
Introduction to
Model-Checking

Theory and Practice

Beihang International Summer School 2019

http://homepages.laas.fr/dalzilio/courses/mccourse

Petri Nets
a model for concurrency

Petri Nets

• Petri nets are a basic model of parallel and
distributed systems, designed by Carl Adam Petri in
1962 in his PhD Thesis: “Kommunikation mit
Automaten”

• The basic idea is to describe state changes in a
system using transitions

Petri Nets

• Petri nets contain places (circle) and transitions
(square) connected by directed arcs.

• Transitions () actions
• Places () states or conditions that need to

be met before an action can be carried out.
• Places may contain tokens that move when

transitions fire.

T

P

Petri Nets

• Places may contain tokens that move when
transitions fire.

enabled transitions

Petri Nets: the token game

• Places may contain tokens that move when
transitions fire.

ଶ

Petri Nets: the token game

• Places may contain tokens that move when
transitions fire.

ଵ

open

Petri Nets
Some Examples

The tool Tina

• All the examples and exercises in this course will
make use of Tina, a toolbox for the model-checking
of time Petri net

• Download at:

http://projects.laas.fr/tina/

Automata as Petri nets

a. b. c. a. d. f.死
open

Synchronizing Automata

open

Synchronizing Automata

S.A.F

S.B.C.B.F S.B.A.C.B.F

S A F

S B C B F

(B.A.C.B) is in the shuffle of A and B.C.B

Graph of Tasks

ଵ ଷ ଵ ସ

ଶ ହ ଷ ହ

open

More examples: counters

open

More examples: Mutual Exclusion

open

More examples: Message Passing

open

What you need to remember

• A net has places and transitions (nets are static)
• Tokens gives the current state of the net (markings)
• Arcs are conditions for a transition to fire; they

model the flow of interaction

TP

P passive component
stores tokens:
resources; data;
buffers; locks

T active component
resource consumption ;
data changed ;
lock acquired

What you need to remember

• A net has places and transitions (nets are static)
• Tokens gives the current state of the net (markings)
• Arcs are conditions for a transition to fire; they

model the flow of interaction

TP

arcs flow
physical proximity ;
data access right ;
network topology

What you need to remember

With the same formalism we can model
• concurrency: transitions may fire independently (see

synchronizing automata example)
• causality: firing transitions depends on the current state

(see mutual exclusion and PER tasks examples)
• resources: see the counters example
• global state: state is distributed over places
• compositionality (or component-based modeling)

We have a single, unified way to model states, data,
computations and synchronization

Using Diagrams (e.g. Statecharts)

Statecharts may have interpretations in tools:
UML statecharts Classical statecharts Rhapsody statecharts

M. L. Crane, J. Dingel (2005). UML vs.
Classical vs. Rhapsody
Statecharts: Not All Models Are

Created Equal. Int. Conf. on Model
Driven Engineering Languages and
Systems

Place/Transition Nets
a model for concurrency

P/T Nets
A P/T net is a tuple where

• is a finite set of places
• is a distinct finite set of transitions ()
• is the flow relation:
• are the weight of the arcs:

A marking defines a distribution of
tokens to places

A marked P/T net is a net
with initial marking

P/T Nets

•
•
•
• all weights are 1 (it is an ordinary net)

Notations
• If then is an input place of
• If then is an output place of

• The set is
the pre-set of (same with)

• The set is
the post-set of

{C, F}

By extension we write

if
and otherwise

if
and otherwise

Firing condition (enabledness)

transition is enabled on the marking , written
iff)

or equivalently:
e.g. is enabled on

Firing rule

if is -enabled then can fire and produces
the marking , written , such that:

i.e.

Firing transition from

if is -enabled then can fire and produces
the marking , written , such that:

Remark

• It is possible to express most of the results on Petri
nets using linear algebra (see later) see also the
VASS model (Vector Addition System with States).

• Beware! the positivity constraint in the firing
condition, , makes everything harder.

௜ ௝ ௜ ௝ ௝ ௜

ଵ ଵ ௡ ଵ

ଵ ௞ ௡ ௞

and ᇱᇱ ᇱ

்

Reachability Graph

Reachable Markings

Let be a marking of the marked net
with .

