡

What you need to remember

• We abstract the behavior of the system by looking
at the actions/events that modifies its state

R1. W1. R2. W2. …

• An execution is a trace (a word) on the alphabet of
actions

• Concurrency: the order in which events occurs is
important

Concurrent systems

• Interactions are usually asynchronous
• Order of events is not fixed: non-deterministic
• Concurrency is generally untractable

S1

S2

S3

a1 a2 a3

b1 b2 b3

c1 c3 c4 c5c2

✉

✉ ✉

Lamport’s events diagrams

Concurrent systems

• Assume each system produces n events
• There are k systems

S1

S2

S3

a1 a2 a3

b1 b2 b3

c1 c3 c4 c5c2

✉

✉ ✉

Concurrent systems

Then number of possible (interleaved) traces is:

S1

S2

S3

a1 a2 a3

b1 b2 b3

c1 c3 c4 c5c2

✉

✉ ✉

Concurrent systems

3 events, 30 systems traces

S1

S2

S3

a1 a2 a3

b1 b2 b3

c1 c3 c4 c5c2

✉

✉ ✉

“There are about 𝟐𝟏 stars in space. This amount is about equal to
the number of grains of sand on ALL of the beaches on planet Earth !!!
That is a lot!!” [some guy at NASA]

The curse of concurrent systems

“ We’ve demonstrated how as little as a single bit flip
can cause the driver to lose control of the engine
speed in real cars...”

(Testimony of expert Michael Barr,
trial against Toyota)

“ There are tens of millions of combinations of
untested task death, any of which could happen in
any possible vehicle/software state. Too many to test
them all.”

What you need to remember

• This is a lot of states
• It means that a system

architect cannot (usually)
consider all the possible
cases.

• It also means that it is not possible to test all the
possible cases.

• “Program testing can be a very effective way to show the
presence of bugs, but is inadequate for showing their
absence”

The Job/Printer Pool
Example 2/4

Job/Printer program

To print over a network you need to access a shared
printer and to write in a shared task queue

I won’t be fooled again, the printer spooler and the task
queue are protected by a (software) lock

Sun
SPARCstation Printer Task Queue

Bonus: this is yet
another way engineers
describe systems !

Job/Printer program

• On a SPARCstation, I make sure to reserve the
printer before accessing the task queue

• On my PDP-11, I ensure first that I have access to
the queue before taking the lock to the printer

Sun
SPARCstation Printer Task Queue

Sun Printer Task Queue

?

DEC

?

] OK

)]

NOK

What you need to remember

• Not all programs compute results. Many of them
are here to monitor and control systems

reactive programs
Embedded ; real-time ; distributed systems

• Not all problems are data races
deadlocks

• We need to account for resources and the order in
which they are acquired and released

(Classical) Sequential Programs

• Terminate
• Produce results
• Complex data but

“simple” control

• Examples:
sorting, signal processing,
compilation

• Based on:
functions or objects;
conditionals; loops

Correctness: check that program terminates with
the correct (expected) answer

Reactive Programs

• Not meant to stop !
• Do not generally

produce results; but
interact (communicate
& synchronize)

• Have many
independent processes

• Examples:
communication protocols;
control-command systems

• Based on:
state machines; process
algebra; communicating
automata; Petri net

Correctness: safe ; live ; fairness ; …
May require an exhaustive search of their state-space

The Drink Vending
Machine
Example 3/4

Drink vending machine

• We want to model a machine that sells
candies and sodas

• We need to insert coins before buying a
soda; but we can also ask for the money
back

• However soda can only be dispensed if
there are some available

• Does the machine works ? Can I be
cheated (put money and not soda; take
refund but have soda; …)

What you need to remember

• Causality: some actions depend on the occurrence
of others (put coins before releasing soda)

• global state: the “state” of the machine depends on
the local state of may of its (distributed) parts

a local change can have effect on global state; this is a
composition of interacting/communicating sub-systems

• internal vs external choice
• the safety of the system depends on the order in

which events can occur temporal statements

Soccer Game
Example 4/4

Basic rules of the game

• Two teams are playing one against the other
• The score can only change after a goal
• The match can end if there is a score difference

Basic rules of the game

A = Away team scores
H = Home team scores
AW = A wins
HW = we win !

…

஺ ு

…

…

…

What you need to remember

Also, we may need to deal with infinite/unbounded behaviors
this is mostly the case in fact !

