
Introduction to
Model-Checking

Theory and Practice

Beihang International Summer School 2018

Model Checking
Linear Temporal Properties

Model Checking

“Model checking is the method by which a desired
behavioral property of a reactive system is verified
over a given system (the model) through exhaustive
enumeration (explicit or implicit) of all the states
reachable by the system and the behaviors that
traverse through them”

Amir Pnueli (2000)

Basic Properties

• reachability (something is possible)

• invariant (something is always true)
the gate is closed when the train cross the road

• safety (something bad never happen: ≡ ¬ 𝑅𝑒𝑎𝑐ℎ)

• liveness (something good may eventually happen)
every process will (eventually) gain access to the printer

• Fairness (if it may happen ∞ often then it will happen)
if messages cannot be lost ∞ often then I will received an ack

Model-Checking

• We have seen how to use a formal specification
language to model the system (⇒ as a graph, but
also as a language ℒ)

• We have seen how to check basic properties on the
reachability graph (and that SCC can be useful)

• What if we want to check more general properties?

User-Defined Properties

• present before (we should see an 𝑎 before the first 𝑏)
the latch must be locked before take-off

• infinitely often (something will always happen, ≠ 𝐴𝑙𝑤𝑎𝑦𝑠)
the timer should always be triggered

• leadsto (after every occurrence of 𝑎 there should be a 𝑏)
there is an audible signal after the alarm is activated

• … see example of specification patterns here [Dwyer]

http://patterns.projects.cs.ksu.edu/documentation/patterns.shtml

Model-Checking

Description
of the

behavior

Description
of the

property

verification

System +
Requirements

fo
rm

a
liz

a
ti

o
n

in
fo

rm
a

l

operational denotational

Does 𝑀 ⊨ 𝜙 Does 𝑀 ≡ 𝐺𝜙

M 𝜙

yes / no / c. ex.

present 𝑎 before 𝑏

• In every execution, action 𝑎 should occur before 𝑏
or there should be no 𝑏

𝑝0, 𝑝2 𝑝1, 𝑝2, 𝑝4

𝑝1, 𝑝2, 𝑝6

𝑝1, 𝑝3𝑝1, 𝑝5, 𝑝2

present 𝑟𝑐𝑣 before 𝑎𝑐𝑘

Infinitely often 𝑎

• every “maximal execution” should have an
unbounded number of 𝑎

equivalently: from every state, it is unavoidable to do an 𝑎

𝑝0, 𝑝2 𝑝1, 𝑝2, 𝑝4

𝑝1, 𝑝2, 𝑝6

𝑝1, 𝑝3𝑝1, 𝑝5, 𝑝2

infinitely 𝑟𝑐𝑣 infinitely 𝑠𝑒𝑛𝑑

Infinitely often 𝑎

• every “maximal execution” should have an
unbounded number of 𝑎

equivalently: from every state, it is unavoidable to do an 𝑎

𝑝0, 𝑝2 𝑝1, 𝑝2, 𝑝4

𝑝1, 𝑝2, 𝑝6

𝑝1, 𝑝3𝑝1, 𝑝5, 𝑝2

Infinitely 𝑟𝑐𝑣

Infinitely often 𝑎

• every “maximal execution” should have an
unbounded number of 𝑎

equivalently: from every state, it is unavoidable to do an 𝑎

𝑝0, 𝑝2 𝑝1, 𝑝2, 𝑝4

𝑝1, 𝑝2, 𝑝6

𝑝1, 𝑝3𝑝1, 𝑝5, 𝑝2

Infinitely 𝑠𝑒𝑛𝑑

𝑎 leadsto 𝑏

• after every occurrence of action 𝑎 we should
eventually find an occurrence of action 𝑏

or there is no 𝑎

𝑝0, 𝑝2 𝑝1, 𝑝2, 𝑝4

𝑝1, 𝑝2, 𝑝6

𝑝1, 𝑝3𝑝1, 𝑝5, 𝑝2

𝑠𝑛𝑑 leadsto 𝑟𝑐𝑣

Model Checking
Linear Temporal Properties using Language Inclusion

Model-Checking

Description
of the

behavior

Description
of the

property

verification

System +
Requirements

fo
rm

a
liz

a
ti

o
n

in
fo

rm
a

l

operational denotational

Does 𝑀 ⊨ 𝜙 Does 𝑀 ≡ 𝐺𝜙

M 𝜙

yes / no / c. ex.

