Introduction to
Model-Checking

Theory and Practice

Beihang International Summer School 2019

http://homepages.laas.fr/dalzilio/courses/mccourse

Petri Nets

a model for concurrency

Petri Nets

* Petri nets are a basic model of parallel and
distributed systems, designed by Carl Adam Petri in
1962 in his PhD Thesis: “Kommunikation mit
Automaten”

* The basic idea is to describe state changes in a
system using transitions

Hé\i H20
. -0
="

Petri Nets

* Petri nets contain

* Transitions (| T

(circle) and

(square) connected by directed arcs.

= actions

Places (@) = states or conditions that need to

Places may contain

transitions fire.

ne met before an action can be carried out.

that move when

4’@\1 H20

Som

Petri Nets

* Places may contain tokens that move when
transitions fire.

H
()\ 2 TR 5 H20
4@ (J 0

enabled transitions

Petri Nets: the token game

* Places may contain tokens that move when
transitions fire.

H H
2 H20 ¢ ._@\EA H20
2 O
§] i 0 t2

Petri Nets: the token game

* Places may contain tokens that move when
transitions fire.

O

Petri Nets

Some Examples

The tool Tina

* All the examples and exercises in this course will
make use of Tina, a toolbox for the model-checking
of time Petri net

e Download at:

http://projects.laas.fr/tina/

Automata as Petri nets

e 9
5

a.b.c.a.d.f. %t

Synchronizing Automata

Synchronizing Automata

pl

F
e S.B.C.B.F S.B.A.C.B.F
©

(B.A.C.B) is in the shuffle of A and B.C.B

Graph of Tasks

More examples: counters

@u

More examples: Mutual Exclusion

More examples: Message Passing

p0 0

Y

t0

p1 p3
p5

t1

O:

Q

What you need to remember

* A net has places and transitions (nets are static)
* Tokens gives the current state of the net (markings)

e Arcs are conditions for a transition to fire; they
model the flow of interaction

® G

P = passive component T = active component
stores tokens: resource consumption ;
resources; data; data changed ;

buffers; locks lock acquired

What you need to remember

* A net has places and transitions (nets are static)
* Tokens gives the current state of the net (markings)

e Arcs are conditions for a transition to fire; they
model the flow of interaction

® G

arcs = flow
physical proximity ;
data access right ;
network topology

What you need to remember

With the same formalism we can model

e concurrency: transitions may fire independently (see
synchronizing automata example)

e causality: firing transitions depends on the current state
(see mutual exclusion and PER tasks examples)

* resources: see the counters example
* global state: state is distributed over places
e compositionality (or component-based modeling)

We have a single, unified way to model states, data,
computations and synchronization

Using Diagrams (e.g. Statecharts)

activeEntry |Active

0
=
litt receiver /)
getdial tone
/
/
//
/
__\
idle «—@
7
&
‘:\‘
\
\‘\

caller hangs up /
disconnect

after 15 sec -~

DialTone

Time-out

v
| do/ play Message

N\

do / play dial tone

%

&

dial digit

Invalid

\i:c ! play Message

\

after 15sec ™\ -

dial digit (n)
[incomplete]
¥ \:‘-\
N Dialing

I
[invalid] ; /

|

| dial digit (n)

| [valid] / connect
v

busy - connecting |
= ——— s Y,
_—{ Pinned . Busy A
e L Ji N
/ -~ “ N, \do/ play busy tone / |
N connected |
[callee callt_ee \ {
| answers hangsup. | J
\ (Ringing
. Id \ / l_\dc- {play ringing tone /!
Talking [callee answers / enable speech
~— v-f“":“-
J' abort $ terminate
&) aborted @

M. L. Crane, J. Dingel (2005). UML vs.
Classical vs. Rhapsody

Statecharts: Not All Models Are
Created Equal. Int. Conf. on Model
Driven Engineering Languages and
Systems

Statecharts may have # interpretations in # tools:
UML statecharts # Classical statecharts # Rhapsody statecharts

