# Introduction to Model-Checking

**Theory and Practice** 

Beihang International Summer School 2018

# Model Checking

**Linear Temporal Properties** 

## Model Checking

"Model checking is the method by which a desired behavioral property of a reactive system is verified over a given system (the model) through exhaustive enumeration (*explicit* or *implicit* ) of all the states reachable by the system and the behaviors that traverse through them"

Amir Pnueli (2000)

#### **Basic Properties**

- reachability (something is possible)
- *invariant* (something is always true) the gate is closed when the train cross the road
- *safety* (something bad never happen:  $\equiv \neg Reach$ )
- *liveness* (something good may eventually happen) every process will (eventually) gain access to the printer
- *Fairness* (if it may happen ∞ often then it will happen) if messages cannot be lost ∞ often then I will received an ack

#### Model-Checking

- We have seen how to use a formal specification language to model the system (⇒ as a graph, but also as a language L)
- We have seen how to check basic properties on the reachability graph (and that SCC can be useful)
- What if we want to check more general properties?

#### **User-Defined Properties**

- present before (we should see an a before the first b) the latch must be locked before take-off
- *infinitely often* (something will always happen, ≠ Always) the timer should always be triggered
- *leadsto* (after every occurrence of *a* there should be a *b*) *there is an audible signal after the alarm is activated*
- ... see example of specification patterns here [Dwyer]

#### Model-Checking



 In every execution, action a should occur before b or there should be no b



present *rcv* before *ack* 

 every "maximal execution" should have an unbounded number of a equivalently: from every state, it is unavoidable to do an a



infinitely *rcv* 

infinitely send

 every "maximal execution" should have an unbounded number of a equivalently: from every state, it is unavoidable to do an a

## Infinitely *rcv*



NO!

 every "maximal execution" should have an unbounded number of a equivalently: from every state, it is unavoidable to do an a

## Infinitely send





#### a leadsto b

 after every occurrence of action a we should eventually find an occurrence of action b or there is no a



snd leadsto rcv

# Model Checking

Linear Temporal Properties using Language Inclusion

#### Model-Checking



## Model-Checking





Does  $L(M) \subseteq L(\phi)$  ?

Description of the property

φ

• In every execution, action *a* should occur before *b* or there should be no *b* present *a* before *b* 



 idea: use set of words (language) of *infinite length* that go through a *"red state"* infinitely often

• In every execution, action *a* should occur before *b* or there should be no *b* present *a* before *b* 



• Equivalently: find traces where "red places" are infinitely marked.





#### present *rcv* before *ack*



## Büchi Automata

#### Büchi automata

- In here we consider automata with a set of final, or accepting states F ⊆ Q
  - we use "red states" to mean accepting
- It is a finite state automata with a different acceptance condition. An (infinite) word is accepted if it corresponds to an infinite run that contains infinitely many accepting states



#### Example

 $a. a. a. ... a^{\omega}$ is accepted $a. a. b. a. b. a. ... (b. a)^{\omega}$ is accepted $a. a. b. b. b. ... (b)^{\omega}$ is rejected $a. b. a. b^2. a. b^3. ... (b^n. a)^{\omega}$ is accepted



#### Büchi automata

 To find if there exist a word that is not accepted by a Büchi automata, it is enough to find a cycle without accepting state

we know how to do it (remember Tarjan's algorithm)

• Same thing if we want to test if  $\mathcal{L} = \emptyset$ 



# Model Checking

Linear Temporal Properties using Language Inclusion a better idea

## Model-Checking





• We disprove the property if we find a trace where *b* can be reached without firing action *a* 







#### present *rcv* before *ack*



• From every state, it is unavoidable to do an *a* 



• We disprove the property if we find a trace without a single *a* (maybe after some other transitions fire)