Model-Checking

Description
of the

behavior

Description
of the

property
M 𝜙

𝐿(𝑀)

𝐿 𝜙

𝐿 𝑀 ∩ 𝐿 𝜙

counter-example

correct behavior

Does 𝐿 𝑀 ⊆ 𝐿(𝜙) ?

present 𝑎 before 𝑏

• In every execution, action 𝑎 should occur before 𝑏
or there should be no 𝑏present 𝑎 before 𝑏

• idea: use set of words (language) of infinite length
that go through a “red state” infinitely often

a = {a}
1 = {a, b, c, …}
!a = {b, c, …}

present 𝑎 before 𝑏

• In every execution, action 𝑎 should occur before 𝑏
or there should be no 𝑏present 𝑎 before 𝑏

• Equivalently: find traces where “red places” are
infinitely marked.

a = {a}
1 = {a, b, c, …}
!a = {b, c, …}

present 𝑎 before 𝑏

𝑝0, 𝑝2 𝑝1, 𝑝2, 𝑝4

𝑝1, 𝑝2, 𝑝6

𝑝1, 𝑝3𝑝1, 𝑝5, 𝑝2

01

02

13

14

00

10

11

12present 𝑟𝑐𝑣 before 𝑎𝑐𝑘

Büchi Automata

Büchi automata

• In here we consider automata with a set of final, or
accepting states 𝐹 ⊆ 𝑄
• we use “red states” to mean accepting

• It is a finite state automata with a different
acceptance condition. An (infinite) word is accepted
if it corresponds to an infinite run that contains
infinitely many accepting states

a = {a}
1 = {a, b, c, …}
!a = {b, c, …}

Example

𝑎. 𝑎. 𝑎. … 𝑎𝜔 is accepted

𝑎. 𝑎. 𝑏. 𝑎. 𝑏. 𝑎. … 𝑏. 𝑎 𝜔 is accepted

𝑎. 𝑎. 𝑏. 𝑏. 𝑏. … 𝑏 𝜔 is rejected

𝑎. 𝑏. 𝑎. 𝑏2. 𝑎. 𝑏3. … 𝑏𝑛. 𝑎 𝜔 is accepted

Büchi automata

• To find if there exist a word that is not accepted by
a Büchi automata, it is enough to find a cycle
without accepting state

we know how to do it (remember Tarjan’s algorithm)

• Same thing if we want to test if ℒ = ∅

Model Checking
Linear Temporal Properties using Language Inclusion

a better idea

Model-Checking

Description
of the

behavior

Description
of the

property
M 𝜙Does 𝐿 𝑀 ∖ 𝐿 𝜙 = ∅ ?

𝐿(𝑀)

𝐿 𝜙

𝐿 𝑀 ∩ 𝐿 𝜙

𝐿 ∖ 𝐿 𝜙

present 𝑎 before 𝑏

• We disprove the property if we find a trace where 𝑏
can be reached without firing action 𝑎

a = {a}
1 = {a, b, c, …}
!a = {b, c, …}

𝐿 ¬ 𝜙 ≡

present 𝑎 before 𝑏

𝑝0, 𝑝2 𝑝1, 𝑝2, 𝑝4

𝑝1, 𝑝2, 𝑝6

𝑝1, 𝑝3𝑝1, 𝑝5, 𝑝2

present 𝑟𝑐𝑣 before 𝑎𝑐𝑘

• From every state, it is unavoidable to do an 𝑎

Infinitely often 𝑎

≡ 𝐿 𝜙

• We disprove the property if we find a trace without
a single 𝑎 (maybe after some other transitions fire)

Infinitely often 𝑎

≡ 𝐿 ¬ 𝜙

Infinitely often 𝑎

infinitely 𝑟𝑐𝑣

10

11

10

12

Infinitely often 𝑎

100 010 001

001

010

100

100

𝑎 leadsto 𝑏

• after every 𝑎 we eventually find a 𝑏
We disprove the property if we find an 𝑎 followed by an
infinite sequence (a SCC) without 𝑏

