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Petri Nets
a model for concurrency



Petri Nets

• Petri nets are a basic model of parallel and 
distributed systems, designed by Carl Adam Petri in 
1962 in his PhD Thesis: “Kommunikation mit
Automaten”

• The basic idea is to describe state changes in a 
system using transitions



Petri Nets

• Petri nets contain places (circle) and transitions
(square) connected by directed arcs.

• Transitions  (       ) actions
• Places  (       )  states or conditions that need to 

be met before an action can be carried out.
• Places may contain tokens that move when 

transitions fire.

T

P



Petri Nets

• Places may contain tokens that move when 
transitions fire.

enabled transitions



Petri Nets: the token game

• Places may contain tokens that move when 
transitions fire.
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Petri Nets: the token game

• Places may contain tokens that move when 
transitions fire.
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Petri Nets
Some Examples



The tool Tina

• All the examples and exercises in this course will 
make use of Tina, a toolbox for the model-checking 
of time Petri net

• Download at:

http://projects.laas.fr/tina/



Automata as Petri nets

a. b. c. a. d. f.死
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Synchronizing Automata

open



Synchronizing Automata

S.A.F

S.B.C.B.F S.B.A.C.B.F

S A F

S B C B F

(B.A.C.B) is in the shuffle of A and B.C.B



Graph of Tasks
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More examples: counters
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More examples: Mutual Exclusion

open



More examples: Message Passing

open



What you need to remember

• A net has places and transitions (nets are static)
• Tokens gives the current state of the net (markings)
• Arcs are conditions for a transition to fire; they 

model the flow of interaction

TP

P passive component
stores tokens:
resources; data; 
buffers; locks

T active component
resource consumption ;
data changed ;
lock acquired



What you need to remember

• A net has places and transitions (nets are static)
• Tokens gives the current state of the net (markings)
• Arcs are conditions for a transition to fire; they 

model the flow of interaction

TP

arcs flow
physical proximity ;
data access right ;
network topology



What you need to remember

With the same formalism we can model
• concurrency: transitions may fire independently (see 

synchronizing automata example)
• causality: firing transitions depends on the current state 

(see mutual exclusion and PER tasks examples)
• resources: see the counters example
• global state: state is distributed over places
• compositionality (or component-based modeling)

We have a single, unified way to model states, data, 
computations and synchronization



Using Diagrams (e.g. Statecharts)

Statecharts may have interpretations in tools:
UML statecharts Classical statecharts Rhapsody statecharts

M. L. Crane, J. Dingel (2005). UML vs.
Classical vs. Rhapsody
Statecharts: Not All Models Are

Created Equal. Int. Conf. on Model
Driven Engineering Languages and
Systems



Place/Transition Nets
a model for concurrency



P/T Nets
A P/T net is a tuple where

• is a finite set of places
• is a distinct finite set of transitions ( )
• is the flow relation: 
• are the weight of the arcs:  

A marking defines a distribution of 
tokens to places  

A marked P/T net is a net 
with initial marking 



P/T Nets

•
•
•
• all weights are 1 (it is an ordinary net)



Notations
• If then is an input place of 
• If then is an output place of 

• The set is 
the pre-set of (same with )

• The set is 
the post-set of 

{C, F}



By extension we write

if 
and otherwise

if 
and otherwise



Firing condition (enabledness)

transition is enabled on the marking , written  
iff )

or equivalently: 
e.g. is enabled on 



Firing rule

if is -enabled then can fire and produces 
the marking , written , such that: 

i.e. 



Firing transition from 

if is -enabled then can fire and produces 
the marking , written , such that: 



Remark

• It is possible to express most of the results on Petri 
nets using linear algebra (see later) see also the 
VASS model (Vector Addition System with States).

• Beware! the positivity constraint in the firing 
condition, , makes everything harder.
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Reachability Graph



Reachable Markings

Let be a marking of the marked net 
with .