#### infinitely *rcv*







001





#### a leadsto b

• after every *a* we eventually find a *b* 

We disprove the property if we find an a followed by an infinite sequence (a SCC) without b





snd leadsto rcv

#### What you need to remember

- We can check more complex properties using an automata-theoretic approach
- It is often easier to try to disprove the property

$$A(Sys) \otimes A(\neg \phi) = \emptyset$$

- We need automata that accept infinite words → different acceptance criterion (Büchi-automaton)
- There is a link with SCC (infinitely often  $\approx$  cycle)

# Model Checking

LTL, a Principled Approach

#### Model-Checking

- We have seen how to use "language inclusion" (product of automata and search for an infinite path) to express *temporal properties* on a system
- What if we want to check more general properties? Is there a more friendly way to define temporal properties ?
- How can we derive an automaton from it

## **Classical logic**

- logic is the systematic study of the *form of valid inference* 
  - Aristotle (322 BC)
  - Clarence Lewis (~1910) for its actual form
  - A formula is *valid* iff it is true under every interpretation.
  - An argument form (or schema) is valid iff every argument is valid



wikipedia

## Non-classical logics

- Example of valid argument form (or schema)  $((A \Rightarrow B) \land A) \Rightarrow B$
- Predicate logic has propositional variables (A, B, ...) and connectives (∧, ¬, ⇒, ...)
- There are also non-classical logics, such as modal logics, that extend logic with operators (modalities) expressing the fact that the truth may depends on the context

examples are beliefs: *I am certain vs it is possible;* permissions (deontic logic): *it is permissible vs it is obligatory*; and time: *always vs eventually* 

## Temporal logic



Amir Pnueli (1941-2009)

"In mathematics, logic is static. It deals with connections among entities that exist in the same time frame. When one designs a dynamic computer system that has to react to ever changing conditions, ... one cannot design the system based on a static view. It is necessary to characterize and describe dynamic behaviors that connect entities, events, and reactions at different time points. Temporal Logic deals therefore with a dynamic view of the world that evolves over time."

#### Atomic proposition

- We start by defining *atomic propositions* statements about the here and now !
- We assume a set of propositional variables  $\{p_1, p_2, \dots, p_n\}$
- We will use the language of logic. *Atomic Formulas* are built from P. V. and from connectives

$$a, b, \dots := p \mid \neg a \mid a \land b \mid \dots$$

• e.g.: 
$$p_1 \land (p_2 \lor \neg p_3)$$
  $p_1 \Rightarrow p_2 \equiv (\neg p_1) \lor p_2$ 

## Atomic Prop.: event/state-based

- If we want to deal with events (transitions), we can choose atomic propositions *a*, *b*, ... that corresponds to event names:
  - *t*<sub>1</sub>
  - dead
- We can also choose to deal with states (markings)
  - $p_1 + 2. p_3 \le 4$   $p_1 \equiv (p_1 \ge 1)$
  - Firable(t)
  - dead
  - *initial* (`0)

(from now on we consider only "state-based" formulas)

#### Linear Temporal Logic

The logic has two main connectives
 F φ: reads "finally" (eventually) φ is true
 G φ: reads "globally" (always) φ is true

$$\phi, \psi, \dots ::= a \mid \neg \phi \mid \phi_1 \land \phi_2 \mid F \phi \mid G \phi$$

• So you can write formulas such as:  $G (p_1 \Rightarrow F (p_2 + p_3 \le p_4)) \quad \neg (F \text{ dead}) \lor G (\neg p_2)$   $F G p_1 \land G F p_2 \qquad G ((G t_1) \lor (G t_2))$ 

#### Linear Temporal Logic

- The logic has two main connectives
   F φ: reads "finally" (eventually) φ is true, also []φ
   G φ: reads "globally" (always) φ is true, also ()φ
- There is another possible presentation based on two additional connectives

 $\phi \ U \ \psi$ : reads " $\phi$  holds until  $\psi$ "