𝑠𝑛𝑑 leadsto 𝑟𝑐𝑣

What you need to remember

• We can check more complex properties using an
automata-theoretic approach

• It is often easier to try to disprove the property

𝐴 𝑆𝑦𝑠 ⊗ 𝐴 ¬𝜙 = ∅

• We need automata that accept infinite words →
different acceptance criterion (Büchi-automaton)

• There is a link with SCC (infinitely often ≈ cycle)

Model Checking
LTL, a Principled Approach

Model-Checking

• We have seen how to use “language inclusion”
(product of automata and search for an infinite
path) to express temporal properties on a system

• What if we want to check more general properties?
Is there a more friendly way to define temporal
properties ?

• How can we derive an automaton from it

Classical logic

• logic is the systematic study of the form of valid
inference
• Aristotle (322 BC)

• Clarence Lewis (∼1910) for its actual form

• A formula is valid iff it is true under every interpretation.

• An argument form (or schema) is valid iff every
argument is valid

wikipedia

Non-classical logics

• Example of valid argument form (or schema)
(𝐴 ⇒ 𝐵 ∧ 𝐴) ⇒ 𝐵

• Predicate logic has propositional variables (𝐴, 𝐵,…)
and connectives (∧,¬,⇒,…)

• There are also non-classical logics, such as modal
logics, that extend logic with operators (modalities)
expressing the fact that the truth may depends on
the context

examples are beliefs: I am certain vs it is possible;
permissions (deontic logic): it is permissible vs it is
obligatory; and time: always vs eventually

Temporal logic

“In mathematics, logic is static. It deals with connections among
entities that exist in the same time frame. When one designs a
dynamic computer system that has to react to ever changing
conditions, … one cannot design the system based on a static
view. It is necessary to characterize and describe dynamic
behaviors that connect entities, events, and reactions at different
time points. Temporal Logic deals therefore with a dynamic view
of the world that evolves over time."

Amir Pnueli (1941—2009)

Atomic proposition

• We start by defining atomic propositions
statements about the here and now !

• We assume a set of propositional variables
{𝑝1, 𝑝2, … , 𝑝𝑛}

• We will use the language of logic. Atomic Formulas
are built from P. V. and from connectives

𝑎, 𝑏, … ∷= 𝑝 ¬𝑎 𝑎 ∧ 𝑏 | …

• e.g.: 𝑝1 ∧ (𝑝2 ∨ ¬𝑝3) 𝑝1 ⇒ 𝑝2 ≡ ¬𝑝1 ∨ 𝑝2

Atomic Prop.: event/state-based

• If we want to deal with events (transitions), we can
choose atomic propositions 𝑎, 𝑏, … that
corresponds to event names:
• 𝑡1
• 𝑑𝑒𝑎𝑑

• We can also choose to deal with states (markings)
• 𝑝1 + 2. 𝑝3 ≤ 4 𝑝1 ≡ (𝑝1 ≥ 1)

• 𝐹𝑖𝑟𝑎𝑏𝑙𝑒(𝑡)

• 𝑑𝑒𝑎𝑑

• 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 (`0)

(from now on we consider only “state-based” formulas)

Linear Temporal Logic

• The logic has two main connectives

𝐹 𝜙: reads “finally” (eventually) 𝜙 is true

𝐺 𝜙: reads “globally” (always) 𝜙 is true

𝜙,𝜓,… ∷= 𝑎 ¬𝜙 𝜙1∧ 𝜙2 𝐹 𝜙 𝐺 𝜙

• So you can write formulas such as:

𝐺 (𝑝1 ⇒ 𝐹 𝑝2 + 𝑝3 ≤ 𝑝4) ¬ 𝐹 𝑑𝑒𝑎𝑑 ∨ 𝐺 (¬𝑝2)

𝐹 𝐺 𝑝1 ∧ 𝐺 𝐹 𝑝2 𝐺 (𝐺 𝑡1 ∨ (𝐺 𝑡2))