Place/Transition Nets

a model for concurrency

P/T Nets

AP/Tnetisatuple N = (P,T,F,W) where

e P is afinite set of places

* T is a distinct finite set of transitions (P N T = Q)
 Fisthe flow relation: F € (P X T) U (T X P)
W are the weight of thearcs: W : F - N* o0

A marking m defines a distribution of
tokens to places m: P - N

A marked P/T net (N, mg) is a net
with initial marking m,

P/T Nets

° P={p0) P1, P2, P3, p4}
« T ={S,A,B,C,F)

* F = {(pO'S): (S» pl)' (S' p3)' }
 all weights are 1 (it is an ordinary net)

m = {pO:ll P1:0, pZ:OJ pB:OJ p4:0}

m = {po}

p0

Notations

* If (p,t) € F thenpisan of t
 If (t,p) € F then pis an of t

* The set Pre(p) ={t| (¢t,p) € F}is .
the of p (same with Pre(t))

Pre(F) = {p2, D4}

S

Q

B A

Q-
* The set Post(p) = {t| (p,t) € F}is — 4
the of p méz

p3

Post(p,) ={C, F} :

By extension we write

Pre.(p) = W(p,t) if p € Pre(t)

and Pre;(p) = 0 otherwise

Post;(p) = W(t,p) if p € Post(t)

and Post;(p) = 0 otherwise

Do

P1
P2
P3

P4

PT'BF:

r:—\or—\oo:

Posty =

c::ooor—:\

=

p0

Q

O

Firing condition (enabledness)

transition t € T is enabled on the marking m, written
m -t iff

or equivalently: m — Pre, > 0 :

e.g. F is enabled on m = {pg, p,, P4}

S

- 0-

m=1|1|= Prer =|1][] [
0 0] @
1- 1 b/\

F

Firing rule

if t € T is m-enabled then t can fire and produces

t

the marking m’, written m -»* m’, such that:

i.e.m’' = m — Pre; + Post;

p0

Firing transition F from m

if t € T is m-enabled then t can fire and produces
the marking m’, written m -t m’, such that:

p0

!

m = m — Prer + Postr

S

Q

A

.
=

F

p3

B

3
I
_OR O
|
==
|
S oo R
I
===

Remark

* It is possible to express most of the results on Petri
nets using linear algebra (see later) — see also the
VASS model (Vector Addition System with States).

a(ti,pj) = W(ti:pj) - W(pj ;)

a(ty,p1) - a(ty,py)]

N = and m" =m' + N X

a(ty,pr) - altnpr))

* Beware! the positivity constraint in the firing
condition, m — Pre; = 0, makes everything harder.

Reachability Graph

Reachable Markings

Let m be a marking of the marked net (N, m;)
with N = (P, T, Pre, Post).

The set of markings reachable from m (the
of m) is the smallest set reach(m)

such that:
1. m € reach(m)
2. m' € reachfm) A m'->*m"” = m'" € reach(m)

Reachability Graph

The of a (marked) net is the set
reach(mg)

The reachability set is not necessarily finite

The of a net is the rooted graph
(V, E) such that:

1. V= reach(mg) and the rootis vy = m,
2. (my, t,my) € E iff my - m,

Do

P1

%)

P3
| Py

p0

Occurrence Seguence

Labels of the transitions along a
path starting at m,

e.g. €,5.A.B, S.B.AF,

Equality of language provides a | ¢

nice notion of H\(t)

Size of the Reachability Graph

* The graph may be infinite if there is no bound on
the number of tokens in a place.

4’@\1 H20
-0
=8

* If each reachable marking can contain at most k
tokens in each place then the (marked) net is said
to be k-safe.

* A k-safe net has at most (k + 1)!Pl markings.

What you need to remember

* Marking (reachability) graph provides a way to
explain the behavior of a net. We call this its
semantics.

This is the central tool to talk about verification

* The “graph” is deterministic (# transitions have +
names). This is not necessarily true if you work with
labeled nets.

e Reachability graph may be encountered in many
area of formal verification (= Kripke structures).