 $X\phi$  : reads "next"  $\phi$  holds, also written () $\phi$ 

#### LTL—syntax equivalence

| $F \phi$      | $\langle \rangle \phi$ | finally  |  |  |
|---------------|------------------------|----------|--|--|
| Gφ            | $[]\phi$               | globally |  |  |
| Xφ            | () $\phi$              | next     |  |  |
| $\phi~U~\psi$ | $\phi~U~\psi$          | until    |  |  |
| $!\phi$       | $\neg \phi$            | negation |  |  |
|               |                        |          |  |  |

SPIN syntax

selt syntax

Pinyin name

• LTL formulas are interpreted on (maximal) traces,  $w = w_0. w_1. .... w_i....$ for "state-based" properties,  $w_i$  is a state  $\equiv$  the set of

atomic propositions true in  $w_i$ 

- We call w(i) the  $i^{th}$  element in w
- We use the notation  $w, i \models \phi$  to say that  $\phi$  holds for w from position i

$$w \vDash \phi \iff w, 0 \vDash \phi$$

satisfaction relation  $\vDash$ 



#### LTL—atomic propositions

For atomic propositions, *a*, we can say whether it holds for *w<sub>i</sub>* or not (we write *w<sub>i</sub>* ⊨ *a* if it holds).
 *w*, *i* ⊨ *a* iff *w<sub>i</sub>* ⊨ *a*

• For example, if  $w_i$  is the marking  $(p_1, p_2, 2, p_4)$  - say (1, 2, 0, 1)—then we have that:

$$w, i \vDash p_2$$
  

$$w, i \vDash (p_1 + p_4 \le p_2)$$
  

$$w, i \vDash \neg (p_1 \land p_3)$$

#### LTL—other connectives

$$w, i \models \phi \lor \psi$$
 iff  $(w, i \models \phi)$  or  $(w, i \models \psi)$   
 $w, i \models \neg \phi$  iff not  $w, i \models \phi$   
etc.

 $w, i \models \langle \rangle \phi$  iff  $\exists j \ge i. (w, j \models \phi)$ 

 $\phi$  holds at some "instant" j in the future

 $w, i \models []\phi$  iff  $\forall k \ge i . (w, k \models \phi)$  $\phi$  holds at all instants after *i* 

True :  $\top$ False :  $\bot$ 

 $w \models \langle \rangle \phi$  ?



True :  $\top$ False :  $\bot$ 

 $w \models []\phi$ ?



#### LTL—other connectives

We can define the semantics for the two extra op.  $w, i \models ()\phi$  iff  $w, i + 1 \models \phi$  $\phi$  holds at the next "instant"

> $w, i \vDash \phi \ U \ \psi \quad \text{iff} \quad \exists j \ge i \, . \, (w, j) \vDash \psi$ and  $\forall k \in [i, j[ \, . \, (w, k) \vDash \phi]$

> > there is an instant j in the future such that  $\psi$  holds and  $\phi$  holds until that time

True :  $\top$ False :  $\bot$ 



#### LTL—other connectives

We can use the until connective to define F and G

$$\langle \rangle \phi \equiv True U \phi$$
  
[] $\phi \equiv \neg(True U (\neg \phi))$ 

Actually, it is true that

$$[]\phi \equiv \neg\langle\rangle(\neg\phi)$$

Think De Morgan's laws:  $\neg(a \lor b) \equiv \neg a \land \neg b$ 

#### LTL—other connectives

We can also use next to (recursively) define F and G

 $\langle \rangle \phi \equiv \phi \lor () \langle \rangle \phi \equiv \mu X. (\phi \lor () X)$  $[] \phi \equiv \phi \land () [] \phi \equiv \mu X. (\phi \land () X)$  $\phi U \psi \equiv \mu X. (\psi \lor (\phi \land () X))$ 

 $\mu X. f(X)$  means the "smallest fixpoint" for the functional f, i.e. V such that f(V) = V.

- A property is true (it holds) for a trace w if it is true "at the beginning" ( $w, 0 \vDash \phi$ )
- A property holds for a system if it is true for all its (maximal) trace
  - how many traces can there be ?