Linear Temporal Logic

• The logic has two main connectives

𝐹 𝜙: reads “finally” (eventually) 𝜙 is true, also []𝜙

𝐺 𝜙: reads “globally” (always) 𝜙 is true, also 〈〉𝜙

• There is another possible presentation based on
two additional connectives

𝜙 𝑈 𝜓: reads “𝜙 holds until 𝜓”

𝑋𝜙 : reads “next” 𝜙 holds, also written ()𝜙

LTL—syntax equivalence

𝐹 𝜙 〈 〉𝜙 finally

𝐺 𝜙 𝜙 globally

𝑋 𝜙 𝜙 next

𝜙 𝑈 𝜓 𝜙 𝑈 𝜓 until

! 𝜙 ¬𝜙 negation

SPIN syntax selt syntax Pinyin name

LTL—semantics

• LTL formulas are interpreted on (maximal) traces,
𝑤 = 𝑤0. 𝑤1. … . 𝑤𝑖 . …

for “state-based” properties, 𝑤𝑖 is a state ≡ the set of
atomic propositions true in 𝑤𝑖

• We call 𝑤(𝑖) the 𝑖th element in 𝑤

• We use the notation 𝑤, 𝑖 ⊨ 𝜙 to say that 𝜙 holds
for 𝑤 from position 𝑖

𝑤 ⊨ 𝜙 ⇔ 𝑤, 0 ⊨ 𝜙

satisfaction relation ⊨

LTL—semantics

𝑤 ⊨ 𝜙 ?

𝑤0 𝑤1 𝑤2 𝑤𝑖 𝑤𝑘……

𝑤, 𝑖 ⊨ ϕ 𝑤, 𝑘 ⊨ ϕ……𝑤, 2 ⊨ ϕ

LTL—atomic propositions

• For atomic propositions, 𝑎, we can say whether it
holds for 𝑤𝑖 or not (we write 𝑤𝑖 ⊨ 𝑎 if it holds).

𝑤, 𝑖 ⊨ 𝑎 iff 𝑤𝑖 ⊨ 𝑎

• For example, if 𝑤𝑖 is the marking (𝑝1, 𝑝2 .2, 𝑝4)—
say (1, 2, 0, 1)—then we have that:

𝑤, 𝑖 ⊨ 𝑝2
𝑤, 𝑖 ⊨ (𝑝1 + 𝑝4 ≤ 𝑝2)

𝑤, 𝑖 ⊨ ¬(𝑝1 ∧ 𝑝3)

LTL—other connectives

𝑤, 𝑖 ⊨ 𝜙 ∨ 𝜓 iff (𝑤, 𝑖 ⊨ 𝜙) or (𝑤, 𝑖 ⊨ 𝜓)

𝑤, 𝑖 ⊨ ¬𝜙 iff not 𝑤, 𝑖 ⊨ 𝜙

etc.

𝑤, 𝑖 ⊨ 〈 〉𝜙 iff ∃ j ≥ i . (𝑤, 𝑗 ⊨ 𝜙)

𝑤, 𝑖 ⊨ []𝜙 iff ∀𝑘 ≥ 𝑖 . (𝑤, 𝑘 ⊨ 𝜙)

𝜙 holds at some “instant” 𝑗 in the future

𝜙 holds at all instants after 𝑖

LTL—semantics

𝑤 ⊨ 𝜙 ?

𝑤, 𝑖 ⊨ ϕ

True : ⊤
False : ⊥

𝑤, 𝑖 ⊨ 𝜙

𝑤0 𝑤1 𝑤2 𝑤𝑖 𝑤𝑘……

⊤… …

⊤⊤⊤⊤⊤⊤

⊥ ⊥ ⊥ ⊥
…⊥

⊥ ⊥

LTL—semantics

𝑤 ⊨ []𝜙 ?

𝑤, 𝑖 ⊨ ϕ

True : ⊤
False : ⊥

𝑤, 𝑖 ⊨ []𝜙

𝑤0 𝑤1 𝑤2 𝑤𝑖 𝑤𝑘……

⊥… …⊤
⊥⊥⊥⊥⊥

⊤ ⊤ ⊤
…

⊤

⊤

⊤

⊥

LTL—other connectives

We can define the semantics for the two extra op.