The same approach can be used to deal
with different kind of systems; not only
software or computing systems:
• manufacturing
• planification and optimization

problems
• “real-life” protocols (healthcare

scenarios, workflows, …)

Overview

Color Code

sections

reminder

definitions

practical work

Overview

• Four models (and problems) of software systems
• Modeling with automata
• Algorithm on graphs (SCC)
• Modeling with Petri nets and reachability graph
• Model-Checking: behavioral properties, LTL, …
• Extensions: -systems, partial-orders, …
• Symbolic MC using BDD
• Time Petri nets

Modeling with Automata
(Finite State Machine ordered graphs with an initial state)

Some graph theory

• A graph is a pair (V, E) of a set V of vertices (nodes)
and E of edges (relation between nodes, in VxV)

• We often deal with rooted graphs
• We often deal with connected graphs

V = {a, b,…, h}

E = {(a,b), (b,c), (b,e), …}

Finite State Automata

• Edges can have labels (in a given alphabet)
• We can interpret a (rooted) graph as an automata

or as a set of words (a language)
• Automata can be deterministic or not

ଵ ଶ

ଵ ଵ ଶ ଵ ସ

Modeling Behavior with Automata

• We use nodes to model the
state of the system

• We use edges/labels to model
the visible actions of the
system

• The evolution of the system can be viewed as the
set of traces of the resulting automata

• need to choose the right level of granularity
• need to choose what are the atomic actions

Modeling Behavior with Automata

• We use nodes to model the
state of the system

• We use edges/labels to model
the visible actions of the
system

• The evolution of the system can be viewed as the
set of traces of the resulting automata

• need to choose the right level of granularity
• need to choose what are the atomic actions

Finite State Automata

• Edges can have labels (in a given alphabet)
• The language of the automata, , is the set of

words that you can form, starting from the initial
state, by concatenating labels on the edges.

• We only need prefix-closed languages here !

ଵ ଶ ହ

ଵ ଶ ହ

Finite State Automata

• In our case an automata is defined by its sets of
states , set of labels (alphabet) , set of
transitions , and initial

• In our running example: where
and, e.g.,

Properties of a System

• boundedness (is it finite)

• deadlocks / liveness / quasi-liveness (can something
good happen)

• (in)dependence of actions (does R1 forbids R2)

• reachability (is it possible to have)

Race condition

A=6

pc=write
reg=6

pc=read
reg=0

=

A=7

pc=end
reg=7

pc=write
reg=7

=

6w0r6

7e7w7

Race condition

prefix-closed
is a finite set

Drink vending machine

insert insert coins

reject recover coin

accept push button

dispense receive soda

refill refill soda

insert.accept.dispense.insert.refill … insert. …
(soda full, 1 coin inserted)

Drink vending machine

insert insert coins

reject recover coin

accept push button

dispense receive soda

refill refill soda

same machine but with capacity of 2 soda cans

Regular language

• Regular languages can be defined as languages
recognized by a finite automaton (FSM)

• Alternatively, they can be expressed using regular
expressions (regexp)

::= denotes the empty string
| literal character ()
| concatenation
| alternation, choice, union
| Kleene star ()

Race condition

Drink vending machine

insert insert coins

reject recover coin

accept push button

dispense receive soda

refill refill soda

Regular language
::=
|
| ଵ ଶ

| ଵ ଶ

|

Strongly Connected
Components
Computing SCCs

Order of exploration

• There are many different ways to “explore” the
nodes of a graph, but two main strategies when
you can order the “children” of a node

• Breadth-first search (BFS): explore the nodes at the
present depth

• Depth-first search (DFS): explore highest-depth
nodes first

BFS

a
0

b

d e f g

h

c

id d
0 a 0
1
2
3
4
5
6
7

BFS

a
0

b
1

d e f g

h

c
2

id d
0 a 0
1 b 1
2 c 1
3
4
5
6
7

BFS

a
0

b
1

d
3

e f

4
g

5

h

c
2

id d
0 a 0
1 b 1
2 c 1
3 d 2
4 f 2
5 g 2
6
7

BFS

a
0

b
1

d
3

e f

4
g

5

h

c
2

id d
0 a 0
1 b 1
2 c 1
3 d 2
4 f 2
5 g 2
6 e 3
7 h 3

Order of exploration

• There are many different ways to “explore” the
nodes of a graph, but two main strategies when
you can order the “neighbors” of a node