The set of markings reachable from (the
reachability set of) is the smallest set
such that:

Reachability Graph

The reachability set of a (marked) net is the set

The reachability set is not necessarily finite

The reachability graph of a net is the rooted graph
such that:

and the root is
iff

S

A

B A

C

B

C

F

S

B A

A B

C
C

F

Occurrence Sequence

Labels of the transitions along a
path starting at

e.g. , S.A.B, S.B.A.F, …

Equality of language provides a
nice notion of equivalence

Size of the Reachability Graph

• The graph may be infinite if there is no bound on
the number of tokens in a place.

• If each reachable marking can contain at most k
tokens in each place then the (marked) net is said
to be k-safe.

• A k-safe net has at most markings.

What you need to remember

• Marking (reachability) graph provides a way to
explain the behavior of a net. We call this its
semantics.

This is the central tool to talk about verification

• The “graph” is deterministic (transitions have
names). This is not necessarily true if you work with
labeled nets.

• Reachability graph may be encountered in many
area of formal verification (Kripke structures).

Petri Nets
Coming back to one of our examples

Soccer Game

• Remember the soccer game example ? Try to
model it with a Petri net.

Away wins

if there are more than

Petri nets: extended arcs

• Read arcs: check whether the place is marked

• This only affects enabledness (firability); the
marking of does not change when fires

• This is the same has taking a token and putting it
back! we say that there is no gain in expressive
power

Soccer game: ½-solution ?

Away team winsopen

Petri nets: extended arcs

• Inhibitor arcs: constrain a place to be empty

• Used to test if the marking is zero

Soccer game with inhibitor arcs

open

Petri nets: extended arcs

• Priorities: prevent a transition from firing if another
one can (here can fire but never)

• You can also find flush arcs (empty a place of its
tokens); test arcs; transfer arcs; …

What you need to remember

• Every finite state graph can be “modeled” with a
Petri; even if this is not necessarily a good choice

• There are examples of systems that cannot be
modeled with Petri nets

• Extensions are useful but they may have a cost

Some theoretical results
on P/T nets

Complexity theory for P/T net

• All interesting questions about the behavior of 1-safe Petri
nets are PSPACE-hard (so may require exponential time).

• reachability, liveness,

• Equivalence problems for 1-safe nets may require
exponential space.

• All interesting questions about the behavior of general Petri
nets are EXPSPACE-hard (and require at least

-space),

and equivalence problems are undecidable

Javier Esparza, Petr Jančar, and Alexander Miller. 2008. On the Complexity of Consistency
and Complete State Coding for Signal Transition Graphs. Fundam. Inf. 86, 3 (2008).

Reachability

• In the general case, the reachability problem was
shown to be decidable by Mayr and shortly after,
with a simpler (!?) proof, by Kosaraju

• The problem is at least EXPSPACE-hard
• All known, complete algorithm are non-primitive

recursive
• The problem becomes undecidable with nets that

have (at least 3) inhibitor arcs.

Composition of Nets

Product of automata

• Remember the synchronizing automaton example?
• A similar operation can be done directly on graph

using a product operation

Product of automata:

• Imagine that we have some (product) operation
on the labels of automata

• From two automata and
we can define their product

has the automata with states in
(cartesian product) and initial state

• We have several possibility for defining the
“product” transitions.

Example: intersection

We can take transitions that are available on both
sides, i.e. when both

and

Example: union

We can take transitions that are available only on
one side:

when

and when

Product of automata

• Likewise we could define the synchronous product
of two automata or the “shuffle” of two languages

shuffle = words obtained by mixing the actions of two
words but keeping their relative order (think of a deck of
cards)

Product of P/T nets

• Given two nets and with can define their
product in almost the same way.

• This is a net with places
• A transition is in iff and have

the same label. In this case
•
•

• We can show that the language of is exactly the
synchronous product

Product of transitions

Product of transitions

A

script tpn
load A1.ndr
load A2.ndr
sync 2

What you need to remember

• There are natural notion of composition between
automata and nets this is like algebra, where you
have a notion of groups

• Composition also have an interpretation at the level
of the semantics (or the language)