Petri Nets

Coming back to one of our examples

Soccer Game

* Remember the soccer game example ? Try to
model it with a Petri net.

Away wins

AH.A.....H.H. AW € L if there are more A than H

Petri nets: extended arcs

* Read arcs: check whether the place is marked

p0 p1

OO

* This only affects enabledness (firability); the
marking of p; does not change when ¢, fires

* This is the same has taking a token and putting it
back! = we say that there is no gain in expressive
power

Soccer game: %-solution ?

» AW

€D Away team wins

Petri nets: extended arcs

* Inhibitor arcs: constrain a place to be empty

p0 p1

O @
Fog

e Used to test if the marking is zero

Soccer game with inhibitor arcs

Petri nets: extended arcs

* Priorities: prevent a transition from firing if another
one can (here ty can fire but never t,)

5

* You can also find flush arcs (empty a place of its
tokens); test arcs; transfer arcs; ...

t0

t1

What you need to remember

* Every finite state graph can be “modeled” with a
Petri; even if this is not necessarily a good choice

* There are examples of systems that cannot be
modeled with Petri nets

* Extensions are useful but they may have a cost

Some theoretical results
on P/T nets

Complexity theory for P/T net

* All interesting questions about the behavior of 1-safe Petri
nets are PSPACE-hard (so may require exponential time).

* reachability, liveness,

e Equivalence problems for 1-safe nets may require
exponential space.

* All interesting questions about the behavior of general Petri

nets are EXPSPACE-hard (and require at least ZO(W)-space),
and equivalence problems are undecidable

Javier Esparza, Petr Jancar, and Alexander Miller. 2008. On the Complexity of Consistency
and Complete State Coding for Signal Transition Graphs. Fundam. Inf. 86, 3 (2008).

Reachability

* In the general case, the reachability problem was
shown to be decidable by Mayr and shortly after,
with a simpler (!?) proof, by Kosaraju

* The problem is at least EXPSPACE-hard

* All known, complete algorithm are non-primitive
recursive

* The problem becomes undecidable with nets that
have (at least 3) inhibitor arcs.

Composition of Nets

Product of automata

* Remember the synchronizing automaton example?

* A similar operation can be done directly on graph
using a product operation

Product of automata: A; @ A,

* Imagine that we have some (product) operation @
on the labels of automata

e From two automata A; = (Q4,A, q5) and
A, = (Q,1,,qé) we can define their product
A1 Q A, has the automata with states in Q; X Q,
(cartesian product) and initial state (g3, &)

* We have several possibility for defining the
“product” transitions.

Example: intersection

We can take transitions that are available on both
a
sides, i.e. (41, q2)— (41, 92) when both

q1— q1 and g;— q;

Example: union

We can take transitions that are available only on

ohe side:

a
(91,92)— (q1,q2) W
a
and (q1,92)— (q1,q2) W

A
O
B
C

P

a
nen q1— q
a

nen g,— q;

C

Product of automata

* Likewise we could define the synchronous product

of two automata or the “shuffle” of two languages
shuffle = words obtained by mixing the actions of two

words but keeping their relative order (think of a deck of
cards)

Product of P/T nets

* Given two nets Ny and N, with can define their
product in almost the same way.

* This is a net N with placesP = P; U P,

e Atransitiont = t; @ t, isin N iff t; and t, have
the same label. In this case
* Pre(t) = Pre(ty) U Pre(t,)
* Post(t) = Post(t;) U Post(t,)
* We can show that the language of N is exactly the
synchronous product £L; & L,

Product of transitions

RS

Product of transitions

p0

p1

&

p2

¢

o
63

\#n

script tpn
load Al.ndr

load A2.ndr
sync 2

What you need to remember

* There are natural notion of composition between
automata and nets — this is like algebra, where you
have a notion of groups (N, +, 1,X,0)

 Composition also have an interpretation at the level
of the semantics (or the language)