• Breadth-first search (BFS): explore the nodes at the
present depth

• Depth-first search (DFS): explore highest-depth
nodes first

DFS

a
0

b
1

d e f g

h

c

id d
0 a 0
1 b 1
2
3
4
5
6
7

DFS

a
0

b
1

d

2

e f g

h

c

id d
0 a 0
1 b 1
2 d 2
3
4
5
6
7

DFS

a
0

b
1

d

2

e
3

f g

h

c

id d
0 a 0
1 b 1
2 d 2
3 e 3
4
5
6
7

DFS

a
0

b
1

d

2

e
3

f g

h

c

id d
0 a 0
1 b 1
2 d 2
3 e 3
4
5
6
7

DFS

a
0

b
1

d

2

e
3

f g

h

c
4

id d
0 a 0
1 b 1
2 d 2
3 e 3
4 c 1
5
6
7

DFS

a
0

b
1

d

2

e
3

f g

h

c
4

id d
0 a 0
1 b 1
2 d 2
3 e 3
4 c 1
5 f 2
6
7

DFS

a
0

b
1

d

2

e
3

f g

h

c
4

id d
0 a 0
1 b 1
2 d 2
3 e 3
4 c 1
5 f 2
6 h 3
7

DFS

a
0

b
1

d

2

e
3

f g

h

c
4

id d
0 a 0
1 b 1
2 d 2
3 e 3
4 c 1
5 f 2
6 h 3
7

DFS

a
0

b
1

d

2

e
3

f g

h

c
4

id d
0 a 0
1 b 1
2 d 2
3 e 3
4 c 1
5 f 2
6 h 3
7 g

Relation between DFS and SCC

• There are two cases:
(1) either we have no successors (we go back)
(2) or we encounter nodes that have already been visited

• If the neighbor node has been visited:
(2a) and was “popped” before, then it is in another SCC
(2b) otherwise, we have a SCC

• The secret is to remember the “lowest” id of the
current node explored

Tarjan’s Algorithm

a
0,0

b
1,1

d e f g

h

c

id lw
0 a 0
1 b 1
2
3
4
5
6
7

Tarjan’s Algorithm

a
0,0

b
1,1

d

2,2

e
3,3

f g

h

c

id lw
0 a 0
1 b 1
2 d 2
3 e 3
4
5
6
7

Tarjan’s Algorithm

a
0,0

b
1,1

d

2,1

e

3,1

f g

h

c

id lw
0 a 0
1 b 1
2 d 1
3 e 1
4
5
6
7

0

1

{b,d,e}

Tarjan’s Algorithm

a
0,0

b
1,1

d

2,1

e

3,1

f

5,5

g

h
6,6

c
4,4

id lw
0 a 0
1 b 1
2 d 1
3 e 1
4 c 4
5 f 5
6 h 6
7

0

1

{b,d,e}

Tarjan’s Algorithm

a
0,0

b
1,1

d

2,1

e

3,1

f

5,4

g

h
6,4

c
4,4

id lw
0 a 0
1 b 1
2 d 1
3 e 1
4 c 4
5 f 4
6 h 4
7

0

1

{b,d,e}

Tarjan’s Algorithm

a
0,0

b
1,1

d

2,1

e

3,1

f

5,4

g

h
6,4

c
4,4

id lw
0 a 0
1 b 1
2 d 1
3 e 1
4 c 4
5 f 4
6 h 4
7 g 7

0

1

{b,d,e}

Tarjan’s Algorithm

a
0,0

b
1,1

d

2,1

e

3,1

f

5,4

g

h
6,4

c
4,4

id lw
0 a 0
1 b 1
2 d 1
3 e 1
4 c 4
5 f 4
6 h 4
7 g 7

0

1

{b,d,e}

4
{c,f,h,g}

{a}

Tarjan’s Algorithm

a

b

d e f g

h

c 0

1

{b,d,e}

4
{c,f,h,g}

{a}

Checking Properties using SCC

• The SCC graph is (often) much more compact than
the set of reachable states

• We can use the SCC graph to check properties
• my system is reinitializable ?
• transition t is live ?
• may I always avoid a deadlock ?

0

1

{b,d,e}

4
{c,f,h,g}

{a}

t

Checking Properties using SCC

efficient algorithm are necessary when
dealing with big graphs

Tarjan’s algorithm

1. Pick a starting node
2. Each node is assigned its DFS number,
3. We also manage a stack of nodes,

track the “least id” among the vertex links

4. Visit the (leftmost, new) neighbor
if new then
else if in stack then

5. If then create new SCC by
popping nodes from the stack until we find

(size |V|)

(size |V|)

(time |V| + |E|)

Checking Properties using SCC

• boundedness (is it finite)

• deadlocks / liveness / quasi-liveness (can something
good happen)

• (in)dependence of actions (does R1 forbids R2)

• reachability (is it possible to have)

Checking Properties using SCC

• boundedness (is it finite)
• reachability (is it possible to have)
• (in)dependence of actions (does R1 forbids R2)

• deadlocks pending SCC with a single state

• liveness all “transitions” are in every SCC
• possibly always active (a SCC with two states)
• reinitializable only one SCC

2 1

0