𝑤, 𝑖 ⊨ ()𝜙 iff 𝑤, 𝑖 + 1 ⊨ 𝜙

𝑤, 𝑖 ⊨ 𝜙 𝑈 𝜓 iff ∃𝑗 ≥ 𝑖 . (𝑤, 𝑗) ⊨ 𝜓

and ∀𝑘 ∈ [𝑖, 𝑗[. 𝑤, 𝑘 ⊨ 𝜙

𝜙 holds at the next “instant”

there is an instant 𝑗 in the future such
that 𝜓 holds and 𝜙 holds until that time

LTL—semantics

𝑤 ⊨ 𝜙 𝑈 𝜓 ?

𝑤, 𝑖 ⊨ 𝜓

True : ⊤
False : ⊥

𝜙 𝑈 𝜓

𝑤0 𝑤1 𝑤2 𝑤𝑖 𝑤𝑘……

… …⊤ ⊤ ⊤ ⊤
⊥⊥⊥⊥ …⊤⊥

𝑤, 𝑖 ⊨ ϕ

⊤…⊤ ⊤ ⊤ ⊤

LTL—other connectives

We can use the until connective to define F and G

Actually, it is true that

𝜙 ≡ 𝑇𝑟𝑢𝑒 𝑈 𝜙

𝜙 ≡ ¬(𝑇𝑟𝑢𝑒 𝑈 (¬𝜙))

𝜙 ≡ ¬ (¬𝜙)

Think De Morgan’s laws:
¬ 𝑎 ∨ 𝑏 ≡ ¬𝑎 ∧ ¬𝑏

LTL—other connectives

We can also use next to (recursively) define F and G

𝜙 ≡ 𝜙 ∨ 𝜙 ≡ 𝜇𝑋. (𝜙 ∨ 𝑋)

𝜙 ≡ 𝜙 ∧ 𝜙 ≡ 𝜇𝑋. (𝜙 ∧ 𝑋)

𝜙 𝑈 𝜓 ≡ 𝜇𝑋. (𝜓 ∨ 𝜙 ∧ 𝑋)

𝜇𝑋. 𝑓(𝑋) means the “smallest fixpoint” for
the functional 𝑓, i.e. 𝑉 such that 𝑓 𝑉 = 𝑉.

LTL—semantics

• A property is true (it holds) for a trace 𝑤 if it is true
“at the beginning” (𝑤, 0 ⊨ 𝜙)

• A property holds for a system if it is true for all its
(maximal) trace
• how many traces can there be ?

LTL—semantics

We consider finite-state systems, hence a maximal
trace either ends in a deadlock or it has a cycle

0 1 2 3 4 5 6 7 8

𝑠1 𝑠2 𝑠1 𝑠1 𝑠2 𝑠1 𝑠1 𝑠3 𝑠1

910

𝑠1𝑠1

LTL—semantics

Example: 𝐹 𝐺 𝑠1 (that is 𝑠1)

0 1 2 3 4 5 6 7 8 …

⊤ ⊥ ⊤ ⊤ ⊥ ⊤ ⊤ ⊥ ⊤ ⊤

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊤ ⊤

⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤

𝑠1 𝑠2 𝑠1 𝑠1 𝑠2 𝑠1 𝑠1 𝑠3 𝑠1 … 𝑠1∗𝑤 =

𝑠1 =

𝑠1 =

𝑠1 =

LTL—semantics

Example: 𝐹 (𝑠3 ∨ 𝐺 𝑠2) (that is (𝑠3 ∨ 𝑠2))

0 1 2 3 4 5 6 7 8 …

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊤ ⊥ ⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊤ ⊥ ⊥

⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊥ ⊥

𝑠1 𝑠2 𝑠1 𝑠1 𝑠2 𝑠1 𝑠1 𝑠3 𝑠1 … 𝑠1∗𝑤 =

𝑠3 =

𝑠2 =

𝑠3 ∨ 𝑠2=

… =

Exercise

Check 𝑤, 𝑖 ⊨ 𝜙

0 1 2 3 4

𝑞 𝑞 𝑞 𝑝 ∅

0 1 2 3 4 5 …

𝑞 𝑈 𝑝

𝐹 𝐺 ¬𝑝

𝐹(𝑞 𝑈 𝑝)