We consider finite-state systems, hence a maximal trace either ends in a deadlock or it has a cycle



Example:  $F G s_1$  (that is  $\langle \rangle [] s_1$ )



#### Example: $F(s_3 \lor G s_2)$ (that is $\langle \rangle(s_3 \lor []s_2)$ )



Exercise

#### Check $w, i \vDash \phi$



|                           | 0 | 1 | 2 | 3 | 4 | 5 | ••• |
|---------------------------|---|---|---|---|---|---|-----|
| q ~ U ~ p                 |   |   |   |   |   |   |     |
| $F G \neg p$              |   |   |   |   |   |   |     |
| $F(q \ U \ p)$            |   |   |   |   |   |   |     |
| $F \neg (q \ U \ p)$      |   |   |   |   |   |   |     |
| $\neg G(q \ U \ p)$       |   |   |   |   |   |   |     |
| $\neg G \neg (q \ U \ p)$ |   |   |   |   |   |   |     |

# Model Checking

LTL specifications

## Example specification

Mutual exclusion

never more than one process can be in state working at any given time

No starvation

a process that wants to work (in state waiting) should eventually reach state working

• Bounded usage time

a process in state working should eventually be idle

## Example specification

 $[]\neg(work_i \land work_i)$ 

atomic prop. are:  $idle_i$ , wait<sub>i</sub>, and work<sub>i</sub>.

No starvation

Mutual exclusion

$$[](wait_i \Rightarrow \langle \rangle work_i)$$
$$[](wait_i \Rightarrow (wait_i \ U \ work_i)) \qquad unnecessary$$

• Bounded usage time []( $work_i \Rightarrow \langle \rangle \neg work_i$ )

Exercise

#### Additional specification

We say that  $\phi$  precedes  $\psi$  holds for w, at k (written  $w, k \models \phi P \psi$ ) when:

$$\forall j \ge k \, . \, (w, j \vDash \psi) \implies \exists i \in [k, j] . \, (w, i \vDash \phi)$$

that is,  $w \models \phi P \psi$  as soon as:

$$\forall j. (w, j \vDash \psi) \Rightarrow \exists i \leq j. (w, i \vDash \phi)$$

can you express this new modality in LTL or should we add it to the logic ?

#### Additional specification

We can write the following requirement as follows: "access to the critical section is allowed only to the workers that asked for it"

 $[](\neg work_i \Rightarrow (wait_i P work_i))$ 

that is, before working, process *i* must have asked it.

Could you express the stronger requirement that: "access to the critical section is granted in the order where workers asked for it"?

# Model Checking

using Tina selt

#### tina > selt

- The tina toolbox has a LTL model-checker called selt
- The program takes as input a reachability graph (either in AUT format, or in a compressed format called KTZ)
- LTL formulas include:
  - negation implication =>
  - conjunction // disjunction //
  - always [] eventually <>
  - constants T (true), F (false), dead

## Some examples of formulas

```
[] (p1 /\ p2) ;
      p1 and p2 always true (everywhere)
<> (p1 \/ p2);
      means either p1 or p2 is true in every trace
[] (<> p) ;
      means p true infinitely often
<> ([] p) ;
      means p will become always true
```

#### How to use selt

- 1. use nd to draw/open a Petri net
- 2. use tool > reachability to generate the marking graph in compressed (ktz) format
- 3. you can either
  - A. invoke selt directly from the nd window (right click then choose "model check LTL")
  - B. save in a file, say xx.ktz, and invoke "selt xx.ktz" in the command line
- 4. Every input must end with a semi-colon: ";"
- 5. When a property is false, a counter-example is printed

#### How to use selt

- Counter-examples can be replayed in the simulator (if it is already open)
- There are several levels of details for printing the counter-examples:

output fullproof ;

- To quit selt, simply enter "quit;"
- There are other commands, go see: <u>http://projects.laas.fr/tina/manuals/selt.html</u>