The set of markings reachable from (the 
reachability set of ) is the smallest set 
such that:



Reachability Graph

The reachability set of a (marked) net is the set 

The reachability set is not necessarily finite

The reachability graph of a net is the rooted graph 
such that:

and the root is 
iff
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Occurrence Sequence

Labels of the transitions along a 
path starting at 

e.g. , S.A.B, S.B.A.F, … 

Equality of language provides a 
nice notion of equivalence



Size of the Reachability Graph

• The graph may be infinite if there is no bound on 
the number of tokens in a place.

• If each reachable marking can contain at most k 
tokens in each place then the (marked) net is said 
to be k-safe.

• A k-safe net has at most markings.



What you need to remember

• Marking (reachability) graph provides a way to 
explain the behavior of a net. We call this its 
semantics.

This is the central tool to talk about verification

• The “graph” is deterministic ( transitions have 
names). This is not necessarily true if you work with 
labeled nets. 

• Reachability graph may be encountered in many 
area of formal verification ( Kripke structures).



Petri Nets
Coming back to one of our examples



Soccer Game

• Remember the soccer game example ? Try to 
model it with a Petri net.

Away wins

if there are more than 



Petri nets: extended arcs

• Read arcs: check whether the place is marked

• This only affects enabledness (firability); the 
marking of does not change when fires

• This is the same has taking a token and putting it 
back! we say that there is no gain in expressive 
power



Soccer game: ½-solution ? 

Away team winsopen



Petri nets: extended arcs

• Inhibitor arcs: constrain a place to be empty

• Used to test if the marking is zero



Soccer game with inhibitor arcs

open



Petri nets: extended arcs

• Priorities: prevent a transition from firing if another 
one can  (here can fire but never )

• You can also find flush arcs (empty a place of its 
tokens); test arcs; transfer arcs; …



What you need to remember

• Every finite state graph can be “modeled” with a 
Petri; even if this is not necessarily a good choice

• There are examples of systems that cannot be 
modeled with Petri nets

• Extensions are useful but they may have a cost



Some theoretical results 
on P/T nets



Complexity theory for P/T net

• All interesting questions about the behavior of 1-safe Petri 
nets are PSPACE-hard (so may require exponential time).

• reachability, liveness, 

• Equivalence problems for 1-safe nets may require 
exponential space.

• All interesting questions about the behavior of general Petri 
nets are EXPSPACE-hard (and require at least 

 
-space), 

and equivalence problems are undecidable

Javier Esparza, Petr Jančar, and Alexander Miller. 2008. On the Complexity of Consistency 
and Complete State Coding for Signal Transition Graphs. Fundam. Inf. 86, 3 (2008).



Reachability

• In the general case, the reachability problem was 
shown to be decidable by Mayr and shortly after, 
with a simpler (!?) proof, by Kosaraju

• The problem is at least EXPSPACE-hard
• All known, complete algorithm are non-primitive 

recursive
• The problem becomes undecidable with nets that 

have (at least 3) inhibitor arcs.



Composition of Nets



Product of automata

• Remember the synchronizing automaton example?
• A similar operation can be done directly on graph 

using a product operation



Product of automata: 

• Imagine that we have some (product) operation 
on the labels of automata

• From two automata and      
we can define their product 

has the automata with states in 
(cartesian product) and initial state 

• We have several possibility for defining the 
“product” transitions.



Example: intersection

We can take transitions that are available on both 
sides, i.e. when both         

and 



Example: union

We can take transitions that are available only on 
one side:

when 

and when 



Product of automata

• Likewise we could define the synchronous product 
of two automata or the “shuffle” of two languages

shuffle = words obtained by mixing the actions of two 
words but keeping their relative order (think of a deck of 
cards)



Product of P/T nets

• Given two nets and with can define their 
product in almost the same way.

• This is a net with places 
• A transition is in iff and have 

the same label. In this case
•
•

• We can show that the language of is exactly the 
synchronous product 



Product of transitions



Product of transitions

A

# script tpn
load A1.ndr
load A2.ndr
sync 2



What you need to remember

• There are natural notion of composition between 
automata and nets this is like algebra, where you 
have a notion of groups 

• Composition also have an interpretation at the level 
of the semantics (or the language)