𝐹¬(𝑞 𝑈 𝑝)

¬𝐺(𝑞 𝑈 𝑝)

¬𝐺¬(𝑞 𝑈 𝑝)

Model Checking
LTL specifications

Example specification

• Mutual exclusion
never more than one process can be in state working at
any given time

• No starvation
a process that wants to work (in state waiting) should
eventually reach state working

• Bounded usage time
a process in state working should eventually be idle

Example specification

• Mutual exclusion
¬(𝑤𝑜𝑟𝑘𝑖 ∧ 𝑤𝑜𝑟𝑘𝑗)

• No starvation
(𝑤𝑎𝑖𝑡𝑖 ⇒ 𝑤𝑜𝑟𝑘𝑖)

(𝑤𝑎𝑖𝑡𝑖 ⇒ 𝑤𝑎𝑖𝑡𝑖 𝑈 𝑤𝑜𝑟𝑘𝑖)

• Bounded usage time
(𝑤𝑜𝑟𝑘𝑖 ⇒ ¬𝑤𝑜𝑟𝑘𝑖)

atomic prop. are: 𝑖𝑑𝑙𝑒𝑖,
𝑤𝑎𝑖𝑡𝑖, and 𝑤𝑜𝑟𝑘𝑖 .

unnecessary

Exercise

Additional specification

We say that 𝜙 precedes 𝜓 holds for 𝑤, at 𝑘 (written
𝑤, 𝑘 ⊨ 𝜙 𝑃 𝜓) when:

that is, 𝑤 ⊨ 𝜙 𝑃 𝜓 as soon as:

can you express this new modality in LTL or should
we add it to the logic ?

∀𝑗 ≥ 𝑘 . 𝑤, 𝑗 ⊨ 𝜓 ⇒ ∃𝑖 ∈ 𝑘, 𝑗 . (𝑤, 𝑖 ⊨ 𝜙)

∀𝑗. 𝑤, 𝑗 ⊨ 𝜓 ⇒ ∃𝑖 ≤ 𝑗. (𝑤, 𝑖 ⊨ 𝜙)

Additional specification

We can write the following requirement as follows:
“access to the critical section is allowed only to the
workers that asked for it”

that is, before working, process 𝑖 must have asked it.

Could you express the stronger requirement that:
“access to the critical section is granted in the order
where workers asked for it” ?

(¬𝑤𝑜𝑟𝑘𝑖 ⇒ 𝑤𝑎𝑖𝑡𝑖 𝑃 𝑤𝑜𝑟𝑘𝑖)

Model Checking
using Tina selt

tina > selt

• The tina toolbox has a LTL model-checker called selt

• The program takes as input a reachability graph
(either in AUT format, or in a compressed format
called KTZ)

• LTL formulas include:

negation — implication =>

conjunction /\ disjunction \/

always [] eventually <>

constants T (true), F (false), dead

Some examples of formulas

[] (p1 /\ p2) ;

p1 and p2 always true (everywhere)

<> (p1 \/ p2) ;

means either p1 or p2 is true in every trace

[] (<> p) ;

means p true infinitely often

<> ([] p) ;

means p will become always true

How to use selt

1. use nd to draw/open a Petri net

2. use tool > reachability to generate the marking
graph in compressed (ktz) format

3. you can either
A. invoke selt directly from the nd window (right click

then choose “model check LTL”)
B. save in a file, say xx.ktz, and invoke “selt xx.ktz” in the

command line

4. Every input must end with a semi-colon: “;”

5. When a property is false, a counter-example is
printed

How to use selt

• Counter-examples can be replayed in the simulator
(if it is already open)

• There are several levels of details for printing the
counter-examples:

output fullproof ;

• To quit selt, simply enter “quit;”

• There are other commands, go see:
http://projects.laas.fr/tina/manuals/selt.html

see http://projects.laas.fr/tina/manuals/selt.html

http://projects.laas.fr/tina/manuals/selt.html
http://projects.laas.fr/tina/manuals/selt.html

